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Abstract
In this survey, we present an overview of random differential equations, focusing on strong
solutions and methods for estimation of statistics and densities. We combine classical and
recent literature on the subject, making special emphasis on topics for which review works
are still lacking.

Keywords Differential equation with random input parameters · Stochastic solution ·
Uncertainty quantification · Moment and density estimation · Mathematical modeling

Mathematics Subject Classification 34F05 · 35R60 · 60H35 · 65C30

1 Introduction

The purpose of this paper is to present an overview of random differential equations (RDEs).
The theoretical treatment of RDEs is not new; since mid-last century, there are several con-
tributions on the theory of RDEs [5, 6, 41, 87, 93–96, 99]. However, these equations seem
to have remained in the shadow of stochastic differential equations (SDEs) of Itô type for
many years [54, page 4]. Perhaps, this point is due to the fact that Itô calculus has given
rise to a very fruitful area of research in pure mathematics [36, 89], together with a high
impact of applications in fields that generate many resources for research, such as Physics
and Finance [1, 77]. At the beginning of this century, though, the treatment of RDEs seems to
have been brought back to research [54, 75, 84, 104]. This may be motivated by the explosion
of investigations on stochastic numerical methods for Fluid Mechanics, especially based on
spectral expansions, creating the field of uncertainty quantification (UQ) [71, 92, 110]. In
this survey, we will expose theory and methods for RDEs using classical and recent literature
on the subject, making special emphasis on topics for which review works are still lacking.
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1.1 UQ

Given a physical system formulated by a mathematical model consisting of differential equa-
tions, simulations are needed to predict the response behavior. To achieve this target, apart
from having efficient integrators of the model, one should keep in mind the uncertainties
associated to collected data, due to limitations of experiments, erratic calibrations, intrinsic
variability of the physical phenomenon and incomplete knowledge of it, etc. Uncertainties
in data give rise to uncertainties for the input parameters of the model, since these prescribe
the constitutive laws of the system. Thus, it is more realistic to treat the input parameters as
random variables (rather than averaged values), which makes the model response a stochas-
tic process. Of course, a single simulation of the model for certain specific values of the
parameters is not sufficient. Rather, the statistical content of the response (mean, variance,
probability density function) is the main interest. The field of UQ, as its name entails, is
devoted to the investigation of models for which the uncertainty in data is non-negligible,
and to quantify the impact of such uncertainty on parameters (inverse problem) and on the
response (forward problem, or uncertainty propagation problem). In modeling applications,
UQ is essential for validation (output vs. data), variability analysis (variance, probabilistic
intervals, robustness of the prediction, controllability of the system), risk analysis (prediction
of critical values, thresholds), and uncertainty management (impact of each parameter on the
output, for priorities). Standard texts about computational methods for UQ are [71, 92, 110].
The report [97] is also highly recommendable for the incursion into the field of UQ.

1.2 Formulation

The general form of an RDE initial value problem is the following:{
x ′(t, ω) = f (t, x(t, ω), ω), t ∈ I , ω ∈ �,

x(t0, ω) = x0(ω), ω ∈ �.
(1.1)

Here, I ⊆ R is an interval containing t0, and� is the sample space of an underlying complete
probability space (�,F,P), whereF ⊆ 2� is the σ -algebra of events andP is the probability
measure. The outcomes (i.e. the elements of�) are generically denoted by ω; these represent
any random possibility, situation, circumstance... The term x(t, ω) is a stochastic process
from I × � to Rq , q ≥ 1, where I is independent of ω, and x ′(t, ω) stands for its derivative
in some probabilistic sense. Indeed, there are different notions of limit in probability theory
(almost sure, mean square), and each notion gives rise to a derivative and a calculus. For
example, in the sample-path sense, the trajectories x(·, ω) solve the deterministic problem,
while in the mean-square sense or more generally in the p-th sense, the limits are considered
in the Lebesgue space (Lp(�), ‖ · ‖p). Analogously, a problem of random partial differential
equations (RPDEs) could be the following:⎧⎪⎨

⎪⎩
ut (x, t, ω) = L(u(x, t, ω), x, t, ω), D × (0, T ] × �,

B(u(x, t, ω), x, t, ω) = 0, ∂D × [0, T ] × �,

u(x, 0, ω) = u0(x, ω), D × {t = 0} × �.

Here, L is a differential operator, B is a boundary operator, and u(x, t, ω) is a random field,
whose partial derivatives are interpreted in some probabilistic sense. In general, the sample-
path sense represents the weakest mode of solution; assuming existence of a probabilistic
solution, it coincides with the deterministic one by trajectories, and it may be simulated by
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drawing realizations from ω ∈ �. For standard theoretical details on RDEs and RPDEs, the
reader is referred to [84, 93, 96]. Any type of input uncertainty is allowed. The stochastic
solution is differentiable by trajectories; if an irregular phenomenon is being modeled, a
discrete noisy random error (for example, E ∼ Normal(0, σ 2 I ), where σ > 0 is the standard
deviation and I is the identitymatrix)may be incorporated into the stochasticmodel response,
which matches with the Bayesian formulation of statistical models [81, 92, 110].

1.3 Motivation of RDEs vs. SDEs

These types of RDEs are of special interest in applications, because they allow for modeling
uncertainty in amore flexiblemanner than assuming certain fluctuating patterns, as is the case
of the conventional SDEs of Itô type. Within the context of SDEs, uncertainty is restricted
to a white noise representation, which may partially limit their applications. In Biology, for
example, the formulation of RDEs may be more realistic, since they permit the use of non-
Gaussian patterns and bounded random quantities [54]. Apart from the biological sciences,
since the development of the generalized polynomial chaos (gPC) technique for solvingRDEs
around twenty years ago [110, 112], the role of these equations has been very important in
Fluid Dynamics and Physics in general. In the setting of these experimental sciences, one
should keep in mind the experimental errors when measuring, which are often delimited and
not necessarily Gaussian.

Some examples of random systems in Biology or Physics are the SIRmodel for the spread
of epidemics or Burgers’ equation for viscous fluids:⎧⎪⎨

⎪⎩
S′(t, ω) = −β(ω)S(t, ω)I (t, ω),

I ′(t, ω) = β(ω)S(t, ω)I (t, ω) − ν(ω)I (t, ω),

R′(t, ω) = ν(ω)I (t, ω),{
ut (x, t, ω) + u(x, t, ω)ux (x, t, ω) = ν(ω)uxx (x, t, ω), x ∈ (−1, 1), t ∈ (0, T ),

u(−1, t, ω) = 1 + δ(ω), u(1, t, ω) = −1,

respectively. In the first case, the force of infection and the recovery rate are assigned prob-
ability distributions. For example, if doctors state that, for the disease under study, the mean
time of recovery is between 3 and 10 days, then a prior distribution for 1/ν could be a uniform
law on [3, 10]. In the second case, detailed studies are available in the literature [109, 110,
114]; if a small amount of uncertainty exists in the value of the boundary condition (possibly
due to some bias measurement or estimation errors), then the location of the transition layer
at steady state may change significantly.

1.4 Outline

The remainder of the paper is organized as follows. In Sect. 2, which is divided into several
subsections, we deal with solutions to RDEs. After starting with sample-path solutions in
Sect. 2.1, along the sectionwemostly focus on strong solutions. Some classical facts on strong
solutions are reviewed in Sect. 2.2. Then, we report current results on the Fröbenius method
for linear ordinary and fractionalRDEs in Sect. 2.3, onRPDEs in Sect. 2.4, and on delayRDEs
in Sect. 2.5. A comparison between the notions of solution is made in Sect. 2.6. In Sect. 3,
some simulationmethods for RDEs pertaining to the field of UQ are exposed. In Sect. 3.1, we
revisit well-known stochastic expansions for UQ (Taylor, perturbation and polynomial chaos
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series), as an alternative to Monte Carlo simulation, as well as inverse parameter estimation
techniques (experts’ judgment, maximum entropy principle and Bayesian inference). Later,
in Sect. 3.2, we turn our attention to recent works on density estimation: transformation of
random variables, Liouville’s equation, and hybrid methods based on stochastic expansions.
These topics on densities have not been treated in the literaturewith such an emphasis. Finally,
in Sect. 4, possible research directions on RDEs are suggested.

2 Theory on RDEs

As in the theory of deterministic differential equations, part of the development of RDEs
deals with the existence and uniqueness of the solution process in some stochastic sense. The
theory on ordinary RDEs started to develop last mid-century, and the reader is referred to [5,
6, 41, 87, 93–96, 99] for an exposition on it. In the last twenty years, there has been an increase
of attention on RDEs. More complex ordinary RDEs have been solved based on a greater
development of the random calculus, as well as other types of equations such as RPDEs,
fractional RDEs, and delay RDEs. The purpose of this section is to present the theoretical
framework of RDEs and to explore these more recent and elaborate types of problems. We
will base on [104] for recent results on the random calculus, on [14, 16, 20, 21, 27, 28, 57]
for the study of second-order linear RDEs by means of the Fröbenius method, on [8] for
the investigation of a linear fractional RDE by means of the Fröbenius method, on [9] for
the study of the advection RPDE by employing a known chain rule theorem, and on [29]
for the study of a linear delay RDE by using the method of steps and mean-square Riemann
integration.

2.1 Sample-path solutions

Given a stochastic process x : I × � → R (we focus on the one-dimensional situation
q = 1 for simplicity), a trajectory or sample path is the real function x(·, ω) : I → R,
for any given outcome ω ∈ �. We say that x solves (1.1) in the sample-path sense or
pathwise if the trajectories x(·, ω) solve the corresponding deterministic problem, almost
surely (a.s.). As detailed in [96], trajectories may be differentiable at every point in I , or
almost everywhere on I by allowing absolutely continuous functions [53]. It is important
to verify that x is indeed a stochastic process: measurable for each t ∈ I , and I and �

independent. For example, as pointed out in [84, page 102], if a is an unbounded positive
random variable, then x(t, ω) = 1/(1 − a(ω)t) is not a solution to the Riccati equation
x ′(t, ω) = a(ω)x(t, ω)2, since there is not a common real interval for which all solutions
exist. Also, for example, x(t, ω) = 1

4 t
2 for ω ∈ �\�	 and x(t, ω) = 0 for ω /∈ �\�	,

where �	 /∈ F , does not solve x ′(t, ω) = √|x(t, ω)|, because it is not measurable.

