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Abstract
Lassa fever is a zoonotic viral illness that is endemic in West Africa. The disease has been a
subject of intensive research in themathematics and non-mathematics fields after the first case
was confirmed in Nigeria in 1969. Treatment is inevitable after the full incubation of a disease
but there may not be a total compliance to treatment guidelines due to factors like poverty and
ignorance especially in poor communities. These factors can seriously affect the dynamics
of Lassa fever but have not been paid attentions to in the literature. Based on this, a stage of
infection when the disease has been fully incubated is considered and a new mathematical
model is designed to examine the effect of treatment compliance on the dynamics and control
of Lassa fever. The model validity was examined and established using ample mathematics
theorems. The equilibria and a threshold for disease eradication were derived. The stability
was analyzed and the necessary and sufficient conditions for the equilibria of the model to
be stable both locally and globally were derived. Further, sensitivity analysis was carried
out to investigate the relative contributions of various parameters to Lassa fever spread and
management. Numerical simulation was later conducted via a logical parameter values from
the literature to visualize the effect of parameters perturbations on the dynamics of the disease.
Results from the study revealed that Lassa fever eradication is a function of total compliance
to treatment procedures.
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1 Introduction

Lassa fever is a deadly viral zoonotic illness instigated byLassa virus. It is transmitted through
direct contact especially between infected animals or humans and susceptible humans [14].
The disease is rampant during dry seasons due to excessive dust from dead hosts [7]. At
present, there are no approved vaccines for Lassa fever [10]. However, several attempts have
been made to develop reliable vaccines for Lassa virus [9, 17, 18, 29].

Lassa fever is endemic in West Africa and there have been frequent emergence and re-
emergence of the disease in Mali, Sierra-Leone, Ghana, Liberia, Benin, Guinea and Nigeria
[12]. Reliable data attributed about 5000mortalities and 300,000 new infections toLassa fever
across West African countries each year [27]. The first case of Lassa fever was confirmed in
the Nigerian town called Lassa in 1969 and the disease has been occurring from time to time
in the country since then [6]. Within the first two months in 2020, the case fatality ratio of
Lassa fever in Nigeria is about 41.9% with 72 mortalities from 172 confirmed cases [10].

The primary hosts of Lassa virus are rodents that belong to the genus Mastomys usually
regarded as “multimammate rats” [8].Mastomys rodents infected with the Lassa virus never
become sick, but can spread the virus to other primates and man through their excreta [28].

Many scholars have contributed and dedicated much time to the study of Lassa fever
and several models have been developed to study the transmission dynamics of Lassa fever
theoretically [1, 5, 11, 13, 22–25]. Lassa fever can be attributed to many factors but existing
studies have been motivated by factors like isolation, re-infection and latency [3, 15, 21, 28].
The spread of Lassa fever and effect of available intervention strategies have also been a
subject of intense theoretical study [2, 4, 16, 19, 20, 26, 30].

When an infection is fully incubated, treatment becomes imperative. However, the rate of
compliance to treatment guidelines might not be 100% due to many factors like ignorance
and poverty especially in poor resource setting communities. Attentions have not been paid
to these factors in the literature but can seriously affect the dynamics of Lassa fever. On this
ground, a stage of infection when the disease has been fully incubated is considered and a
new mathematical model is designed to examine the effect of treatment compliance on the
dynamics and control of Lassa fever.

2 Model formulation

The compartments of the model are classified into seven namely susceptible humans (Sh),
infected humans (Ih), non-treatment compliant humans (NTh), treatment compliant humans
(Th), recovered humans (Rh), susceptible rodents (Sr ) and infected rodents (Ir ). The model
is formulated based on the following assumptions:

1. A poor resource setting community is considered and susceptible humans are not pro-
tected against infections.

2. When an infection is fully developed, treatment becomes inevitable therefore asymp-
tomatic stage is neglected.

3. Individuals who are treatment compliant do follow treatment guidelines strictly. They do
not interact with susceptible humans or rodents and do not spread the disease.

4. Non-treatment compliant individuals are negligent and do mix with the susceptible
humans and rodents and do spread the disease.

5. Recovery is not permanent and there is tendency for reinfection.
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Fig. 1 Transmission diagram of the model

6. Lassa fever deaths only occur for infectious humans (Ih) while individuals under treat-
ment (Th) and (NTh) do not die of Lassa fever infections.

7. Infectious humans (Ih) and non-treatment compliant humans (NTh) do not spread infec-
tion to susceptible rodents.

Following these assumptions, the flow between the compartments is displayed in Fig. 1.
The definitions for the model parameters are presented in Table 1.
The transfer diagram in Fig. 1 is translated into the following system of nonlinear first-

order ordinary differential equations

dSh
dt

= βh + φRh − (α1 Ih + α2 Ir + α3NTh)Sh − d1Sh, (1)

d Ih
dt

= (α1 Ih + α2 Ir + α3NTh)Sh − (1 − η)τ Ih − ητ Ih − (d1 + ϑ)Ih, (2)

dNTh
dt

= (1 − η)τ Ih − γ1NTh − d1NTh, (3)

dTh
dt

= ητ Ih − γ2Th − d1Th, (4)

dRh

dt
= γ1NTh + γ2Th − φRh − d1Rh, (5)

dSr
dt

= ϕr − εSr Ir − d2Sr , (6)

d Ir
dt

= εSr Ir − d2 Ir . (7)
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Table 1 Definitions for model parameters

