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Abstract
Regime switching models are able to capture clustering effects, nonlinearities in time series
and jumps in volatility. In the present paper, we propose a broad class of Markov-switching
AutoRegressive Stochastic Volatility (MSAR − SV ) models, in which the log−volatility
follows a pth − MS−autoregression. So, it can be seen as a replacement of the general
MS−GARCH model. This parameterization draws a lot of attention in modeling structural
changes in dependent data. The parameters of the log− volatility are expressed as a function
of a homogeneous Markov chain with a finite state space. The primary goal of the proposed
model is to confer it a change driven by a Markov chain in order to capture by the habitual
changing behavior of volatility due to economic forces, as the discrete shift in volatility
due to abrupt abnormal events. Several probabilistic properties of MSAR− SV models have
been obtained, especially, strictly (resp. second-order) stationary, causal and ergodic solution,
geometric ergodicity, and computation of higher-order moments. Moreover, we derive the
expression of the covariance function of the squared (resp. powers) process. Consequently,
the logarithm squared (resp. powers) process admits an ARMA representation. Then we
provide the limit theory for quasi-maximum likelihood estimator (QMLE), and, in addition,
establish the strong consistency of this estimator. Finally, we present a simulation study on
the performance of the proposed estimation method.
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1 Introduction

Markov-switchingmodels (MSM) have attracted a lot of research attention and have become
a robust tool for modeling and describing asymmetric business cycles in the econometric
literature (see., Hamilton [14]). Such models go ahead to earn more and more popularity,
especially in financial data. In the same context, these models have been chosen because
of their high flexibility in capturing stability and/or asymmetric effects on volatility shocks
and their competence in modeling time series. A linear or nonlinear MSM was developed
by many authors (for example, MS − ARMA: Cavicchioli [3–5], nonlinear MS − ARMA:
Stelzer [17], MS − GARCH : Hass et al. [13] and Cavicchioli [6], MS − BL: Ghezal et
al. [1] and [12] among others). The various authors have pointed out that means identify-
ing occasional switching in the parameter values may provide more appropriate modeling
of volatility. In our paper, we alternatively present a MS−AutoRegressive Stochastic V
olatility (MSAR − SV ) process in which the process which follows locally (i.e., each
regime) an autoregressive stochastic volatility (AR − SV ) representation. In this model
the log−volatility process follows a pth − MS−autoregression, where the coefficients
depend on a Markov chain. The latter was considered in the literature as the best alter-
native to the MS − ARCH−type models, where the volatility is driven by an exogenous
innovation. The model presented in this paper is a natural extension of the MS − SV
model of So et al. [16], so that the observed process is described by heavy-tail inno-
vations (see also Casarin [2], for a more qualitative discussion). The main reason for
choosing a MSAR − SV model is that it significantly promotes the predicting vigor of
the AR − SV model, does a perfect act in capturing the leading events affecting the oil
market, and, in addition, simultaneously captures the usual changing behavior of volatil-
ity due to economic forces as well as the sudden discrete shift in volatility due to sudden
abnormal events. (see So et al. [16], for a more qualitative discussion). To evaluate the
MSAR − SV model, its performance, in terms of goodness-of-fit and forecasting power,
is compared to the standard AR − SV model. Firstly, the probabilistic properties of the
MSAR−SV model are investigated. For this, we afford the sufficient and necessary assump-
tions to ensure the existence of a stationary solution, observing that the MSAR − SV
coefficients related to the Markov chain can breach the usual stationary assumptions of
standard AR − SV models. Secondly, this paper aims to analyse the strong consistency
of the QMLE of MSAR − SV models. Before we go ahead, we present some sym-
bols:

1.1 Symbols

Through the paper, the following symbols are used.

• I(.) is the square matrix whose every principal diagonal entry is equal to 1, and the
remaining entries are equal to 0, O(p,m) is the p × m matrix such that all entries are

zeros, H ′ :=
(
I(1), O ′

(p−1)

)
.

• log V , exp V and V
1
2 denote the vectors formed by the logarithm, exponential and square

root of the entries of the vector V , respectively, diag
(
V
)
denotes the diagonal matrix

created by the entries of V . ρ(A) is the spectral radius of a square matrix A.
• ‖.‖ is any norm on m × n-(resp. m × 1−) matrices (resp. vectors). ⊗ is the Kronecker

product, and A (1) = a11 of A = (ai j ).
• (st , t ∈ Z) is a stationary, irreducible and aperiodic Markov chain.
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• P
n =

(
p(n)
i j , (i, j) ∈ S × S

)
is the n−step transition probability matrix, where p(n)

i j =
P (st = j |st−n = i)withone-step transitionprobabilitymatrixP := (pi j , (i, j) ∈ S × S

)

where pi j := p(1)
i j = P (st = j |st−1 = i) for i, j ∈ S = {1, ..., d} .

