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Abstract
We prove in this paper the Lax–Wendroff consistency of a general finite volume convection
operator acting on discrete functions which are possibly not piecewise-constant over the cells
of the mesh and over the time steps. It yields an extension of the Lax–Wendroff theorem for
general colocated or non-colocated schemes. This result is obtained for general polygonal or
polyhedral meshes, under assumptions which, for usual practical cases, essentially boil down
to a flux-consistency constraint; this latter is, up to our knowledge, novel and compares the
discrete flux at a face to the mean value over the adjacent cell of the continuous flux function
applied to the discrete unknown function. We first briefly show how this result copes with
multipoint colocated schemes on general meshes.We then apply it to prove the consistency of
a finite volume discretisation of a convection operator featuring a (convected) scalar variable
and a (convecting) velocity field, with a staggered approximation, i.e. with a cell-centred
approximation of the scalar variable and a face-centred approximation of the velocity.
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1 Introduction

The well-known Lax–Wendroff theorem [11] states that, on uniform 1D grids, if the approx-
imate solutions of a flux-consistent and conservative cell-centred finite volume (FV) scheme
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for a system of conservation laws converge a.e. and boundedly as the mesh and time steps
tend to zero, then the limit is a weak solution of the conservation law; we call this property
“Lax–Wendroff consistency” (or LW-consistency for short); it is also stated in a different
form [12, Section 12.10], with a BV bound assumption on the scheme. The Lax–Wendroff
theorem is an “if-theorem”, which fails to solve the convergence issue for FV schemes since
compactness is lacking. Nevertheless, it introduces two crucial tools for the analysis of FV
schemes, namely the conservativity and consistency of the numerical fluxes; note that this
analysis cannot be handled by the famous Lax–Richtmyer theorem, even in the linear case
and even if the exact solution is assumed to be regular, as soon as the mesh is non uni-
form, see e.g. [4] for more on this subject. Moreover, the Lax–Wendroff theorem remains
a useful tool to check whether a particular scheme gives a reasonable approximation when
no estimates on the approximate solutions are available to yield some compactness, such as
in the case of general hyperbolic systems. The Lax–Wendroff theorem was generalised to
non uniform 1D or Cartesian meshes in [3, Theorem 21.2]. In a recent work [1], the Lax–
Wendroff theorem is extended to obtain some error estimates for higher order schemes on
uniform 1D meshes. The case of general (and, in particular, unstructured) discretisations
has been also been tackled over the past decades: [10], [6, Section 4.2.2] [2], [5]. In [2],
a quasi-uniformity assumption is required on the mesh, but the flux is only required to be
continuous, while in [5], there is no uniformity assumption on the mesh but the flux is sup-
posed to be locally Lipschitz continuous or at least locally “Lipschitz-diagonal” continuous,
see Sect. 3 below and [5, Remark 5.2]. In all the above cited works, the scheme is supposed
to be colocated, in the sense that the discrete unknowns are associated to the cells of the
mesh, so these results may not be used directly to cope with staggered approximations, for
instance.

The aim of this paper is to address more general approximations, including those of
co-located or staggered type; indeed, we prove the LW-consistency of a generic finite
volume convection operator acting on discrete functions that are possibly not piecewise-
constant over the cells of the mesh and over the time steps; the result is otained under
sufficient conditions which, in usual cases, turn to essentially boil down to a new flux con-
sistency requirement; this LW-consistency result is stated in Theorem 2.1 below. The flux
consistency constraint, formulated by Assertion (11), demands a control on the difference
between the discrete flux at a face (or edge) and the mean value over the adjacent cell
of the continuous flux function applied to the discrete unknown function. Theorem 2.1 is
valid for general polygonal or polyhedral meshes without any supplementary assumptions
on the mesh; as a by product of this work, we thus also obtain a consistency result for
colocated schemes (i.e. schemes using only piecewise-constant per cell unknowns) with
possibly relaxed assumptions for the mesh compared to [5]. However, let us note that the
proof that the assumption (11) is satisfied is usually based on the control of the difference
between the numerical solution and its space or time translates, see [5, Section 4] and that
these latter results may require some regularity assumptions on the mesh, see also Remark
2.2.

This paper is organized as follows. We state and prove the general consistency result in
Sect. 2. We then apply it in Sect. 3 to the colocated case and then, in Sect. 4, to a staggered
discretisation; precisely speaking, we show the consistency of a finite volume discretisation
of a nonlinear convection operator for a scalar variable ρ of the form ∂tβ(ρ) + div(g(ρ)u),
where β and g are regular functions and u is a velocity field, and where we use a cell-centred
approximation for ρ and a face-centred approximation of u.
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Lax–Wendroff consistency of finite volume... 335

2 The general LW-consistency result

The aim is to prove the LW-consistency of finite volume approximations of nonlinear con-
vective terms which appear in most models of fluid flow. The general context is the following.
Given a numerical scheme which yields some approximate solutions to the system of conser-
vative partial differential equations, we assume that these approximate solutions converge to
some functions strongly in L1, and we wish to show that the limit is indeed a solution to the
system, at least in a weak sense. In order to do so, the usual idea is to multiply the numerical
scheme by an interpolate of a smooth function, sum over the cells of the mesh and over the
time steps and show that passing to the limit, we get a weak formulation of the system of
partial differential equations. The theorem that we prove below is a mean to prove that one
may indeed pass to the limit in the terms that involve nonlinear convection operators. Let us
begin with an example. Consider the barotropic Euler equations, which read:

∂t ρ̄ + div(ρ̄ ū) = 0, (1a)

∂t (ρ̄ ū) + div(ρ̄ ū ⊗ ū) + ∇ p̄ = 0, (1b)

where ρ̄ is the density, ū the velocity and p̄ the pressure, which, for barotropic flows, is a
function of ρ̄ only: p̄ = p(ρ̄). Here and in the remainder of the paper, we use overlined
letters when referring to the solution of the continuous problem, while non overlined letters
will be used for discrete unknowns. This system of equations is supplemented by an initial
condition and suitable boundary conditions if � is bounded. An entropy weak solution of
the system satisfies the Eq. (1) and also satisfies (in a weak sense, which includes the initial
condition) the following entropy condition:

∂t Ē + div((Ē + p̄)ū) ≤ 0, with Ē = 1

2
ρ̄|ū|2 + H(ρ̄) andH(s) = s

∫
p(s)

s2
ds. (2)

The weak consistency of staggered finite volume schemes for this system of equations discre-
tised on multi-dimensional Cartesian or unstructured meshes has been the object of several
recent papers, see e.g. [8,9]. The system (1) and (2) may be written as

C̄1(ρ̄, ū) = 0, (3a)

C̄2(ρ̄, ū) + ∇ p̄ = 0, (3b)

C̄3(Ē, ū) + div( p̄ū) ≤ 0, (3c)

with C̄1(ρ̄, ū) = ∂t ρ̄ + div(ρ̄ ū), C̄2(ρ̄, ū) = ∂t (ρ̄ ū) + div(ρ̄ ū ⊗ ū), and C̄3(Ē, ū) =
∂t Ē +div(Ē ū). In the above cited works, the system is discretised with an explicit or implicit
in time scheme, and the convection operatorsC1 andC2 by a first or second order finite volume
scheme. In fact, the systemof the barotropic equations canbediscretised bydifferent schemes:
explicit or implicit, colocated meshes or staggered meshes, using a Riemann solver or using
an equation-by- equation procedure. In all cases, the consistency study will have to deal with
each of the discrete non linear convection operator Ci associated to C̄i . The present work
aims at simplifying the proofs of consistency by giving a general result for any nonlinear
convection term, discretised on a colocated or staggeredmesh, thereby extending our previous
result of [5] to staggered meshes. Theorem 2.1 below is an efficient tool to this purpose; it
may be used for any of the terms in (3), and is specifically useful to tackle the terms featuring
discrete variables with different space approximations, as the operators Ci of these equations
in case of staggered discretizations. We emphasize that both implicit or explicit schemes may
be addressed, since the proof deals separately with the discrete time operator and the discrete
space divergence operator.
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Let us then turn to the general setting; we suppose that:

� ⊂ R
d , d = 1, 2, 3, T ∈ (0,+∞), p ∈ N

∗, β ∈ C0(Rp,R), f ∈ C0(Rp,Rd). (4)

We consider the conservative convection operator C̄(Ū ) acting on a vector Ū ∈ R
p of

functions, real-valued, and defined (in the distributional sense), for Ū ∈ L∞(�×(0, T ),Rp),
by:

C̄(Ū ) : � × (0, T ) → R,

(x, t) 	→ ∂t (β(Ū ))(x, t) + div( f (Ū ))(x, t). (5)

Note that, here and throughout the paper, we use β(Ū ) (resp. f (Ū )) to denote the function
β ◦ Ū obtained by composition of β and Ū (resp. f and Ū ), so, for instance, β(Ū )(x, t)
stands for β(Ū (x, t)). In the above example of the barotropic Euler equations (1), we have,
for i = 1, 2, C̄i (Ū ) = ∂t (βi (Ū ))+div( f i (Ū )), with Ū = (ρ̄, ū), β1(Ū ) = ρ̄, f 1(Ū ) = ρ̄ ū,
β2(Ū ) = ρ̄ ū, and f 2(Ū ) = ρ̄ ū⊗ ū (in fact, tomatch precisely the formalism of Eq. (4), these
last two functions have to be considered as d functions, one for each velocity component,
associated to d convection operators, which has no consequence for the matter at hand).

Let us denote by P a mesh of the domain�, consisting of a set of disjoint open polyhedral
or polygonal subsets of �, called cells, whose union of closures is �̄ (Fig. 1). To avoid
cumbersome notations, we assume that any pair of adjacent cells shares a whole face (in 3D)
or edge (in 2D), and not only a part of it; however this assumption is not necessary for the
result of Theorem 2.1 to hold. Throughout the paper and when the space dimension is not
specified, we use "face" to define the interface between two cells; for a face ζ , |ζ | stands for
its (d − 1)-dimensional measure in 2D and 3D, and we set |ζ | = 1 by convention in one
space dimension. The notation |P| stands for the d-dimensional measure of a cell P . We
denote by δ(P) the space step, defined by

δ(P) = max
P∈P

diam(P).

Let F denote the set of faces of the mesh, and Fint denote the set of faces that are not
located on the boundary ∂�; for a given cell P ∈ P, let F(P) be the set of faces of P . Let
t0 = 0 < t1 < . . . < tN = T be a partition of (0, T ), denoted by T; for such a partition T,
we define the time step by δt = max {tn+1 − tn, n ∈ �0, N − 1�}, where �0, N − 1� denotes
the set of integers n such that 0 ≤ n ≤ N − 1.

The unknown is supposed to be represented by a function U ∈ L∞(� × (0, T ),Rp).
For a colocated FV scheme, it is the piecewise constant function defined by U (x, t) = U n

K
for x ∈ K and t ∈]tn, tn+1[. For a FV staggered scheme for a system of equations, each
component of U is piecewise constant on each associated mesh. But U could also be a
piecewise affine function, for instance if say, a DG scheme is used. We emphasize that for
non colocated schemes, some unknowns are not piecewise-constant over the cells of the
mesh and over the time steps. For instance, when using staggered discretisations in fluid flow
simulations, if P is a primal cell, the velocity is possibly discontinuous along surfaces or
lines included in P (see the example developed in Sect. 4). The discrete convection operator
that we consider here takes the following form:

C(U ) : � × (0, T ) → R,

(x, t) 	→ C(U )n
P , for x ∈ P, P ∈ P, and t ∈ (tn, tn+1), n ∈ �0, N − 1�,
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Lax–Wendroff consistency of finite volume... 337