Parameters Definitions

βh Recruitment rate into human population

ϕr Recruitment rate into rodent population

α1 Effective contact rate between susceptible and infectious humans

α2 Effective contact rate between susceptible humans and infected rodents

α3 Effective contact rate between susceptible and non-treatment compliant humans

d1 Natural death rate for humans

d2 Natural death rate for rodents

ϑ Mortality rate due to infection

η Proportion of infected individuals who comply with treatment guidelines

τ Rate of progression into treatment compartments

γ1 Recovery rate for non-treatment compliant individuals

γ2 Recovery rate for treatment compliant individuals

φ Waning rate of immunity

ε Effective contact rate between susceptible and infectious rodents

The population of man and mastomys at time t is split to Eqs. (8) and (9) respectively

NH = Sh(t) + Ih(t) + NTh(t) + Rh(t), (8)

NR(t) = Sr (t) + Ir (t), (9)

subject to initial conditions,

S0h > 0, I0h ≥ 0, NT0h ≥ 0, T0h ≥ 0, R0h ≥ 0, S0r > q0, I0r ≥ 0. (10)

The growth for man and mastomys populations is described by

dNH

dt
t = βh − d1NH (t) − ϑ Ih, (11)

dNR

dt
t = ϕr − d2NR(t). (12)

The model must satisfy positivity and boundedness properties before it can be valid. Besides,
it must bemathematically and biologicallywell-posed. Each of the properties shall be verified
one after the other to establish the validity of the model.

2.1 Positivity of solutions

The solutions of the model must be positive since the model monitors human and animal
populations. We shall show that the solutions of the system are positive for all t > 0.

Theorem 1 Given the positive initial variables S0 h > 0, I0 h > 0, NT0 h > 0, T0 h >

0, R0 h > 0, S0r > 0, I0r > 0, the solutions (Sh, Ih, NTh, Th, Rh, Sr , Ir ) of the system are
positive for all t > 0.

From Eqs. (11) and (12),

lim
t→∞ SupNH (t) ≤ βh

d1
, (13)
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lim
t→∞ SupNR(t) ≤ ϕr

d2
. (14)

Proof Assuming ∇L = Sup t > 0 : Sh(t) > 0, Ih(t) > 0, NTh(t) > 0, Th(t) >

0, Rh(t) > 0, Sr (t) > 0, Ir (t) > 0 then ∇L > 0. Supposing also that ∇L > ∞ then
Sh, Ih, NTh, Th, Rh, Sr , Ir becomes zero at ∇L . Therefore, from Eq. (1), it follows that

d

dt
Sh(t)exp[(α1 Ih + α2 Ir + α3NTh + d1)t] =

∫ ∇L

0
(βh + φRh)exp[(α1 Ih

+ α2 Ir + α3NTh + d1)p]dp.
(15)

�⇒ Sh(∇L) =Sh(0)exp[−(α1 Ih + α2 Ir + α3NTh + d1)∇L ]
+ exp[−(α1 Ih + α2 Ir + α3NTh + d1)∇L ]

×
∫ ∇L

0
(βh + φRh)exp[(α1 Ih + α2 Ir + α3NTh + d1)p]dp > 0.

(16)

By the same procedure, it can be shown that Ih > 0, NTh > 0, Th > 0, Rh > 0, Sr > 0,
Ir > 0, ∀ t > 0. 
�

2.2 Boundedness of solutions

Theorem 2 The solutions (Sh, Ih, NTh, Th, Rh, Sr , Ir ) of the model are bounded.

Proof From Eq. (11)

d

dt
NH (t) = βh − d1NH (t) − ϑ Ih .

With no infection,

d

dt
NH (t) ≤ βh − d1NH (t),

d

dt
NH (t) + d1NH (t) ≤ βh

(17)

Integrating inequality (17),

ed1t NH (t) ≤
∫

βhe
d1t dt + c1,

�⇒ ed1t NH (t) ≤ βh

d1
ed1t + c1,

NH (t) ≤ βh

d1
+ c1e

−d1t .

When t = 0,

c1 ≥ NH (0) − βh

d1
,

∴ NH (t) ≤ βh

d1
+

(
NH (0) − βh

d1

)
e−d1t .

Hence,

NH (t) ≤ NH (0)e−d1t + βh

d1
(1 − e−d1t ). (18)
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Also, from Eq. (12),

d

dt
NR(t) = ϕr − d2NR(t).

With no infection,

d

dt
NR(t) ≤ ϕr − d2NR(t),

d

dt
NR(t) + d2NR(t) ≤ ϕr

(19)

Integrating inequality (19),

ed2t NR(t) ≤
∫

ϕr e
d2t dt + c2,

�⇒ ed2t NR(t) ≤ ϕr

d2
ed2t + c2,

NR(t) ≤ ϕr

d2
+ c2e

−d2t .

When t = 0,

c2 ≥ NR(0) − ϕr

d2
,

∴ NR(t) ≤ ϕr

d2
+

(
NR(0) − ϕr

d2

)
e−d2t .

Hence,

NR(t) ≤ NR(0)e−d2t + ϕr

d2
(1 − e−d2t ). (20)

Following Birkhoff and Rota’s theorem [31, 45, 46], Eqs. (18) and (20) becomes

0 ≤ NH (t) ≤ βh

d1
and 0 ≤ NR(t) ≤ ϕr

d2
as t → ∞.

