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Abstract
We propose a new finite difference scheme for the degenerate parabolic equation

∂t u − div(|∇u|p−2∇u) = f , p ≥ 2.

Under the assumption that the data is Hölder continuous, we establish the convergence of
the explicit-in-time scheme for the Cauchy problem provided a suitable stability type CFL-
condition. An important advantage of our approach, is that the CFL-condition makes use
of the regularity provided by the scheme to reduce the computational cost. In particular,
for Lipschitz data, the CFL-condition is of the same order as for the heat equation and
independent of p.
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1 Introduction

Recently, a new monotone finite difference discretization of the p-Laplacian was introduced
by the authors in [9]. It is based on themean value property presented in [4, 8]. The aim of this
paper is to propose an explicit-in-time finite difference numerical scheme for the following
Cauchy problem
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{
∂t u(x, t) − �pu(x, t) = f (x), x ∈ R

d × (0, T ),

u(x, 0) = u0(x), x ∈ R
d ,

(1.1)

and study its convergence. Here, p ≥ 2 and �p is the p-Laplace operator,

�pψ = div(|∇ψ |p−2∇ψ).

The main result is the pointwise convergence of our scheme given Hölder continuous data
( f and u0) and a stability type CFL-condition. See Theorem 2.2 for the precise statement
and (CFL) for the CFL-condition. One of the advantages of our approach is that the CFL-
conditionmakes use of the regularity provided by the scheme.As a consequence, for Lipschitz
continuous data, the CFL-condition is of the same order as the one for the heat equation. In
general, the order of the CFL-condition depends on p and on the regularity of the data.

1.1 Related literature

Equation (1.1) has attracted much attention in the last decades. We refer to [11, 13] for the
theory for weak solutions of this equation and to [23] for the relation between viscosity
solutions and weak solutions. To the best of our knowledge, the best regularity results known
are C1,α−regularity in space for some α > 0 (see [11, Chapter IX]) and C0,1/2−regularity
in time (see [3, Theorem 2.3]).

The literature regarding finite difference schemes for parabolic problems involving the
p-Laplacian is quite scarce. One reason for that is naturally that, since the p-Laplacian is in
divergence form, it is very well suited for methods based on finite elements, see for instance
[1, 2, 14, 19, 21] for related results.

In the stationary setting, there has been some development of finite difference methods
the past 20 years. Section 1.1 in [28] provides an accurate overview of such results, we will
only mention a few. In [5, 10, 18, 28], finite difference schemes for the p-Laplace equation
based on the mean value formula for the normalized p-Laplacian (cf. [25]) are considered.
Since the corresponding parabolic equation for the normalized p-Laplacian is completely
different in nature (see [15, 22]), thesemethods do not seem verywell suited to be used for the
parabolic equation considered in this paper. In [9], the authors of the present paper studied a
monotone finite difference discretization of the p-Laplacian based on themean value property
presented in [4, 8]. We also seize the opportunity to mention [27], where difference schemes
for degenerate elliptic and parabolic equations (but not for equation (1.1)) are discussed.

It is noteworthy that, in dimension d = 1, the spatial derivative of a solution of (1.1) is a
solution of the Porous Medium Equation (PME). See [29, 30] for a general presentation of
the PME, and [20] for a proof of this fact. Finite difference schemes for the PME are well
known, see [6, 7, 12, 16, 26].

2 Assumptions andmain results

In this section, we introduce a general form of finite difference discretizations of �p and the
associated numerical scheme for (1.1). This is followed by our assumptions, the notion of
solutions for (1.1) and the formulation of our main result.
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Finite difference schemes... 529

2.1 Discretization and scheme

In order to treat (1.1), we consider a general discretization of �p of the form

Dh
pψ(x) =

∑
yβ∈Gh

Jp(ψ(x + yβ) − ψ(x))ωβ, (2.1)

where

Jp(ξ) = |ξ |p−2ξ, ξ ∈ R, Gh := hZd = {yβ := hβ : β ∈ Z
d}

and ωβ are certain weights ωβ = ωβ(h) satisfying ωβ = ω−β ≥ 0.
We also need to introduce a time discretization. We will employ an explicit and uniform-

in-time discretization. Let N ∈ N and consider a discretization parameter τ > 0 given by
τ = T /N . Consider also the sequence of times {t j }Nj=0 defined by t0 = 0 and t j = t j−1+τ =
jτ . The time grid, Tτ , is given by

Tτ =
N⋃
j=0

{t j }.

Then, our general form of an explicit finite difference scheme of (1.1) is given by{
U j

α = U j−1
α + τ

(
Dh

pU
j−1
α + fα

)
, α ∈ Z

d , j = 1, . . . , N ,

U 0
α = (u0)α α ∈ Z

d ,
(2.2)

where fα := f (xα), (u0)α = u0(xα) and Dh
p is given by (2.1).

2.2 Assumptions

In order to ensure convergence of the scheme (2.2), we impose the following hypotheses on
the data and the discretization parameters. This entails a regularity assumption on the data,
some assumptions on the discretization and a nonlinear CFL-condition on the parameters, as
is customary for explicit schemes.

Hypothesis on the data. We assume that

u0, f : Rd → R are bounded and globally Hölder continuous functions for some a ∈ (0, 1].
(Au0, f )

More precisely,

|u0(x) − u0(y)| ≤ Lu0 |x − y|a and | f (x) − f (y)| ≤ L f |x − y|a, for all x, y ∈ R
d ,

for some constants Lu0 , L f ≥ 0. Sometimes we will write 
u0(δ) := Lu0δ
a and 
 f (δ) :=

L f δ
a to simplify the presentation.

Hypothesis on the spatial discretization. For the discretization, we assume the following
type of monotonicity and boundedness:

ωβ = ω−β ≥ 0, wβ = 0 for yβ /∈ Br for some r > 0, and
∑
yβ∈Gh

ωβ ≤ Mr−p (Aω)
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530 F. del Teso, E. Lindgren

Here M = M(p, d) > 0. In addition, we assume the following consistency for the dis-
cretization:

For ψ ∈ C2
b (Rd × [0, T ]), we have that Dh

pψ = �pψ + oh(1) as h → 0+ uniformly in (x, t).

