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Abstract
In this paper, we establish optimality conditions and duality theorems for a robust ε-quasi
solution of a nonsmooth semi-infinite programming problem with data uncertainty in both
the objective and constraints. Next, we provide an application to nonsmooth fractional semi-
infinite optimization problem with data uncertainty in constraints. Finally, some examples
are given to illustrate the obtained results.
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1 Introduction

In recent years, the study of one among more a semi-infinite programming problem, which
is an optimization problem on a feasible set described by an infinite number of inequality
constraints, has occupied attention of researches. Many successful treatments of determin-
istic semi-infinite programming have been investigated from several different perspectives.
We refer the readers to the papers [5,7,9,11,14,16,21,23,34,38,44,50,51], and the references
therein. Semi-infinite programming problems could be applied in various fields such as in
engineering design,mathematical physics, robotics, optimal control, transportation problems,
fuzzy sets, cooperative games; see, for example [15,30].

Besides, robust optimization has emerged as a remarkable deterministic framework for
studying optimization problems with uncertain data; see [1,2]. Many researchers have been
attracted towork on the real-world application of robust optimization in engineering, business
and management. Many interesting results have been published in [3,4,6,12,17,20,35,36,43,
49,52] and the references therein.
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Furthermore, sometimes the exact solutions do not exist while the approximate ones
do, even in the convex case; see [31,32] and other references therein. Therefore, the study
of approximate solution is very significant from both the theoretical aspect and computa-
tional application. The results on optimality conditions and duality theorems for approximate
solutions to multiobjective optimization problems were obtained in [8]. Approximate opti-
mality theorems, approximate duality theorems and approximate saddle point theorems were
established for the robust convex optimization problem [26,46]. In [13,47], authors stud-
ied optimality conditions, duality theorems and saddle point theorems for the approximate
efficient solutions of nonsmooth robust multiobjective optimization problem. By using the
Clarke subdifferential, Son et al. [41] obtained optimality conditions duality theorems and
saddle point theorems for approximate solutions of nonconvex programming problem with
an infinite number of constraints. Optimality conditions of approximate solutions for nons-
mooth semi-infinite programmingproblemwere given in [29]. In [25,40], authors investigated
approximate optimality conditions, approximate duality theorems and approximate saddle
point theorems of nonconvexmultiobjective programming problemwith an infinite number of
constraints. Son et al. [42] established new necessary and sufficient optimality conditions for
approximate solutions of a nonsmooth semi-infinite multiobjective optimization problem. By
using the limiting/Mordukhovich subdifferential, Jiao et al. [22] established optimality condi-
tions and duality theorems for approximate solution of semi-infinite programming problem.
In [39], authors obtained necessary conditions for approximate solution of fractional semi-
infinitemultiobjective optimization problem.Besides, approximate optimality conditions and
approximate duality theorems in robust convex semidefinite programming problems were
given in [19]. In [27], authors studied optimality conditions and duality theorems for semi-
infinite multiobjective optimization problems with data uncertainty in constraints. Recently,
approximate optimality conditions and approximate duality theorems for semi-infinite con-
vex optimization problem with data uncertainty in constraints have been obtained in [28].
By using the Clarke subdifferential, Khantree and Wangkeeree [24] have obtained approx-
imate optimality conditions and approximate duality theorems for nonsmooth semi-infinite
optimization problem with data uncertainty in constraints. More recently, approximate opti-
mality conditions for semi-infinite programming problem with data uncertainty in both the
objective and constraints have been given in [45]. By using the Clarke subdifferential, opti-
mality conditions and duality theorems for approximate solutions of nonsmooth semi-infinite
optimization problem with data uncertainty in both the objective and constraints have been
obtained in [48]. As far as we know, the results on approximate optimality conditions as well
as approximate duality theorems for semi-infinite programming problems with uncertainty
in both the objective and constraints have been studied in few papers. For the considerations
of references, we observe only references [45,48].

Inspired by the above observations, we provide some new results for approximate optimal-
ity conditions and approximate duality theorems for nonsmooth semi-infinite programming
problem with data uncertainty in both the objective and constraints (USIP) via Clarke subd-
ifferential. Next, an application to nonsmooth fractional semi-infinite programming problem
is provided and some examples are also given to illustrate the obtained results.

The rest of the paper is organized as follows. Sections 1 and 2 present introduction,
notations and preliminaries. In Sect. 3, we establish necessary and sufficient conditions for
a robust ε-quasi solution to problem (USIP). In Sect. 4, we investigate approximate duality
theorems for a Mond–Weir type dual problem with respect to the primal problem (USIP).
In Sect. 5, we provide an application to nonsmooth fractional semi-infinite programming
problem with data uncertainty in constraints. Finally, conclusions are given in Sect. 6.
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2 Preliminaries

Throughout the paper we use the standard notation of variational analysis in [10,37]. In this
paper, we write Rn instead of a finite real normed space (or Euclidean space of dimension
n ∈ N := {1, 2, . . .}), andRn for its topological dual, because (Rn)∗ = R

n . The nonnegative
(resp., nonpositive) orthant cone ofRn is denoted byRn+ (resp.,Rn−). In any finite real normed
space R

n , a norm is always denoted by ||.|| and the inner product is defined by 〈., .〉. The
symbol B stands for the closed unit ball of Rn . The norm of an element ξ of Rn , denote by
||ξ ||, is given by

||ξ || := sup{〈ξ, d〉 | d ∈ R
n, ||d|| ≤ 1}.

Let f : Rn → R be a given real valued function. We say that f is locally Lipschitz, if for
any x ∈ R

n , there exist a positive constant L and an open neighbourhood N (x) of x , such
that for any x1, x2 ∈ N (x),

| f (x1) − f (x2)| ≤ L||x1 − x2||.
For any d ∈ R

n , the usual one-side directional derivative of f at x ∈ R
n is defined as follows:

f ′(x; d) := lim
t↓0

f (x + td) − f (x)

t
.

The Clarke generalized directional derivative of f at x ∈ R
n is defined as follows:

f C (x; d) := lim sup
y→x,t↓0

f (y + td) − f (y)

t
.

The Clarke subdifferential of f at x ∈ R
n is defined as follows:

∂C f (x) := {ξ ∈ R
n | f C (x; d) ≥ 〈ξ, d〉 ,∀d ∈ R

n}.