2.2 Strong solutions

Recall that, given a complete probability space (�,F,P), the Lebesgue space Lp(�), 1 ≤
p < ∞, is the set of random variables U : � → R such that ‖U‖p = (E[|U |p])1/p < ∞
(finite absolute moments up to order p), where E denotes the expectation operator. When
p = ∞, ‖U‖∞ = inf{C > 0 : |U | ≤ C a.s.}. These spaces are Banach, and for p = 2, the
space is Hilbert. This case p = 2 is particularly important, since it defines the set of random
variables with well-defined mean and finite variance; these two statistics are essential for
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any statistical analysis. A stochastic process x : I × � → R is said to be of order p if
‖x(t)‖p < ∞ for all t ∈ I . Here the symbol ω has been dropped, as we are integrating
along �. This stochastic process may be viewed as a map x : I → Lp(�). Actually, this
is not an individual function; rather, it is an equivalence class for which a representative is
chosen. Common concepts of Mathematical Analysis, such as continuity, differentiability,
Riemann integrability, etc., may be defined in the sense of (Lp(�), ‖ · ‖p), by considering
the corresponding limits. This approach leads to a new random calculus. In the cases p = 1,
p = 2 and p = 4, we have mean, mean-square and mean-fourth calculus, respectively.
Good expositions on random calculus are available in [84, 93, 96, 99, 104]. (Remark: The
Lp-Riemann integral is a particular case of the Bochner integral [96], but this more abstract
notion will not be required for our purposes.)

Given (1.1), the solution x may be considered in this Lebesgue sense, also called strong
solution. The connection between sample-path and strong solutions is not obvious. For
example, as shown in [84, page 141], the stochastic process x(t, ω) = ea(ω)t , for a expo-
nentially distributed with rate 1, is not a mean solution to x ′(t, ω) = a(ω)x(t, ω), because
E[x(t)] = ∞. In general, as proved in [96, page 541], if a is unbounded (normal, Poisson,
gamma, etc. distributions), then for all p there exists an initial condition x0 = x(0) ∈ Lp(�)

such that x(t, ω) = x0(ω)ea(ω)t /∈ Lp(�) for any t �= 0. In fact, in the context of strong
solutions, Picard’s theorem for existence and uniqueness is very stringent and boundedness
of random coefficients is usually needed [96], [93, chapter 5]. According to [99], if x is
continuously differentiable in the p-th sense, with derivative x ′, then there exists an equiv-
alent stochastic process ϕ(t, ω) on I × �, product measurable, such that its sample paths
are absolutely continuous, ϕ′(t, ω) exists almost everywhere on I × �, and ϕ′(t, ·) = x ′(t)
a.s. for almost every t ∈ I . Also, if x is continuous in the p-th sense on I , then there
exists an equivalent stochastic process ϕ(t, ω) on I × �, product measurable, such that
[∫I x(s) ds](ω) = ∫

I x(s, ω) ds, where the integral on the left is the abstract Riemann inte-
gral and the integral on the right is the ordinary Lebesgue integral for real-valued functions.
Finally, any Lp-solution to (1.1) has a product measurable representative which is an abso-
lutely continuous solution in the sample-path sense. Thereby, in practice, one picks the
deterministic solution and checks whether it can be differentiated in the p-th sense, by using
extensions of the ordinary calculus to the random setting.

We do not spend more time on this classical theory and, in the following parts, we move
towards current results on strong solutions.

2.3 Second-order linear RDEs: Fröbenius method and strong solutions

The Fröbenius method consists in finding a strongly convergent power series solution to an
RDE, in analogy to the deterministic theory of ordinary differential equations. The general
RDE problem is given by{

x ′′(t, ω) + a(t, ω)x ′(t, ω) + b(t, ω)x(t, ω) = 0, t ∈ R,

x(t0, ω) = y0(ω), x ′(t0, ω) = y1(ω).
(2.1)

Here, a(t, ω) and b(t, ω) are stochastic processes and y0(ω) and y1(ω) are random vari-
ables on (�,F,P). The stochastic process x(t, ω) is the Lp(�)-solution. It is assumed that
a(t, ω) and b(t, ω) are analytic stochastic processes on a neighborhood (t0 − r , t0 + r),
for r > 0 fixed, in the strong sense [93, p. 99]: a(t, ω) = ∑∞

n=0 an(ω)(t − t0)n and
b(t, ω) = ∑∞

n=0 bn(ω)(t − t0)n are two random power series in Lp(�), where a0, a1, . . .,
b0, b1, . . . are of order p. The expansions coincide with the strong Taylor series of a(t, ω)
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and b(t, ω): an(ω) = a(n)(t0, ω)/n!, where a(n) is the n-th Lp(�)-derivative. Random
power series converge absolutely and uniformly on any closed interval strictly contained
in the maximum domain of convergence. For each t , there is exponential convergence of
the series (not uniformly in t). One searches for an analytic solution process x(t, ω) of the
form x(t, ω) = ∑∞

n=0 xn(ω)(t − t0)n , for t ∈ (t0 − r , t0 + r), where the sum is considered
in Lp(�). From here on, we may drop ω for simplicity. From the point of view of UQ, by
truncating the random power series, by applying the linearity of expectation and by using
precomputed moments of the inputs, moments of the solution up to order p may be approx-
imated exponentially fast at each t , at low cost, thus improving the Monte Carlo method (at
least for low or moderately large t).

The study of these types of problems began in 2010, with particular linear equations of
Mathematical Physics; for example, Airy’s, Hermite’s, Legendre’s and Laguerre’s RDEs, just
to name a few [20, 21, 27, 28]. The authors of those papers assumed exponential growth of the
absolute moments of the equation coefficient, which is equivalent to its boundedness. Since
then, three research lines have been developed: generalization to arbitrary linear equations
[16]; weakening of hypothesis, as much as possible, for particular linear equations [14, 57];
and extension to linear fractional RDEs [8]. Essentially, we will focus on the present-day
works [8, 14, 16, 57].

As [16] shows, random power series can be differentiated termwise in the Lebesgue sense.
Also, random power series can bemultiplied in Cauchy form in the Lebesgue sense. As a con-
sequence, by mimicking the proof of the deterministic setting, problem (2.1) may be solved
by employing the Fröbenius method. The basic idea consists in imposing a formal power
series solution and obtaining a recursive relation for the expansion coefficients; afterward,
the convergence of the series in the Lebesgue sense needs to be proved, by using norms and
probabilistic inequalities.

Theorem 2.1 [16] Let a(t) = ∑∞
n=0 an(t−t0)n and b(t) = ∑∞

n=0 bn(t−t0)n be two random
series in the L∞(�) setting, for t ∈ (t0 − r , t0 + r), being r > 0 fixed. Assume that the initial
conditions y0 and y1 belong to Lp(�). Then the stochastic process x(t) = ∑∞

n=0 xn(t− t0)n,
t ∈ (t0 − r , t0 + r), with coefficients defined by

x0 = y0, x1 = y1,

xn+2 = −1

(n + 2)(n + 1)

n∑
m=0

[
(m + 1)an−mxm+1 + bn−mxm

]
, n ≥ 0,

is the unique analytic solution to the random initial value problem (2.1) in the Lp(�) sense.

Given a random variable z, the boundedness ‖z‖∞ < ∞ is equivalent to E[|z|n] ≤ HRn ,
for certain H > 0 and R > 0. Growth hypotheses of the form E[|z|n] ≤ HRn were common
in the literature to find random analytic solutions to particular cases of (2.1). See for example
Airy’s RDE in [27] and Hermite’s RDE in [20]. Theorem 2.1 generalizes the results obtained
in those papers.

Example 2.2 Airy’s RDE is defined as follows:⎧⎪⎨
⎪⎩
x ′′(t) + Atx(t) = 0, t ∈ R,

x(0) = y0,

x ′(0) = y1,

(2.2)

where A, y0 and y1 are randomvariables. It is supposed that the initial conditions are of second
order. In the general notation, a(t) = 0 and b(t) = At . Since A is bounded, the L∞(�)-
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convergence of the series that define a(t) and b(t) holds, so Theorem 2.1 is applicable: there
is an analytic solution stochastic process x(t) to (2.2) on R. Its explicit solution is given by
[27]

x(t) = y0x1(t) + y1x2(t),

x1(t) = 1 +
∞∑
n=1

(−1)n An(3n − 2)!!!
(3n)! t3n, x2(t) = t +

∞∑
n=1

(−1)n An(3n − 1)!!!
(3n + 1)! t3n+1.

Example 2.3 Hermite’s RDE is given as follows:⎧⎪⎨
⎪⎩
x ′′(t) − 2t x ′(t) + Ax(t) = 0, t ∈ R,

x(0) = y0,

x ′(0) = y1,

(2.3)

where A, y0 and y1 are random variables. We suppose that y0, y1 ∈ Lp(�). When A
is bounded, the input stochastic processes a(t) = −2t and b(t) = A are expressible as
L∞(�)-convergent random power series. Hence Theorem 2.1 is applicable and guarantees
the existence of a strong solution process x(t) on R. By [20], this solution possesses the
closed form

x(t) = y0x1(t) + y1x2(t),

x1(t) = 1 +
∞∑
n=0

t2n+2

(2n + 2)!
n∏
j=0

(4 j − A), x2(t) = t +
∞∑
n=0

t2n+3

(2n + 3)!
n∏
j=0

(4 j + 2 − A).

Example 2.4 Legendre’s RDE is⎧⎪⎨
⎪⎩

(1 − t2)x ′′(t) − 2t x ′(t) + A(A + 1)x(t) = 0, |t | < 1,

x(0) = y0,

x ′(0) = y1.