(Ac)

Examples of discretizations satisfying these properties can be found in Sect. 5.

Hypothesis on the discretization parameters.We assume the following stability condition
on the numerical parameters:

h = or (1) and τ ≤ Cr2+(1−a)(p−2) (CFL)

with

C = min

⎧⎪⎨
⎪⎩1,

1

M(p − 1)
(
Lu0 + T L f + 3K̃ + 1

)p−2

⎫⎪⎬
⎪⎭

and K̃ a constant given in (3.4), depending on p, the modulus of continuity in time of the
discretized solution and some universal constants coming from a mollifier.

Remark 2.1 For Lipschitz data u0 and f , the condition (CFL) reads τ ≤ Cr2 for a certain
constant C = C(u0, f , d, p, T ) > 0. We note that, regardless of the constant C , the relation
between τ and r is always quadratic (as in the linear case p = 2) and independent of p. It is
important to mention that this is computationally very relevant, especially if we want to deal
with problems related to large p.

2.3 Main result

We now state our main result regarding the convergence of the scheme. Several other prop-
erties of the scheme are also obtained, but we will state them later.

Theorem 2.2 Let p ∈ [2,∞) and assume (Au0, f ) and (Aω). Then for every h, τ > 0,
there exists a unique solution U ∈ �∞(Gh × Tτ ) of (2.2). If the hypotheses (CFL) and (Ac)
additionally hold, then

max
(xα,t j )∈Gh×Tτ

|U j
α − u(xα, t j )| → 0 as h → 0+,

where u is the unique viscosity solution of (1.1).

2.4 Viscosity solutions

Throughout the paper, we will use the notion of viscosity solutions. For completeness, we
define the concept of viscosity solutions of (1.1), adopting the definition in [23].

Definition 2.1 Assume (Au0, f ). We say that a bounded lower (resp. upper) semicontinuous
function u in R

d × [0, T ] is a viscosity supersolution (resp. subsolution) of (1.1) if

(a) u(x, 0) ≥ u0(x) (resp. u(x, 0) ≤ u0(x));
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(b) whenever (x0, t0) ∈ R
d × (0, T ) and ϕ ∈ C2

b (BR(x0) × (t0 − R, t0 + R)) for some
R > 0 are such that ϕ(x0, t0) = u(x0, t0) and ϕ(x, t) < u(x, t) (resp. ϕ(x, t) > u(x, t))
for (x, t) ∈ BR(x0) × (t0 − R, t0), then we have

ϕt (x0, t0) − �pϕ(x0, t0) ≥ f (x0) (resp. ϕt (x0, t0) − �pϕ(x0, t0) ≤ f (x0)).

A viscosity solution of (1.1) is a bounded continuous function u being both a viscosity
supersolution and a viscosity subsolution (1.1).

Remark 2.3 We remark that it is not necessary to require strict inequality in the definition
above. It is enough to requireϕ(x, t) ≤ u(x, t) (resp.ϕ(x, t) ≥ u(x, t)) for (x, t) ∈ BR(x0)×
(t0 − R, t0).

We also state a necessary uniqueness result that will ensure convergence of the scheme.
Without such a result, we would only be able to establish convergence up to a subsequence.
The theorem below is a consequence of the fact that viscosity solutions are weak solutions
(see Corollary 4.7 in [23]) and that bounded weak solutions are unique (see Theorem 6.1 in
[11]).

Theorem 2.4 Assume (Au0, f ). Then there is a unique solution of (1.1).

3 Properties of the numerical scheme

In this section we will study properties of the numerical scheme (2.2). More precisely, we
establish existence and uniqueness for the numerical solution, stability in maximum norm,
as well as conservation of the modulus of continuity of the data.

3.1 Existence and uniqueness

We have the following existence and uniqueness result for the numerical scheme.

Proposition 3.1 Assume (Au0, f ), (Aω), p ≥ 2 and r , h, τ > 0. Then there exists a unique
solution U ∈ �∞(Gh × Tτ ) of the scheme (2.2).

Proof First we note that, for a function ψ ∈ �∞(Gh), we have that

|Dh
pψα| ≤

∑
yβ∈Gh

Jp(ψ(xα + yβ) − ψ(xα))ωβ ≤ (2‖ψ‖�∞(Gh))
p−1

∑
yβ∈Gh

ωβ < +∞.

Then, for each α ∈ Z
d , U j

α is defined recursively using the values of U j−1
β for β ∈ Z

d , and
we have that

sup
yα∈Gh

|U j
α | = sup

yα∈Gh

|U j−1
α | + τ

⎛
⎝(

2 sup
yα∈Gh

|U j−1
α |

)p−1 ∑
yβ∈Gh

ωβ + sup
yα∈Gh

| fα|
⎞
⎠ .

The conclusion follows since

sup
yα∈Gh

| fα| ≤ ‖ f ‖L∞(Rd ) and sup
yα∈Gh

|U 0
α | = sup

yα∈Gh

|u0(yα)| ≤ ‖u0‖L∞(Rd ).
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3.2 Stability and preservation of themodulus of continuity in space

First we will prove that the scheme preserves the regularity of the data.

Proposition 3.2 Assume (Au0, f ), (Aω), p ≥ 2, r , h, τ > 0 and (CFL). Let U be the solution
of (2.2). For every j = 0, . . . , N, we have

|U j
α −U j

γ | ≤ 
u0(|xα − xγ |) + t j
 f (|xα − xγ |), for all xα, xγ ∈ Gh .

Proof By assumption (Au0, f ), for any given xα, xγ ∈ Gh , we have that

|U 0
α −U 0

γ | = |u0(xα) − u0(xγ )| ≤ 
u0(|xα − xγ |).
Assume by induction that

|U j
α −U j

γ | ≤ 
u0(|xα − xγ |) + t j
 f (|xα − xγ |).
Using the scheme at xα and xγ we get

U j+1
α −U j+1

γ = U j
α −U j

γ + τ
∑
yβ∈Gh

(
Jp(U

j
α+β −U j

α ) − Jp(U
j
γ+β −U j

γ )
)

ωβ + τ( fα − fγ ).