Definition 1 [10] Let f : Rn → R be a locally Lipschitz function. The function f is said to
be quasi-differentiable or regular at x ∈ R

n (in the sense of Clarke), if f ′(x; d) exists and
equals to f C (x; d), for any d ∈ R

n .

Definition 2 [10] Let Ω ⊂ R
n be a nonempty subset and x ∈ Ω . The Clarke normal cone to

Ω at x is defined by

NC (x;Ω) := {ξ ∈ R
n | 〈ξ, d〉 ≤ 0,∀v ∈ TC (x;Ω)},

where TC (x,Ω) denotes the tangent cone of Ω and

TC (x;Ω) := {v ∈ R
n | ∀tn ↓ 0,∀xn → x, ∃vn → v, with xn + tnvn ∈ Ω,∀n ∈ N},

which is equivalent to TC (x;Ω) := {v ∈ R
n | dCΩ(x; v) = 0}, where dΩ denotes the

distance function to Ω .

Definition 3 [37] LetΩ ⊂ R
n .Ω is said to be a convex set if for all x, y ∈ Ω and λ ∈ [0, 1],

we have λx + (1 − λ)y ∈ Ω .

Definition 4 [37] Let Ω ⊂ R
n be a nonempty subset. A function f : Ω → R is said to be

(i) convex if for all x, y ∈ Ω and allλ ∈ [0, 1], then f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y);
(ii) concave if − f is convex.
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Remark 1 Suppose that Ω ⊂ R
n is a nonempty closed convex subset. Then, NC (x;Ω)

coincides with the cone normal in the sense of convex analysis and

NC (x;Ω) := {ξ ∈ R
n | 〈ξ, y − x〉 ≤ 0,∀y ∈ Ω}.

The following important properties of the Clarke subdifferential will be used later in this
paper.

Lemma 1 [10] Suppose that Ω ⊂ R
n is a nonempty subset and x ∈ Ω . Suppose that

f : Rn → R is locally Lipschitz near x and attains a minimum over Ω at x. Then,

0 ∈ ∂C f (x) + NC (x;Ω).

Lemma 2 [10] Suppose that fk : Rn → R, k = 1, 2, . . . ,m are locally Lipschitz functions.
Then, for any x ∈ R

n,

∂C ( f1 + f2 + · · · + fm)(x) ⊂ ∂C f1(x) + ∂C f2(x) + · · · + ∂C fm(x).

Lemma 3 [10] Let f , g : Rn → R be locally Lipschitz functions near x, and suppose that

g(x) �= 0. Then
f

g
is locally Lipschitz near x, and one has

∂C
(

f

g

)
(x) ⊂ g(x)∂C f (x) − f (x)∂Cg(x)

g2(x)
.

In this paper, we are interested in the study of a semi-infinite programming problem with
inequality constraints having the following form

(SIP)
min
x∈Ω

f (x),

s.t. gt (x) ≤ 0, ∀t ∈ T ,

where Ω ⊂ R
n is a nonempty closed (not necessarily convex) set, T is a nonempty infinite

index set and f , gt : Rn → R, t ∈ T are locally Lipschitz functions. This problem (SIP)
with data uncertainty can be captured by

(USIP)
min
x∈Ω

f (x, u),

s.t. gt (x, vt ) ≤ 0, ∀t ∈ T ,

where the uncertain parameters u and vt , t ∈ T belong to convex compact sets U ⊂ R
m and

Vt ⊂ R
q , t ∈ T , respectively. f : Rn × R

m → R and gt : Rn × R
q → R, t ∈ T are locally

Lipschitz functions.
The uncertainty set-valued mapping V : T ⇒ R

q is defined as V(t) := Vt for all t ∈ T .
The notation v ∈ V means that v is a selection of V , i.e., v : T → R

q and vt ∈ Vt for all
t ∈ T . So, the uncertainty set is the graph of V , that is, gphV := {(t, vt ) | vt ∈ Vt , t ∈ T }.

The robust counterpart of problem (USIP) is

(RUSIP)
min
x∈Ω

{
max
u∈U f (x, u)

}
,

s.t. gt (x, vt ) ≤ 0, ∀vt ∈ Vt ,∀t ∈ T .

Let R(T ) be the linear space given below

R
(T ) := {λ = (λt )t∈T | λt = 0 for all t ∈ T except for finitely many λt �= 0}.
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Let R(T )
+ be the positive cone in R(T ) defined by

R
(T )
+ := {λ = (λt )t∈T ∈ R

(T ) | λt ≥ 0 for all t ∈ T }.
With λ ∈ R

(T ), its supporting set, T (λ) := {t ∈ T | λt �= 0}, is a finite subset of T .
{zt } ⊂ Z , t ∈ T , Z being a real linear space, we understand that

∑
t∈T

λt zt =
⎧⎨
⎩

∑
t∈T (λ)

λt zt , if T (λ) �= ∅,

0, if T (λ) = ∅.

For gt , t ∈ T ,

∑
t∈T

λt gt =
⎧⎨
⎩

∑
t∈T (λ)

λt gt , if T (λ) �= ∅,

0, if T (λ) = ∅.

3 Robust approximate optimality conditions

In this section,we establish the necessary and sufficient optimality conditions for approximate
solution of problem (USIP).

Definition 5 The robust feasible set F of problem (USIP) is defined by

F := {x ∈ Ω | gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T },
where Ω ⊂ R

n is a nonempty closed (not necessarily convex) set.

Definition 6 [48] Let ε ∈ R+\{0}. A point x̄ ∈ F is said to be a robust ε-quasi solution of
problem (USIP), if it is an ε-quasi solution of problem (RUSIP), i.e, for any x ∈ F ,

max
u∈U f (x̄, u) ≤ max

u∈U f (x, u) + √
ε||x − x̄ ||.

The following constraint qualification is an extension of Definition 3.2 in [48].

Definition 7 Let x̄ ∈ F . We say that the following robust constraint qualification (RCQ) is
satisfied at x̄ ∈ F if

NC (x̄; F) ⊆
⋃

λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω),

where A(x̄) := {λ ∈ R
(T )
+ | λt gt (x̄, vt ) = 0,∀vt ∈ Vt ,∀t ∈ T } is set of active constraint

multipliers at x̄ ∈ Ω ⊂ R
n .

If Vt , t ∈ T is singleton, the qualification condition (RCQ) becomes the qualification
condition (CQ) for problem (SIP). The qualification conditions (CQ) have been introduced
and used in [29] and the references therein.