(2.4)

In [21], the authors constructed a mean-square convergent power series solution x(t) to (2.4)
on (−1/e, 1/e) under certain assumptions on the random inputs A, y0 and y1: A bounded,
independent of y0 and y1, and y0, y1 ∈ L4(�). The hypotheses were weakened in Theo-
rem 2.1: to have an Lp(�)-solution on the whole interval (−1, 1), one needs A bounded and
y0, y1 ∈ Lp(�), with no independence condition. According to [21], the strong solution has
the following explicit form:

x(t) = y0 x̃1(t) + y1 x̃2(t),

where

x̃1(t) =
∞∑

m=0

(−1)m

(2m)! P1(m)t2m, x̃2(t) =
∞∑

m=0

(−1)m

(2m + 1)! P2(m)t2m+1,

P1(m) =
m∏

k=1

(A − 2k + 2)(A + 2k − 1), P2(m) =
m∏

k=1

(A − 2k + 1)(A + 2k).

Let us see in this example how one may use the series for forward UQ. Let us focus on the
first two moments of the output. The mean-square convergence preserves the convergence of
the expectation and the variance. Approximations for E[x(t)] and V[x(t)] are thus obtained
using E[xN (t)] and V[xN (t)], respectively, where xN (t) denotes the truncated series up
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to m = N . Both E[xN (t)] and V[xN (t)] are determined just by using the linearity of the
expectation and the precomputed moments of (y0, y1, A), E[y j1

0 y j2
1 A j3 ]. More specifically,

from the programing standpoint, both xN (t) and (xN (t))2 are expanded as symbolic linear
combinations of monomials x j1

0 x j2
1 A j3 t j4 , so E[xN (t)] and E[(xN (t))2] are determined by

substituting each symbolic pattern y j1
0 y j2

1 A j3 by the corresponding moment E[y j1
0 y j2

1 A j3 ].
For each numeric value of N , E[xN (t)] and V[xN (t)] become polynomials in t of degree
2N +1 and 4N +2, respectively, which present rapid evaluation in t . These comments apply
for any other linear RDE. The reader will find abundant numerical simulations in any of the
cited references.

With similar ideas, problem (2.1) may be easily generalized by adding a stochastic forcing
term c(t): {

x ′′(t) + a(t)x ′(t) + b(t)x(t) = c(t), t ∈ R,

x(t0) = y0, x ′(t0) = y1.
(2.5)

Theorem 2.5 Let a(t) = ∑∞
n=0 an(t−t0)n andb(t) = ∑∞

n=0 bn(t−t0)n be two randomseries
in the L∞(�) setting, for t ∈ (t0−r , t0+r), with r > 0 fixed. Let c(t) = ∑∞

n=0 cn(t− t0)n be
a random series in the Lp(�) sense on (t0 − r , t0 + r). Suppose that y0 and y1 are in Lp(�).
Then the stochastic process x(t) = ∑∞

n=0 xn(t − t0)n, t ∈ (t0 − r , t0 + r), with coefficients

x0 = y0, x1 = y1,

xn+2 = 1

(n + 2)(n + 1)

{
−

n∑
m=0

[
(m + 1)an−mxm+1 + bn−mxm

]+ cn

}
, n ≥ 0,

is the unique analytic solution to the problem (2.5) in the Lp(�) sense.

The boundedness conditions fromTheorem 2.1may be relaxed for certain particular forms
of (2.5) by increasing the integrability of the initial conditions and employing the explicit
series developments. In [14], the boundedness condition was weakened for Airy’s, Hermite’s
and Laguerre’s RDE. (In the case of Laguerre’s equation, there is only one initial condition
because 0 is a regular-singular point.) On the other hand, in [57], boundedness was weakened
for the Legendre’s RDE.

Theorem 2.6 [14] Suppose that y0 and y1 belong to L2p(�) and that

‖An‖2p ≤ ηHn−1(n − 1)!s (2.6)

for n ≥ n0, for constants n0, η,H, s > 0. Consider theRDEproblems (2.2) (Airy’s equation),
(2.3) (Hermite’s equation), and

tx ′′(t) + (1 − t)x ′(t) + Ax(t) = 0, t ∈ R, x(0) = y0

(Laguerre’s equation). Then, for 0 ≤ s < 2, there is a random power series solution that
converges in Lp(�) for all t ∈ R. For s = 2, the random power series solution converges
in Lp(�) on a neighborhood of t = 0: for Airy’s equation on |t | < 3

√
9/H, for Hermite’s

equation on |t | < 2/
√
H, and for Laguerre’s equation on |t | < 1/H.

Theorem 2.7 [57] Suppose that y0 and y1 belong to L2p(�) and that

‖An‖4p ≤ ηHn−1(n − 1)!s (2.7)
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for n ≥ n0, for constants n0, η,H, s > 0. Consider the RDE problem (2.4). If 0 ≤ s < 1,
then the random power series x(t) is the Lp(�)-solution to (2.4) on (−1, 1). If s = 1, then
it is the Lp(�)-solution to (2.4) on a neighborhood of zero contained in (−1, 1).

As explained in the references, assumptions (2.6) and (2.7) are fulfilled by the bounded,
Normal, Gamma and Poisson distributions, with s = 0, s = 1/2, s = 1 and s = 1, respec-
tively. Conditions (2.6) and (2.7) for s ≤ 1 are equivalent to φa(t) < ∞ on a neighborhood
of 0, where φa(t) = E[et A] denotes the moment-generating function of A [73, theorem A,
page 5]. The conditions for s ≤ 2 and A ≥ 0 are equivalent to φ√

A(t) < ∞ on a neigh-
borhood of 0, by [73, theorem B, page 6]. If s < 1, then φa(t) < ∞ for every t ∈ R.
The converse is not true in general: if A ∼ Poisson(1), then the moments of A are the Bell
numbers bn , which satisfy log ‖A‖n = log(bn)/n ∼ log n as n → ∞ [35, pages 102–109],
therefore the minimum s for which (2.7) holds is s = 1. But when A is Poisson distributed,
we can also solve the Legendre’s RDE.

Theorem 2.8 [57] Consider the Legendre’s RDE (2.4). Assume that the initial conditions y0
and y1 belong toL2p(�) and that the equation coefficient A follows aPoisson(λ) distribution.
Then the random power series x(t) is the Lp(�) solution to (2.4) on (−1, 1).

In the remaining part of this subsection, an application of the Fröbenius method for linear
fractional RDEs is exposed. In recent decades, equations that in their formulation contemplate
the so-called memory effects (delays, or non-local operators for fractional derivatives), are
having a great impact. This interest is augmented in the case that such equations also consider
uncertainties in their formulation. We take as an example the paper [8]. An extension of the
classical derivative x ′(t) is given by the Caputo fractional derivative

(CDα
0+x)(t) = 1

�(1 − α)

∫ t

0
(t − s)−αx ′(s) ds,

where 0 < α ≤ 1. In the random scenario, with x(t, ω) being a strongly differentiable
stochastic process, such improper integral may be considered as an Lp-Riemann integral.
Let us consider the following non-autonomous fractional RDE initial value problem:

(CDα
0+x)(t, ω) − B(ω)tβx(t, ω) = 0, t > 0, x(0, ω) = A(ω),

where β > 0, and A and B are random variables. The Fröbenius method yields a formal
random power series solution of the form x(t, ω) = ∑∞

n=0 xn(ω)t (α+β)n . By using the
random calculus, the goal is to prove that this series is convergent (and hence differentiable)
in a strong sense. The main result proved there is the following.

Theorem 2.9 [8, theorem 3] If the random variables A and B are independent and ‖Bn‖2 ≤
ηHn−1((n − 1)!)r for n ≥ n0, for certain η, H , r , n0 > 0, then

x(t, ω) = A(ω) +
∞∑
n=1

B(ω)n A(ω)

n∏
k=1

�((k − 1)α + βk + 1)

�(k(α + β) + 1)
t (α+β)n

is the mean-square solution on

D =
⎧⎨
⎩

[0,∞), r < α,[
0, (α+β)

α
α+β

H
1

α+β

)
, r = α.

123



558 M. Jornet

The work on memory RDEs and their stochastic solutions is relatively new, from only a
few years ago (the first work that I am aware of is [75], from 2012, which treats both types
of probabilistic solutions). It would be of interest to carry out the extension of some of the
non-autonomous classical linear equations of Mathematical Physics, such as Hermite’s or
Legendre’s equations, to their fractional version with random data.

2.4 Advection RPDE: random chain rule theorem and strong solutions

An RPDE problem incorporates uncertainty into the deterministic problem by randomizing
the input parameters (equation coefficients, initial conditions, boundary values, forcing terms,
etc.), with any type of probability distributions. The solution becomes a differentiable random
field, which solves the problem in the sample-path or the strong sense. Unlike the case of
ordinary RDEs, there is no general theory that guarantees the existence of such types of
solutions. Herewe focus on the one-dimensional linear advection equationwith uncertainties,
based on the recent work [9].

An important model to describe the concentration of a chemical substance transported by
a one-dimensional fluid that flows with a known velocity is{

∂
∂t Q(x, t, ω) + V (t, ω) ∂

∂x Q(x, t, ω) = 0, t > 0, x ∈ R,

Q(x, 0, ω) = Q0(x, ω), x ∈ R,
(2.8)

where V (t, ω) is the stochastic velocity and Q0(x, ω) is the stochastic initial concentration of
the substance at the spatial point. By deterministic theory on PDEs, the sample-path solution
to (2.8) is given by Q(x, t, ω) = Q0(x − A(t, ω)), where A(t, ω) = ∫ t

0 V (τ, ω) dτ is a
sample-path integral. Our purpose is to show that Q(x, t) = Q0(x − A(t)) is the mean-
square solution to (2.8) under certain conditions, where A(t) = ∫ t

0 V (τ ) dτ is understood
now as a mean-square Riemann integral.

Since Q0(x − A(t)) is a composition of two stochastic processes, we need appropriate
versions of the chain rule for mean-square differentiation. The hypotheses are stricter than
in the sample-path sense.