Fig. 1 An example of a
two-dimensional mesh and
associated notations: P and Q are
two generic cells, P, Q ∈ P, with
P the set of cells, ζ = P|Q is the
face separating P and Q, ζ ∈ F,
with F the set of faces and nP,ζ

is the normal to ζ pointing
outward P

with

C(U )n
P = (ðtβ)n

P + 1

|P|
∑

ζ∈F(P)

|ζ | Fn
ζ · nP,ζ ,

where
{
βn

P , P ∈ P, n ∈ �0, N�
}
is a family of real numbers,

(ðtβ)n
P = βn+1

P − βn
P

tn+1 − tn
, n ∈ �0, N − 1�, (6)

{
Fn

ζ , ζ ∈ F, n ∈ �0, N − 1�
}
is a family of real vectors of Rd and nP,ζ stands for

the normal vector to ζ pointing outward P . Note that this form of the flux implies that
the scheme is conservative. Of course, the real numbers

{
βn

P , P ∈ P, n ∈ �0, N�
}
and{

Fn
ζ , ζ ∈ F, n ∈ �0, N − 1�

}
are related to the unknown U ; it is the object of Theorem 2.1

below to state precisely the assumptions that must be satisfied by these quantities to ensure
the consistency of the discrete convection operator.

Theorem 2.1 (LW-consistency for a multi-dimensional conservative convection operator)
Under the assumptions (4), let (P(m),T(m))m∈N be a sequence of possibly non uniform

space-time discretisations, with δ(P(m)) and δt (m) tending to zero as m → +∞, and let
(U (m))m∈N be the associated sequence of discrete functions. We suppose that the sequence
(U (m))m∈N is bounded and converges to a limit:

∃ Cu ∈ R
∗+ s.t. ‖U (m)‖∞ ≤ Cu, ∀m ∈ N, (7)

∃ Ū ∈ L∞(� × (0, T ),Rp) s.t. ‖U (m) − Ū‖L1(�×(0,T ),Rp) → 0 as m → +∞. (8)

We also assume that the family {(β(m))n
P , P ∈ P(m), n ∈ �0, N (m)�, m ∈ N} is bounded. In

addition, let U0 ∈ L∞(�,Rp) and let us suppose that, as m → +∞,

∑
P∈P(m)

int

∫
P

(
(β(m))0P − β(U0)(x)

)
ϕ(x) dx → 0, for any ϕ ∈ C∞

c (�), (9)

N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
(β(m))n

P − β(U (m))(x, t)
)

ϕ(x, t) dx dt → 0,

for any ϕ ∈ C∞
c

(
� × [0, T )

)
, (10)
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N (m)−1∑
n=0

∑
P∈P(m)

int

diam(P)

|P|
∑

ζ∈F(P)

|ζ |
∫ tn+1

tn

∫
P

∣∣∣
(
(F(m))n

ζ − f (U m)(x, t)
)

· nP,ζ

∣∣∣ dx dt → 0,

(11)

where P
(m)
int denotes the set of cells of P(m) that have no face on the boundary ∂�. Then, for

any ϕ ∈ C∞
c (� × [0, T )),

∫ T

0

∫
�

C(m)(U (m)) I(m)(ϕ)(x, t) dx dt → −
∫

�

β(U0)(x) ϕ(x, 0) dx

−
∫ T

0

∫
�

(
β(Ū )(x, t) ∂tϕ(x, t) + f (Ū )(x, t) · ∇ϕ(x, t)

)
dx dt as m → +∞,(12)

where I(m)(ϕ) is an interpolate of ϕ defined a.e. by

I(m)(ϕ)(x, t) = ϕn
P for x ∈ P and t ∈ (tn, tn+1),

with ϕn
P = 1

|P|
∫

P
ϕ(x, tn) dx, for P ∈ P and n ∈ �0, N − 1�. (13)

Before we give the proof of Theorem 2.1, let us first briefly comment on its assumptions.

Remark 2.2 (Flux consistency) The required flux consistency is stated by Assertion (11),
which requires the flux (F(m))n

ζ through a face ζ of a cell P to be close to the mean value
over P of the actual flux function f applied to the unknown. For a scheme involving only
cell unknowns, for instance, the quantity (F(m))n

ζ is generally a function of the unknowns
in the cell P and in the neighbouring cells, and checking the assumption (11) amounts to
bound the difference between the unknowns and their translates. Note that, while Theorem
2.1 holds for very general meshes, as we have already mentioned in the introduction, some
regularity assumptions on the sequence of meshes may be required at this step.

To clarify this point, let us consider a simple one-dimensional problem for the scalar
unknown u, with β(u) = f (u) = u, leading to the linear convection operator C(u) =
∂t u + ∂x u, which we discretise with the first-order explicit-in-time upwind scheme. Let us
suppose that the discrete functions are defined by u(x, t) = un

P for x ∈ P and t ∈ (tn, tn+1).
Then, for x ∈ P and t ∈ (tn, tn+1), |((F(m))n

ζ − f (U m)(x, t))·nP,ζ | = |(u(m))n
P− −(u(m))n

P |
where P− is the left cell to P when ζ is its left face, and |((F(m))n

ζ − f (U m)(x, t))·nP,ζ | = 0
otherwise (disregarding the boundary cells, according to the formulation of the theorem).
Checking Assumption (11) thus consists in proving that the term R(m) defined by

R(m) =
N (m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P) |un
P − un

P−|

tends to zero as m tends to +∞. This is implied by the convergence in L1(�× (0, T )) of the
sequence of discrete solutions provided that the ratio |P|/|P−| is bounded independently of
m for the sequence of meshes under consideration [5, Section 4]. More elaborate example
of application, using colocated then staggered meshes, are provided below, in Sects. 3 and 4
respectively.

Remark 2.3 (Disregarding boundary cells in Assumption (11)) Since the support of the test
function ϕ is compact in � × [0, T ), for δ(P(m)) small enough, ϕ vanishes in the boundary
cells. Consequently, it is clear from the proof of the theorem below (see the expression (15)
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Lax–Wendroff consistency of finite volume... 339

of the term X (m)
2 ) that boundary cells may be excluded in the sum in Assertion (11). This

is the reason why only the cells in P
(m)
int are considered in Assumption (11). For numerical

fluxes involving wider stencils (for instance in the case of higher order schemes), one could
in fact reduce the set of involved cells furthermore.