Now, since p ≥ 2, we have, by Taylor expansion, that

Jp(U
j
α+β −U j

α ) − Jp(U
j
γ+β −U j

γ ) = (p − 1)|ηβ |p−2
(
(U j

α+β −U j
γ+β) − (U j

α −U j
γ )

)
,

for some ηβ ∈ R between (U j
α+β −U j

α ) and (U j
γ+β −U j

γ ). Thus,

U j+1
α −U j+1

γ =(U j
α −U j

γ )

⎛
⎝1 − τ(p − 1)

∑
yβ∈Gh

|ηβ |p−2ωβ

⎞
⎠

+ τ(p − 1)
∑
yβ∈Gh

|ηβ |p−2(U j
α+β −U j

γ+β)ωβ + τ( fα − fγ ).

(3.1)

Now observe that, by the induction assumption, we have

|ηβ | ≤ sup
yα∈Gh

{|U j
α+β −U j

α |} ≤ sup
yα∈Gh

{
u0(|xα+β − xα|) + t j
 f (|xα+β − xα|)}
= 
u0(|xβ |) + t j
 f (|xβ |).

By (Aω), we have wβ = 0 for yβ /∈ Br for some r > 0, and we deduce that

∑
yβ∈Gh

|ηβ |p−2ωβ ≤ (

u0(r) + t j
 f (r)

)p−2 ∑
yβ∈Gh

ωβ ≤ (Lu0 + t j L f )
p−2M

r2+(1−a)(p−2)
.

Thus, by (CFL), we get

τ(p − 1)
∑
yβ∈Gh

|ηβ |p−2ωβ ≤ 1.
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Using the above estimate and the induction hypothesis in (3.1), we get that

|U j+1
α −U j+1

γ | ≤|U j
α −U j

γ |
⎛
⎝1 − τ(p − 1)

∑
yβ∈Gh

|ηβ |p−2ωβ

⎞
⎠

+ τ(p − 1)
∑

yβ∈Gh

|ηβ |p−2|U j
α+β −U j

γ+β |ωβ + τ | fα − fγ |

≤ (

u0 (|xα − xγ |) + t j
 f (|xα − xγ |))

⎛
⎝1 − τ(p − 1)

∑
yβ∈Gh

|ηβ |p−2ωβ

⎞
⎠

+ τ(p − 1)
∑

yβ∈Gh

|ηβ |p−2
(

u0 (|xα+β − xγ+β |)

+ t j
 f (|xα+β − xγ+β |)
)
ωβ + τ
 f (|xα − xγ |)

≤ (

u0 (|xα − xγ |) + t j
 f (|xα − xγ |))

⎛
⎝1 − τ(p − 1)

∑
yβ∈Gh

|ηβ |p−2ωβ

⎞
⎠

+ τ(p − 1)
(

u0 (|xα − xγ |) + t j
 f (|xα − xγ |)) ∑

yβ∈Gh

|ηβ |p−2ωβ

+ τ
 f (|xα − xγ |)
=
u0 (|xα − xγ |) + (t j + τ)
 f (|xα − xγ |),

which concludes the proof. 	

Remark 3.3 In particular, if both u0 and f are Lipschitz functions with constants Lu0 and
L f respectively, the above result reads,

|U j
α −U j

γ | ≤ (Lu0 + t j L f )|xα − xγ |.
We are now ready to state and prove the stability result: solutions with bounded data

remain bounded (uniformly in the discretization parameters) for all times.

Proposition 3.4 Under the assumptions of Proposition 3.2, we have that

sup
yα∈Gh

|U j
α | ≤ ‖u0‖L∞(Rd ) + t j‖ f ‖L∞(Rd ), for all j = 0, . . . , N .

Proof By assumption (Au0, f ), we have that

sup
yα∈Gh

|U 0
α | ≤ sup

yα∈Gh

|u0(xα)| ≤ ‖u0‖L∞(Rd ).

Assume by induction that

sup
yα∈Gh

|U j
α | ≤ ‖u0‖L∞(Rd ) + t j‖ f ‖L∞(Rd ).

Direct computations lead to

U j+1
α = U j

α + τ
∑
yβ∈Gh

|U j
α+β −U j

α |p−2(U j
α+β −U j

α )ωβ + τ fα

= U j
α

⎛
⎝1 − τ

∑
yβ∈Gh

|U j
α+β −U j

α |p−2ωβ

⎞
⎠ + τ

∑
yβ∈Gh

|U j
α+β −U j

α |p−2U j
α+βωβ + τ fα.
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By Proposition 3.2 we have that

|U j
α+β −U j

α |p−2 ≤ (
u0(|yβ |) + t j
 f (|yβ |))p−2,

which together with assumptions (Aω) and (CFL) imply that

τ
∑
yβ∈Gh

|U j
α+β −U j

α |p−2ωβ ≤ τ(
u0(r) + t j
 f (r))
p−2

∑
yβ∈Gh

ωβ ≤ 1

p − 1
≤ 1.

Direct computations plus the induction hypothesis allow us to conclude that

|U j+1
α | ≤ sup

yα∈Gh

|U j
α |

⎛
⎝1 − τ

∑
yβ∈Gh

|U j
α+β −U j

α |p−2ωβ

⎞
⎠

+ τ sup
yα∈Gh

|U j
α |

∑
yβ∈Gh

|U j
α+β −U j

α |p−2ωβ + τ‖ f ‖L∞(Rd )

= sup
yα∈Gh

|U j
α | + τ‖ f ‖L∞(Rd )

=‖u0‖L∞(Rd ) + (t j + τ)‖ f ‖L∞(Rd ),

which concludes the proof. 	


3.3 Time equicontinuity for a discrete in time scheme

Now we extend the scheme from Gh to R
d by considering U : Rd × Tτ defined by{

U j (x) = U j−1(x) + τ
(
Dh

pU
j−1(x) + f (x)

)
, x ∈ R

d , j = 1, . . . , N ,

U 0(x) = u0(x) x ∈ R
d .

(3.2)

Remark 3.5 Clearly, if we restrict the solution of (3.2) to Gh , we recover the solution of (2.2).