In what follows, the uncertain objective function f : Rn × R
m → R of problem (USIP)

is assumed to satisfy the hypotheses (see [48]).
(H1) The function u ∈ U �→ f (x, u) is upper semicontinuous for each x ∈ R

n ;
(H2) The function x ∈ R

n �→ f (x, u) is locally Lipschitz and regular for each u ∈ U ;
(H3) ∂Cx f (x, u) is upper semicontinuous in (x, u) ∈ R

n × U , where ∂Cx f (x, u) denotes
the Clarke subdifferential of f with respect to x .
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Lemma 4 [48] Suppose that the hypotheses (H1)-(H3) are fulfilled. Further, suppose that U
is convex and compact and f (x, .) is concave on U , for any x ∈ Ω . Then,

∂C
(
max
u∈U f (., u)

)
(x) =

⋃
u∈U(x)

∂Cx f (x, u),

where U(x) := {ū ∈ U | f (x, ū) = maxu∈U f (x, u)}.
Theorem 1 Let ε ∈ R+\{0} and let x̄ ∈ F be a robust ε-quasi solution of problem (USIP).
Suppose that f (x̄, .) is concave on U , and that qualification condition (RCQ) at x̄ ∈ F holds.
Then, there exist ū ∈ U, (λ̄t )t∈T ∈ R

(T )
+ and v̄t ∈ Vt , t ∈ T , such that

0 ∈ ∂Cx f (x̄, ū) +
∑
t∈

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB, λ̄t gt (x̄, v̄t ) = 0, (1)

and
f (x̄, ū) = max

u∈U f (x̄, u). (2)

Proof Suppose that x̄ ∈ F is a robust ε-quasi solution of problem (USIP). Then, for any
x ∈ F ,

max
u∈U f (x̄, u) ≤ max

u∈U f (x, u) + √
ε||x − x̄ ||. (3)

For any x ∈ R
n , we set Φ(x) := maxu∈U f (x, u) + √

ε||x − x̄ ||. From (3), it implies that
Φ is locally Lipschitz at x̄ and x̄ is a minimizer of the following problem minx∈F Φ(x). By
Lemma 1, we have

0 ∈ ∂CΦ(x̄) + NC (x̄; F). (4)

Because, one has ∂C ||. − x̄ ||(x̄) = B. So, from the Lemma 2, we obtain

0 ∈ ∂C
(
max
u∈U f (., u)

)
(x̄) + NC (x̄; F) + √

εB. (5)

From qualification condition (RCQ), we deduce that (5) is equivalent to

0 ∈ ∂C
(
max
u∈U f (., u)

)
(x̄) +

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) + √

εB,

where A(x̄) := {λ ∈ R
(T )
+ | λt gt (x̄, vt ) = 0,∀vt ∈ Vt ,∀t ∈ T }. Therefore, there exist

(λ̄t )t∈T ∈ R
(T )
+ and v̄t ∈ Vt , t ∈ T , such that

0 ∈ ∂C
(
max
u∈U f (., u)

)
(x̄) +

∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB, (6)

and λ̄t gt (x̄, v̄t ) = 0. Furthermore, from Lemma 4, we have

∂C
(
max
u∈U f (., u)

)
(x̄) =

⋃
ū∈U(x̄)

∂Cx f (x̄, ū), (7)

where U(x̄) := {ū ∈ U | f (x̄, ū) = maxu∈U f (x̄, u)}. Thus, it follows from (6) and (7) that
there exist ū ∈ U, (λ̄t )t∈T ∈ R

(T )
+ and v̄t ∈ Vt , t ∈ T such that (1) and (2) hold. ��

Remark 2 Theorem 1 improves Theorem 3.1 in [22], Theorem 3.1 in [29], Theorem 4.1 in
[41], and Theorem 3.1 in [48].
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Now, let us provide an example illustrating Theorem 1.

Example 1 We consider problem (USIP) with ε = 1

4
,Ω = (−∞, 0] ⊂ R, x ∈ R, u ∈ U =

[0, 1], t ∈ T = [0, 1] and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . Take the functions
f (x, u) = |x | + u − 1 and gt (x, vt ) = −vt x2. We can see that the robust feasible set
F = (−∞, 0]. Therefore, x̄ = 0 is a robust ε-quasi solution of problem (USIP). Indeed, one
has

max
u∈U f (x, u) + √

ε||x − x̄ || = |x | + 1

2
|x | ≥ 0 = max

u∈U f (x̄, u), ∀x ∈ F .

Note that the qualification condition (RCQ) is satisfied at x̄ = 0 ∈ F . Indeed, we have
NC (x̄;Ω) = NC (x̄; (−∞, 0]) = [0,+∞), ∂Cx gt (x̄, vt ) = {0} for any vt ∈ Vt , t ∈ T and

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) = [0,+∞).

Besides, one has NC (x̄; F) = NC (x̄; (−∞, 0]) = [0,+∞). Therefore, the qualification

condition (RCQ) holds at x̄ = 0. Take ε = 1

4
, ū = 1, x̄ = 0 and B = [−1, 1]. It is easy to

see that ∂Cx f (x̄, ū) = [−1, 1], ∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈ T and

0 ∈
[
−3

2
,+∞

)
= [−1, 1] + [0,+∞) +

[
−1

2
,
1

2

]

= ∂Cx f (x̄, ū) +
∑
t∈T

λt∂
C
x gt (x̄, vt ) + NC (x̄;Ω) + √

εB,

for any (λt )t∈T ∈ R
(T )
+ and vt ∈ Vt , t ∈ T , λt gt (x̄, v̄t ) = 0, and f (x̄, ū) =

maxu∈U f (x̄, u) = 0. Therefore, Theorem 1 is satisfied.

Now, we will introduce a concept of a robust ε-approximate (KKT) condition for problem
(USIP).

Definition 8 Let ε ∈ R+\{0}. Apoint x̄ ∈ F is said to satisfy the robust ε-approximate (KKT)
condition with respect to problem (USIP) if there exist (λ̄t )t∈T ∈ R

(T )
+ , which (λ̄t )t∈T are

not all zero and ū ∈ U, v̄t ∈ Vt , t ∈ T , such that

0 ∈ ∂Cx f (x̄, ū) +
∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB, λ̄t gt (x̄, v̄t ) = 0,

and f (x̄, ū) = maxu∈U f (x̄, u).