• �′ = (π(1), ..., π(d)) is the initial stationary distribution, where π(i) = P (s0 = i),
i = 1, ..., d, such that �′ = �′

P.
• For any set of non-random matrices A := {A(i), i ∈ E}, we note

P
(n)(A) =

⎛
⎜⎜⎝

p(n)
11 A(1) . . . p(n)

d1 A(1)
... . . .

...

p(n)
1d A(d) . . . p(n)

dd A(d)

⎞
⎟⎟⎠ , �(A) =

⎛
⎜⎝

π(1)A(1)
...

π(d)A(d)

⎞
⎟⎠ ,

with P
(1)(A) = P(A).

The rest of the paper is ordered as follows. In Sect. 2, we introduce the MSAR − SV model
and present several probabilistic properties of this model, specifically the strictly and second
(resp. higher)-order stationary solution ofMSAR−SV . Then the autocovariance functions of
the squared and powers processes are derived. As a result, we find that the logarithm squared
(resp. powers) process admits an ARMA representation. We also provide here sufficient
assumptions for the MSAR − SV model to be geometrically ergodic and β−mixing. In
Sect. 3, we propose the QMLE for this model and derive the strong consistency. Simulation
results are reported in Sect. 4.

2 MSAR − SV models

The Markov-switching autoregressive stochastic volatility model (denoted by MSAR −
SV (p)) is given by⎧⎨

⎩
εt = √

ht et

log ht = a0 (st ) + b0 (st ) ηt +
p∑

i=1
ai (st ) log ht−i

. (2.1)

In Eq. (2.1), {(et , ηt ) , t ∈ Z} is an independent and identically distributed (i.i.d.) sequence of
random vectors with mean O ′

(2) and covariance matrix I(2). The functions ai (.) , i = 0, ..., p
and b0 (.) are related to the unobservedMarkov chain (st , t ∈ Z).We also suppose that (et , ηt )
and {(εu−1, st ) , u ≤ t} are independent. It is worth noting that ht is conventionally called
volatility. It is not the conditional variance of εt given its past informations up to time t − 1
(this is justified by E

{
ε2t |σ − {(εu, su) , u < t}} = E {ht |σ − {(εu, su) , u < t} } �= ht ).

The aim of this section is to show some of the most likely probabilistic properties of the
MSAR − SV model. As in much time-series, it is helpful to write Eq. (2.1) in an equivalent
state-space representation to smooth the study. In this discussion we can write Eq. (2.1) in
the MS multivariate stochastic volatility form⎧

⎨
⎩

εt = diag

(
H

1
2
t

)
et

log Ht = 	 (st ) log Ht−1 + η
t
(st )

, (2.2)

where

εt := εt H , et := et H , η
t
(st ) := a0 (st ) H + b0 (st ) ηt H , H ′

t := (ht , . . . , ht−p+1
)
,

and
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	 (st ) :=
(
a1 (st ) . . . ap (st )
I(p−1) O(p−1)

)
.

So, the process
((
log H ′

t , st
)′

, t ∈ Z

)
is a Markov chain on R

p × S. However, the study of

the probabilistic properties of model (2.1) is easier and best through model (2.2). The second
equation of Eq. (2.2) is the same as defined for the D − MSAR model studied newly by
Ghezal [11]. First, we get the following important result which implies strict stationarity.

Theorem 2.1 Consider the MS-multivariate stochastic volatility model (2.2). Then

1. A sufficient condition for (2.2) to have a unique, strictly stationary, causal and ergodic
solution; given by

εt = et exp

⎧⎨
⎩
1

2

∞∑
k=0

⎧⎨
⎩

k−1∏
j=0

	
(
st− j

)
⎫⎬
⎭ (1) (a0 (st−k) + b0 (st−k) ηt−k)

⎫⎬
⎭ (2.3)

which converges absolutely almost surely (a.s.) for all t ∈ Z, is

γL (	) := lim
t→∞ E

⎧
⎨
⎩
1

t
log

∥∥∥∥∥∥
t−1∏
j=0

	
(
st− j

)
∥∥∥∥∥∥

⎫
⎬
⎭

a.s= lim
t→∞

⎧
⎨
⎩
1

t
log

∥∥∥∥∥∥
t−1∏
j=0

	
(
st− j

)
∥∥∥∥∥∥

⎫
⎬
⎭ < 0.