Remark 2.4 (Regularity of β and f ) The proof of Theorem 2.1 holds if β and f are only
continuous functions, which is the assumption made in the present section; however, to prove
Assertions (10) and (11), a locally Lipschitz-diagonal continuity (see Definition 3.1 below)
is often required, as in Sects. 3 and 4.

Remark 2.5 (Stronger convergence assumptions on {(β(m))m∈N}) Inmost situations, stronger
convergence properties hold for (β(m))m∈N, in the sense that the LW-convergence assump-
tions (9) and (10) are implied by the following strong convergence assumptions:

∑
P∈P(m)

int

∫
P

|(β(m))0P − β(U0(x))| dx → 0 as m → +∞,

Nm−1∑
n=0

∑
P∈P(m)

int

∫ tn+1

tn

∫
P

|(β(m))n
P − β(U (m)(x, t))| dx dt → 0 as m → +∞.

This is the case, for instance, for the convection operators considered in Sects. 3 and 4 below.
However, there are cases where the convergence of β(m) is only weak, see for instance the
reconstructed kinetic energy for the full compressible Euler equations in [8].

Remark 2.6 (On the interpolate of the test function) Note that in the definition (13) of I(m)(ϕ)

in (12), the quantities ϕn
P , n ∈ �0, N�, may be also defined as

ϕn
P = 1

|P|
∫

P
ϕ(x, tn+1) dx,

with minor changes in the arguments of the present section, essentially a slightly different
assumption (10), which reads:

N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
(β(m))n−1

P − β(U (m))(x, t)
)

ϕ(x, t) dx dt → 0,

for any ϕ ∈ C∞
c

(
� × [0, T )

)
.

For instance, for a scalar problem, if the discrete function is defined as u(x, t) = un−1
P for

x ∈ P and t ∈ [tn−1, tn) (choice often used in explicit schemes) and βn−1
P is defined in the

scheme as β(un−1
P ), this assumption is trivially satisfied, since (β(m))n−1

P = β(U (m))(x, t)
in P × (tn−1, tn), while checking the original assumption (10) needs to bound the time
translates of the discrete solution. This is however an easy task, under a very mild regularity
assumption for the time discretisation (see Sect. 4 below). The opposite situation occurs (i.e.
this is Assumption (10) which is now trivially satisfied) if the discrete function is defined as
u(x, t) = un

P for x ∈ P and t ∈ [tn−1, tn), which is often done for implicit schemes.

Proof of Theorem 2.1 Theorem 2.1 is the consequence of the two following lemmas, which
prove respectively the convergence of the time derivative part and the space derivative part.
Let us decompose
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∫ T

0

∫
�

C(m)(U (m)) I(m)(ϕ)(x, t) dx dt = X (m)
1 + X (m)

2 , with

X (m)
1 =

N (m)−1∑
n=0

(tn+1 − tn)
∑

P∈P(m)

|P|(ðtβ
(m))n

P ϕn
P , (14)

X (m)
2 =

N (m)−1∑
n=0

(tn+1 − tn)
∑

P∈P(m)

∑
ζ∈F(P)

|ζ | (F(m))n
ζ · nP,ζ ϕn

P . (15)

Then, by Lemma 2.7 below,

X (m)
1 → −

∫
�

β(U0)(x) ϕ(x, 0) dx −
∫ T

0

∫
�

β(Ū )(x, t) ∂tϕ(x, t) dx dt as m → +∞,

and by Lemma 2.8 below,

X (m)
2 → −

∫ T

0

∫
�

f (Ū )(x, t) · ∇ϕ(x, t) dx dt as m → +∞,

which concludes the proof. ��
Lemma 2.7 (LW-consistency, time derivative) Let the sequence (X (m)

1 )m∈N be defined by
(14). Then, under the assumptions and notations of Theorem 2.1,

X (m)
1 → −

∫
�

β(U0)(x) ϕ(x, 0) dx −
∫ T

0

∫
�

β(Ū )(x, t) ∂tϕ(x, t) dx dt as m → +∞.

Proof By the definition (6) of ðn
t β

(m)
P (x, t) and thanks to a discrete integration by parts, we

get that

X (m)
1 = −

∑
P∈P(m)

|P| (β(m))0P ϕ0
P −

N (m)∑
n=1

(tn − tn−1)
∑

P∈P(m)

|P| (β(m))n
P

ϕn
P − ϕn−1

P

tn − tn−1
.

Let us write the first term of the right-hand side as

−
∑

P∈P(m)

|P| (β(m))0P ϕ0
P = −

∑
P∈P(m)

∫
P
(β(m))0P

(
ϕ0

P − ϕ(x, 0)
)
dx

−
∑

P∈P(m)

∫
P
(β(m))0P ϕ(x, 0) dx.

On the one hand, the piecewise-constant function equal toϕ0
P on each cell P ∈ P(m) converges

to ϕ(x, 0) in L∞(�) as m tends to +∞, and (β(m))0 is supposed to be bounded; the first
integral at the right-hand side thus tends to zero. Hence, invoking Assumption (9) for the
second integral,

−
∑

P∈P(m)

|P| (β(m))0P ϕ0
P → −

∫
�

β(U0)(x) ϕ(x, 0) dx as m → +∞.

Let the piecewise constant function ð(m)
t ϕ : � × (0, T ) → R

d be defined by

ð
(m)
t ϕ(x, t) = ϕn+1

P − ϕn
P

tn+1 − tn
for (x, t) ∈ P × (tn, tn+1).
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The function ð(m)
t ϕ converges uniformly to ∂tϕ in L∞(�× (0, T )). The second term of X (m)

1
may be decomposed as

−
N (m)∑
n=1

(tn − tn−1)
∑

P∈P(m)

|P| (β(m))n
P

ϕn
P − ϕn−1

P

tn − tn−1
= Y (m)

1 + Y (m)
2

with

Y (m)
1 = −

N (m)∑
n=1

∑
P∈P(m)

∫ tn

tn−1

∫
P
(β(m))n

P

(
ð

(m)
t ϕ(x, t) − ∂tϕ(x, t)

)
dx dt,

Y (m)
2 = −

N (m)∑
n=1

∑
P∈P(m)

∫ tn

tn−1

∫
P
(β(m))n

P ∂tϕ(x, t) dx dt .