Motivated by the definition of generalized convexity due to [13], we will introduce a
concept of ε-quasi generalized convexity as follows:

Definition 9 Let gT := (gt )t∈T and ε ∈ R+\{0}. We say that ( f , gT ) is ε-quasi generalized
convex on Ω at x̄ ∈ Ω , if for any x ∈ Ω, x0 ∈ ∂Cx f (x̄, u), u ∈ U and xt ∈ ∂Cx gt (x̄, vt ), vt ∈
Vt , t ∈ T , there exists w ∈ TC (x̄;Ω) such that

〈x0, w〉 + √
ε||x − x̄ || ≥ 0 ⇒ f (x, u) + √

ε||x − x̄ || ≥ f (x̄, u),

gt (x, vt ) ≤ gt (x̄, vt ) ⇒ 〈xt , w〉 ≤ 0, ∀t ∈ T ,

and

〈b, w〉 ≤ ||x − x̄ ||, ∀b ∈ B.
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Remark 3 (i) According to Remark 3.9 in [13], if ( f , gT ) is generalized convex (Definition
4.2 in [48]) at x̄ , then for ε ∈ R+\{0}, ( f , gT ) is ε-quasi generalized convex at x̄ .

(ii) Furthermore, by a similar argument as in [13, Example 3.10], we can prove that the class
of ε-quasi generalized convex functions is properly larger the one of generalized convex
functions (Definition 4.2 in [48]).

Now, we will provide an example to illustrate Definition 9.

Example 2 Let x ∈ R,Ω = [0,+∞) ⊂ R, t ∈ T = [0, 1], u ∈ U = [1, 2] and vt ∈ Vt =
[2 − t, t + 2] for any t ∈ T ,B = [−1, 1]. Let f : R → R and g : R × Vt → R be defined
by

f (x) = u(|x | + x3) and gt (x, vt ) = −vt x
2.

Let us consider x̄ = 0, ū = 1, we have ∂C f (x̄, ū) = [−1, 1] and ∂Cx g(x̄, vt ) =
{0}, TC (x̄;Ω) = TC (x̄; [0,+∞)) = [0,+∞). Now, consider x0 = 0 ∈ ∂C f (x̄, ū),

xt ∈ ∂Cx g(x̄, vt ). For any x ∈ Ω , by taking w = x ∈ Ω = [0,+∞) = TC (x̄;Ω), ε = 1

4
, it

follows that

〈x0, w〉 + √
ε||x − x̄ || = 1

2
|x | ≥ 0, ∀w ∈ TC (x̄;Ω)

⇒ f (x, u) + √
ε||x − x̄ || = u(|x | + x3) + 1

2
|x | ≥ 0 = f (x̄, u), ∀u ∈ U,

gt (x, vt ) = −vt x
2 ≤ 0 = gt (x̄, vt ), ∀vt ∈ Vt , t ∈ T

⇒ 〈xt , w〉 = 0 ≤ 0, ∀w ∈ TC (x̄;Ω),

and

||x − x̄ || = |x | ≥ x ≥ bx = 〈b, w〉 , ∀b ∈ B = [−1, 1].
This shows that ( f , gT ) is ε-quasi generalized convex on Ω at x̄ ∈ Ω .

Next, we will propose a type sufficient optimality condition for a robust ε-quasi solution
of problem (USIP) in the following theorem.

Theorem 2 Let ε ∈ R+\{0} and gT := (gt )t∈T . Suppose that x̄ ∈ F satisfies the robust
ε-approximate (KKT) condition with respect to problem (USIP). If ( f , gT ) is ε-quasi gen-
eralized convex on Ω at x̄ ∈ Ω , then x̄ is a robust ε-quasi solution of problem (USIP).

Proof Since x̄ ∈ F satisfies the robust ε-approximate (KKT) condition with respect to
problem (USIP), there exist (λ̄t )t∈T ∈ R

(T )
+ , which (λ̄t )t∈T are not all zero and x0 ∈

∂Cx f (x̄, ū), ū ∈ U, xt ∈ ∂Cx g(x̄, v̄t ), v̄t ∈ Vt , t ∈ T and b ∈ B such that λ̄t gt (x̄, v̄t ) = 0 and

−
(
x0 +

∑
t∈T

λ̄t xt + √
εb

)
∈ NC (x̄;Ω) (8)

and
f (x̄, ū) = max

u∈U f (x̄, u). (9)

Suppose on contrary that x̄ is not a robust ε-quasi solution of problem (USIP). It then follows
that there exists x ∈ F such that

max
u∈U f (x, u) + √

ε||x − x̄ || < max
u∈U f (x̄, u). (10)
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Note further that
max
u∈U f (x, u) ≥ f (x, ū), ū ∈ U . (11)

From (9), (10), and (11), we deduce that

f (x, ū) + √
ε||x − x̄ || < f (x̄, ū). (12)

On the other hand, if t ∈ T (λ̄), then gt (x̄, v̄t ) = 0. Note that for any x ∈ F , gt (x, v̄t ) ≤ 0
for any t ∈ T . It follows that

gt (x, v̄t ) ≤ 0 = gt (x̄, v̄t ), (13)

for any x ∈ F and t ∈ T (λ̄). By the ε-quasi generalized convexity of ( f , gT ) on Ω at x̄ ∈ Ω

and (12), (13), for such x , there exist x0 ∈ ∂Cx f (x̄, ū), ū ∈ U, xt ∈ ∂Cx gt (x̄, v̄t ), v̄t ∈ Vt , t ∈
T and w ∈ TC (x̄;Ω) such that

〈x0, w〉 + √
ε||x − x̄ || < 0, (14)

〈xt , w〉 ≤ 0, (15)

〈b, w〉 ≤ ||x − x̄ ||, ∀b ∈ B. (16)

On the other hand, by (15), we conclude that∑
t∈T

λ̄t 〈xt , w〉 ≤ 0. (17)

From (14) and (17), we can assert that

〈x0, w〉 + √
ε||x − x̄ || +

∑
t∈T

λ̄t 〈xt , w〉 < 0. (18)

Combining (16) and (18), we imply that

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λ̄t 〈xt , w〉 < 0. (19)

On the other hand, since w ∈ TC (x̄;Ω) and (8), we obtain

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λ̄t 〈xt , w〉 ≥ 0,

which contradicts to (19). Therefore, x̄ is a robust ε-quasi solution of problem (USIP). ��
Remark 4 Theorem 2 improves Theorem 3.2 in [22] and Theorem 3.4 in [24].