2. Contrariwise, assume that
{
a0 (st ) H , b0 (st ) H , 	 (st )

}
is controllable1 and (2.2) has a

strictly stationary solution. Then γL (	) < 0.

Remark 2.1 Using Jensen’s inequality, condition E

{∥∥∥∥∥
t−1∏
j=0

	
(
st− j

)
∥∥∥∥∥

}
< 1 constitutes a suf-

ficient condition for γL (	) < 0.

Example 2.1 Consider the MSAR − SV (1) model. The sufficient condition is γL (	) =
d∑

k=1
π(k) log |a1(k)| < 0. In this case there exists a unique strictly stationary, causal and

ergodic solution

εt = et
∏
k≥0

√√√√√exp

⎧
⎨
⎩

k−1∏
j=0

a1
(
st− j

)
(a0 (st−k) + b0 (st−k) ηt−k)

⎫
⎬
⎭.

Therefore, the local strict stationarity is not requisite, i.e., the presence of burst regimes
(i.e., log |a1(k)| > 0) does not exclude the global strict stationarity. In the special case of
MSAR − SV (1) with two-regimes, we get

a1(1) = a, a1(2) = b and π (1) = 3/4 (resp. π (1) = 1/5).

The zone of strict stationarity is elucidated in Figure 1 below.

Other properties such as second-order stationarity and the existence of moments are clear
and easy to obtain.

1 The concept of controllability is defined in [1].
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Fig. 1 The zones of strict stationarity for MSAR − SV (1) model

Theorem 2.2 Consider the MS-univariate stochastic volatility model (2.1) with MS-
multivariate stochastic volatility model (2.2) and let 	(2) := {	⊗2(k), k ∈ S

}
. If

ρ(2) := ρ
(
P(	(2))

)
< 1. (2.4)

Then Eq. (2.2) has a unique second-order stationary solution given by the Series (2.3), which
converges absolutely a. s. and in L2. Furthermore, this solution is strictly stationary and
ergodic.

Proof The outcome follows from second-order stationarity of the vector autoregression(
log Ht , t ∈ Z

)
given by (2.2), which can be easily obtained by using the results of Ghezal

et al. [1]. �

For this purpose, the explicit expressions of the moments up to second-order are shown in
the following result

Proposition 2.1 Consider the MS-univariate stochastic volatility model (2.1), if εt ∈ L2,
then

1. E {εt } = 0.
2. γε (h) = E {εtεt−h}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑
xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k E

{
exp

{{
k−1∏
j=0

	
(
xt− j

)}
(1) (a0 (xt−k)

+b0 (xt−k) η0)}} if h = 0
0 otherwise

. In the

special case of normal innovations (ηt , t ∈ Z) , we obtain
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Fig. 2 Plots of the frontier curves ρ
(
P(a(2)

1 )
)

= 1 for MSAR − SV (1) model

γε (0) =
∑

xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k

exp

⎧⎪⎨
⎪⎩

⎧
⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫
⎬
⎭ (1) a0 (xt−k) + 1

2

⎛
⎝
⎧
⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫
⎬
⎭ (1)

⎞
⎠

2

b20 (xt−k)

⎫⎪⎬
⎪⎭

.

Proof Under the last condition, we can easily obtain the second-order moments and so the
details are omitted. �
Example 2.2 Consider the MSAR − SV (1) model. The condition (2.4) is reduced to

ρ
(
P(a(2)

1 )
)

< 1 where a(2)
1 := (

a21(k), k ∈ S
)′
. In particular, for two regimes with

p11 = 1 − q = p22, p12 = q = p21, condition (2.4) is equivalent to the following
two conditions ⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

(2q − 1)
2∏
j=1

a21( j) + (1 − q)
2∑
j=1

a21( j) < 1

(1 − q)
2∑
j=1

a21( j) ≤ 2
.

The region of second-order stationarity is shown in Figure 2 below.

Interesting now for assumptions guaranteeing the existence of higher-order moments for
univariate-MSAR − SV (p) having multivariate-MSAR − SV (1) representation (2.2).

Remark 2.2 The odd-order moments of (εt , t ∈ Z) are null when they exist, while the exis-
tence of even-order moments of (εt , t ∈ Z) is summarized in the following theorem

Theorem 2.3 Consider the MS-univariate stochastic volatility model (2.1) with MS-
multivariate stochastic volatility model (2.2). For all integer m > 0, assume that E

{
emt
}

<

+∞, E
{
ηmt
}

< +∞ and
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ρ(m) := ρ
(
P(	(m))

)
< 1, (2.5)

where 	(m) := {
	⊗m (k) , k ∈ S

}
. Then the MSAR − SV defined by the state-space (2.2)

has a unique, causal,ergodic and strictly stationary solution given by (2.3) having moment
up to m− order. Moreover, the closed form of the m−th moment of εt is given by

E
{
εmt
} = E

{
emt
} ∑
xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k

E

⎧⎨
⎩exp

⎧⎨
⎩
m

2

⎧⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫⎬
⎭ (1) (a0 (xt−k) + b0 (xt−k) η0)

⎫⎬
⎭

⎫⎬
⎭ .