Proposition 3.6 (Continuous dependence on the data) Assume (Au0, f ), (Aω), p ≥ 2,
r , h, τ > 0 and (CFL). Let U , Ũ be the solutions of (2.2) corresponding to u0, ũ0 and
f , f̃ . For every j = 0, . . . , N, we have

‖U j − Ũ j‖L∞(Rd ) ≤ ‖u0 − ũ0‖L∞(Rd ) + t j‖ f − f̃ ‖L∞(Rd ).

Proof By assumption (Au0, f ), we have that

‖U 0 − Ũ 0‖L∞(Rd ) = ‖u0 − ũ0‖L∞(Rd ).

Assume by induction that

‖U j − Ũ j‖L∞(Rd ) = ‖u0 − ũ0‖L∞(Rd ) + t j‖ f − f̃ ‖L∞(Rd ).

Similar computations as the ones in the proof of Proposition 3.2 yield

U j+1(x) − Ũ j+1(x) = (U j (x) − Ũ j (x))

⎛
⎝1 − τ(p − 1)

∑
yβ∈Gh

|ηβ |p−2ωβ

⎞
⎠ + τ(p − 1)

×
∑
yβ∈Gh

|ηβ |p−2(U j (x + yβ) − Ũ j (x + yβ))ωβ + τ( f (x) − f̃ (x)),

(3.3)
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where ηβ ∈ R is some number between (U j (x + yβ) −U j (x)) and (Ũ j (x + yβ) − Ũ j (x)).
From here, the proof follows as in the proof of Proposition 3.2. 	

Proposition 3.7 (Equicontinuity in time) Assume (Au0, f ), (Aω), p ≥ 2, r , h, τ > 0 and
(CFL). Let U be the solution of (3.2). Then

‖U j+k −U j‖L∞(Rd ) ≤ K̃ (tk)
a

2+(1−a)(p−2) + ‖ f ‖L∞(Rd )tk =: 
u0, f (tk),

with

K̃ = 4
1+(1−a)(p−1)
2+(1−a)(p−2) L

p
2+(1−a)(p−2)
u0 ((p − 1)K p−2

1 K2M)
a

2+(1−a)(p−2) , (3.4)

where M comes from assumption (Aω), and K1 and K2 are constants given in Sect. 1
(depending on a certain choice of mollifiers).

Proof Consider a mollification of the initial data u0,δ = u0 ∗ ρδ where ρδ(x) is a standard
mollifier (as defined in Appendix A). Let (Uδ)

j be the corresponding solution of (3.2) with
u0,δ as initial data. Then,

‖(Uδ)
1 − (Uδ)

0‖L∞(Rd ) ≤ τ‖Dh
pu0,δ‖L∞(Rd ) + τ‖ f ‖L∞(Rd ).

Define Ũ j
δ := U j+1

δ for all j = 0, . . . , N . Clearly, Ũ j
δ is the unique solution of (3.2) with

initial data Ũ 0
δ = U 1

δ and right hand side f . By Proposition 3.6

‖U j+1
δ −U j

δ ‖L∞(Rd ) = ‖Ũ j
δ −U j

δ ‖L∞(Rd ) ≤ ‖Ũ 0
δ −U 0

δ ‖L∞(Rd ) = ‖U 1
δ −U 0

δ ‖L∞(Rd )

≤ τ‖Dh
pu0,δ‖L∞(Rd ) + τ‖ f ‖L∞(Rd ).

A repeated use of the triangle inequality yields

‖U j+k
δ −U j

δ ‖L∞(Rd ) ≤
k−1∑
i=0

‖U j+i+1
δ −U j+i

δ ‖L∞(Rd )

≤ (kτ)‖Dh
pu0,δ‖L∞(Rd ) + (kτ)‖ f ‖L∞(Rd ).

(3.5)

The symmetry of the weights ωβ together with Lemma B.1 implies

|Dh
pu0,δ(x)| = 1

2

∣∣∣∣∣∣
∑
yβ∈Gh

(
Jp(u0,δ(x + yβ) − u0,δ(x)) − Jp(u0,δ(x) − u0,δ(x − yβ))

)
ωβ

∣∣∣∣∣∣
≤ p − 1

2

∑
yβ∈Gh

max{|u0,δ(x + yβ) − u0,δ(x)|, |u0,δ(x) − u0,δ(x − yβ)|}p−2

× ∣∣u0,δ(x + yβ) + u0,δ(x − yβ) − 2u0,δ(x)
∣∣ ωβ.

(3.6)

Now note that, by the a-Hölder regularity of u0 given by assumption (Au0, f ), Lemma A.1
and Lemma A.2 imply

|u0,δ(x ± yβ) − u0,δ(x)| ≤ K1Lu0δ
a−1|yβ |, |u0,δ(x + yβ) + u0,δ(x − yβ) − 2u0,δ(x)|

≤ K2Lu0δ
a−2|yβ |2, (3.7)

where K1 and K2 depend only on the mollifier ρ. Now note that, by (Aω), we have∑
yβ∈Gh

|yβ |pωβ ≤ M . (3.8)
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536 F. del Teso, E. Lindgren

Combining (3.5) and (3.8), we obtain

‖U j+k
δ −U j

δ ‖L∞(Rd ) ≤ p − 1

2
tk(K1Lu0δ

a−1)p−2K2Lu0δ
a−2

∑
yβ∈Gh

|yβ |pωβ + tk‖ f ‖L∞(Rd )

≤ K̂ δ(a−1)(p−2)+(a−2)tk + ‖ f ‖L∞(Rd )tk,

with K̂ = p−1
2 K p−2

1 K2L
p−1
u0 M . Using the triangle inequality, the above estimate and apply-

ing Proposition 3.6 several times we obtain

‖U j+k −U j‖L∞(Rd ) ≤ ‖U j+k −U j+k
δ ‖L∞(Rd ) + ‖U j+k

δ −U j
δ ‖L∞(Rd ) + ‖U j −U j

δ ‖L∞(Rd )

≤ 2‖u0 − u0,δ‖L∞(Rd ) + K̂ δ(a−1)(p−2)+(a−2)tk + ‖ f ‖L∞(Rd )tk

≤ 2Lu0δ
a + K̂ δ(a−1)(p−2)+(a−2)tk + ‖ f ‖L∞(Rd )tk .