Paticularly, NH (t) ≤ βh

d1
and NR(t) ≤ ϕr

d2
if NH (0) ≤ βh

d1
and NR(0) ≤ ϕr

d2
respectively.

Therefore, all the solutions of the model enter

� =
{
�H ∪ �R ∈ IR5+ × IR2+

}
,

where

� =
{
(Sh, Ih, NTh, Th, Rh) ∈ IR5+; NH (t) ≤ βh

d1
, (Sr , Ir ) ∈ IR2+; NR(t) ≤ ϕr

d2

}
. (21)

Hence, all the solutions of the system with nonnegative initial conditions in � remain in �

for all t > 0. It therefore follows that � is positively invariant. Hence, the disease dynamics
governed by the system (1)–(7) can be considered in � where the system is mathematically
and epidemiologically well posed. 
�
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3 Qualitative analysis

3.1 Equilibria

The model equilibrium points are obtained to analyze the long-term dynamics of the disease.
The system of Eqs. (1)–(7) is set to zero to obtain two equilibria. i.e.

dSh
dt

= d Ih
dt

= dNTh
dt

= dTh
dt

= dRh

dt
= dSr

dt
= d Ir

dt
= 0 (22)

The solutions S◦
h , I

◦
h , NT ◦

h , T ◦
h , R◦

h, S
◦
r and I ◦

r satisfy Eq. (22) and clearly indicate that the
equilibrium is not trivial and the populations do not go into extinction as long as human
recruitment rate βh and the mastomys recruitment rate ϕr are not zero. Hence, Ih = NTh =
Th = Rh = 0 when Lassa virus is totally absent from the community and the system admits a
steady state, H◦, that represents the infection-free equilibrium (DFE). Therefore, the system
has the DFE denoted by

H◦ = (S◦
h , I

◦
h , NT ◦

h , T ◦
h , R◦

h, S
◦
r , I

◦
r ) =

(
βh

d1
, 0, 0, 0, 0,

ϕr

d2
, 0

)
.

However, if the community is invaded with Lassa virus, each of the variables become
nonzero and the condition Ih = NTh = Th = Rh = 0 fails to hold. Assuming H∗
defines the system’s steady state when the community is invaded with the virus with points
S∗
h , I

∗
h , NT ∗

h , T ∗
h , R∗

h , S
∗
r , I ∗

r . Then, solving the system at the endemic equilibrium, the points
are obtained as

S∗
h = 1( {α1(γ1 + d1) + α3(1 − η)τ } I ∗

h

(γ1 + d1)
+ α2

(
ϕr

d2
− d2

ε

)
+ d1

)

×
[
βh + φ

φ + d1

( {γ1(1 − η)τ + γ2ητ } I ∗
h

(γ1 + d1)

)]
,

(23)

I ∗
h = 1

τ + d1 + ϑ −
( {α1(γ1 + d1) + α3(1 − η)τ }

(γ1 + d1)

)
S∗
h

×
[
α2

(
ϕr

d2
− d2

ε

)]
,

(24)

NT ∗
h = (1 − η)τ I ∗

h

(γ1 + d1)
, (25)

T ∗
h = ητ I ∗

h

(γ2 + d1)
, (26)

R∗
h = 1

(φ + d1)

[
γ1(1 − η)τ I ∗

h

(γ1 + d1)
+ γ2

ητ I ∗
h

(γ1 + d1)

]
, (27)

S∗
r = d2

ε
, (28)

I ∗
r = ϕr

d2
− d2

ε
. (29)
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3.2 Reproduction number

To predict the transmission potential of the virus when an infectious agent emerges in a
population where every individual andmastomys are completely susceptible, we compute the
reproduction number, R◦, which is defined by Diekmann et al. [32] as the average number of
secondary cases instigated by an infectious agent in a naive population throughout the period
of his infectiousness. For our model, R◦ is computed following the procedure in Driesche
and Watmough [33] which quantifies Lassa fever spread in terms of infections from humans
and rodents. Infections from humans include infections from both infected Ih and the non-
treatment compliance NTh . Therefore, at the DFE, the rate of appearance of new infections
and the transfer of humans and mastomys are partitioned into two Jacobian matrices F and
V such that

F =

⎛
⎜⎜⎜⎝

α1βh

d1

α3βh

d1

α2βh

d1
0 0 0

0 0
εϕr

d2

⎞
⎟⎟⎟⎠ , V =

⎛
⎝τ + d1 + ϑ 0 0

−(1 − η)τ (γ1 + d1) 0
0 0 d2

⎞
⎠ . (30)

V−1 =

⎛
⎜⎜⎜⎜⎜⎝

1

(τ + d1 + ϑ)
0 0

(1 − η)τ

(γ1 + d1)(τ + d1 + ϑ)

1

(γ1 + d1)
0

0 0
1

d2

⎞
⎟⎟⎟⎟⎟⎠

. (31)

The spectral radius of matrix FV−1 defines the R◦ for the model. R◦ for the model is made
up of RH and Rr , the infection spread from humans and mastomys respectively. Therefore,
R◦ = max(RH , Rr ) such that

RH = α1βh

d1(τ + d1 + ϑ)
+ α3βh(1 − η)τ

d1(γ1 + d1)(τ + d1 + ϑ)
, Rr = εϕr

d22
. (32)

While RH governs the number of new cases of Lassa fever due to infections from infectious
individuals who are yet to access treatment (Ih) and those who are under treatment but who
do not comply with treatment guidelines (NTh), Rr governs the average number of new cases
of Lassa fever due to infections from infectious rodents (Ir ). The transmissibility of Lassa
virus depends on the numerical values of RH and Rr . If RH and Rr are less than one, the
virus will not spread but if one or both RH and Rr are greater than one, the virus will spread
in the population.