Since the family {(β(m))n
P , P ∈ P(m), n ∈ �0, N (m)�, m ∈ N} is assumed to be bounded,

the uniform convergence of ð(m)
t ϕ to ∂tϕ yields that the sequence (Y (m)

1 )m∈N tends to zero.
Invoking the assumption (10), the continuity of β and the convergence of (U (m))m∈N to Ū ,
we get that

lim
m→+∞ X (m)

1 = lim
m→+∞ Y (m)

2 = −
∫ T

0

∫
�

β(Ū )(x, t) ∂tϕ(x, t) dx dt .

��

Lemma 2.8 (LW-consistency, space derivative) Let the sequence (X (m)
2 )m∈N be defined by

(15). Then, under the assumptions and notations of Theorem 2.1,

X (m)
2 → −

∫ T

0

∫
�

f (Ū )(x, t) · ∇ϕ(x, t) dx dt as m → +∞.

Proof Since ϕ is compactly supported and since δ(P(m)) → 0 as m → 0, there exists M ∈ N

such that for m ≥ M , ϕn
P = 0 for all x ∈ P(m) \P(m)

int . Moreover, since for a face ζ separating
P and P ′, one has nP,ζ = −nP ′,ζ , we get that

X (m)
2 =

N (m)−1∑
n=0

(tn − tn−1)
∑

P∈P(m)
int

∑
ζ∈F(P)

|ζ | (F(m))n
ζ · nP,ζ ϕn

P

=
N (m)−1∑

n=0

(tn − tn−1)
∑

Pint∈P(m)

An
P

with

An
P =

∑
ζ∈F(P)

|ζ | (F(m))n
ζ · nP,ζ (ϕn

P − ϕn
ζ ),
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where ϕn
ζ denotes the mean value of ϕ(x, tn) over ζ . For any x ∈ P , t ∈ [tn, tn+1), we

decompose An
P as

An
P = Bn

P (x, t) + Rn
P (x, t) with

Bn(x, t) =
∑

ζ∈F(P)

|ζ | f (U (m))(x, t) · nP,ζ (ϕn
P − ϕn

ζ ),

Rn
P (x, t) =

∑
ζ∈F(P)

|ζ |
(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ (ϕn
P − ϕn

ζ ).

(16)

Since
∑

ζ∈F(P) |ζ | nP,ζ = 0, we have

Bn
P (x, t) = −

∑
ζ∈F(P)

|ζ | f (U (m))(x, t) · nP,ζ ϕn
ζ = −|P| f (U (m))(x, t) · (∇ϕ)n

P ,

with (∇ϕ)n
P = 1

|P|
∑

ζ∈F(P)

|ζ | ϕn
ζ nP,ζ = 1

|P|
∫

P
∇ϕ(x, tn) dx. (17)

Note that the piecewise constant function ∇(m)ϕ : � × (0, T ) → R
d defined by

∇(m)ϕ(x, t) = (∇ϕ)n
P for (x, t) ∈ P × (tn, tn+1)

converges uniformly to ∇ϕ in L∞(� × (0, T ))d .
Owing to (16), we have

An
P = 1

(tn+1 − tn) |P|
(∫ tn+1

tn

∫
P

Bn
P (x, t) dx dt +

∫ tn+1

tn

∫
P

Rn
P (x, t) dx dt

)
,

and, thanks to (17),

X (m)
2 =

N (m)−1∑
n=0

∑
P∈P(m)

int

1

|P|
(∫ tn+1

tn

∫
P

Bn
P (x, t) dx dt +

∫ tn+1

tn

∫
P

Rn
P (x, t) dx dt

)

= −
∫ T

0

∫
�

f (U (m))(x, t) · ∇(m)ϕ(x, t) dx dt

+
N (m)−1∑

n=0

∑
P∈P(m)

int

1

|P|
∫ tn+1

tn

∫
P

Rn
P (x, t) dx dt . (18)

Then, thanks to the boundedness and convergence assumptions on U (m) and to the uniform
convergence of ∇(m)ϕ to ∇ϕ, the first term tends to − ∫ T

0

∫
�

f (Ū )(x, t) · ∇ϕ(x, t) dx dt as
m → +∞. Since |ϕn

ζ − ϕn
P | ≤ Cϕ diam(P), with Cϕ depending only on ϕ, we get, for any

x ∈ P and t ∈ (tn, tn+1),

|Rn
P (x, t)| ≤ Cϕ

∑
ζ∈F(P)

|ζ |
∣∣∣
(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ

∣∣∣ diam(P).

The second term of the right-hand side of Relation (18) thus tends to 0 as m → +∞ thanks
to the assumption (11), which concludes the proof. ��
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3 Application to a colocated scheme

In this section, we apply Theorem 2.1 to a first specific case, namely the case of a con-
vection operator for a single scalar unknown ū, with a piecewise-constant discretisation of
the unknown. We are going to prove a general consistency result for multipoint schemes,
assuming minimal regularity of the mesh.

The considered convection operator reads:

C̄(ū) : � × (0, T ) → R,

(x, t) 	→ ∂t (β(ū))(x, t) + div( f (ū))(x, t), (19)

where � ⊂ R
d , d = 1, 2, 3, T ∈ (0,+∞), β ∈ C0(R,R), f ∈ C0(R,Rd). The functions β

and f are supposed to be locally-Lipschitz. The discrete unknowns are (un
P )P∈P, n∈�0,N−1�

and the discrete convection operator reads:

C(u) : � × (0, T ) → R,

(x, t) 	→ β(un+1
P ) − β(un

P )

tn+1 − tn
+ 1

|P|
∑

ζ∈F(P)

|ζ | Fn
ζ · nP,ζ ,

for x ∈ P, P ∈ P, and t ∈ (tn, tn+1), n ∈ �0, N − 1�. (20)

For a face ζ of the mesh, we denote by Sζ a set of cells, and suppose that the flux Fn
ζ reads

Fn
ζ = Fζ,n

(
(un

L)L∈Sζ

)
.