By choosing δ = ( K̂
2Lu0

tk)
1

2+(1−a)(p−2) in the above estimate, we get the desired result

‖U j+k −U j‖L∞(Rd ) ≤ K̃ (tk)
a

2+(1−a)(p−2) + ‖ f ‖L∞(Rd )tk,

with

K̃ = 4Lu0

(
K̂

2Lu0

) a
2+(1−a)(p−2)

= 41−
a

2+(1−a)(p−2) Lu0((p − 1)K p−2
1 K2L

p−2
u0 M)

a
2+(1−a)(p−2)

= 4
2+(1−a)(p−2)−a
2+(1−a)(p−2) L

p
2+(1−a)(p−2)
u0 ((p − 1)K p−2

1 K2M)
a

2+(1−a)(p−2) .

	

Remark 3.8 Actually, a close inspection of the previous proof reveals that for u0 ∈ C2

b (R
d)

we can get

‖U j+k −U j‖L∞(Rd ) � tk .

3.4 Equiboundedness and equicontinuity estimates for a scheme inRd × [0, T]

We now need to extend the numerical scheme in time in a continuous way. This is done by
continuous interpolation, i.e.,

U (x, t) := t j+1 − t

τ
U j (x) + t − t j

τ
U j+1(x) if t ∈ [t j , t j+1] for some j = 0, . . . , N ,

(3.9)

where U j is the solution of (3.2).

Remark 3.9 It is standard to check that, for all t ∈ [t j , t j+1], we have that the original scheme
is preserved also outside the grid points, i.e.,

U (x, t) = U (x, t j ) + (t − t j )D
h
pU (x, t j ) + (t − t j ) f (x). (3.10)

We have the following result.

Proposition 3.10 (Stability and equicontinuity) Assume (Au0, f ), (Aω), p ≥ 2, r , h, τ > 0
and (CFL). Let U be the solution of (3.9). Then, we have:
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(a) (Equiboundedness) ‖U‖L∞(RN×[0,T ]) ≤ ‖u0‖L∞(Rd ) + T ‖ f ‖L∞(Rd ),
(b) (Equicontinuity) For any x, z ∈ R

d and t, t̃ ∈ [0, T ] we have that
|U (x, t) −U (z, t̃)| ≤ 
u0(|x − z|) + T
 f (|x − z|) + 3
u0, f (|t̃ − t |).

Proof Equiboundedness follows easily from a continuous in space version of Proposition
3.4, since

|U (x, t)| ≤ t j+1 − t

τ
sup
x∈Rd

|U j (x)| + t − t j
τ

sup
x∈Rd

|U j+1(x)|

≤ t j+1 − t

τ

(‖u0‖L∞(Rd ) + T ‖ f ‖L∞(Rd )

) + t − t j
τ

(‖u0‖L∞(Rd ) + T ‖ f ‖L∞(Rd )

)
≤ ‖u0‖L∞(Rd ) + T ‖ f ‖L∞(Rd ).

Equicontinuity in space follows from the translation invariance of the scheme and Proposition
3.6:

|U (x + y, t) −U (x, t)| ≤ ‖u0(· + y) − u0‖L∞(Rd ) + T ‖ f (· + y) − f ‖L∞(Rd ).

To prove equicontinuity in time, we first consider t, t̃ ∈ [t j , t j+1] for some j = 0, . . . , N−1.
In this case we have

U (x, t) −U (x, t̃) =
(
t j+1 − t

τ
U j (x) + t − t j

τ
U j+1(x)

)

−
(
t j+1 − t̃

τ
U j (x) + t̃ − t j

τ
U j+1(x)

)

= t − t̃

τ

(
U j+1(x) −U j (x)

)
.

Then, from Proposition 3.7, we get

|U (x, t) −U (x, t̃)| ≤ |t − t̃ |
u0, f (τ )

τ

Note that the function g(τ ) = 
u0, f (τ )

τ
is decreasing. Thus, since |t − t̃ | ≤ τ , we have

g(τ ) ≤ g(|t − t̃ |). It follows that
|U (x, t) −U (x, t̃)| ≤ 
u0, f (|t − t̃ |).

Now consider t ∈ [t j , t j+1) and t̃ ∈ [t j+k, t j+k+1) for k ≥ 1. By the triangle inequality, the
previous step and Proposition 3.7

|U (x, t) −U (x, t̃)|
≤ |U (x, t) −U (x, t j+1)| + |U (x, t j+k) −U (x, t̃)| + |U (x, t j+1) −U (x, t j+k)|
≤ 
u0, f (|t j+1 − t |) + 
u0, f (|t̃ − t j+k |) + 
u0, f (|t j+k − t j+1|).

Since t ≤ t j+1 ≤ t̃ and t ≤ t j+k ≤ t̃ , the above estimate yields

|U (x, t) −U (x, t̃)| ≤ 3
u0, f (|t̃ − t |).
Finally, we conclude space-time equicontinuity combining the above estimates to get

|U (x, t) −U (z, t̃)| ≤ |U (x, t) −U (z, t)| + |U (z, t) −U (z, t̃)|
≤ 
u0(|x − z|) + T
 f (|x − z|) + 3
u0, f (|t̃ − t |).
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By Arzelà-Ascoli, we obtain as a corollary that, up to a subsequence, the numerical solution
converges locally uniformly to a limit.

Corollary 3.11 Assume the hypotheses of Proposition 3.10. Let {Uh}h>0 be a sequence of
solutions of (3.9). Then, there exist a subsequence {Uhl }∞l=1 and a function u ∈ Cb(R

d ×
[0, T ]) such that

Uhl → u as l → ∞ locally uniformly in R
N × [0, T ].

4 Convergence of the numerical scheme

From Corollary 3.11, we have that the sequence of numerical solutions has a subsequence
converging locally uniformly to some function v. We will now show that v is a viscosity
solution of (1.1).

Theorem 4.1 Let the assumptions of Corollary 3.11 hold. Then v is a viscosity solution of
(1.1).