3.3 Local stability of the equilibria,H◦ and H∗

The DFE H◦, the endemic equilibrium H∗ and the R◦ of the model have been derived. The
stability of the equilibria H◦ and H∗ have to be investigated to examine the possibility of
Lassa fever extinction or persistence in the population.

Theorem 3 The DFE H◦ is locally asymptotically stable if RH < 1 and Rr < 1 but unstable
if one or both RH and Rr are greater than one

Proof The Jacobian of the model evaluated at DFE H◦ is obtained as
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J (H◦) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d1 −α1βh

d1
−α3βh

d1
0 φ 0 −α2βh

d1
0

α1βh

d1
− (τ + d1 + ϑ)

α3βh

d1
0 0 0

α2βh

d1
0 (1 − η)τ −(γ1 + d1) 0 0 0 0
0 ητ 0 −(γ2 + d1) 0 0 0
0 0 γ1 γ2 −(φ + d1) 0 0

0 0 0 0 0 −d2 − εϕr

d2
0 0 0 0 0 0

εϕr

d2
− d2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

Solving |J (H◦) − λI | = 0 yields

(d1 + λ)

(
d2 − εϕr

d2
+ λ

)
(d2 + λ)(φ + d1 + λ)(γ2 + d1 + λ)

∣∣∣∣∣∣
α1βh

d1
− (τ + d1 + ϑ)

α3βh

d1
(1 − η)τ −(γ1 + d1)

∣∣∣∣∣∣ = 0.

(34)

�⇒ (d1 + λ)

(
d2 − εϕr

d2
+ λ

)
(d2 + λ)(φ + d1 + λ)(γ2 + d1 + λ) = 0

(35)

or ∣∣∣∣∣∣
α1βh

d1
− (τ + d1 + ϑ)

α3βh

d1
(1 − η)τ −(γ1 + d1)

∣∣∣∣∣∣ = 0. (36)

From Eq. (35),

λ1 = −d1, λ2 = −d2, λ3 = −(φ + d1), λ4 = −(d1 + γ1), λ5 = εϕr

d2
− d2.

λ5 can be further expressed as

λ5 = d2

(
εϕr

d22
− 1

)
,

∴ λ5 = d2(Rr − 1).

Hence, λ5 < 0 if Rr < 1. Suppose the matrix in Eq. (36) is considered and suppose it is M .
The trace and determinant of M are respectively

Tr(M) = α1βh

d1
− [(τ + d1 + ϑ) + (d1 + γ1)] (37)

Det(M) = −(d1 + γ1)

[
α1βh

d1
− (τ + d1 + ϑ)

]
− α3βh

d1
(1 − η)τ

= (d1 + γ1)(τ + d1 + ϑ)

[
1 −

{
α1βh

d1(τ + d1 + ϑ)
+ α3βh(1 − η)τ

d1(d1 + γ1)(τ + d1 + ϑ)

}]

�⇒ Det(M) = (d1 + γ1)(τ + d1 + ϑ)[1 − RH ]. (38)

Therefore, Det(M) > 0 if RH < 1. Also in Eq. (37), following the definition of RH , if
RH < 1 then α1 → 0 and Tr(M) < 0. Hence, all the roots of |J (H◦)−λI | = 0 are negative
and the DFE H◦ is locally asymptotically stable if RH < 1 and Rr < 1. 
�
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The investigation of the local stability of the endemic equilibrium H∗ shall follow after the
necessary and sufficient conditions for local asymptotic stability of the DFE H◦ have been
derived.

Theorem 4 The endemic equilibrium H∗ exists and is locally asymptotically stable if R◦ > 1
otherwise H∗ is locally asymptotically unstable (i.e. if R◦ < 1)

Proof Linearization approach will prove difficult to establish the local stability of H∗ due to
the dimension of the system. Therefore, Theorem 4.1 (iv) in Castillo-Chavez and Song [34]
shall be employed to examine the local stability of H∗ of the model. The Jacobian of the
system evaluated at DFE H◦ with α3 = α∗

3 chosen as the bifurcation parameter is derived as

J ∗ = J (H◦)|α3=α∗
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d1 −α1βh

d1
−α∗

3βh

d1
0 φ 0 −α2βh

d1

0
α1βh

d1
− k1

α∗
3βh

d1
0 0 0

α2βh

d1
0 (1 − η)τ −k2 0 0 0 0
0 ητ 0 −k3 0 0 0
0 0 γ1 γ2 −k4 0 0

0 0 0 0 0 −d2 −εϕr

d2
0 0 0 0 0 0 k5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(39)

where

k1 = (τ + d1 + ϑ), k2 = (γ1 + d1), k3 = (γ2 + d1), k4 = (φ + d1), k5 = εϕr

d2
− d2.