Theorem 2.10 [104, theorem 3.19] Let 1 ≤ p < ∞. Let f be a deterministic C1 function.
Let {x(t) : t ∈ [a, b]} be a stochastic process and t ∈ [a, b] such that:

(i) x is L2p(�)-differentiable at t .
(ii) x is path continuous on [a, b].
(iii) There exist r > 2p and δ > 0 such that sups∈[−δ,δ] E[| f ′(x(t + s))|r ] < ∞.

Then f (x(t)) is Lp(�)-differentiable at t and d
dt f (x(t)) = f ′(x(t))x ′(t).

Example 2.11 Consider the RDE problem x ′(t) = ax(t), t ∈ R, x(0) = 1, where a is a
random variable. The sample-path solution is x(t) = eat . By using the chain rule theorem
for Lp(�)-differentiation, we have that x(t) = eat is the Lp(�)-solution on R if and only if
the moment-generating function of a, φa(t) = E[eat ], is finite on R.
Theorem 2.12 [33, theorem 2.1] Let g be a deterministic differentiable function. Let {y(t) :
t ∈ [a, b]} be a stochastic process such that [a, b] contains the range of g. Suppose that y is
Lp(�)-C1. Then y(g(t)) is Lp(�)-differentiable on the whole domain of g and d

dt y(g(t)) =
y′(g(t))g′(t).
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Theorem 2.13 [9, theorem 2.3] Let {y(t) : t ∈ [c, d]} be an Lp(�)-differentiable stochastic
process on [c, d] with C1 sample paths. Denote by y′ the Lp(�)-derivative of y, and by ẏ
the classical derivative of y. Suppose that y′ and ẏ are indistinguishable stochastic process
(i.e., P[y′(t) = ẏ(t), ∀t] = 1). Let {x(t) : t ∈ [a, b]} be a stochastic process with range in
[c, d], and t ∈ [a, b] such that:

(i) x is L2p(�) differentiable at t .
(ii) x is path continuous on [a, b].
(iii) There exist r > 2p and δ > 0 such that sups∈[−δ,δ] E[|y′(x(t + s))|r ] < ∞.

Then y(x(t)) is Lp(�) differentiable at t and d
dt y(x(t)) = y′(x(t))x ′(t).

ByapplyingTheorem2.12, one obtains themean-square solution to (2.8)when the velocity
is deterministic.

Theorem 2.14 [9, theorem 2.6] Let V (t) be a deterministic velocity function and Q0(x) be
a stochastic initial condition. Assume that:

(i) V (t) is continuous on [0,∞).
(ii) Q0(x) is mean-square C1(R).

Then Q(x, t) = Q0(x− A(t)), with A(t) = ∫ t
0 V (τ )dτ , is the mean-square solution to (2.8).

When the velocity is random, further technical hypotheses need to be added to apply
Theorem 2.13.

Theorem 2.15 [9, theorem 2.7] Let V (t) be a stochastic velocity and Q0(x) be a stochastic
initial condition. Suppose that:

(i) Q0(x) is mean-square differentiable onR, with sample paths in C1(R), and with mean-
square derivative and classical derivative being indistinguishable stochastic processes.

(ii) V (t) is mean-fourth continuous on [0,∞).
(iii) We have

sup
s∈[−δ,δ]

E[|Q′
0(x − A(t + s))|r ] < ∞, for some r > 4 and δ > 0

and

sup
h∈[−η,η]

E[|Q′
0(x + h − A(t))|q ] < ∞, for some q > 4 and η > 0,

for each x ∈ R and t > 0.

Then Q(x, t) = Q0(x− A(t)), with A(t) = ∫ t
0 V (τ )dτ , is the mean-square solution to (2.8).

2.5 Linear RDE with discrete delay: method of steps and strong solutions

The Lebesgue approach for ordinary RDEs has been widely used; however, for RDEs with
discrete delay, there is still a lack of theoretical analysis. Some recent works are [10, 11, 23].
In [10], general RDEs with discrete delay were investigated, with the goal of generalizing
results from [93]. In [11], the basic autonomous-homogeneous linear RDEwas investigated in
the p-th sense. In [23], the same equation was analyzed, but focusing on probability densities
by means of the random variable transformation technique. In the present part, I will detail
the main results from [29], which generalizes [11] to the non-autonomous case.
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The problem considered is the following:{
x ′(t, ω) = a(ω)x(t, ω) + b(ω)x(t − τ, ω) + f (t, ω), t ≥ 0, ω ∈ �,

x(t, ω) = g(t, ω), −τ ≤ t ≤ 0, ω ∈ �.
(2.9)

The delay τ > 0 is constant, while the inputs are random. Formally, according to the deter-
ministic theory [67] (method of steps and variation of constants),

x(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+
∫ 0

−τ

ea(ω)(t−s)eb1(ω),t−τ−s
τ (g′(s, ω) − a(ω)g(s, ω)) ds

+
∫ t

0
ea(ω)(t−s)eb1(ω),t−τ−s

τ f (s, ω) ds, (2.10)

where b1 = e−aτb and

ec,tτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + c
t

1! , 0 ≤ t < τ,

1 + c
t

1! + c2
(t − τ)2

2! , τ ≤ t < 2τ,

.

.

.
.
.
.

n∑
k=0

ck
(t − (k − 1)τ )k

k! , (n − 1)τ ≤ t < nτ,

is the delayed exponential function [67, definition 1], c, t ∈ R, and n = �t/τ� + 1.
Apart from the chain rule theorem from the preceding subsection, other results on the

random calculus are required. We show the random Leibniz’s rule for differentiating para-
metric Lp-Riemann integrals. In general, when tackling RDE problems of any type, the idea
is similar: extend the theory from ordinary calculus so that the candidate solution can be
differentiated in the random Lebesgue sense.

Theorem 2.16 [29, proposition 3] Let F(t, s) be a stochastic process on [a, b] × [c, d]. Let
u, v : [a, b] → [c, d] be two differentiable deterministic functions. Suppose that F(t, ·) is
Lp-continuous on [c, d], for each t ∈ [a, b], and that ∂F

∂t (t, s) exists in the Lp-sense and is

Lp-continuous on [a, b] × [c, d]. Then H(t) = ∫ v(t)
u(t) F(t, s) ds is Lp-differentiable and

H ′(t) = v′(t)F(t, v(t)) − u′(t)F(t, u(t)) +
∫ v(t)

u(t)

∂F

∂t
(t, s) ds

(the integral is considered as an Lp-Riemann integral).

This theorem allows for differentiating the candidate (2.10) rigorously. The main results
on existence and uniqueness of solution to (2.9) are the following. The first theorem assumes
boundedness for the coefficients a and b, which matches with the theory on ordinary RDEs
[93, 96]. The second theorem increases the index for the Lebesgue spaces corresponding to
f and g, so that the conditions for a and b can be weakened and allow typical unbounded
distributions.

Theorem 2.17 [29, theorem 7] Fix 1 ≤ p < ∞. Suppose that a and b are bounded random
variables, g belongs to C1([−τ, 0]) in the Lp-sense, and f is continuous on [0,∞) in the
Lp-sense. Then the stochastic process x(t) defined by (2.10) is the uniqueLp-solution to (2.9).
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Theorem 2.18 [29, theorem 6] Fix 1 ≤ p < ∞. Suppose that φa(ζ ) < ∞ for all ζ ∈ R, b
has absolute moments of any order, g belongs to C1([−τ, 0]) in the Lp+η-sense, and f is
continuous on [0,∞) in the Lp+η-sense, for certain η > 0. Then the stochastic process x(t)
defined by (2.10) is the unique Lp-solution to (2.9).

2.6 Sample-path solutions vs. strong solutions

In applications, namely computational UQ, sample-path solutions are nearly always consid-
ered. These represent the most straightforward generalization of deterministic solutions to
the random setting. Then, why should one deal with strong solutions? First, there is a pure
mathematical concern on them; strong solutions represent a different notion of solution and it
is of mathematical interest to investigate theorems on existence. (Recall that strong solutions,
if exist, coincide with the sample-path solution for ordinary RDEs.) Second, when working
with sample-path solutions, there is no guarantee that they have finite absolute moments,
in particular finite variance. Lebesgue spaces are the natural places to work with statistical
moments, so strong solutions ensure the existence of certain statistics of interest. Nonethe-
less, it is true that a strong solution is not only concerned with finite absolute moments,
but also with the existence of a derivative in the metric coming from the Lebesgue norm;
admittedly, this strong differentiationmay be toomuch for a task of computational UQ. How-
ever, in some cases, strong solutions may be useful in applications, especially when they are
related to strong convergence. Convergence of a random sequence in Lp(�) respects the
convergence of moments up to order p; in particular, mean-square convergence preserves
the convergence of the mean and the variance. For example, under the reviewed Fröbenius
method, the moments of the solution may be approximated, at exponential convergence rate,
by the moments of a truncated sum, which are easy to compute by applying the linearity
of expectation and by using precomputed moments of the inputs. In other cases, though,
the study of strong solutions may not offer an advantage for stochastic computations; for
instance, the advection RPDE treated before.

3 Simulation of RDEs

The main interest when simulating RDE models relies on the extraction of the statistical
content of the response. This is UQ. One may wish to estimate moments or, if possible,
the probability density function. The classical approach for moment estimation is based on
Monte Carlo sampling [7, 46, 110]. Rooted in the law of large numbers, it is a method
that always converges as the number of realizations M increases, it is easy to implement if
there exists a solver for the deterministic model, and it is robust (the implementation or the
convergence rapidity do not depend on t or the dimension of the random space). However,
the estimates are random quantities in nature, and the rate of convergence is O(M−1/2) and
depends on how many seconds one needs to integrate each simulated deterministic model.
For example, for three decimals of accuracy, 106 resolutions may be required. (In this regard,
there is no guarantee that this or any specific pre-assigned number will suffice; a proce-
dure that selects M adaptively may be used.) Sampling is based on realizations, which only
provide local information; this penalizes the efficiency when determining the global vari-
ability. Thus, alternative strategies are needed to accelerate the Monte Carlo simulation and
its variance-reduction variants, at least for random dimensionality and independent variables
of low or moderate size. In this section, we first revisit non-statistical methods of stochastic
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expansions for moment estimation (Taylor, perturbation and polynomial chaos expansions)
and inverse parameter estimation techniques (experts’ judgment, maximum entropy principle
and Bayesian inference), for which there is an extensive list of reviews [51, 64, 71, 76, 83,
92, 97, 98, 109, 110]. Then, as alternatives to kernel methods for density estimation in certain
situations, we review the randomvariable transformation technique, Liouville’s equation, and
hybrid methods based on stochastic representations [12, 15, 19, 56, 58]. These techniques
on density estimation have not been placed in the literature with such an emphasis.