The set Sζ is often referred to as the stencil of the scheme. We denote by (a)L∈Sζ
the family

of real numbers whose cardinal is the same as Sζ and whose elements are all equal to a. The
flux is supposed to satisfy the usual consistency assumption:

for a ∈ R, ∀ζ ∈ F, Fζ,n
(
(a)L∈Sζ

) = f (a). (21)

In addition, we suppose the following local “Lip-diag“ (for Lipschitz-diagonal) property of
the flux:

Definition 3.1 (Local Lipschitz-diagonal continuity) The numerical flux function Fζ,n is
said to be locally Lipschitz-diagonal continuous, or Lip-diag, if for any bounded interval
I ⊂ R, there exists CI ∈ R+ depending only on I such that, for any n ∈ �0, N − 1�, for any
face ζ ∈ F, for any family (uL)L∈Sζ

⊂ I , and for any P adjacent cell to ζ ,
∣∣Fζ,n

(
(un

L)L∈Sζ

) − f (un
P )

∣∣ ≤ CI

∑
L∈Sζ

|un
L − un

P |. (22)

Note that this condition is weaker than the local Lipschitz-continuity of the numerical flux
function Fζ,n . For P ∈ P, we denote by N1(P) the set of the neighbours of P , i.e. the cells
of P sharing a face with P; for 	 > 1, we define N	(P) as the set of the cells sharing a face
with a cell of N	−1(P). We assume that there exists 	̄ ∈ N such that

∀ζ ∈ F, for any cell P adjacent to ζ, Sζ ⊂ N	̄(P). (23)

The integer 	̄ characterizes the compactness of the stencil of the scheme. The initial value
for the scalar unknowm u is defined by

u0
P = 1

|P|
∫

P
u0(x) dx, ∀P ∈ P, (24)
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where u0 is a given function of L1(�). Finally, we define the discrete function associated to
the unknowns as:

u(x, t) = un
P for x ∈ P, P ∈ P, t ∈ [tn, tn+1), n ∈ �0, N − 1�.

The consistency result for the discrete convection operator is given in the next lemma; it
uses the following regularity parameters of the mesh:

θ1(P) = max
P∈P

diam(P)d

|P| , θ2(P) = max
{ |P|

|Q| , P and Q adjacent cells of P
}
.

We also measure the regularity of the time discretisation by the parameter θ3(T) defined by

θ3(T) = max
1≤n≤N−1

{ tn+1 − tn
tn − tn−1

,
tn − tn−1

tn+1 − tn

}
.

Lemma 3.2 [Consistency, colocated scheme] Consider a sequence of space and time discreti-
sations (P(m))m∈N and (T(m))m∈N , with δ(P(m)) and δt (m) tending to zero; let (u(m))m∈N be
an associated sequence of discrete functions, and let C(m)(u(m)) be the associated sequence
of discrete convection operators defined by (20). We assume that for each m ∈ N, (21)–(24)
hold with, in (23), 	̄ independent of m. We also suppose that

∃ θ ∈ R such that max{θ1(P(m)), θ2(P
(m)), θ3(T

(m)), m ∈ N} ≤ θ, (25)

and that the number of faces of each cell of the meshes P(m) is bounded independently of m.
Finally, we suppose that the sequence (u(m))m∈N is bounded in L∞(� × (0, T )), and that,
when m tends to +∞, it converges in L1(� × (0, T )) to ū ∈ L∞(� × (0, T )). Then, for any
function ϕ ∈ C∞

c (� × [0, T )),
∫ T

0

∫
�

C(m)(U (m))(x, t) I(m)(ϕ) dx dt → −
∫

�

β(u0)(x) ϕ(x, 0) dx

−
∫ T

0

∫
�

(
β(ū)(x, t) ∂tϕ(x, t) + (

f (ū)
)
(x, t) · ∇ϕ(x, t)

)
dx dt as m → +∞.

Proof Let mu ∈ R and Mu ∈ R be two real numbers such that

mu ≤ (u(m))n
P ≤ Mu, ∀P ∈ P(m), n ∈ �0, N (m)�, ∀m ∈ N,

and let Cβ be the Lipschitz modulus of β over the interval [mu, Mu]. We check the
assumptions of Theorem 2.1. The consistency of the initialization with the initial condition
(Assumption (9)) follows from its definition (24); indeed, for any ϕ ∈ C∞

c (�),
∣∣∣ ∑

P∈P(m)

∫
P

(
(β(m))0P − β(u0)(x)

)
ϕ(x) dx

∣∣∣ ≤ Cβ ‖ϕ‖L∞(�)

∑
P∈P(m)

∫
P

|u0(x) − u0
P | dx,

and thus tends to zero for any function u0 ∈ L1(�). Since (β(m))n
P = β((u(m))n

P ), the
left-hand side of Assertion (10) reads, with ϕ ∈ C∞

c (� × [0, T )):

R(m)
t =

N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
(β(m))n

P − β(u(m))(x, t)
)

ϕ(x, t) dx dt

=
N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
β
(
(u(m))n

P

) − β
(
(u(m))n−1

P

))
ϕ(x, t) dx dt .
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We thus have

|R(m)
t | ≤ Cβ ‖ϕ‖L∞(�×[0,T ))

N (m)∑
n=1

(tn − tn−1)
∑

P∈P(m)
int

|P| |(u(m))n
P − (u(m))n−1

P |,

and thus R(m)
t tends to zero thanks to the assumed regularity of the sequence of time dis-

cretisations, invoking the bound of the time-translates of a converging sequence of functions
of L1(� × (0, T )) stated by Lemma A.1 in Appendix. We now check Assumption (11). For
n ∈ �0, N (m)�, P ∈ P

(m)
int and ζ ∈ F(P), let

Rn
P,ζ = 1

|P|
∫ tn+1

tn

∫
P

∣∣∣
(
(F(m))n

ζ − f (u(m))(x, t)
)

· nP,ζ

∣∣∣ dx dt

and let

R(m) =
N (m)−1∑

n=0

∑
P∈P(m)

int

diam(P)
∑
ζ∈F

|ζ | Rn
P,ζ .