α3 = α∗
3 is chosen as the bifurcation parameter to examine whether or not poor compliance

with treatment guidelines can trigger Lassa fever outbreak. The right-eigen vectors of J ∗ =
J (H◦)|α3=α∗

3
in terms of w2 where w2 = w2 > 0 consists of

w1 = 1

d1

{
φ

k4

(
γ1(1 − η)τ

k2
+ γ2ητ

k3

)
− k1

}
w2, (40)

w2 = w2 > 0, (41)

w3 = (1 − η)τ

k2
w2, (42)

w4 = ητ

k3
w2, (43)

w5 = 1

k4

(
γ1(1 − η)τ

k2
+ γ2ητ

k3

)
w2, (44)

w6 = ϕr d1
d22α2βh

[
α1βh

d1
+ α∗

3βh(1 − η)τ

d1k2
− k1

]
w2, (45)

w7 = d1
α2βh

[
k1 −

{
α1βh

d1
+ α∗

3βh(1 − η)τ

d1k2

}]
w2. (46)

Also, J ∗ = J (H◦)|α3=α∗
3
has the left eigen-vectors satisfying the condition v.w = 1 such

that v1 = v3 = v4 = v5 = v6 = v7 = 0 but v2 = v2 > 0. The stability of H∗ is governed by
the signs of the coefficients of ′a′ and ′b′ whose formulae are respectively defined in Theorem
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4.1 (iv) in [34] as

a =
7∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0), (47)

b =
7∑

k,i=1

vkwi
∂2 fk

∂xi∂α∗
3
(0, 0). (48)

Therefore, the values of a and b are determined after a few algebraic manipulations as

a = 2v2
d1

{
φ

k4

(
γ1(1 − η)τ

k2
+ γ2ητ

k3

)
− k1

}[
α1 + (1 − η)τ

k2
α2 + ητ

k3
α∗
3

]
w2
2, (49)

b = βh

d1
v2w2 > 0. (50)

Since b > 0 and following the same Theorem 4.1 (iv) in [34], there exists an endemic
equilibrium H∗ that is locally asymptotically stable if a < 0. 
�

Having derived the necessary and sufficient conditions for the existence of local stability of
each equilibrium of the model, the investigation of the global stability the model equilibria
shall follow.

3.4 Global stability of the equilibria,H◦ and H∗

Theorem 5 The DFE H◦ is globally asymptotically stable (GAS) if R◦ < 1 but unstable if
R◦ > 1.

Proof The comparison theorem in [35] which has been used in some existing Lassa fever
model [7] shall be used to investigate the existence of global stability for the DFE H◦ of
our proposed Lassa fever model. By definition, the DFE H◦ is GAS if all the eigenvalues of
|(F − V ) − λI | = 0 are negative. From Eq. (30),

|(F − V ) − λI | =

∣∣∣∣∣∣∣

α1βh

d1
− k1 − λ

α3βh

d1

α2βh

d1
(1 − η)τ −k2 − λ 0

0 0 k5 − λ

∣∣∣∣∣∣∣
= 0. (51)

�⇒ (k5 − λ)

[(
−α1βh

d1
+ k1 + λ

)
(k2 + λ) − (1 − η)τα3βh

d1

]
= 0.

�⇒ (k5 − λ)×[
λ2 +

{
−α1βh

d1
+ k1 + k2

}
λ +

{
k2

(
−α1βh

d1
+ k1

)
− (1 − η)τα3βh

d1

}]
= 0,

(52)

where

k1 = (τ + d1 + ϑ), k2 = (γ1 + d1), k5 = εϕr

d2
− d2.
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Equation (52) can be solved by using the principle a = 0 or b = 0 if a × b = 0. Now, from
Eq. (52),

k5 − λ = 0

�⇒ λ1 = εϕr

d2
− d2

= d2

[
εϕr

d22
− 1

]

�⇒ λ1 = d2(Rr − 1).

∴ λ1 < 0

provided that Rr < 1. Or,
[
λ2 +

{
−α1βh

d1
+ k1 + k2

}
λ +

{
k2

(
−α1βh

d1
+ k1

)
− (1 − η)τα3βh

d1

}]
= 0.

(53)

On substituting for k1 and k2 and following Rourth Hurtwitz stability criteria [36, 47], the
two roots in Eq. (53) are negative if

− α1βh

d1
+ (τ + d1 + ϑ) + (γ1 + d1) > 0 (54)

and,

(γ1 + d1)

(
−α1βh

d1
+ (τ + d1 + ϑ)

)
− (1 − η)τα3βh

d1
> 0. (55)

From inequality (55),

− (γ1 + d1)

(
α1βh

d1
− (τ + d1 + ϑ) + (1 − η)τα3βh

d1(γ1 + d1)

)
> 0,

(γ1 + d1)(τ + d1 + ϑ)

[
1 −

(
α1βh

d1(τ + d1 + ϑ)
+ (1 − η)τα3βh

d1(γ1 + d1)(τ + d1 + ϑ)

)]
> 0,

�⇒ (γ1 + d1)(τ + d1 + ϑ)(1 − RH ) > 0. (56)

Inequalities (54) and (56) are true provided that RH < 1. The validity of inequality (56)
is clear whenever RH < 1. Inequality (54) would also be true because the transmission
parameter α1 → 0 when RH < 1. Hence, all the eigenvalues of Eq. (51) are negative if
RH < 1 and Rr < 1. Therefore, it is sufficient to conclude that the global stability of the
DFE H◦ of the proposed model is a function of the numerical values of RH < 1 and Rr < 1.