Proof We have used the same proof of the last theorem, the results obtained can be extended
and hence omitted the details. �
Remark 2.3 Applying the normality of (ηt , t ∈ Z) yields

E
{
εmt
} = E

{
emt
} ∑
xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k

exp

⎧
⎪⎨
⎪⎩
m

2

⎧⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫⎬
⎭ (1) a0 (xt−k) + 1

2

⎛
⎝m

2

⎧⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫⎬
⎭ (1)

⎞
⎠

2

b20 (xt−k)

⎫
⎪⎬
⎪⎭

.

The autocovariance function of the squared process
(
ε2t , t ∈ Z

)
is summarized in the follow-

ing theorem

Theorem 2.4 Under the assumptions of the last theorem, we have

1. If (εt , t ∈ Z) follows the MS-univariate stochastic volatility model (2.1) and εt ∈ L4,
then

γε2 (0) = E
{
e4t
} ∑
xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k

E

⎧
⎨
⎩exp

⎧
⎨
⎩2
⎧
⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫
⎬
⎭ (1) (a0 (xt−k) + b0 (xt−k) η0)

⎫
⎬
⎭

⎫
⎬
⎭− γ 2

ε (0) ,

and γε2 (h) = 0 otherwise.
2. If (εt , t ∈ Z) follows the MS-univariate stochastic volatility model (2.1) and εt ∈ L2m,

then

γεm (0) = E
{
e2mt
} ∑
xt ,xt−1,...∈S

∏
k≥0

pxt−k−1xt−k

E

⎧⎨
⎩exp

⎧⎨
⎩m

⎧⎨
⎩

k−1∏
j=0

	
(
xt− j

)
⎫⎬
⎭ (1) (a0 (xt−k) + b0 (xt−k) η0)

⎫⎬
⎭

⎫⎬
⎭− (E {εmt

})2
,

and γεm (h) = 0 otherwise.

Proof It is enough to remark that the processes (ε2t ) and (ε2mt ) are bothwhite noise processes.

�
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Remark 2.4 It is clear that the process (ε2t ) and its power do not admit an ARMA represen-
tation. However, the logarithm process (log ε2t ) has an ARMA autocovariance structure.

From the previous remark, we can obtain the following representation

log ε2t = ã0 (st ) +
p∑

i=1

ai (st ) log ε2t−i −
p∑

i=1

ai (st ) ωt−i + ωt + b0 (st ) ηt , (2.6)

with ωt := log e2t − E
{
log e2t

}
and ã0 (.) is an intercept, easily obtained. So Eq. (2.6) can be

written in the following vectorial representation,

Mt = A (st ) Mt−1 + V t (st ) , (2.7)

where M ′
t :=

(
log ε2t , ..., log ε2t−p+1, ωt , ..., ωt−p+1

)
and V t (st ) := v0+v1ωt +v2 (st ) ηt ,

whereas v0, v1, v2 (st ) , A (st ) are appropriate vectors and matrix easily obtained and
uniquely determined by {ai (st ) , b0 (st ) , 0 ≤ i ≤ p} .The feature of the vectorial representa-
tion (2.7) when st = k, the vectorMt is independent of V u (k) for u > t . For appropriateness,
we will treat the centered version of the vector Mt ,

M̃t = A (st ) M̃t−1 + Ṽ t (st ) , (2.8)

where M̃t = Mt − E
{
Mt

}
and Ṽ t (st ) is the centered residual vector such that st = k,

Ṽ t (k) ⊥ M̃u for t > u.

Proposition 2.2 Consider the MSAR − SV (p) process (2.1) with vectorial representation
(2.8). Then under the assumptions of Theorem 2.2, we get

Cov
(
log ε2t , log ε2t−h

)
=

⎧
⎪⎪⎨
⎪⎪⎩

(
1 ⊗ H⊗2

0

)′ (
I(4dp2) − P

(
A(2)

))−1
�
(
Ṽ

(2)
)
if h = 0(

1 ⊗ H⊗2
0

)′
P
h
(
A(1) ⊗ I(2p)

) (
I(4dp2) − P

(
A(2)

))−1
�
(
Ṽ

(2)
)

if h > 0

,

where Ṽ
(2) :=

(
Ṽ

(2)
k = E

{
Ṽ

⊗2
t (k)

}
, k ∈ S

)
, A(n) := (

A(n)(k) = A⊗n (k) , k ∈ S
) ; n =

1, 2, 1 = (1, ..., 1)′ ∈ R
d , H ′

0 :=
(
I(1), O ′

(2p−1)

)
.