Finally in this section, we will provide an example to show the importance of the ε-quasi
generalized convexity of ( f , gT ) in Theorem 2.

Example 3 Let x ∈ R,Ω = (−∞, 0] ⊂ R, u ∈ U = [1, 2], t ∈ T = [0, 1] and vt ∈ Vt =
[2 − t, 2 + t] for any t ∈ T . Consider the functions

f (x, u) =
{
ux2 cos

1

x
, if x �= 0,

0, if x = 0,

and

gt (x, vt ) = t x2 + vt x .
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Then, F = [−1, 0], NC (x̄;Ω) = NC (x̄; (−∞, 0]) = [0,+∞), and TC (x̄;Ω) =
TC (x̄; (−∞, 0]) = (−∞, 0]. By selecting x̄ = 0, ū = 1 and v̄t = 2 − t , one has

∂Cx f (x̄, ū) = [−1, 1] and ∂Cx gt (x̄, v̄t ) = {2 − t} .

Now, take an arbitrarily ε such that 0 < ε ≤ 1

4π2 . Then, it implies that x̄ ∈ F satisfies the

robust ε-approximate (KKT) condition. Indeed, let us select ε = 1

4π2 , x̄ = 0, ū = 1, λ̄t =
0, v̄t = 2 − t and B = [−1, 1]. Then,

0 ∈
[
−1 − 1

2π
,+∞

)
= [−1, 1] + [0,+∞) +

[
− 1

2π
,
1

2π

]

= ∂Cx f (x̄, ū) +
∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB,

λ̄t g(x̄, v̄t ) = 0 and maxu∈U f (x, u) = f (x̄, ū) = 0. However, x̄ = 0 is not a robust ε-quasi

solution of problem (USIP). In order to see this, let us take x = − 1

π
∈ F = [−1, 0] and

x̄ = 0, ε = 1

4π2 . Then,

max
u∈U f (x, u) + √

ε||x − x̄ || = − 1

π2 + 1

2π
.
1

π
= − 1

2π2 < 0 = max
u∈U f (x̄, u).

The reason is that ( f , gT ) is not ε-quasi generalized convex at x̄ = 0. Indeed, take x =
− 1

π
∈ F = [−1, 0], ε = 1

4π2 , x̄ = 0, ū = 1 and x0 = 0 ∈ ∂Cx f (x̄, ū) = [−1, 1]. Clearly,

〈x0, w〉 + √
ε||x − x̄ || = 1

2π
.
1

π
= 1

2π2 > 0, ∀w ∈ TC (x̄;Ω) = (−∞, 0].
However,

f (x, ū) + √
ε||x − x̄ || = − 1

π2 + 1

2π
.
1

π
= − 1

2π2 < 0 = f (x̄, ū).

4 Mond–Weir duality for approximate solution

In this section, we address a Mond–Weir type dual problem (MUSID) with respect to the
primal problem (USIP).

Let x ∈ R
n , Ω ⊂ R

n is a nonempty closed (not necessarily convex) set, λ ∈ R
(T )
+ , and

u ∈ U, vt ∈ Vt , t ∈ T . Now, we introduce the Lagrangian function L with respect to problem
(USIP) as follows:

L(x, λ, u, vt ) := f (x, u).

Let ε ∈ R+\{0}. We consider the dual problem (MUSID) of problem (USIP) as follows:

(MUSID)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max L(y, λ, u, vt )

s.t. 0 ∈ ∂Cx f (y, u) +
∑
t∈T

λt∂
C
x gt (y, vt ) + NC (y;Ω) + √

εB,

∑
t∈T

λt gt (y, vt ) ≥ 0,

y ∈ Ω,λ ∈ R
(T )
+ , u ∈ U, vt ∈ Vt , t ∈ T .
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The robust feasible set of problem (MUSID) is defined by

FMUSID :=
{

(y, λ, u, vt ) ∈ Ω × R
(T )
+ × U × Vt ) | 0 ∈ ∂Cx f (y, u)

+
∑
t∈T

λt∂
C
x gt (y, vt ) + NC (y;Ω) + √

εB,
∑
t∈T

λt gt (y, vt ) ≥ 0

}
.

Now, we will introduce the following definition of a robust ε-quasi solution for problem
(MUSID).

Definition 10 Let ε ∈ R+\{0}.We say that (ȳ, λ̄, ū, v̄t ) ∈ FMUSID is a robust ε-quasi solution
of problem (MUSID) if for any (y, λ, u, vt ) ∈ FMUSID,

L(ȳ, λ̄, ū, v̄t ) + √
ε||ȳ − y|| ≥ L(y, λ, u, vt ).

The following theorem describes duality relations between the primal problem (USIP)
and the dual problem (MUSID).

Theorem 3 Let ε ∈ R+\{0} and gT := (gt )t∈T . Suppose that x̄ is an ε-quasi solution of
problem (USIP), the qualification condition (RCQ) is satisfied at x̄ and f (x̄, .) is concave
on U . Then there exists (λ̄, ū, v̄t ) ∈ R

(T )
+ × U × Vt such that (x̄, λ̄, ū, v̄t ) ∈ FMUSID and

maxu∈U f (x̄, u) = L(x̄, λ̄, ū, v̄t ) = f (x̄, ū). Besides, if ( f , gT ) is ε-quasi generalized
convex onΩ at any y ∈ Ω , then (x̄, λ̄, ū, v̄t ) is a robust ε-quasi solution of problem (MUSID).