Proof For notational simplicity, we avoid the subindex j and consider

Uh → u as h → 0 locally uniformly in R
N × [0, T ].

First of all, by the local uniform convergence,

u(x, 0) = lim
h→0

Uh(x, 0) = u0(x),

locally uniformly. We will now show that u is a viscosity supersolution. The proof that u is
a viscosity subsolution is similar.

Now let ϕ be a suitable test function for u at (x∗, t∗) ∈ R
d × (0, T ). We may assume that

ϕ satisfies

(i) ϕ(x∗, t∗) = u(x∗, t∗),
(ii) u(x, t) > ϕ(x, t) for all (x, t) ∈ BR(x∗) × (t∗ − R, t∗] \ (x∗, t∗).

The local uniformconvergence ensures (see Section 10.1.1 in [17]) that there exists a sequence
{(xh, th)}h>0 such that

(i) ϕ(xh, th) −Uh(xh, th) = sup(x,t)∈BR(xh)×(th−R,th ]{ϕ(x, t) −Uh(x, t)} =: Mh ,
(ii) ϕ(xh, th) − Uh(xh, th) ≥ ϕ(x, t) − Uh(x, t) for all (x, t) ∈ BR(xh) × (th − R, th] \

(xh, th)

and

(xh, th) → (x∗, t∗) as h → 0.

Now consider t j ∈ Tτ such that th ∈ [t j , t j+1] (note that the index j might depend on h, but
this fact plays no role in the proof). By Remark 3.9,

Uh(x
h, th) = Uh(x

h, t j ) + (th − t j )
∑
yβ∈Gh

Jp(Uh(x
h + yβ, t j ) −Uh(x

h, t j ))ωβ

+(th − t j ) f (x
h).
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Define Ũh = Uh + Mh . It is clear that

Ũh(x
h, th) = Ũh(x

h, t j ) + (th − t j )
∑
yβ∈Gh

Jp(Ũh(x
h + yβ, t j ) − Ũh(x

h, t j ))ωβ

+(th − t j ) f (x
h).

Clearly, Ũh(xh, th) = ϕ(xh, th) and Ũh ≥ ϕ, which implies that

ϕ(xh, th) = Ũh(x
h, t j ) + (th − t j )

∑
yβ∈Gh

Jp(Ũh(x
h + yβ, t j ) − Ũh(x

h, t j ))ωβ

+(th − t j ) f (x
h). (4.1)

Now consider the function g : R → R given by

g(ξ) = ξ + (th − t j )
∑
yβ∈Gh

Jp(Ũ (xh + yβ, t j ) − ξ)ωβ

and note that

g′(ξ) = 1 − (th − t j )(p − 1)
∑
yβ∈Gh

|Ũ (xh + yβ, t j ) − ξ |p−2ωβ.

We will check now that g′(ξ) ≥ 0 for any ξ ∈ [ϕ(xh, t j ), Ũ (xh, t j )]. Indeed,
|Ũ (xh + yβ, t j ) − ξ | ≤ |Ũ (xh + yβ, t j ) − Ũ (xh, t j )| + |Ũ (xh, t j ) − ξ |

≤ |U (xh + yβ, t j ) −U (xh, t j )| + |Ũ (xh, t j ) − ϕ(xh, t j )|
≤ |U (xh + yβ, t j ) −U (xh, t j )| + |U (xh, t j ) −U (xh, th)| + |ϕ(xh, th) − ϕ(xh, t j )|
≤ 
u0(|yβ |) + T
 f (|yβ |) + 3
u0, f (|th − t j |) + |th − t j |‖∂tϕ‖L∞(BR(xh)×[th−R,th ])
≤ 
u0(|yβ |) + T
 f (|yβ |) + 3
u0, f (τ ) + τ‖∂tϕ‖L∞(BR(xh)×[th−R,th ]),

where we have used that Ũ (xh, th) = ϕ(xh, th), Proposition 3.10 and the fact that |th − t j | ≤
τ . By (CFL), and taking τ small enough, we have

3
u0, f (τ ) + τ‖∂tϕ‖L∞(BR(xh)×[th−R,th ])
≤ 3K̃ τ

a
2+(1−a)(p−2) + (

3‖ f ‖L∞(Rd ) + ‖∂tϕ‖L∞(BR(xh)×[th−R,th ])
)
τ

≤ (3K̃ + 1)τ
a

2+(1−a)(p−2)

≤ (3K̃ + 1)ra .

Thus,

g′(ξ) ≥ 1 − (th − t j )(p − 1)
∑
yβ∈Gh

|
u0(|yβ |) + T
 f (|yβ |) + (3K̃ + 1)ra |p−2ωβ

≥ 1 − τ(p − 1)(Lu0 + T L f + 3K̃ + 1)p−2ra(p−2)
∑
yβ∈Gh

ωβ

≥ 1 − τ
M(p − 1)(Lu0 + T L f + 3K̃ + 1)p−2

r2+(1−a)(p−2)

≥ 0,
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where we have used (Aω) and where the last inequality is due to the (CFL) condition. We
can use this fact in (4.1) to get

ϕ(xh , th) = Ũh(x
h , t j ) + (th − t j )

∑
yβ∈Gh

Jp(Ũh(x
h + yβ, t j ) − Ũh(x

h , t j ))ωβ + (th − t j ) f (x
h)

≥ ϕ(xh, t j ) + (th − t j )
∑
yβ∈Gh

Jp(Ũh(x
h + yβ, t j ) − ϕ(xh, t j ))ωβ + (th − t j ) f (x

h)

≥ ϕ(xh, t j ) + (th − t j )
∑
yβ∈Gh

Jp(ϕ(xh + yβ, t j ) − ϕ(xh , t j ))ωβ + (th − t j ) f (x
h).

Consistency (Ac) yields

∂tϕ(xh, th) + o(τ ) ≥ �pϕ(xh, t j ) + oh(1) + f (xh).

Passing to the limit as h, τ → 0, we get the desired result by the regularity of ϕ and the fact
that th, t j → t∗ and xh → x∗ as h → 0. 	

We are now ready to prove convergence of the scheme.