Proof Starting from (2.8), for h = 0 we get

π(k)E
{
M̃

⊗2
t |st = k

}
= π(k)Ṽ

(2)
k + A(2)(k)

∑
j∈S

E
{
M̃

⊗2
t−1|st−1 = j

}
p jkπ( j),

and when h > 0,

π(k)E
{
M̃t⊗M̃t−h

∣∣ st = k
}= (A(k) ⊗ I(2p)

)∑
j∈S

E
{
M̃t−1⊗M̃t−1−(h−1)

∣∣ st−1= j
}
p jkπ( j).

Let �(h) = (E {M̃t ⊗ M̃t−h |st = k
}
, k ∈ S

)
. Then

�
(
�(h)

) =
{
P
(
A(2)

)
�
(
�(0)

)+ �
(
Ṽ

(2)
)
if h = 0

P
(
A(1) ⊗ I(2p)

)
�
(
� (h − 1)

) = P
h
(
A(1) ⊗ I(2p)

)
�
(
� (0)

)
if h > 0

.

�
The following result gives an ARMA representation for the MSAR − SV (p) model.
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Proposition 2.3 Under the conditions of Theorem 2.2, the MSAR − SV (p) process with
vectorial representation ( 2.8) is a ARMA process.

Proof To demonstrate proposition 2.3, we utilize the same technique as Ghezal et al. [1]. �
For this purpose, it is requisite to behold a higher-power of the log−squared observed process

admits a ARMA representation.Let the vector Z ′
t :=

(
log ε2t , ..., log ε2t−p+1, ωt , ..., ωt−p+1

)
.

Then the next result can be shown by a straightforward modification of Ghezal et al. [1]

Proposition 2.4 Consider the model (2.1), and suppose that log e2t , ηt ∈ L2m for any positive
integer m. Then

(
Z⊗m
t
)
is solution of a ARMA(n1, n2) equation of the form

Z⊗m
t − E

{
Z⊗m
t

} =
n1∑
i=1

i
(
Z⊗m
t−i − E

{
Z⊗m
t

})+
n2∑
j=1

� jvt− j + vt , (2.9)

where
(
vt
)
is a white noise and (i ) ,

(
� j
)
are sequences of (2p)m × (2p)m matrices.

At the end of this section, the geometric ergodicity and β− mixing are manifest.

Theorem 2.5 Consider the model (2.1). Under the condition (2.4 ),
((
log Ht

)′
, st
)′

is a

geometrically ergodic Markovian chain. If it is initialized from the invariant measure, then
(εt ) and (log ht ) are strict stationarity and β−mixing with exponential rate.

Proof The result follows from geometric ergodicity of the process (log Ht ), which can be
easily created using Ghezal et al. [1]. �

3 QML estimation

The estimation of Markov-switching models is rather complex. So, some specific models
were considered in the literature (see for example, Francq and Zakoian [9], Ghezal [11]
for further discussions). There is already established Markov Chain Monte Carlo (MCMC)
procedure in the literature for estimating a few particular states of Eq. (2.1) including [16],
[18] among others. Now, we consider a given realization (ε1, ε2, ..., εn) created from the
unique, causal and strictly stationary MSAR − SV model, and suppose that p and d are
known and (et ) is standard Gaussian. The unknown parameters ai (.), b0(.), i = 0, ..., p and(
pi, j , i, j = 1, ..., s, i �= j

)
collected in a vector θ belonging to the parameter space�, while

θ0 is the true values. Xie [19] advocated the QMLE and established its strong consistency
for MS −GARCHs (p, q), Ghezal [11] imposes some assumptions under which the strong
consistency of QMLE for the doubly MS− AR model is satisfied. The Gaussian likelihood
function is given

Ln
(
θ
) =

∑
s1,...,sn∈S

π (s1)

{
n∏

i=2

psi−1,si

}{
n∏

i=1

fsi (ε1, ..., εi )

}
, (3.1)

where

fsi (ε1, ..., εi ) = 1(
2πhsi (ε1, ..., εi−1)

)1/2 exp

{
− ε2i

2hsi (ε1, ..., εi−1)