By definition of the discrete flux and the discrete functions, we get:

Rn
P,ζ = 1

|P|
∫ tn+1

tn

∫
P

∣∣∣
(
Fζ,n

((
(u(m))n

L

)
L∈Sζ

)
− f

(
(u(m))n

P

)) · nP,ζ

∣∣∣ dx dt .

Thanks to Assumption (22), we thus have

Rn
P,ζ ≤ (tn+1 − tn) C[mu ,Mu ]

∑
L∈Sζ

|un
L − un

P |.

The remainder term R(m) is thus a collection of differences between the values taken by the
unknown in two different cells. In order to apply Lemma A.3 of the appendix, we need to
evaluate, for P ∈ P(m), the sum ωP of the weights multiplying the jumps where (u(m))n

P
appears. We first notice that, thanks to the assumed regularity of the mesh, for Q ∈ P(m) and
ζ a face of Q, diam(Q) |ζ | ≤ diam(Q)d ≤ θ |Q|. For P to appear in a difference associated
to a face of a cell Q, we need, by assumption, that P ∈ N	̄(Q); this in turn requires that
Q ∈ N	̄(P). The sum ωP thus satisfies:

ωP ≤ θ
∑

L∈N	̄(P)

|L|,

and, invoking once again the regularity constraints on the mesh:

ωP ≤ θ 	̄+1 card(N	̄(P)) |P|.
The proof is thus complete thanks to Lemma A.3, since we have supposed that the number
of faces of the cells is uniformly bounded, and then so is card(N	̄(P)). ��

4 An example of application for staggered discretisations

The interest of Theorem 2.1 lies in the fact that it may deal with terms combining several
variables, associated to different meshes and time discretisations. A typical example of a such
a case is the balance equation for the entropy in barotropic compressible flows (2), where
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the entropy E is a nonlinear function of the density ρ and the velocity u which, in staggered
discretisation, are approximated on different meshes, and may also be evaluated at different
time levels. Hence, Theorem 2.1 is a suitable tool to prove the consistency of this equation. In
this section, we focus on a similar but simpler problem, namely a staggered discretisation of
a convection operator combining the time derivative of the function of a single scalar variable
and a space divergence term, with a flux obtained as the product of another function of this
scalar variable with the velocity.

We suppose that � is an open bounded polygonal set of R2, and consider the following
convection operator:

C(Ū ) : � × (0, T ) → R,

(x, t) 	→ ∂t (β(q̄))(x, t) + div
(
g(q̄) v̄

)
(x, t), (26)

with Ū = (q̄, v̄) : � × (0, T ) → R × R
2, f (Ū ) = f (q̄, v̄) = g(q̄) v̄, where β : R → R

and g : R → R are locally Lipschitz-continuous real functions. Note that, for instance, the
convection term of Eq. (1a) may be written as (26) with Ū = (ρ̄, ū), β(s) = s and g(s) = s.

In order to discretise this convection operator, we consider two types of staggered arrange-
ments. In both arrangements, the scalar unknowns are located at the centre of the cells.
However, these arrangements differ in the use of the vector unknowns. The first discretisa-
tion uses the whole velocity vector unknown on each edge of the mesh; this corresponds
to the Rannacher–Turek (RT) discrete unknowns in the finite element setting [13]. The sec-
ond discretisation uses only the normal component of the velocity on each edge; this latter
arrangement of the discrete unknowns is very often referred to as theMarker-and-Cell (MAC)
scheme [7]. Hence we will refer to the first arrangement as the RT case, and the second as
the MAC case. Such discretisations are called staggered and are widely used in computa-
tional fluid dynamics; an example of the implementation of a staggered discretisation for the
solution of the barotropic and full Euler equations may be found e.g. in [8,9].

We suppose that the mesh is composed either of general quadrangles (RT case), or of
rectangles (MAC case). We recall that F stands for the set of edges of the mesh, and the
internal edge separating the cells P and Q is denoted by ζ = P|Q. This mesh will be
referred to in the following as the primal mesh.

We also introduce now one or two dual meshes, depending on the case.

– RT case In this case, the (unique) dualmesh consists in a new partition of� indexed by the
elements of F, i.e. � = ∪ζ∈FDζ . For an internal edge ζ = P|Q, the set Dζ is supposed
to be a subset of P ∪ Q and we define DP,ζ = Dζ ∩ P , so that Dζ = DP,ζ ∪ DQ,ζ (see
Fig. 2); for an external edge ζ of a cell P , Dζ is a subset of P , and Dζ = DP,ζ . The
cells (Dζ )ζ∈F are referred to as the dual or diamond cells, and DP,ζ as half dual cells or
half diamond cells. For a rectangular cell P , we define DP,ζ as the simplex having the
mass centre of P as vertex and the edge ζ as basis; this definition is extended to general
primal meshes by supposing that |DP,ζ | is still equal to |P|/4 and that the sub-cells
connectivities (i.e. the way the half-dual cells share a common edge) is left unchanged.
Note that the actual geometry of the dual cells does not need to be specified (and a dual
cell may not be a polytope, a dual edge being possibly curved).

– MAC case In this case, two dual meshes are considered, each of them consisting in a
partition of � indexed by the vertical and horizontal elements of F, i.e. � = ∪ζ∈F(i) Dζ ,

i = 1, 2, where F(1) (resp. F(2)) denotes the set of vertical (resp. horizontal) edges. The
cells (Dζ )ζ∈F are still referred to as the dual cells. They are no longer diamond shaped;
indeed, a half dual cell DP,ζ is now half of the rectangle P with side ζ (see Fig. 3). As
in the former case, for an internal edge ζ = P|Q, the dual cell Dζ is the subset of P ∪ Q
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Fig. 2 Primal and dual meshes and associated notations for the quadrangular mesh and Rannacher–Turek like
unknowns

Fig. 3 Primal and dual meshes and associated notations for the MAC case. Left: the primal cells; the edges ζ

and ζ ′ belong to F(1) and the edges κ and κ ′ to F(2) Center: the dual cells associated to F(1) Right: the dual
cells associated to F(2)

defined as Dζ = DP,ζ ∪ DQ,ζ ; for an external edge ζ of a cell P , Dζ is a subset of P ,
and Dζ = DP,ζ .