Proof According to Theorem 1, there exist ū ∈ U, (λ̄t )t∈T ∈ R
(T )
+ and v̄t ∈ Vt , t ∈ T , such

that

0 ∈ ∂Cx f (x̄, ū) +
∑
t∈

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB, λ̄t gt (x̄, v̄t ) = 0, (20)

and
f (x̄, ū) = max

u∈U f (x̄, u). (21)

Therefore, (x̄, λ̄, ū, v̄t ) ∈ FMUSID. From (21), we have

max
u∈U f (x̄, u) = f (x̄, ū) = L(x̄, λ̄, ū, v̄t ). (22)

Now, we prove that if ( f , gT ) is ε-quasi generalized convex on Ω at any y ∈ Ω ,
then (x̄, λ̄, ū, v̄t ) is a robust ε-quasi solution of problem (MUSID). Suppose on contrary
that (x̄, λ̄, ū, v̄t ) is not a robust ε-quasi solution of problem (MUSID). Then there exists
(y, λ, u, vt ) ∈ FMUSID such that

L(x̄, λ̄, ū, v̄t ) + √
ε||x̄ − y|| < L(y, λ, u, vt ), (23)

where L(y, λ, u, vt ) = f (y, u). From (22) and (23), we can assert that

f (y, u) > f (x̄, ū) + √
ε||x̄ − y||. (24)

Since (y, λ, u, vt ) ∈ FMUSID, there exist λ ∈ R
(T )
+ , x0 ∈ ∂Cx f (y, u), u ∈ U, xt ∈ ∂Cx g(y, vt ),

vt ∈ Vt , t ∈ T and b ∈ B such that

−
(
x0 +

∑
t∈T

λt xt + √
εb

)
∈ NC (y;Ω), (25)

∑
t∈T

λt gt (y, vt ) ≥ 0. (26)
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From (26) and (λt )t∈T ∈ R
(T )
+ , it follows that gt (y, vt ) ≥ 0 if t ∈ T (λ). Note that for x̄ ∈ F ,

we have gt (x̄, vt ) ≤ 0 for any t ∈ T . It deduces that

gt (x̄, vt ) ≤ 0 ≤ gt (y, vt ), (27)

for any x̄ ∈ F and t ∈ T (λ). By the ε-quasi generalized convexity of ( f , gT ) on Ω at y ∈ Ω

and (24), (27), for such x̄ , there exist x0 ∈ ∂Cx f (y, u), u ∈ U, xt ∈ ∂Cx gt (y, vt ), vt ∈ Vt , t ∈
T and w ∈ TC (y;Ω) such that

〈x0, w〉 + √
ε||x̄ − y|| < 0, (28)

〈xt , w〉 ≤ 0, (29)

〈b, w〉 ≤ ||x̄ − y||, ∀b ∈ B. (30)

Thus, we deduce from (29) that ∑
t∈T

λt 〈xt , w〉 ≤ 0. (31)

From (28) and (31), we can assert that

〈x0, w〉 + √
ε||x̄ − y|| +

∑
t∈T

λt 〈xt , w〉 < 0. (32)

Combining (30) and (32), we imply that

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λt 〈xt , w〉 < 0. (33)

On the other hand, since w ∈ TC (y;Ω) and (25), we obtain

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λt 〈xt , w〉 ≥ 0,

which contradicts to (33). Therefore, (x̄, λ̄, ū, v̄t ) is a robust ε-quasi solution of problem
(MUSID). ��
Remark 5 Theorem 3 improves Theorem 4.2 in [22] and Theorem 4.6 in [24].

The next example asserts the importance of the qualification condition (RCQ) imposed in
Theorem 3. More precisely, if x̄ is a robust ε-quasi solution of problem (USIP) at which the
qualification condition (RCQ) is not satisfied, then we may not find out a triplet (λ̄, ū, v̄t ) ∈
R

(T )
+ × U × Vt such that (x̄, λ̄, ū, v̄t ) belongs to the robust feasible set FMUSID of the dual

problem (MUSID).

Example 4 We consider problem (USIP) with Ω = (−∞, 0] ⊂ R and x ∈ R, u ∈ U =
[0, 1], t ∈ T = [0, 1] and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . Take the functions
f (x, u) = x + u − 1 and gt (x, vt ) = vt x2. We can see that the robust feasible set F = {0}.
Now, take x̄ = 0, ε = 1

4
. Then, it is easy to prove that x̄ = 0 is a robust ε-quasi solution of

problem (USIP). Indeed, one has

max
u∈U f (x, u) + √

ε||x − x̄ || = x + 1

2
|x | ≥ 0 = max

u∈U f (x̄, u), ∀x ∈ F .

Next, consider the dual problem (MUSID) with respect to problem (USIP). Take ε = 1

4
, ū =

1 and B = [−1, 1]. It is easy to see that ∂Cx f (x̄, ū) = {1}, ∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈
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T , and

0 /∈
[
1

2
,
3

2

]
= {1} +

[
−1

2
,
1

2

]
= ∂Cx f (x̄, ū) +

∑
t∈T

λt∂
C
x gt (x̄, vt ) + NC (x̄;Ω) + √

εB,

for any (λt )t∈T ∈ R
(T )
+ and ∀vt ∈ Vt , t ∈ T . It follows easily that (x̄, λ, ū, vt ) /∈ FMUSID

for any λ ∈ R
(T )
+ and ∀vt ∈ Vt , t ∈ T . The reason is that the qualification condition

(RCQ) is not satisfied at x̄ = 0 ∈ F . Indeed, we have NC (x̄;Ω) = NC (x̄; (−∞, 0]) =
[0,+∞), ∂Cx gt (x̄, vt ) = {0}, for any vt ∈ Vt , t ∈ T and

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) = [0,+∞).

Besides, one has NC (x̄; F) = R. Therefore, the qualification condition (RCQ) is not satisfied
at x̄ = 0. Hence, Theorem 3 is not valid.

Now, we present an example to show the importance of the ε-quasi generalized convexity
of ( f , gT ) in Theorem 3.

Example 5 We consider problem (USIP) with ε = 1

25
,Ω = [−1, 0] ⊂ R, x ∈ R, u ∈

U = [0, 1], t ∈ T = [0, 1] and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . Take the functions
f (x, u) = x3+u and gt (x, vt ) = −vt x2.We can see that the robust feasible set F = [−1, 0].
Therefore, x̄ = −1 is a robust ε-quasi solution of problem (USIP). Indeed, one has

max
u∈U f (x, u) + √

ε||x − x̄ || = x3 + 1 + 1

5
|x + 1| ≥ 0 = max

u∈U f (x̄, u), ∀x ∈ F .

Note that the qualification condition (RCQ) is satisfied at x̄ = −1 ∈ F . Indeed, we have
NC (x̄;Ω) = NC (x̄; [−1, 0]) = (−∞, 0], ∂Cx gt (x̄, vt ) = {0}, for any vt ∈ Vt , t ∈ T and

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) = (−∞, 0].