}
,
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with the log−transformed conditional stochastic variance process is log hsi (ε1, ..., εi−1)

defined by the second equation in (2.1). This likelihood function is also written in the fol-
lowing form

Ln
(
θ
) = 1′

(s)

{
n∏

i=1

Pθ ( f (ε1, ...εi ))

}
�( f (ε1)). (3.2)

A QMLE of θ0 is defined as any measurable solution θ̂n of

θ̂n = argmax
θ∈�

Ln
(
θ
)
. (3.3)

In this section, let fst
(

εt | ε←−t−1

)
(resp. fst

(
εt | ε1

)
) be the density of εt given the all

past observations (resp. past observations unto ε1) and let gθ

(
εt | ε←−t−1

)
(resp. gθ

(
εt | ε1

)
) be the corresponding logarithm conditional density of εt given {εt−1, εt−2, ...} (resp.
{εt−1, εt−2, ...ε1}). Now, we determine the likelihood function L̃n

(
θ
)
based on all past obser-

vations which is defined as Ln
(
θ
)
in ( 3.1) except changing the density fst (ε1, ...εt ) by

fst
(

εt | ε←−t−1

)
. Furthermore, we can write L̃n

(
θ
)
as

L̃n
(
θ
) = 1′

(s)

{
n∏

t=2

Pθ

(
f
(

εt | ε←−t−1

))}
�( f

(
ε1| ε←−0

)
), (3.4)

where thematrixPθ

(
f
(

εi | ε←−i−1

))
(resp. the vector�( f

(
ε1| ε←−0

)
)) replaces fsi (ε1, ...εi )

by fsi

(
εi | ε←−i−1

)
, i = 1, .., n in Pθ ( f (ε1, ...εi )) (resp. �( f (ε1))).

3.1 Strong consistency of theQMLE

To prove the strong consistency of the QMLE , we use the following assumptions

A1. � is compact subset of Rs and the true value θ0 belongs to �.

A2. γL
(
	0
)

< 0 for any θ ∈ � where 	0 is the sequence (	 (st ) , t ∈ Z) when the param-
eters θ are changed by θ0.

A3. For any θ, θ∗ ∈ �, if almost surely gθ

(
εt | ε←−t−1

)
= gθ∗

(
εt | ε←−t−1

)
then θ = θ∗.

Assumption A1 is a standard assumption and it is used in many results of real analysis.
Assumption A2 ensures the strict stationarity of the process (εt , t ∈ Z) . Assumption A3
ensures that the parameter θ is identifiable. First, we present the following key lemmas.

Lemma 3.1 Under Assumptions A2 and A3, almost surely, we have

lim
n−→∞

1

n
log Ln

(
θ
) = lim

n−→∞
1

n
log L̃n

(
θ
) = Eθ0

{
gθ

(
εt | ε←−t−1

)}

Proof Using the logarithmic function, we have log L̃n
(
θ
) =

n∑
t=1

gθ

(
εt | ε←−t−1

)
and

log Ln
(
θ
) =

n∑
t=1

gθ

(
εt | ε1

)
. Then

1

n

n∑
t=1

gθ

(
εt | ε1

) = 1

n

n∑
t=1

gθ

(
εt | ε←−t−1

)
+ 1

n

n∑
t=1

(
gθ

(
εt | ε1

)− gθ

(
εt | ε←−t−1

))
.
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Now, for all ς ≥ 0, the process (Nt (m)) is defined as Nt (m) = sup
ς≥m

∣∣∣gθ

(
εt |εt−ς

)
− gθ

(
εt | ε←−t−1

)∣∣∣. Then for fixed m, the process (Nt (m)) is also strictly stationary and ergodic

with Eθ0
{Nt (m)} < +∞. We have

lim sup
n−→∞

∣∣∣∣∣
1

n

n∑
t=1

(
gθ

(
εt | ε1

)− gθ

(
εt | ε←−t−1

))∣∣∣∣∣

≤ lim sup
n−→∞

1

n

n∑
t=1

∣∣∣gθ

(
εt | ε1

)− gθ

(
εt | ε←−t−1

)∣∣∣

≤ lim sup
n−→∞

1

n

n∑
t=m+1

Nt (m) = Eθ0
{N0 (m)} ,

the result follows. �

The next lemma compares the ratios
Ln(θ)
Ln(θ0)

and
L̃n(θ)
L̃n(θ0)

. Let Zn
(
θ
) = 1

n
log
(

Ln(θ)
Ln(θ0)

)
. Then,

we have

Lemma 3.2 Under Assumptions A1–A3, we have

lim
n→∞

1

n
log

(
L̃n
(
θ
)

L̃n
(
θ0
)
)

= lim
n−→∞Zn

(
θ
) ≤ 0,

with lim
n−→∞Zn

(
θ
) = 0 iff θ = θ0 for all θ ∈ �.