�
Having examined the global stability the DFE H◦ of the model, we proceeded to investigate
the global stability of the endemic equilibrium H∗.

Theorem 6 The endemic equilibrium H∗ of the model is globally asymptotically stable if
R◦ > 1.
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Proof Suppose L is a nonlinear Lyapunov function. The endemic equilibrium H∗ is globally
asymptotically stable if

dL

dt
≤ 0 [37, 38]. Define L as

L =
(
Sh − S∗

h − S∗
h log

Sh
S∗
h

)
+

(
Ih − I ∗

h − I ∗
h log

Ih
I ∗
h

)

+
(
NTh − NT ∗

h − NT ∗
h log

NTh
NT ∗

h

)
+

(
Th − T ∗

h − T ∗
h log

Th
Th∗

)

+
(
Rh − R∗

h − R∗
h log

Rh

R∗
h

)
+

(
Sr − S∗

r − S∗
r log

Sr
S∗
r

)

+
(
Ir − I ∗

r − I ∗
r log

Ir
I ∗
r

)
, (57)

dL

dt
=

(
1 − S∗

h

Sh

)
dSh
dt

+
(
1 − I ∗

h

Ih

)
d Ih
dt

+
(
1 − NT ∗

h

NTh

)
dNTh
dt

+
(
1 − T ∗

h

Th

)
dTh
dt

+
(
1 − R∗

h

Rh

)
dRh

dt
+

(
1 − S∗

r

Sr

)
dSr
dt

+
(
1 − I ∗

r

Ir

)
d Ir
dt

, (58)

�⇒ dL

dt
=

(
1 − S∗

h

Sh

)
[βh + φRh − (α1 Ih + α2 Ir + α3NTh)Sh − d1Sh]

+
(
1 − I ∗

h

Ih

)
[(α1 Ih+α2 Ir+α3NTh)Sh − (1 − η)τ Ih−ητ Ih − (d1 + ϑ)Ih]

+
(
1 − NT ∗

h

NTh

)
[(1 − η)τ Ih − γ1NTh − d1NTh],

+
(
1 − T ∗

h

Th

)
[ητ Ih − γ2Th − d1Th],

+
(
1 − R∗

h

Rh

)
[γ1NTh + γ2Th − φRh − d1Rh],

+
(
1 − S∗

r

Sr

)
[ϕr − εSr Ir − d2Sr ],

+
(
1 − I ∗

r

Ir

)
[εSr Ir − d2 Ir ]. (59)

Simplifying Eq. (59) in terms of S∗
h&Sh, I ∗

h&Ih, NT ∗
h &NTh, T ∗

h &Th, R∗
h&Rh, S∗

r &Sr and
I ∗
r &Ir then

dL

dt
=

(
1 − S∗

h

Sh

)
[(α1 Ih + α2 Ir + α3NTh + d1)S

∗
h − (α1 Ih + α2 Ir + α3NTh + d1)Sh]

+
(
1 − I ∗

h

Ih

)
[(τ + d1 + ϑ)I ∗

h − (τ + d1 + ϑ)Ih]

+
(
1 − NT ∗

h

NTh

)
[(d1 + γ1)NT ∗

h − (d1 + γ1)NTh],

+
(
1 − T ∗

h

Th

)
[(d1 + γ2)T

∗
h − (d1 + γ2)Th],
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+
(
1 − R∗

h

Rh

)
[(d1 + φ)R∗

h − (d1 + φ)Rh],

+
(
1 − S∗

r

Sr

)
[(ε Ir + d2)S

∗
r − (ε Ir + d2)Sr ],

+ d2

(
1 − I ∗

r

Ir

)
[I ∗
r − Ir ].

�⇒ dL

dt
= −

(
1 − S∗

h

Sh

)
(α1 Ih + α2 Ir + α3NTh + d1)(Sh − S∗

h )

−
(
1 − I ∗

h

Ih

)
(τ + d1 + ϑ)(Ih − I ∗

h )

−
(
1 − NT ∗

h

NTh

)
(d1 + γ1)(NTh − NT ∗

h ),

−
(
1 − T ∗

h

Th

)
(d1 + γ2)(Th − T ∗

h ),

−
(
1 − R∗

h

Rh

)
(d1 + φ)(Rh − R∗

h),

−
(
1 − S∗

r

Sr

)
(ε Ir + d2)(Sr − S∗

r ),

− d2

(
1 − I ∗

r

Ir

)
(Ir − I ∗

r ).