Besides, one has NC (x̄; F) = NC (x̄; [−1, 0]) = (−∞, 0]. Therefore, the qualification
condition (RCQ) holds at x̄ = −1. Now, consider the dual problem (MUSID) with respect

to problem (USIP). Take ε = 1

25
, λ̄ = 0, ū = 0, x̄ = −1, v̄t = 2 − t and B = [−1, 1]. It is

easy to see that ∂Cx f (x̄, ū) = {3}, ∂Cx gt (x̄, v̄t ) = {2(2 − t)} and

0 ∈
(

−∞,
16

5

]
= {3} + (−∞, 0] +

[
−1

5
,
1

5

]

= ∂Cx f (x̄, ū) +
∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB

and
∑

t∈T λ̄t gt (x̄, v̄t ) = 0. It follows easily that

(x̄, λ̄, ū, v̄t ) ∈ FMUSID and max
u∈U f (x̄, u) = L(x̄, λ̄, ū, v̄t ) = f (x̄, ū) = 0,

where FMUSID is the robust feasible set of problem (MUSID). However, (x̄, λ̄, ū, v̄t ) is
not a robust ε-quasi solution of problem (MUSID). In order to see this, let us take ε =
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1

25
, (y, λ, u, vt ) = (0, 1, 1, 2 + t) ∈ Ω × R

(T )
+ × U × Vt . Clearly,

L(x̄, λ̄, ū, v̄t ) + √
ε||x̄ − y|| = 1

5
< 1 = L(y, λ, u, vt ).

The reason is that ( f , gT ) is not the ε-quasi generalized convexonΩ at y = 0 ∈ Ω . Indeed, by

choosing ε = 1

25
, z = −1

2
∈ Ω, u = 1 and x0 ∈ ∂Cx f (y, u) = {0}, TC (y;Ω) = (−∞, 0],

we have

〈x0, w〉 + √
ε||z − y|| = 1

10
> 0, ∀w ∈ TC (y;Ω) = (−∞, 0].

However,

f (z, u) + √
ε||z − y|| = −1

8
+ 1 + 1

10
= 39

40
< 1 = f (y, u).

Theorem 4 Let ε ∈ R+\{0} and (x̄, λ̄, ū, v̄t ) ∈ FMUSID such that maxu∈U f (x̄, u) =
L(x̄, λ̄, ū, v̄t ) = f (x̄, ū). If x̄ ∈ F and ( f , gT ) is ε-quasi generalized convex on Ω at
x̄ ∈ Ω , then x̄ is a robust ε-quasi solution of problem (USIP).

Proof Since (x̄, λ̄, ū, v̄t ) ∈ FMUSID, there exist (λ̄t )t∈T ∈ R
(T )
+ , x0 ∈ ∂Cx f (x̄, ū), ū ∈

U, xt ∈ ∂Cx g(x̄, v̄t ), v̄t ∈ Vt , t ∈ T and b ∈ B such that

−
(
x0 +

∑
t∈T

λ̄t xt + √
εb

)
∈ NC (x̄;Ω), (34)

∑
t∈T

λ̄t gt (x̄, v̄t ) ≥ 0. (35)

Suppose on contrary that x̄ is not a robust ε-quasi solution of problem (USIP). It then follows
that there exists x ∈ F such that

max
u∈U f (x, u) + √

ε||x − x̄ || < max
u∈U f (x̄, u). (36)

Note further that
max
u∈U f (x, u) ≥ f (x, ū), ū ∈ U . (37)

From (36), (37), and f (x̄, ū) = maxu∈U f (x̄, u), we deduce that

f (x, ū) + √
ε||x − x̄ || < f (x̄, ū). (38)

By (35) and (λ̄t )t∈T ∈ R
(T )
+ , it follows that gt (x̄, v̄t ) ≥ 0 if t ∈ T (λ̄). Note that for x ∈ F ,

we have gt (x, v̄t ) ≤ 0 for any t ∈ T . We deduce that

gt (x, v̄t ) ≤ 0 ≤ gt (x̄, v̄t ), (39)

for any x ∈ F and t ∈ T (λ̄). By the ε-quasi generalized convexity of ( f , gT ) on Ω at x̄ ∈ Ω

and (38), (39), for such x , there exist x0 ∈ ∂Cx f (x̄, ū), ū ∈ U, xt ∈ ∂Cx gt (x̄, v̄t ), v̄t ∈ Vt , t ∈
T and w ∈ TC (x̄;Ω) such that

〈x0, w〉 + √
ε||x − x̄ || < 0, (40)

〈xt , w〉 ≤ 0, (41)

〈b, w〉 ≤ ||x − x̄ ||, ∀b ∈ B. (42)
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Then, from (41), we follow that ∑
t∈T

λ̄t 〈xt , w〉 ≤ 0. (43)

From (40) and (43), we can assert that

〈x0, w〉 + √
ε||x − x̄ || +

∑
t∈T

λ̄t 〈xt , w〉 < 0. (44)

Combining (42) and (44), we imply that

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λ̄t 〈xt , w〉 < 0. (45)

On the other hand, since w ∈ TC (x̄;Ω) and (34), we obtain

〈x0, w〉 + √
ε 〈b, w〉 +

∑
t∈T

λ̄t 〈xt , w〉 ≥ 0,

which contradicts to (45). Therefore, x̄ is a robust ε-quasi solution of problem (USIP). ��

Remark 6 Theorem 4 improves Theorem 4.3 in [22].

5 Application to fractional semi-infinite programming problem

In this section,we consider nonsmooth fractional semi-infinite programmingwith uncertainty
data in constraints:

(UFSIP)
min
x∈Ω

f (x) := p(x)

q(x)
,

s.t. gt (x, vt ) ≤ 0, ∀t ∈ T ,

where Ω ⊂ R
n is a nonempty closed (not necessarily convex) set, T is a nonempty infinite

index set, the functions p, q : Rn → R, and gt : Rn ×R
q → R, t ∈ T are locally Lipschitz

functions, and for each t ∈ T , vt ∈ R
q is an uncertain parameter, which belongs to some

convex compact set Vt ⊂ R
q .

The uncertainty set-valued mapping V : T ⇒ R
q is defined as V(t) := Vt for all t ∈ T .

The notation v ∈ V means that v is a selection of V , i.e., v : T → R
q and vt ∈ Vt for all

t ∈ T . So, the uncertainty set is the graph of V , that is, gphV := {(t, vt ) | vt ∈ Vt , t ∈ T }.
In what follows, for the sake of convenience, we further assume that q(x) > 0 for all

x ∈ Ω , and that p(x̄) ≤ 0 for the reference point x̄ ∈ Ω .

Definition 11 The robust feasible set of problem (UFSIP) is defined by

F := {x ∈ Ω | gt (x, vt ) ≤ 0,∀vt ∈ Vt ,∀t ∈ T }.