Proof Under assumptions A1–A3, the function Zn
(
θ
)
is well defined. Moreover by lemma

3.1 and Jensen’s inequality, we get

lim
n−→∞Zn

(
θ
) = Eθ0

⎧
⎨
⎩log

gθ

(
εt | ε←−t−1

)

gθ0

(
εt | ε←−t−1

)
⎫
⎬
⎭ ≤ log Eθ0

⎧
⎨
⎩

gθ

(
εt | ε←−t−1

)

gθ0

(
εt | ε←−t−1

)
⎫
⎬
⎭ = 0.

Under the AssumptionA3, Zn
(
θ
)
converges to Kullback-Leinbler information which equals

zero iff θ = θ0. �

Lemma 3.3 Under A1–A3. For all θ∗ �= θ0, there exists a neighborhood V (θ∗) of θ∗such
that

lim sup
n→+∞

sup
θ∈V(θ∗)

Zn
(
θ
)

< 0 a.s.

Proof In Eq. ( 3.4), we obtain

min
j

π( j) f j
(

ε1| ε←−0

) ∥∥∥∥∥

{
n∏

t=2

Pθ

(
f
(

εt | ε←−t−1

))}∥∥∥∥∥

≤ L̃n
(
θ
) ≤ max

j
π( j) f j

(
ε1| ε←−0

) ∥∥∥∥∥

{
n∏

t=2

Pθ

(
f
(

εt | ε←−t−1

))}∥∥∥∥∥ .
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So we obtain

lim
n→∞

1

n
log L̃n

(
θ
)

= lim
n→∞ log

1

n

∥∥∥∥∥

{
n∏

t=2

Pθ

(
f
(

εt | ε←−t−1

))}∥∥∥∥∥ = Eθ0

{
gθ

(
εt | ε←−t−1

)}
.

Let Vm
(
θ∗) = {

θ : ∥∥θ − θ∗∥∥ ≤ 1
m

}
and �m

2:n = sup
θ∈Vm(θ∗)

∥∥∥∥
n∏

t=2
Pθ

(
f
(

εt | ε←−t−1

))∥∥∥∥ .

Because the norm is multiplicative, we obtain on Vm
(
θ∗)

sup
θ

∥∥∥∥∥
n+k∏
t=2

Pθ

(
f
(

εt | ε←−t−1

))∥∥∥∥∥

≤ sup
θ

∥∥∥∥∥
n∏

t=2

Pθ

(
f
(

εt | ε←−t−1

))∥∥∥∥∥ . sup
θ

∥∥∥∥∥
n+k∏

t=n+1

Pθ

(
f
(

εt | ε←−t−1

))∥∥∥∥∥ ,

that implies

log�m
2:n+k ≤ log�m

2:n + log�m
n+1:n+k ∀n, k.

Now
(
log�m

2:n
)
is a strictly stationary and ergodic process with Eθ0

{
log�m

2:n
}
is finite. Then

we get

ξm
(
θ∗) = lim

n−→∞
1

n
log�m

2:n = inf
n>1

1

n
Eθ0

{
log�m

2:n
}
a.s.,

where ξ
(
θ
)
is the Lyapunov exponent of the sequence

(
Pθ0

(
f
(

εt | ε←−t−1

))
, t ∈ Z

)
i,e.,

ξ
(
θ
) = inf

n>1

1

n
Eθ0

{
log

∥∥∥∥∥
n∏

t=2

Pθ0

(
f
(

εt | ε←−t−1

))∥∥∥∥∥

}
a.s.= lim

n−→∞
1

n
log

∥∥∥∥∥
n∏

t=2

Pθ0

(
f
(

εt | ε←−t−1

))∥∥∥∥∥ .

Hence, using Lemma 3.2, there exist ε > 0 and nε ∈ N such that
1

nε

Eθ0

{
log

∥∥∥∥
nε∏
t=2

Pθ∗ ( f
(

εt | ε←−t−1

))∥∥∥
}

< ξ
(
θ0
)− ε. From the DCT theorem, it follows that for m large enough

we get

ξm
(
θ∗) ≤ 1

nε

Eθ0

{
log

∥∥∥∥∥
nε∏
t=2

Pθ∗
(
f
(

εt | ε←−t−1

))∥∥∥∥∥

}
+ ε

2
< ξ

(
θ0
)− ε

2
.

The result follows by Lemma 3.1. �
Second, we present the following main theorem.