Proof of Theorem 2.2 ByCorollary 3.11 and Theorem 4.1, we know that, up to a subsequence,
the sequenceUh converges to a viscosity solution of (1.1).Moreover, since viscosity solutions
are unique (cf. Theorem 2.4), the whole sequence converges to the same limit.

5 Discretizations

In this section, we present two examples of discretizations and verify that the assumptions
(Ac) and (Aω) are satisfied. Moreover, we also give the precise form of corresponding CFL-
condition.

5.1 Discretization in dimension d = 1

We consider the following finite difference discretization of �p in dimension d = 1

Dh
pφ(x) = Jp(φ(x + h) − φ(x)) + Jp(φ(x − h) − φ(x))

h p
.

A proof of consistency (Ac) can be found in Theorem 2.1 in [8]. Assumption (Aω) is trivially
true for r = h since

ω1 = ω−1 = 1

h p
and ωβ = 0 otherwise,

so that ∑
yβ∈Gh

ωβ = 2

h p
.

5.2 Discretization in dimension d > 1

The following discretization was introduced in [9]:

Dh
pφ(x) = hd

Dd,p ωd r p+d

∑
yβ∈Br

Jp(φ(x + yβ) − φ(x)),
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where ωd denotes the measure of the unit ball in R
d , the relation between r and h is given

by

h =
{
o
(
r

p
p−1

)
, if p ∈ (2, 3],

o
(
r

3
2
)
, if p ∈ (3,∞),

(5.1)

and Dd,p = d
2(d+p)

ffl
∂B1

|y1|p dσ(y). When p ∈ N, a more explicit value of this constant is
given in [9]. In general, the explicit value is given by

Dd,p = d

4
√

π
· p − 1

d + p
· �( d2 )�(

p−1
2 )

�(
d+p
2 )

.

A proof of consistency (Ac) can be found in Theorem 1.1 in [9]. Assumption (Aω) trivially
holds for h = o(rα) for some α > 0 according to (5.1) since

ωβ = ω−β = hd

Dd,p ωd r p+d
if |hβ| < r and ωβ = 0 otherwise.

To check (Aω) we rely on the following estimate given in the proof of Theorem 1.1 in [9]:∑
yβ∈Br

hd ≤ |Br+√
dh |.

In particular, taking for example h ≤ r/
√
d, we have

∑
yβ∈Br

ωβ = 1

Dd,pr p
|Br+√

dh |
|Br | ≤ 2d

Dd,pr p
.

6 Numerical experiments

We will perform the numerical tests comparing the numerical solution with the explicit
Barenblatt solution of (1.1). For p > 2 this is given by

B(x, t) = Kt−α

(
1 −

( |x |
tβ

) p
p−1

) p−1
p−2

+
,

where the constants are,

α = d

d(p − 2) + p
, β = 1

d(p − 2) + p
, and K =

(
p − 2

p
β

1
p−1

) p−1
p−2

.

6.1 Simulations in dimension d = 1

We consider the initial condition

u0(x) = B(x, 1) = K
(
1 − |x | p

p−1

) p−1
p−2
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Fig. 1 Errors in dimension d = 1 for p = 3, 4, 10, 100

and f = 0. The corresponding solution of problem (1.1) is given by (see [24])

u(x, t) = B(x, t + 1) = K (t + 1)−α

(
1 −

( |x |
(t + 1)β

) p
p−1

) p−1
p−2

+
.

Let us now comment on the CFL-condition (CFL). Clearly, u0 is a Lipschitz function, and
we can give an upper bound to its Lipschitz constant as follows

Lu0 = sup
x∈[−1,1]

∣∣∣∣du0dx
(x)

∣∣∣∣ = sup
r∈[0,1]

{
K

p

p − 2

(
1 − r

p
p−1

) 1
p−2

r
1

p−1

}
≤ K

p

p − 2
.

Thus, for all p > 2, the CFL condition (CFL) can be take as τ ∼ h2 (since f = 0 in this
case). For completeness, we find the value of K in dimension d = 1. Note that

K =
(
p − 2

p

1

(2(p − 1))
1

p−1

) p−1
p−2

=
(
p − 2

p

) p−1
p−2 1

(2(p − 1))
1

p−2

,

so that Lu0 ≤
(

p−2
2p(p−1)

) 1
p−2

.

In Fig. 1, we show the numerical errors obtained. As it can be seen there, the errors seem
to behave like O(h p/(p−1)).
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Appendix A: Estimates for mollified Hölder continuous functions

Here we present some explicit estimates for mollifications needed in the proof of equicon-
tinuity in Lemma 3.7. Let τ : [0,∞) → R be a smooth function such that supp τ ⊂ [0, 1].
Define ρ : Rd → R given by ρ(x) = M

ωd
τ(|x |) where ωd is the measure of the unit sphere

in dimension d and M = M(d) is a constant defined by

M =
(ˆ 1

0
τ(r)rd−1 dr

)−1

.

In this way, we have that
´
B1

ρ(x) dx = 1. For δ > 0 define also

ρδ(x) = 1

δd
ρ

( x
δ

)
.

Then, for a function f ∈ L1
loc we define the mollification of f as

fδ(x) = ( f ∗ ρδ)(x) =
ˆ

Bδ

ρδ(y) f (x − y) dy =
ˆ

Rn
ρδ(x − y) f (y) dy.

The lemma below gives an estimate of the Lipschitz seminorm of fδ when f is an α-Hölder
continuous function for some α ∈ (0, 1].
Lemma A.1 Letα ∈ (0, 1]. Consider a function f ∈ Cα(Rn)with | f (x)− f (y)| ≤ L|x−y|α
for all x, y ∈ R

d . Then, for all x, y ∈ R
d , we have that

| fδ(x) − fδ(y)| ≤ K1L|x − y|δα−1, with K1 = M
ˆ 1

0
|τ ′(r)|rd−1 dr .