3.1 Stochastic expansions: approximation of statistics

3.1.1 Power series

The most straightforward methods for UQ are the randomized Taylor series and perturbation
expansions. The former method was analyzed in the preceding section when discussing the
Fröbeniusmethod for linear ordinary and fractional RDEs. For nonlinear equations, the viscid
Burgers’ RPDE has been tackled by employing power series and difference equations [59].
By using the exact random field solution that arises from the Cole-Hopf transformation as
reference, the mean-square convergence of the series was tested numerically. Contrary to the
well-studied case of linear RDEs, convergence can only be expected in a small neighborhood
in space-time when the input random parameters have small dispersion. Nonetheless, in the
region of convergence, rapid approximations of the main statistics and of the density function
may be determined at virtually no computational cost. Another view for Taylor series is by
means of the Lie transformation; among other results, the application of the Lie transforma-
tion for the random SIR epidemic model may be consulted in [63]. On the other hand, the
perturbation method, introduced in the sixties [34] to study nonlinear vibrations, expands
the stochastic solution as a mean-square power series in terms of the centered perturbation
[93]. The coefficients are obtained recursively through differential equations by matching
terms according to the perturbation powers. These expansions may exhibit (non-uniform)
exponential convergence rate in a mean-square sense, thus giving exponentially fast approx-
imations to the expectation and the variance of the response. However, for complex models
with strong nonlinearities, these expansions may be difficult to apply and get typically trun-
cated at low-order terms. Some recent applications of the perturbation method inMechanical
Engineering are [31, 65, 66].

Let us see two examples of application. The first one revisits the formulae used in [59] for
the viscous Burgers’ RPDE. And the second one reviews the application of the perturbation
method from [60] for Burgers’ equation.

Example 3.1 Consider {
∂u
∂t + u ∂u

∂x = ν ∂2u
∂x2

, x ∈ R, t > 0,

u(x, 0) = f (x), x ∈ R.

For forward UQ, the following formulas may be used:

U (k, h) = 1

k!h!
∂k+hu(x, t)

∂xk∂th

∣∣∣∣x=0
t=0

;

u(x, t) =
∞∑
k=0

∞∑
h=0

U (k, h)xkth;
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U (k, h + 1) = 1

h + 1

{
ν(k + 2)(k + 1)U (k + 2, h)

−
k∑

r=0

h∑
s=0

(k − r + 1)U (r , h − s)U (k − r + 1, s)

}
;

uK ,H (x, t) =
K∑

k=0

H∑
h=0

U (k, h)xkth .

For a moment E
[
(uK ,H (x, t))q

]
, the series is expanded and the expectation is computed

by linearity. The series only converges in a limited neighborhood, when the input random
parameters present low variation. A similar behavior is expected for other models of Fluid
Dynamics. Nonetheless, within the region of convergence, the convergence is exponentially
fast, and the computational cost is really cheap. Further details and numerical experiments
appear in [59].

Example 3.2 Let us review an example for the viscous Burgers’ equation in steady state: the
ordinary RDE uu′ = νu′′, x ∈ (−1, 1), with boundary conditions u(−1) = 1+δ and u(1) =
−1. There is a small random perturbation to the left boundary, and ν is considered constant.
In practice, this randomness usually arises due to measurement errors or the incomplete
knowledge of the true physics. The transition layer z, which is supersensitive to δ, is the zero
of the expectation E[u(z)] = 0. Its standard deviation is σ(z) = √

V[u(z)]. The perturbation
method may be used to estimate z and σ(z). Consider an expansion of the form u(x) =∑∞

n=0 un(x)ξ
n , where un(x) are unknown deterministic functions and ξ = δ − E[δ]. If we

match terms according to the powers of ξ , it is obtained:

O(ξn), n even:

{∑n/2−1
j=0 (u jun− j )

′ + un/2u′
n/2 = νu′′

n, x ∈ (−1, 1),

un(−1) = 0, un(1) = 0;

O(ξn), n odd:

{∑(n−1)/2
j=0 (u jun− j )

′ = νu′′
n, x ∈ (−1, 1),

un(−1) = 0, un(1) = 0.

Once the coefficients are known, define the truncations

u(x) ≈ uN (x) =
N∑

n=0

un(x)ξ
n;

E[u(x)] ≈ E[uN (x)] =
N∑

n=0

un(x)Mn;

E[u(x)2] ≈ E[(uN (x))2] =
N∑

n1,n2=0

un1(x)un2(x)Mn1+n2 ;

E[uN (zN )] = 0, σN (z) =
√
E[(uN (zN ))2];

where Mn = E[(δ − E[δ])n] is the n-th centered moment of δ. In [60], it is seen that
exponential convergence of these approximations holdswith N , from numerical experiments.
Thus, the statistical information of the solution may be obtained rapidly, improving Monte
Carlo simulation.
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3.1.2 Orthogonal expansions

There is an extensive list of reviews on this kind of expansions [51, 64, 71, 76, 83, 92, 97,
98, 109, 110], so we only give here a brief exposition on them.

The polynomial chaos (PC) method expands the random solution in terms of Hermite
polynomialswhen there is a functional dependence on independentGaussian parameters [48].
Mean-square convergence of the expansion holds by the Cameron-Martin theorem [22]. This
approach was extended in 2002 to deal with any type of input uncertainty beyond Gaussian
from theAskey scheme, to give rise to generalized polynomial chaos (gPC) expansions [112].
Mean-square convergence is ensured when the moment problem for the inputs is uniquely
solvable (this includes bounded random variables, and more generally random variables with
finite moment-generating function; the lognormal distribution, for instance, fails to satisfy
determinacy by its moments) [45].

A real function may be expanded, in an optimal way, in terms of orthogonal polynomials
in the space of square-integrable functions with a weight. It was observed that the weights
may be taken as probability density functions, and thus expand in a mean-square sense
the solution to random systems in terms of Hermite, Legendre, Laguerre, etc. orthogonal
polynomials, depending on the distribution of the input parameters (normal, uniform, gamma,
etc. respectively). Spectral convergence holds, that is, the rapidity of convergence depends
on the smoothness of the functional dependence on the random inputs. For example, for
C∞ dependence, there is exponential convergence; for Cr dependence, 1 ≤ r < ∞, the
convergence is algebraic; and for discontinuous functions, the convergence becomes slower
and, as for Fourier expansions, the Gibbs phenomenon appears; see [110]. The convergence
rate is not uniform in t [47, 50]. The method may give a huge improvement over Monte Carlo
simulation when the random dimensionality and t are of low or moderate size, otherwise
Monte Carlo simulation is unbeatable. If Y = g(ξ), where Y and ξ are random vectors and
the components of ξ are independent, then

Y (ω) =
∞∑
i=1

Ŷiφi (ξ(ω))

in mean square, where Ŷi = E[Yφi (ξ)]/E[φi (ξ)2] are constants and φi are orthogonal
polynomials with respect to the density of ξ . Polynomial chaos (PC) expansions arise when
ξ is Gaussian and φi are tensor Hermite polynomials. Generalized polynomial chaos (gPC)
expansions appear when ξ belongs to the Askey scheme, and φi is constructed through
tensor products. In general, one may perform an orthogonalization Gram-Schmidt procedure
from the canonical basis [107]. In the context of RDE problems x ′(t, ξ) = f (t, x(t, ξ), ξ),
x(t0, ξ) = x0(ξ) [we make the inputs explicit], the solution is expanded in terms of ξ :

x(t, ξ) =
∞∑
i=0

x̂i (t)φi (ξ).

To obtain the deterministic coefficients, the Galerkin method is usually applied [112]:

x(t, ξ) ≈ x P (t, ξ) =
P∑

i=0

x̃i,P (t)φi (ξ),

{
(x̃k,P )′(t)E[φk(ξ)2] = E[(x P )′(t, ξ)φk(ξ)] = E[ f (t, x P (t, ξ), ξ)φk(ξ)],
x̃k,P (t0)E[φk(ξ)2] = E[x P (t0, ξ)φk(ξ)] = E[x0(ξ)φk(ξ)], k = 0, . . . , P.
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Other gPC approaches, of non-intrusive nature [2, 108, 111], use quadratures, interpolation
with least-squares fitting, etc. for the estimation of coefficients. The choice depends on the
system, its nonlinearities, and whether the Galerkin system for the coefficients is easy to set
and integrate [109]. If an efficient integrator is available for the Galerkin system, then with
a single resolution of it, functional representations of the model response are obtained from
the Galerkin projections. The expectation, the variance, and any statistical information of the
response may be extracted from the polynomial approximation by a simple post-processing.
Some applications of gPC expansions in epidemiology and engineering are [25, 61, 85, 88,
105, 113]. When the inputs ξ are non-independent, other techniques must be used, which
increases the complexity; in [62, section 4.1], which studies random Hamiltonian systems
and polynomial representations for their stochastic solutions, there is a brief review about
this situation. Finally, for problems involving discontinuous dependence of the solution on
random inputs, there are alternatives to global polynomial representations: expansions using
piecewise polynomials, multielement gPC, and wavelets [71, 110].