Theorem 3.1 Under A1 − A3, the sequence of QML estimators
(
θ̂n
)
n satisfying ( 3.3) is

strong consistency, i.e.,

θ̂n → θ0 almost surely when n → +∞.

Proof Assume that θ̂n does not converge to θ0 a.s., i.e.,

∀n, ∃δ > 0, N > n, such that
∥∥∥θ̂N − θ0

∥∥∥ ≥ δ.

123



On the Markov-switching autoregressive stochastic... 425

Table 1 Average and RMSE of QMLE for Gaussian MSAR − SV (1) models with different values of the
sample size

Tv\ n 500 1000 2000

p12 0.75 0.7409 (0.1154) 0.7411 (0.1125) 0.7423 (0.0892)

p21 0.50 0.4931 (0.1027) 0.4953 (0.0928) 0.5089 (0.0724)

a0 (1) 1.00 1.1207 (0.535) 1.0183 (0.365) 1.0052 (0.276)

a0 (2) 0.00 −0.001 (0.031) 0.000 (0.016) 0.000 (0.009)

a1 (1) −0.50 −0.5231 (0.0734) −0.5257 (0.0395) −0.5256 (0.0375)

a1 (2) 1.20 1.2546 (0.0753) 1.2524 (0.0651) 1.1873 (0.0613)

b0 (1) 0.35 0.365 (0.222) 0.361 (0.152) 0.356 (0.089)

b0 (2) 0.20 0.215 (0.062) 0.209 (0.049) 0.206 (0.038)

Table 2 Average andRMSE of QMLEfor GaussianMSAR-SV(2)models with different values of the sample
size

Tv\n 500 1000 2000

p12 0.85 0.8107 (0.1589) 0.8287 (0.0917) 0.8354 (0.0580)

p21 0.50 0.4598 (0.1530) 0.4663 (0.0891) 0.4814 (0.0675)

a0 (1) 1.50 1.5239 (0.0241) 1.5084 (0.0238) 1.5056 (0.0232)

a0 (2) 1.00 1.0021 (0.0181) 0.9978 (0.0165) 0.9993 (0.0149)

a1 (1) −0.98 −0.9823 (0.0174) −0.9805 (0.0168) −0.9802 (0.0153)

a1 (2) 0.50 0.5101 (0.0291) 0.5083 (0.0279) 0.5049 (0.0248)

a2 (1) 0.99 0.9710 (0.0166) 0.9791 (0.0121) 0.9863 (0.0098)

a2 (2) −0.50 −0.4948 (0.0284) −0.5033 (0.0202) −0.5003 (0.0128)

b0 (1) 0.10 0.1166 (0.0135) 0.1009 (0.116) 0.1003 (0.0102)

b0 (2) 0.44 0.4483 (0.0249) 0.4452 (0.0243) 0.4417 (0.0221)

Using the Lemma 3.3, we have Ln

(
θ̂n

)
< Ln

(
θ0
)
. However, by the QMLE provided in (

3.3), we get

Ln

(
θ̂n

)
= sup

θ∈�∗
Ln
(
θ
) ≥ Ln

(
θ0
)

for any compact subset �∗ of � containing θ0. This discrepancy confers the result. �

4 Simulation study

In order to evaluate the performance of the QML method for parameters estimation, we
carried out a simulation study based on the Gaussian MSAR − SV (p) model with d = 2.
We simulated 1000 data samples with different lengths. The sample sizes to be examined
in this simulation study are n ∈ {500, 1000, 2000}. The corresponding parameter values are
chosen to satisfy the stationarity condition γL (	) < 0. For each trajectory the vector θ of
parameters of interest has been estimatedwith QMLE noted as θ̂ . The QMLE algorithm has
been executed for these series under the MAT LAB8 using " f minsearch.m" as a minimizer
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function. In Tables below, the root mean square errors (RMSE) of θ̂ , are displayed in
parenthesis in each table, the true values (TV) of the parameters of each of the considered
data-generating process are reported.

The roots mean square errors are the main focus in this study. The results provide some
preliminary evidence with respect to the finite sample properties of the QMLE in the
MSAR−SV framework. It can be observed that the parameters are quitewell estimated by the
QMLE method.Now let us devote a fewcomments. Table 1 shows that the strong consistency
of QMLE of MS−models is fairly satisfying and the associated RMSE decreases closely
as the sample size increases. Regarding outcomes associated with MS−models reported in
Table 2, it is obvious that the strong consistency is fully approved. Furthermore, it can be
seen that even with a relatively small sample size, the procedure of estimation gives a good
result.
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