Proof Since
´
Rn ∇ρδ(y) dy = ´

Rn ∇ρ(y) dy = 0, it follows that

|∇ fδ(x)| =
∣∣∣∣
ˆ

Bδ

∇ρδ(y) ( f (x − y) − f (x)) dy

∣∣∣∣ ≤ L
ˆ

Bδ

|∇ρδ(y)| |y|α dy

≤ M

ωd
Lδα

ˆ

Bδ

1

δd+1

∣∣∣∣τ ′
( |y|

δ

)∣∣∣∣ dy = MLδα−1
ˆ 1

0
|τ ′(r)|rd−1 dr .

(A.1)

Thus,

| fδ(x) − fδ(y)| ≤ ‖∇ fδ‖L∞(Rd )|x − y| = K1L|x − y|δα−1.

	

The lemma below gives an estimate of the second order central difference quotients of fδ

when f is an α-Hölder continuous function for some α ∈ (0, 1].
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Lemma A.2 Letα ∈ (0, 1]. Consider a function f ∈ Cα(Rn)with | f (x)− f (y)| ≤ L|x−y|α
for all x, y ∈ R

d . Then, for all x, y ∈ R
d , we have that

| fδ(x + y) + fδ(x − y) − 2 fδ(x)| ≤ K2L|y|2δα−2,

with

K2 = M
ˆ 1

0

( |τ ′(r)|
r

+ |τ ′′(r)|
)
rd−1 dr .

Proof We note that we have the following formula for the second order derivatives of ρδ:

∂i jρδ(y) =
(

δi j

|y| − yi y j
|y|3

)
1

δd+1 τ ′
( |y|

δ

)
+ yi y j

δd+2|y|2 τ ′′
( |y|

δ

)
,

so that

〈D2ρδ(y)ξ, ξ 〉 ≤
(

1

δd+1|y|
∣∣∣∣τ ′

( |y|
δ

)∣∣∣∣ + 1

δd+2

∣∣∣∣τ ′′
( |y|

δ

)∣∣∣∣
)

|ξ |2.

Similarly to the gradient, the Hessian also integrates to zero, that is,
ˆ

Rn
∂i jρδ(y) dy = 0 for all i, j = 1, . . . , d.

Indeed, when i �= j , the result follows by antisymmetry in y. When i = j , we are integrating
∂i iρδ , which yields zero since ∂iρδ = 0 on R

d \ Bδ . As in the proof of the previous lemma,
it follows that

‖D2 fδ‖ =
∥∥∥∥
ˆ

Bδ

D2ρδ(y) ( f (x − y) − f (x)) dy

∥∥∥∥ ≤ L
ˆ

Bδ

‖D2ρδ(y)‖|y|α dy

≤ M

ωd
Lδα

ˆ

Bδ

(
1

δd+1|y|
∣∣∣∣τ ′

( |y|
δ

)∣∣∣∣ + 1

δd+2

∣∣∣∣τ ′′
( |y|

δ

)∣∣∣∣
)

dy

= MLδα−2
ˆ 1

0

( |τ ′(r)|
r

+ |τ ′′(r)|
)
rd−1 dr ,

(A.2)

where ‖ · ‖ denotes the operator norm. Now, by Taylor expansion

fδ(x ± y) = fδφ(x) ± ∇ fδ(x) · y + 1

2

∑
β=1

∂ |β| fδ
∂xβ

(z±)yβ .

Thus,

| fδ(x + y) + fδ(x − y) − 2 fδ(x)| ≤ |y|2‖D2 fδ(z)‖

≤ M

(ˆ 1

0

( |τ ′(r)|
r

+ |τ ′′(r)|
)
rd−1 dr

)
Lδα−2|y|2.

	


A.1. Explicit constants in dimensions one, two and three

Here we will compute explicit constants for the mollifier that is based on the choice

τ(r) = e
− 1

1−r2 χ[0,1)(r).
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In one dimension: We have

M =
(ˆ 1

0
τ(r) dr

)−1

≤ 4.51

and

K1 = M
ˆ 1

0
|τ ′(r)| dr = M

ˆ 1

0
(−τ ′(r)) dr = Mτ(0) = M

e
≤ 1.67.

Since

ˆ 1

0

|τ ′(r)|
r

= 2
ˆ 1

0

e
− 1

1−r2

(1 − r2)2
dr ≤ 0.8,

and
ˆ 1

0
|τ ′′(r)|dr =

ˆ 1

0

∣∣∣∣e− 1
1−r2

6r4 − 2

(1 − r2)4

∣∣∣∣ dr ≤ 1.6,

we conclude that

K2 ≤ 2.4M ≤ 10.83.

In two dimensions: We have

M =
(ˆ 1

0
τ(r)r dr

)−1

≤ 13.47

and

K1 = M
ˆ 1

0
|τ ′(r)|r dr = M

ˆ 1

0
(−τ ′(r)r) dr = M

ˆ 1

0
τ(r) dr ≤ 0.23M ≤ 3.13.

Since
ˆ 1

0
|τ ′(r)| dr = 1

e

and
ˆ 1

0
|τ ′′(r)|rdr =

ˆ 1

0

∣∣∣∣e− 1
1−r2

6r4 − 2

(1 − r2)4
r

∣∣∣∣ dr ≤ 1.04,

we conclude that

K2 ≤ M(e−1 + 1.04) ≤ 18.97.

In three dimensions: We have

M =
(ˆ 1

0
τ(r)r2 dr

)−1

≤ 28.49

and

K1 = M
ˆ 1

0
|τ ′(r)|r2 dr = M

ˆ 1

0
(−τ ′(r)r2) dr = 2M

ˆ 1

0
τ(r)r dr ≤ 2 × 0.08M ≤ 4.56.

Since
ˆ 1

0
|τ ′(r)|r dr =

ˆ 1

0
τ(r) dr ≤ 0.23
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and
ˆ 1

0
|τ ′′(r)|r2dr =

ˆ 1

0

∣∣∣∣e− 1
1−r2

6r4 − 2

(1 − r2)4
r2

∣∣∣∣ dr ≤ 0.79,

we conclude that

K2 ≤ M(0.23 + 0.79) ≤ 29.06.

Appendix B: Pointwise inequalities

The following lemma follows from the Taylor expansion of the function t �→ |t |p−2t .

Lemma B.1 Let p ≥ 2. Then∣∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣∣ ≤ (p − 1)max(|a|, |a + b|)p−2|b|.
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