(60)

Thus,
dL

dt
≤ 0. Also,

dL

dt
= 0 provided that Sh = S∗

h , Ih = I ∗
h , NTh =

NT ∗
h , Th = T ∗

h , Rh = R∗
h , Sr = S∗

r , Ir = I ∗
r . The only largest invariant set in{

(Sh, Ih, NTh, Th, Rh, Sr , Ir ) ∈ � : dL
dt

= 0

}
is H∗. Therefore, H∗ is GAS in the interior

� by LaSalle’s invariance principle [39, 40]. 
�

3.5 Sensitivity analysis

The contribution of themodel parameters to increase or decrease in the reproduction numbers
RH and Rr can be investigated by the sensitivity index formula which has been widely
employed in the literature [7, 15, 41].This will enable the policy makers to identify the
parameters to be targeted for intervention to control the spread of Lassa fever. The indices for
βh, α1, α3, η, γ1, d1, τ and ϑ in terms of RH are determined one after the other as follows:

βh : ∂RH

∂βh
× βh

RH
=

(
α1

d1(τ + d1 + ϑ)
+ α3(1 − η)τ

d1(γ1 + d1)(τ + d1 + ϑ)

)
× βh

RH
, (61)

α1 : ∂RH

∂α1
× α1

RH
= 1

RH

(
α1βh

d1(τ + d1 + ϑ)

)
, (62)

α3 : ∂RH

∂α3
× α3

RH
= 1

RH

(
α3βh(1 − η)τ

d1(γ1 + d1)(τ + d1 + ϑ)

)
, (63)

η : ∂RH

∂η
× η

RH
= − 1

RH

(
α3βhητ

d1(γ1 + d1)(τ + d1 + ϑ)

)
, (64)
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γ1 : ∂RH

∂γ1
× γ1

RH
= − 1

RH

(
α3βh(1 − η)τγ1

d1(γ1 + d1)2(τ + d1 + ϑ)

)
, (65)

d1 : ∂RH

∂d1
× d1

RH
= −α1βh(τ + 2d1 + ϑ)

(d1(τ + d1 + ϑ))2
− α3βh(1 − η)τm1

m2
× d1

RH
, (66)

τ : ∂RH

∂τ
× τ

RH
= − α1βh

d1m2
4

+ d1m3m4α3βh(1 − η) − m3α3βhd1(1 − η)τ

(d1m3m4)2
× τ

RH
,

(67)

ϑ : ∂RH

∂ϑ
× ϑ

RH
= − α1βh

d1m2
4

− α3βh(1 − η)τ

d1m3m2
4

× ϑ

RH
. (68)

Also, the indices for ϕr , ε and d2 in terms of Rr are determined as

ϕr : ∂Rr

∂ϕr
× ϕr

Rr
= ε

d22
× ϕr

Rr
, (69)

ε : ∂Rr

∂ε
× ε

Rr
= ϕr

d22
× ε

Rr
, (70)

d2 : ∂Rr

∂d2
× d2

Rr
= −εϕr

d32
× d2

Rr
, (71)

where m1 = τγ1 + 2d1γ1 + ϑγ1 + 2d1τ + 3d21 + 2d1ϑ, m2 = (d1(τγ1 + d1γ1 + ϑγ1 +
d1τ + d21 + d1ϑ))2, m3 = γ1 + d1, m4 = τ + d1 + ϑ.

4 Numerical simulation and discussion

To support the claims and illustrate what was obtained analytically in Sect. 3, some numerical
simulations are performed to visualize the effect of parameter perturbations on the structure
of the model. The parameter for human mortality rate, d1, is the only parameter whose value
is estimated. The values for other parameters are searched from the literature and where they
are not available, a logical set of values are used. The life expectancy in Nigeria in 2021 was
about 60.87 years [42]. The natural death rate is generally the inverse of the life expectancy.

Therefore, the natural death rate for human d1 = 1

60.87
year−1= 52

60.87
week−1. The model

parameters have been defined in Table 1 but the initial values assigned to each parameter to
conduct the simulation is stated in Table 2 with the unit of measurement in a year.

Following the parameter values in Table 2, the sensitivity indices of the model parameters
derived in Eqs. (61)–(71) in relation to the transmission parameters RH are Rr are computed
and the results are presented in Table 3.

In Table 3, natural death rates parameters d1 and d2, effective contact rate parameter
ε between infectious and susceptible rodents, mortality rate due to infection parameter ϑ

and progression rate parameter τ into treatment compartment are less significant to the
disease dynamics and are excluded in the the discussion of result for Table 3. Other key
parameters, βh, α1, α3, η, γ1 and ϕr , that havemajor influence on the dynamics of the disease
are discussed. Parameters with positive indices contribute to the spread of Lassa fever while
those with negative indices inhibit Lassa fever transmission.

Based on the sensitivity analysis results in Table 3, βh, α3, η, ϕr and γ1 are more crucial to
Lassa fever dynamics considering the magnitude of their values. It is revealed that (βh), the
human recruitment rate and (ϕr ), the recruitment rate for rodents have the highest sensitivity
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Table 2 parameters’ values and
sources

Parameters Values References

βh 0.038 [1]

ϕr 0.045 Assumed

α1 0.04 [1]

α2 0.043 [1]

α3 0.05 Assumed

d1 0.016 Estimated

d2 0.0627 [43]

ϑ 0.01133 [44]

η 0.5 Assumed

τ 0.85 Assumed

γ1 0.0614 [43]