Definition 12 Let ε ∈ R+\{0} and f := p

q
. A point x̄ ∈ F is said to be a robust ε-quasi

solution to problem (UFSIP) if

f (x) + √
ε||x − x̄ || ≥ f (x̄), ∀x ∈ F .
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Theorem 5 Let ε ∈ R+\{0}. Suppose that x̄ ∈ F is a robust ε-quasi solution of prob-
lem (UFSIP). Suppose that the qualification condition (RCQ) at x̄ holds. Then, there exist
(λ̄t )t∈T ∈ R

(T )
+ , v̄t ∈ Vt , t ∈ T , such that

0 ∈ q(x̄)∂C p(x̄) − p(x̄)∂Cq(x̄)

q2(x̄)
+

∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t )

+NC (x̄;Ω) + √
εB, λ̄t gt (x̄, v̄t ) = 0. (46)

Proof Suppose that x̄ ∈ F is a robust ε-quasi solution of problem (UFSIP), it follows that x̄

is a robust ε-quasi solution of problem (USIP) with f := p

q
. By applying Theorem 1, there

exist (λ̄t )t∈T ∈ R
(T )
+ and v̄t ∈ Vt , t ∈ T , such that

0 ∈ ∂C f (x̄) +
∑
t∈

λ̄t∂
C
x gt (x̄, v̄t ) + NC (x̄;Ω) + √

εB, λ̄t gt (x̄, v̄t ) = 0. (47)

Thanks to Lemma 3, one has

∂C f (x̄) = ∂C
(
p

q

)
(x̄) ⊂ q(x̄)∂C p(x̄) − p(x̄)∂Cq(x̄)

q2(x̄)
. (48)

Combining (47) with (48), we can assert that

0 ∈ q(x̄)∂C p(x̄) − p(x̄)∂Cq(x̄)

q2(x̄)
+

∑
t∈T

λ̄t∂
C
x gt (x̄, v̄t )

+NC (x̄;Ω) + √
εB, λ̄t gt (x̄, v̄t ) = 0.

The proof of the theorem is complete. ��
The following simple example shows that the qualification condition (RCQ) is essential

in Theorem 5.

Example 6 We consider problem (UFSIP) with Ω = (−∞, 0] ⊂ R, x ∈ R, t ∈ T = [0, 1]
and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . Take the functions f (x) = p(x)

q(x)
, where

p(x) = x, q(x) = x2 + 1 and gt (x, vt ) = vt x2. We can see that the robust feasible set

F = {0}. Now, take x̄ = 0, ε = 1

4
. Then, it is easy to show that x̄ = 0 is a robust ε-quasi

solution of problem (UFSIP). Indeed, one has

f (x) + √
ε||x − x̄ || = x

x2 + 1
+ 1

2
|x | ≥ 0 = f (x̄), ∀x ∈ F .

Since NC (x̄;Ω) = NC (x̄; (−∞, 0]) = [0,+∞), ∂Cx gt (x̄, vt ) = {0} at x̄ = 0 for any
vt ∈ Vt , t ∈ T , one has

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) = [0,+∞).

Moreover, NC (x̄; F) = R. Therefore, the qualification condition (RCQ) is not satisfied at

x̄ = 0. On the other hand, take ε = 1

4
and B = [−1, 1]. It is easy to see that ∂C p(x̄) =
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{1}, ∂Cq(x̄) = {0} and

0 /∈
[
1

2
,+∞

)
= {1} + [0,+∞) +

[
−1

2
,
1

2

]

= q(x̄)∂C p(x̄) − p(x̄)∂Cq(x̄)

q2(x̄)
+

∑
t∈T

λt∂
C
x gt (x̄, vt ) + NC (x̄;Ω) + √

εB,

for any (λt )t∈T ∈ R
(T )
+ and vt ∈ Vt , t ∈ T . Hence, Theorem 5 is not valid.

The following simple example proves that, in general, a feasible point may satisfy the
qualification condition (RCQ), but if this point is not a robust ε-quasi solution of problem
(UFSIP), then (46) does not hold.

Example 7 Let x ∈ R, t ∈ T = [0, 1] and vt ∈ Vt = [2 − t, 2 + t] for any t ∈ T . Consider

the functions f (x) = p(x)

q(x)
, where p(x) = x, q(x) = x2 + 1 and gt (x, vt ) := −vt x2.

We consider problem (UFSIP) with Ω := (−∞, 0]. By simple computation, one has F =
(−∞, 0], NC (x̄;Ω) = NC (x̄; (−∞, 0]) = [0,+∞) and ∂Cx gt (x̄, vt ) = {0},∀vt ∈ Vt , t ∈
T . Therefore, we have

⋃
λ∈A(x)
vt∈Vt

[∑
t∈T

λt∂
C
x gt (x̄, vt )

]
+ NC (x̄;Ω) = [0,+∞).

Moreover, we have NC (x̄; F) = NC (x̄; (−∞, 0]) = [0,+∞). Clearly, the qualification

condition (RCQ) holds at x̄ . On the other hand, take x̄ = 0, ε = 1

4
and B = [−1, 1]. It is

easy to see that ∂C p(x̄) = {1}, ∂Cq(x̄) = {0} and

0 /∈
[
1

2
,+∞

)
= {1} + [0,+∞) +

[
−1

2
,
1

2

]

= q(x̄)∂C p(x̄) − p(x̄)∂Cq(x̄)

q2(x̄)
+

∑
t∈T

λt∂
C
x gt (x̄, vt ) + NC (x̄;Ω) + √

εB,

for any (λt )t∈T ∈ R
(T )
+ and vt ∈ Vt , t ∈ T . Hence, condition (46) is not true. The reason

is that x̄ = 0 is not a robust ε-quasi solution of problem (UFSIP). Indeed, we can choose

ε = 1

4
, x = −1

5
∈ F = (−∞, 0]. Clearly,

f (x) + √
ε||x − x̄ || = x

x2 + 1
+ 1

2
|x | = − 6

65
< 0 = f (x̄).

6 Conclusion

In this paper, we studied the optimality conditions for a robust ε-quasi solution of prob-
lem (USIP). Next, we established approximate duality theorems in term of Mond–Weir type
which is formulated in approximate form. Finally, an application to fractional semi-infinite
programming problem was provided. The results obtained in this paper improve the corre-
sponding results reported in recent literature.
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