Remark 3.3 Thesemethods forUQ assume that there is an integrator for the governingmodel,
or for a more complex version of it, in the deterministic context. When the differential
equation map is smooth, classical methods are applicable: Runge-Kutta, finite differences,
finite elements, etc. However, in an RDE, a Hölder continuous process may be present (for
example, x ′(t, ω) = −x(t, ω) + B(t, ω) is well-defined, where B is a Brownian motion).
In such a case, classical integrators are not applicable or rarely attain their traditional order,
and alternative methods need to be sought. In the book [54], the authors expose Taylor-
and SDE-based schemes. These schemes permit obtaining realizations of the solution and
thus apply Monte Carlo simulation or any collocation method. Another approach consists in
truncating series representations of input stochastic processes (for example, the Karhunen-
Loève expansion of B), to reduce the random dimensionality of the problem to a finite degree
[109, 110]; this may give rise to a smooth RDE problem, for which classical integrators are
of use.

Remark 3.4 Methods based on gPC expansions work for different types of RDE problems:
delayed, fractional, etc. [49]. They are also usable for random difference equations, with
intrusive (discrete Galerkin projection technique) and non-intrusive variants [13, 17]; albeit
deterministic discrete equations are easily solvable by recursion, the use of polynomial expan-
sions may render a significant improvement over Monte Carlo simulation for UQ.

3.1.3 Input uncertainties

All of these techniques are valuable tools in the context of forward UQ, that is, when the
probability distributions of the input randomparameters are previously fixed and the statistical
content of the response is sought with efficient numerical methods. But, in general, the
uncertainties associated to the inputs are unknown.Given a physical system described by a set
of identifiable parameters, assume a collection of observations of some measurable features
of the system. An inverse problem consists in inferring characteristics of the parameters.
Despite the simplicity of the definition, inverse modeling is challenging. In real systems,
there is uncertainty associated with the physics and measurement errors. This implies that
unknowns are better treated as random quantities. Therefore, inferring the parameters means
estimating their probability distributions. This is one of the main themes in UQ [92].

In order to build the probabilistic model of the input parameters, one mostly takes into
account the nature and the amount of available data for the response [97]. The approaches
are described hereunder.
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When no data or practically no data are recorded for the response, experts’ judgment may
help to prescribe the input distributions [86]. The principle of maximum entropy may be a
useful tool in such a case [7, 40, 80, 102]. It is based on maximizing the Shannon entropy
functional (the ignorance) for the density, subject to available information (consistency), for
example, support, mean, dispersion, etc. For instance, if only a bounded support is known,
then the uniform distribution maximizes the entropy; if only the mean and the variance are
specified, then the Gaussian law is selected; and if the support is positive and the mean
value is known, then the least biased distribution is the exponential. Alternatively, if several
parameter measurements are at disposal, then a kernel density estimation or the empirical
distribution assignment may be valid options.

When a minimum number of data is available for the response and the model complexity
allows it, tools from statistical inference may be applied. Bayesian inference is a rigorous
approach to estimate input probability distributions and also model discrepancy [72]. It is a
natural mechanism to incorporate the distributions of the observational errors and the prior
beliefs on the parameters. These give rise to posterior densities of the parameters, which
are used to extract their statistical content (mean, variance, mode, higher-order moments,
or any other quantity of interest). This inference may be carried out through quadrature
integration for the Bayes’ formula, or through Markov chain Monte Carlo algorithms for
elaborate models. Mathematically, from the (possibly scarce) data d of size m and from a
prior density of the parameters ζ of the RDE problem, π(ζ ) (noninformative, or underpinned
by experience, intuition or other studies and measurements, with tools such as the principle
of maximum entropy, but independently of the current data d), simulations from the posterior
distribution of the parameters are obtained. The Bayesian model is:{

Statistical model: xi |ζ, σ 2 ∼ Normal
(
G(ti , ζ ), σ 2

)
Prior: ζ ∼ π(ζ ), σ 2 ∼ π(σ 2).

Here x(ti , ω) = xi (ω) models the datum di , i = 1, . . . ,m, and G(t, ζ ) is the deterministic
solution to the differential system. The conditional distributions to the parameters are inde-
pendent. Notice that a model error is taken into account here; for forward problems, a perfect
model x(t) = G(t, ζ ) is assumed since the interest is in the propagation of uncertainty and
the development of fast numerical methods, but for Bayesian inverse problems, the assump-
tion of no model discrepancy is too restrictive. The goal of the Bayesian inference is the
posterior distribution of (ζ, σ 2):

π(ζ, σ 2|d) = π(d|ζ, σ 2)π(ζ, σ 2)∫
π(d|ζ ′, σ ′2)π(ζ ′, σ ′2) dζ ′ dσ ′2 .

From it, the posterior predictive distribution (the density for new observations) is

π(x̃ |d) =
∫

π(x̃ |ζ, σ 2)π(ζ, σ 2|d) dζ dσ 2.

A detailed example of application may be consulted in the recent paper [18]. It investigates
a compartmental social model, where several inverse parameter estimation and sensitivity
analysis techniques are applied to derive public strategies.

Markov chain Monte Carlo procedures (for example, the Metropolis algorithm) usually
rely on the repeated resolution of the forward deterministic problem. Thus, functional rep-
resentations of the model response may become valuable tools to speed up the procedure,
especially those that exhibit fastmean-square convergence (e.g. exponential). In the last years,
Bayesian inference has been combined with gPC expansions, by employing the stochastic
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Galerkin projection technique, the stochastic collocation method, and least-squares mini-
mization [78, 79, 82], albeit the method presents limitations when the expansions are not
sufficiently accurate at reasonable cost or the data are very informative [74]. Mathematically,
ifG(t, ζ ) is not known in closed form, then consider a mean-square approximationGP (t, ζ ).
The new approximate statistical model is

π P (xi |ζ, σ 2) ∼ Normal(GP (ti , ζ ), σ 2).

The Bayes’ formula is

π P (ζ, σ 2|d) = π P (d|ζ, σ 2)π(ζ, σ 2)∫
π P (d|ζ ′, σ ′2)π(ζ ′, σ ′2) dζ ′ dσ ′2 .

One has convergence

lim
P→∞ π P (ζ, σ 2|d) = π(ζ, σ 2|d), lim

P→∞ π P (x̃ |d) = π(x̃ |d),

in the sense of the Kullback-Leibler divergence, which measures the distance between prob-
ability distributions by relative entropy.

In the following example, we study the reverse situation to Example 3.2, namely inverse
UQ from data. Perturbation expansions are taken to approximate the solution to Burgers’
RDE.

Example 3.5 Given noisy observations of the transition layer position (z such that u(z) = 0),
d = (z1, . . . , znd ), with known variance σ 2, what is the probability distribution of the random
perturbation δ? Given the solution uδ(x) with transition layer zδ , define a Bayesian model:

d|δ ∼ π(d|δ) =
nd∏
i=1

πNormal(zδ ,σ 2)(zi ), δ ∼ π(δ).

The posterior density of δ is

π(δ|d) = π(d|δ)π(δ)∫∞
−∞ π(d|δ′)π(δ′) dδ′ .

Let uN
δ (x) = ∑N

n=0 un,δ(x)ξn be the perturbation expansion of uδ(x). Let zNδ be the zero of
uN

δ (x). Define a surrogate Bayesian model:

d|δ ∼ πN (d|δ) =
nd∏
i=1

πNormal(zNδ ,σ 2)(zi ), δ ∼ π(δ).

The posterior density of δ is

πN (δ|d) = πN (d|δ)π(δ)∫∞
−∞ πN (d|δ′)π(δ′) dδ′ .

In the sense of the Kullback-Leibler divergence, πN converges to the target π .

Remark 3.6 Other modeling frameworks and uncertainty treatments may be possible. For
example, in frequentist inference, parameters are regarded as unknown constants, which are
estimated (pointwise values, confidence intervals, hypothesis testing) through a sampling
distribution. In contrast to Bayesian inference, the parameter is not treated as a random
variable and the sampling distribution does not provide a distribution for it. The model error
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is characterized by a random quantity, which gives rise to a statistical model. Nonlinear
regression, as an extension of linear regression, is an adequate tool for parameter calibration
[92, chapter 7], [18].

3.2 Density estimation: exact and approximatemethods

3.2.1 Exact methods

If the input-output relation of themodel is given in closed form, onemay use the so-called ran-
dom variable transformation (RVT) technique, or probability transformation method (PTM):

Z = g(Y ), dim(Z) = dim(Y ), h = g−1 ⇒ πZ (z) = πY (h(z))|Jh(z)|,
where Y and Z are random vectors,π denotes the corresponding probability density function,
g is a non-random injective transformation, and J is the Jacobian. The formula is based on
preservation of probabilities [99]. After marginalizing (integration through quadrature rules),
the densities of the components of Z can be obtained. Moments are calculated by integration
of the density. This method, though classical and simple, has been relatively little explored
in mathematical modeling. In the last decade, it has been applied to study ordinary RDEs,
RPDEs and random recursive equations [24, 32, 37, 55, 69, 70, 90]. It may even be used for
inverse parameter estimation [24].

There is an alternative version of the RVT technique when the transformation mapping g
consists of sums and products. Let A be a random variable, with a densityπA and independent
of the random vector (Z1, Z2) (which does not necessarily have a density), where Z1 �= 0
a.s. Then the random variable Z1A + Z2 has the density

πZ1A+Z2(z) = E

[
πA

(
z − Z2

Z1

)
1

|Z1|
]

, z ∈ R. (3.1)

This is proved by using the law of total probability. To provide the analogywith the customary
RVT formula, there is a transformation mapping g(A, Z1, Z2) = (Z1A + Z2, Z1, Z2) on
R
3, whose inverse is h(Z , Z1, Z2) = ((Z − Z2)/Z1, Z1, Z2). The Jacobian of h is 1/Z1.

If possible, the expectation E in (3.1) should be computed by integration (quadratures).
Otherwise, if the explicit probability law of (Z1, Z2) is too complicated (because it depends
on a significant number of random variables), then Monte Carlo simulation may be applied
for E, with its variance-reduction variants. The estimation becomes a parametric problem, in
contrast to kernel methods. It is faster, it does not depend on kernel or bandwidth choices,
and, since it acts pointwise, the support, discontinuities and non-differentiability points of
the target density are correctly captured, without smoothing them out [30].