γ2 0.15 Assumed

φ 0.0025 Assumed

ε 0.0475 Assumed

Table 3 Sensitivity indices of
major parameters

Parameter Index

βh 1.000

α1 0.127

α3 0.873

η −0.873

γ1 −0.692

ϕr 1.000

d1 −1.199

d2 −0.639

ε 0.605

ϑ −0.114

τ −7.673

indices of 1.000. The interpretation of the value is that Lassa fever transmission (i.e., R0)
approximately reduces by 10% if any of (βh) or (ϕr ) is reduced by 10%. This shows that any
intervention that can limit the influx of Lassa fever carriers into the human population and at
the same time reduce the rodent population is crucial to the eradication of Lassa fever spread.
Also, the sensitivity indices for α3, the effective contact rate between susceptible and infec-
tious individuals and η, the proportion of infected individuals who comply with treatment
guidelines revealed an important information about Lassa fever transmission and manage-
ment. The indices indicate that a 100% compliance with Lassa fever treatment guidelines (η)

could avert the spread of the disease in the population by 87%, whereas disregard for treat-
ment procedures could instigate a 87% spread of the disease in the susceptible individuals’
population (α3). Again, the effect of compliance with treatment guidelines is also revealed
by the sensitivity index of γ1 which indicates that Lassa fever spread could be reduced by
about 70% if γ1 is increased by 100%. That is, Lassa fever could be minimized if infectious
individuals who are not compliant with treatment guidelines turn over a new leaf. Therefore,
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(a) Effect of treatment compliance on the
dynamics of Lassa fever. Parameters val-
ues remain as in Table 2 with RH = 0.852
and Rr = 0.544.

(b) Effect of non-treatment compliance on
the dynamics of Lassa fever. η = 0.1, α3 =
0.3, τ = 0.3 and γ2 = 0.005 so that RH =
7.883 and Rr = 0.544.

Fig. 2 A simulation showing the effect of compliance and non-compliance with treatment guidelines on the
dynamics of Lassa fever

any strategy that aims to eliminate Lassa fever in the endemic areas has to take compliance
with treatment procedure with all seriousness. The effect of treatment compliance on the
transmission dynamics of Lassa fever is later examined quantitatively by varying the value
of the treatment compliant parameter (η) as well as the value of the parameter for spreading
rate of Lassa virus from non-treatment compliant humans to the susceptible individuals (α3).
The results of the analysis are displayed in Fig. 2 using the initial values Sh = 0.97, Ih =
0.016, NTh = 0.0005, Th = 0.01, Rh = 0.002, Sr = 0.00097, Ir = 0.0001.

The impact of compliance and non-compliance with treatment guidelines on the spread of
Lassa fever can be visualized in Fig. 2 especially in terms of the population of infectious indi-
viduals who are yet to be receiving treatment Ih(t). Emphasis is placed on these individuals
because infectious humans who are yet to be receiving treatment have major contributions to
Lassa fever escalation and their populations could be influenced by the level of compliance
with treatment procedures of the infectious individuals who are under treatment. In Fig. 2a,
with high rate of compliance with treatment guidelines, the population of the infectious indi-
viduals falls continuously and tends to zero after fifth year. It is shown in Fig. 2a that high
rate of compliance with treatment guidelines lapses the period for new cases to attain the
peak (delay instant transmission of the virus) and also elongates time to reach stability. The
reproduction numbers from human-to-human RH and rodent-to-human Rr are both less than
unity, 0.852 and 0.544 respectively when there is high rate of compliance with the treatment
guidelines which makes the DFE to be stable both locally and globally. Therefore, Lassa
fever outbreak can be brought under control with strong adherence to Lassa fever treatment
procedures.

On the other hand, the effect of disregard for compliance with the treatment procedures
on the transmission of Lassa fever is illustrated in Fig. 2b in terms of the population of
infectious individuals who are yet to be receiving treatment Ih(t). In Fig. 2b, with low
rate of compliance with treatment guidelines signifying by the value of η (i.e., 0.1) which
instigated α3 = 0.3, τ = 0.3, γ2 = 0.005, the population of the infectious individuals
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rises continuously. The rising nature of the curve in Fig. 2b pushes the disease to the stable
endemic state as the reproduction numbers RH and Rr equal 7.883 and 0.544 respectively.
In this scenario, disregard for compliance with the Lassa fever treatment procedures alone
accounts for the endemicity of the disease (i.e., RH = 7.883). It is therefore evident that total
compliance with Lassa fever treatment guidelines is key to the eradication of the disease in
the endemic areas.

5 Conclusion

In this work, a deterministic model was formulated via a system of first-order differential
equations to examine the effect of treatment compliance on the dynamics and control of
Lassa fever. The human and rodent populations were considered and model validity was
established. The threshold quantities RH and Rr , that governed disease spread or elimination,
were also derived. The necessary and sufficient conditions for the existence of both local
and global stability of the DFE and the endemic equilibrium in relation to the threshold
quantities RH and Rr were also derived. Sensitivity analysis was further carried out for the
threshold quantities RH and Rr to quantify the effect of each model parameter on the spread
and management of Lassa fever. The result revealed that the most sensitive parameters on
the threshold quantities RH and Rr were the human recruitment rate (βh), the recruitment
rate for rodents (ϕr ), the effective contact rate between susceptible and infectious humans
(α3) and the proportion of infected individuals who comply with treatment guidelines (η).
Based on this result, simulations were conducted to investigate the impact of the sensitive
parameters on the dynamical spread of the disease in terms of the population of the infectious
individuals. In general, the outcomes of this work indicate that any interventions that ensure
strict compliance with Lassa fever treatment guidelines and at the same time, reduce the
population of rodents, will revolutionize the eradication of Lassa virus approaches in the
endemic regions. A good instance of such interventions is to make disregard for Lassa fever
treatment guidelines an offense punishable under the law. Also, rodent population may be
reduced by a means of sanitation as well as application of any of the available rodent killer
such as traps and rodenticides.
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