Let us see an example of application, from [19, 56].

Example 3.7 Bateman equations for the radioactive decay chain model are

N ′
1(t) = −λ1N1(t),

N ′
j (t) = −λ j N j (t) + λ j−1N j−1(t), j = 2, . . . , n − 1,

N ′
n(t) = λn−1Nn−1(t).

There is a serial decay chain of n nuclear species X1 → X2 → · · · → Xn , where λ j is the
rate of decay of the radionuclides from the species X j into the species X j+1. Transition rates
from j + 1 to j are not allowed. The parameter λn is 0 because the nuclides of species Xn
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are stable. The number of radionuclides of species X j at time t is N j (t), j = 1, . . . , n. The
closed-form solution is

Nm(t) =
m∑
i=1

⎡
⎣Ni (0)

⎛
⎝m−1∏

j=i

λ j

⎞
⎠ m∑

j=i

e−λ j t∏m
p=i, p �= j (λp − λ j )

⎤
⎦ .

To pass to a random equation, let us consider random inputs λ j , Ni (0) (it is assumed λn = 0).
If one expresses Nm(t) = N1(0)Um(t) + Vm(t), where

Um(t) =
⎛
⎝m−1∏

j=1

λ j

⎞
⎠ m∑

j=1

e−λ j t∏m
p=1, p �= j (λp − λ j )

,

Vm(t) =
m∑
i=2

⎡
⎣Ni (0)

⎛
⎝m−1∏

j=i

λ j

⎞
⎠ m∑

j=i

e−λ j t∏m
p=i, p �= j (λp − λ j )

⎤
⎦ .

then, by (3.1), the probability density function of Nm(t) is

πNm (x; t) = E

[
πN1(0)

(
x − Vm(t)

Um(t)

)
1

|Um(t)|
]

=
∫
Rm−1

∫
Rm−1

πN1(0)

(
x − Vm(t)

Um(t)

)
1

|Um(t)|
× π(N2(0),...,Nm (0),λ1,...,λm−1)(N2(0), . . . , Nm(0), λ1, . . . , λm−1)

× dλ1 · · · dλm−1 dN2(0) · · · dNm(0).

For small n (for example, n = 3), the RVT technique is applied with quadrature-based
integration. For a higher n, Monte Carlo simulation for E is conducted. More details and
numerical examples are given in [19].

More generally, the law of total probability may be employed to go even further than the
RVT formula. In order to keep the paper to a reasonable length, letme just refer the reader to an
investigation on the advection RPDE [9]. In that contribution, there is a comprehensive study
on the estimation of the probability density function, and even the cumulative distribution
function when some input is deterministic. The probabilistic functions of interest are put in
terms of an expectation, and Monte Carlo simulation is readily applied as earlier discussed.
Several situations are considered and numerical examples are performed.

Another way to view the RVT technique is through Liouville’s equation. It is a PDE that
dictates the evolution of the probability density function associated with the solution to an
RDE. In the framework of Itô SDEs, which might be more familiar to the reader, Liouville’s
equations are usually termed Fokker-Planck equations or forward Kolmogorov equations [3].
For ordinary equations (1.1) whose only source of randomness is due to the initial state x0
and the motion follows a deterministic law once started, different proofs of the Liouville’s
equation

∂

∂t
π(x; t) + ∇x · ( f (t, x)π(x; t)) = 0

[π(x; t) is the density of x(t)] are available in the classical literature, by using characteristic
functions [68], [93, theorem 6.2.2], dynamical systems theory [99, theorem 8.4], and the
principle of preservation of probability [26]. Some applications are the following: [4, 42–44,
52]. For RPDEs, there is more work to be done; only some studies on the transport random
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equation are found in the literature: [91], [39, section 3.1], [38, proposition 3.1], [103], [9,
theorem 4.1]. In this part of the survey, we present theoretical results on first-order linear
RPDEs that extend those for ordinary RDEs. We base on the new contribution [58]. In the
proof of the theorem, a key fact is the closedness of solution to first-order linear PDEs under
composition. The solution is composed with a test function. The composition is put into the
equation, expectation is applied, the derivatives are expanded, and conditional expectations in
terms of integration are employed. Finally, the fundamental lemma of calculus of variations
is applied.

Theorem 3.8 [58, theorem 2.9] Let

n∑
i=1

gi (x)uxi (x) = 0, (3.2)

where x = (x1, . . . , xn) ∈ R
n is the independent variable, and gi : Rn → R and u : Rn →

R
m are random fields. Let g = (g1, . . . , gn). Then, it holds∑

I⊆[s]
(−1)s−|I |

(
⊗
i∈I

∇xi

)

·
(
E

[(∏
i∈I c

(∇xi · g(xi )
))(⊗

i∈I
g(xi )

)∣∣∣∣∣ u(xk) = qk, ∀k = 1, . . . , s

]
π

)
=0,

where π ≡ π(q1, . . . , qs; x1, . . . , xs) is the joint probability density function of (u(x1), . . . ,
u(xs)) evaluated at (q1, . . . , qs) ∈ R

m × · · · ×R
m, [s] = {1, . . . , s}, |I | is the cardinality of

I , I c is the complement of I , and ⊗ denotes the Kronecker product. In particular, when g is
deterministic, [

s⊗
i=1

g(xi )

]
·
[(

s⊗
i=1

∇xi

)
π

]
= 0.

Corollary 3.9 [58, theorem 2.1] Given (3.2), it holds

∇x ·(E [g(x)|u(x) = q]π(q; x))=E [∇x ·g(x)|u(x)=q]π(q; x),
where π(q; x) is the probability density function of u(x) evaluated at q ∈ R

m. In particular,
when g is deterministic,

g(x) · ∇xπ(q; x) = 0.

Several consequences of these results and examples can be read in [58]. Namely, densities
for pathwise stochastic integrals (in particular, primitives of important Gaussian processes),
ordinary RDEs, linear RPDEs, transformations of random variables, and modeling of shrimp
growth. Let us mention that, with alternative arguments, based on the conservation of prob-
ability in a fractional volume element, a Liouville’s equation for the probability density
function associated to fractional RDEs may be obtained [58, 100].

3.2.2 Approximate methods

If the closed-form solution is not simple, then one may combine stochastic representations of
x(t) and the RVTmethod. Essentially, one constructs a sequence {xN (t, ω)}∞N=1 of processes
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that tends to x(t, ω) as N → ∞ for each t , in the mean-square or the a.s. senses, and proves
that, for every t ,

lim
N→∞ πxN (t)(x) = πx(t)(x) almost everywhere,

where π denotes the corresponding probability density function. This is a strong mode of
convergence for densities, since it implies convergence in L1(R, dx) (convergence in total
variation [101, page 41]) due to Scheffé’s lemma [106, page 55]. The sequence of processes
is built by truncating stochastic representations, for example, gPC, power series, Fourier or
Karhunen-Loève expansions. EachπxN (t) is computed bymeans of theRVT technique. These
types of constructions may avoid some of the deficiencies of kernel density estimation: rate
of convergence, selection of kernel and bandwidth, and capture of density features (disconti-
nuities, non-differentiability points, tails and support). Examples of application are [12, 15],
which combine the RVT method with Karhunen-Loève and gPC expansions, respectively.
These are briefly reported here for illustration.

In [12], the following non-autonomous logistic RDE problem was studied:{
x ′(t, ω) = a(t, ω)(1 − x(t, ω))x(t, ω), t ∈ [t0, T ],
x(t0, ω) = x0(ω),

where x0(ω) is a random variable and a(t, ω) is a stochastic process. This initial value
problem corresponds to Verhulst’s model, which extends the Malthusian growth model by
means of a carrying capacity when there is a lack of nutrients and competition between
species as time passes. In the autonomous case, the computation has been addressed in
[37] as an application of the RVT technique. Here, we consider a sequence of processes
{aN (t, ω)}∞N=1 that approximates a(t, ω) in L2([t0, T ] × �). For instance, the Karhunen-
Loève expansion a(t, ω) = μa(t)+∑∞

j=1
√

ν jφ j (t)ξ j (ω), whereμa(t) = E[a(t)], {ν j }∞j=1
and {φ j (t)}∞j=1 are the set of eigenvalues and eigenfunctions, respectively, associated to
the covariance integral operator of a(t), and {ξ j }∞j=1 is a sequence of uncorrelated random
variables with zero expectation and unit variance. This expansion allows for reducing the
random dimensionality of the problem to a finite degree, assuming the uncorrelated random
variables are independent; details are available in [109, section 2.3]. The sample-path solution
to the logistic problem is given by

x(t, ω) = 1

1 + e
∫ t
t0

−a(s,ω) ds
(
−1 + 1

x0(ω)

) .

If K (t, ω) = ∫ t
t0
a(s, ω) ds and Z(t, ω) = e−K (t,ω) > 0, then the probability density function

of x(t) is

π(x, t) = E

[
πx0

(
Z(t)x

1 + x(−1 + Z(t))

)
Z(t)

(1 + x(−1 + Z(t)))2

]
,

assuming that πx0 is the density of x0, and that x0 and a are independent. Consider the trunca-
tions xN (t, ω), KN (t, ω) and ZN (t, ω) obtained by truncating a to aN . The density πN (x, t)
of the truncation xN (t, ω) is the same as π(x, t) but with subindices N for Z(t). Due to
the finite random dimensionality, πN (x, t) (its expectation-based expression) may be com-
puted by quadrature-based integration. In the following results, the pointwise convergence
of πN (x, t) towards π(x, t) is studied.
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Theorem 3.10 [12, theorem 2.3] Suppose that x0 has a density function πx0 , which is con-
tinuous and bounded on (0, 1). Let {aN (t)}∞N=1 be any sequence of stochastic processes,
independent of x0, that tends to a(t) in L2([t0, T ] × �). Then limN→∞ πN (x, t) = π(x, t)
for each x ∈ (0, 1) and t ∈ [t0, T ].
Theorem 3.11 [12, theorem 2.4] Suppose that x0 has a density function πx0 , which is almost
everywhere continuous and bounded on (0, 1). Let {aN (t)}∞N=1 be any sequence of stochastic

processes, independent of x0, that tends to a(t) in L2([t0, T ] × �). Suppose that
∫ t
t0
a(s) ds

is absolutely continuous for each t ∈ [t0, T ]. Then limN→∞ πN (x, t) = π(x, t) for each
x ∈ (0, 1) and t ∈ [t0, T ].

Numerical experiments may be consulted in [12].
Finally, in [15], it was proposed a hybrid method based on stochastic polynomial expan-

sions, the RVT technique, and multidimensional integration schemes, to obtain accurate
approximations to the density function of the solution to RDEs. Let ξ = (ξ1, . . . , ξs) ∈ R

s

be the random vector whose components are the random input parameters in (1.1). The term
x(t) = (x1(t), . . . , xq(t)) is a stochastic process x : I × � → R

q that solves (1.1), hav-
ing joint density function π(x, t). One aims at computing the marginal density functions of
xi (t), πi (x, t), for i = 1, . . . , q . The stochastic process x(t) has a mean-square polynomial
expansion x(t) = ∑∞

k=1 x̂k(t)φk(ξ), where x̂k(t) = (x̂k,1(t), . . . , x̂k,q(t)) ∈ R
q are the

deterministic coefficients of the expansion, estimated via a Galerkin projection technique for
each truncation order P . Let x P (t) be the P-th partial sum of the expansion. Its i-th com-
ponent is denoted by x P

i (t). The density πi (x, t), x ∈ R, is estimated by using the density
function of x P

i (t), π P
i (x, t), given a fixed 1 ≤ i ≤ q . A computational method based on the

RVT technique is proposed, since the random variable x P
i (t) is an explicit transformation

of ξ . The proposed methodology can be applied, for example, to the SIR epidemiological
model with random coefficients.

3.2.3 Moment estimation from the density

It is well-known that moments of the stochastic response, E[x(t)m], may be computed by
integration with respect to the probability density function π(x, t) of x(t): E[x(t)m] =∫∞
−∞ xmπ(x, t) dx . If the target densityπ(x, t) or an approximating densityπN (x, t) for it (as
N → ∞) are computed by means of the RVT technique and quadrature-based marginaliza-
tion with high accuracy, then

∫∞
−∞ xmπ(x, t) dx or

∫∞
−∞ xmπN (x, t) dx should be integrated

by quadratures. Otherwise, if there is an expectation expression for π(x, t) or πN (x, t),
see (3.1), and parametric Monte Carlo simulation is employed for its estimation (rather than
quadratures), then E[x(t)m] should be approximated by Monte Carlo simulation or polyno-
mial expansion methods from the beginning, as in Sect. 3.1, instead of using the formulae∫∞
−∞ xmπ(x, t) dx or

∫∞
−∞ xmπN (x, t) dx . This issue also occurs when π(x, t) is represented

by a kernel density estimate.

4 Possible future works on RDEs

In this last section, some possible future works about RDEs are listed. These are concerned
with random calculus and strong solutions, computational issues in UQ, and modeling.

• As discussed in Sect. 2.3, the mean-square resolution of linear RDEs with the Fröbenius
method has been a fruitful area of research in the last years. For general second-order
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linear equations whose random initial conditions have finite variance, boundedness
assumptions for the random input coefficients are required. This is not strange, as shown in
the second paragraph of Sect. 2.2. A natural question is whether the boundedness require-
ment for the equation coefficients can be relaxed if higher integrability is assumed for the
initial conditions, namely finiteness of a (2+ε)-moment, ε > 0. For example, in the case
of x ′(t, ω) = a(ω)x(t, ω), x(0, ω) = x0(ω), with ‖x0‖2+ε < ∞, the existence of mean-
square solution is equivalent to the finiteness of the moment-generating of a on the real
line. This is a consequence of the random chain rule theorem, detailed in Theorem 2.10.
It would be of interest to investigate which is the role of the moment-generating function
when solving random linear RDEs of higher order, at least the classical linear equations
from Mathematical Physics. Theorems 2.6–2.8 contain assumptions related to this open
problem. I am obtaining positive results in this direction.

• There are still many RDEs to be investigated under themean-square treatment. For exam-
ple, RPDEs of wave and Poisson type, or the extension of some of the non-autonomous
classical linear equations of Mathematical Physics, such as Hermite’s or Legendre’s
equations, to their fractional version with random data.

• Theorem 3.8 shows the Liouville’s equation for a general first-order linear RPDE prob-
lem. Though it seems complex, the cited paper contains examples where the PDE for
the probability density function of the stochastic solution can be obtained. It is an open
problem whether the theorem is generalizable to higher-order linear RPDEs or nonlin-
ear RPDEs. I am unsure, since a key fact of the proof is the closedness of solution to
first-order linear PDEs under composition. On the other hand, the applicability of the
Liouville’s equation for UQ needs further investigation as well, in the setting of RDEs
with no closed-form solution or with boundary conditions, RPDEs and fractional RDEs.
There are no works in this regard yet. Finally, to get a deeper understanding on fractional
RDEs, it would be of interest to derive the Liouville’s equation in an alternative manner
to that described in the last paragraph of Sect. 3.2.1 (i.e. that based on the conservation
of probability in a fractional volume element); for example, test functions / characteristic
functions, expectations, fundamental lemmaof calculus of variations / Fourier transforms,
etc. are the fundamental tools to tackle non-fractional RDEs.

• In the last decade, there are several papers dealing with the RVT technique (with quadra-
tures classically, or with parametric Monte Carlo more recently) to derive the probability
density function of the stochastic solution. Also with the combination of stochastic repre-
sentations for the solution and theRVTmethod. The obtained probability density function
corresponds to single instants of time; it is sometimes called the first probability density
function. In this regard, there are many RDE problems that have not been studied in
the density sense, for instance, models in Ecology such as Richards, Lundqvist-Korf,
Hossfeld, etc., or models with imaginary random inputs. On the other hand, it would be
of interest to investigate joint probability densities, at pairs or triples of times. Correla-
tions of a process, for example, are related to joint densities at pairs of times. Finally,
for complex models, the input-output relation may not be explicit, and computational
alternatives to the RVT technique should be investigated in order to improve kernel den-
sity estimation. In the last paragraph of Sect. 3.2.2, I referred to a hybrid approach that
combines polynomial expansions (which are optimal in a mean-square sense) and the
RVT method. It works well, although it lacks of theoretical analysis and suffers from the
curse of dimensionality.

• When the probability density function of the stochastic solution is expressible as an
expectation, then parametric Monte Carlo simulation is applicable. This avoids the diffi-
culties of quadrature integrationwhen the randomdimensionality is large. As commented
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in Sect. 3.2.1, compared to kernel density estimation, the method is faster, it does not
depend on kernel or bandwidth choices, and, since it acts pointwise, the support, disconti-
nuities andnon-differentiability points of the target density are correctly captured,without
smoothing them out. However, in some situations, it may present slow convergence: since
the random quantity inside the expectation (3.1) involves random denominators, its vari-
ancemay be high for some points, which produces noise that plagues the density estimate
(see Example 3.7 with its associated references). This issue does not occur with kernel
density estimation. For the moment, I am thinking on a selection of denominators: for
each realization, the decomposition of the stochastic solution is made so that the resulting
denominator takes the highest value.

• The application of polynomial representations in the context of random Hamiltonian
systems has been recently investigated in [62]. When the random input parameters are
independent, the Galerkin system for the gPC coefficients is Hamiltonian too. When the
inputs are non-independent, expansions in terms of the canonical polynomial basis are
employed; the system for the expansion coefficients is then volume preserving. Thus,
geometric integrators are of use. However, in the context of Hamiltonian dynamics,
nonlinearities other than multiplicative are common, so the construction and numerical
resolution of the Galerkin system need to be further investigated. It may require quadra-
tures or Taylor expansions.

• This item is quite broad, but it is a well-known open issue within the UQ community:
improvement of the efficiency of the UQmethodology for a large number of uncertainties
in an expensive model. Essentially, how to handle the curse of dimensionality when
developing and using stochastic representations, both intrusive and non-intrusive.

• We know that mean-square convergence of gPC expansions is ensured when the moment
problem for the random inputs is uniquely solvable. However, many theoretical aspects
about the convergence of gPC expansions and stochastic Galerkin projections are still
open. For example, the mean-square convergence of Galerkin projections for general
RDE problems, conditions for the convergence of the densities of the polynomials, rates
of convergence, etc.

• Alternatives to Bayesian inference for inverse parameter estimation in RDEs shall be
investigated. For RDEs with no model discrepancy involved, methods that ensure fast
uncertainty propagation have been developed (gPC expansions, etc.). However, input-
uncertainty representation is still an open problem in such a case. In many situations,
experts’ judgment is not enough to set appropriate input distributions, especially existing
correlations. The maximum entropy principle, albeit usually recommended, depends on
the parameterization of the problem and the prior information available about the inputs.
And when Karhunen-Loève expansions are used to represent infinite-dimensional input
uncertainties, the laws and dependencies of the randomFourier coefficients are unknown.
Even though these topics tend to be ignored to focus on forward numerical procedures,
they are essential for a proper modeling of the true physics.

• Any existing or futuremodeling studymay greatly benefit from the use of UQ techniques.
Given data, when a deterministic model is set, one checks that the parameters are identi-
fiable and can be estimated from optimization routines. This gives rise to a fit of the data
and to physically interpretable parameter values, from an averaged viewpoint. Nonethe-
less, the errors in measurements and the natural random variability of the phenomenon
under study, which are assumed to be irreducible, are better modeled by conducting a
probabilistic analysis. The inference of input uncertainties and the computation of quan-
tities of interest for the stochastic response shall complete any prior deterministic-type
study.
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