The scalar unknown q is associated to the primal cells:

q(x, t) = qn
P for x ∈ P, P ∈ P, t ∈ [tn, tn+1), n ∈ �0, N − 1�.

The unknowns corresponding to the vector-valued unknown v are located at the centre of the
edges in the RT case; in the MAC case, the unknowns associated to the i th component of v
are located at the centre of the edges of the i th dual mesh. Hence the associated approximate
vector function reads:

– RT case—the whole vector unknown is associated to each dual cell :

v(x, t) = vn
ζ for x ∈ Dζ , ζ ∈ F, t ∈ [tn, tn+1), n ∈ �0, N − 1�.

– MAC case—the i th component of the vector unknown is associated to the cells of the
i th dual mesh, so that v(x, t) = (v1(x, t), v2(x, t))t where, for i = 1, 2,

vi (x, t) = vn
ζ , for x ∈ Dζ , ζ ∈ F(i) and t ∈ [tn, tn+1), n ∈ �0, N − 1�.

Let e(i) denote the i th unit vector of the canonical basis of R2; with the notations of the
previous section, the considered discrete convection operator reads:

CP(q, v)n
P = (ðtβ)n

P + 1

|P|
∑

ζ∈F(P)

|ζ | Fn
ζ · nP,ζ , with βn

P = β(qn
P ) and Fn

ζ
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= f (qn
ζ , vn

ζ ) = g(qn
ζ ) vn

ζ

where vn
ζ is

{
the vector of discrete unknowns in the RT case,

defined as vn
ζ e(i) for ζ ∈ F(i), i = 1 or 2, in the MAC case,

and, for ζ = P|Q, qn
ζ stands for a convex combination of qn

P and qn
Q . For instance the

upwind choice would be qn
ζ = qn

P if vn
ζ ≥ 0 and qn

ζ = qn
Q otherwise. Note that for the

LW-consistency result, any convex combination works, but this is not so for the stability of
the scheme, for which some unpwinding is required.

The initial value for the scalar unknown q is defined by

q0
P = 1

|P|
∫

P
q0(x) dx. (27)

The consistency result for the discrete convection operator is given in the next lemma; it
uses the same regularity parameters of the mesh as in the colocated case, which we recall:

θ1(P) = max
P∈P

diam(P)2

|P| , θ2(P) = max
{ |P|

|Q| , P and Q adjacent cells of P
}
.

Note that in the MAC case (in fact, for a Cartesian grid), the regularity parameter θ1(P)

controls the ratio between the two dimensions (i.e. the height and the width) of a cell. For
a rectangular computational domain, we thus observe that the ratio |ζ |/|ζ ′|, for (ζ, ζ ′) ∈
(F(i))2, i = 1, 2, is bounded by θ1(P)2, which is a quasi-uniformity property of the mesh.
This also implies that θ2(P) ≤ θ1(P)2, and so the second regularity parameter is useless. It
may easily be checked that similar relations holds for a general MAC scheme, i.e. a union of
matching Cartesian grids, with powers of θ1(P) possibly higher than 2. Hence, the regularity
of a MAC mesh (or of a Cartesian grid) may be equivalently measured by

θ(P) = max
{ h̄(1)

h(2)
,

h̄(2)

h(1)

}
,

with, for i = 1, 2, h̄(i) = max{|ζ |, ζ ∈ F(i)} and h(i) = min{|ζ |, ζ ∈ F(i)}.
We also measure the regularity of the time discretisation by the parameter θ3(T) defined

by

θ3(T) = max
1≤n≤N−1

{ tn+1 − tn
tn − tn−1

,
tn − tn−1

tn+1 − tn

}
.

Lemma 4.1 (Consistency, staggered scheme) Let a sequence of discretisations (P(m))m∈N
and (T(m))m∈N be given, with δ(P(m)) and δt (m) tending to zero, and let (q(m), v(m))m∈N be
the associated sequence of discrete functions. We suppose that

∃ θ ∈ R such that max{θ1(P(m)), θ2(P
(m)), θ3(T

(m)), m ∈ N} ≤ θ. (28)

We suppose that the sequences (q(m))m∈N and (v(m))m∈N are bounded in L∞(�×(0, T )) and
L∞(�×(0, T ))2 respectively, and that, when m tends to+∞, they converge in L p(�×(0, T ))

and L p(� × (0, T ))2, 1 ≤ p < +∞, to q̄ ∈ L∞(� × (0, T )) and v̄ ∈ L∞(� × (0, T ))2

respectively. Then, for any function ϕ ∈ C∞
c (� × [0, T )),

∫ T

0

∫
�

C(m)(U (m))(x, t) I(m)(ϕ) dx dt → −
∫

�

β(q0)(x) ϕ(x, 0) dx

−
∫ T

0

∫
�

(
β(q̄)(x, t) ∂tϕ(x, t) + (

g(q̄) v̄)
)
(x, t) · ∇ϕ(x, t)

)
dx dt as m → +∞.
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Proof In this proof, we denote by Cβ and Cg the Lipschitz modulus of β and g respectively
on the interval [mq , Mq ], where mq ∈ R and Mq ∈ R are such that

mq ≤ (q(m))n
P ≤ Mq , ∀P ∈ P(m), n ∈ �0, N (m)�, ∀m ∈ N.

The proof of this lemma relies on Theorem 2.1. The consistency of the initialization
with the initial condition (Assumption (9)) follows from its definition (27); indeed, for any
ϕ ∈ C∞

c (�),

∣∣∣ ∑
P∈P(m)

∫
P

(
(β(m))0P − β(q0)(x)

)
ϕ(x) dx

∣∣∣ ≤ Cβ ‖ϕ‖L∞(�)

∑
P∈P(m)

∫
P

|q0(x) − q0
P |,

and thus tends to zero for any function q0 ∈ L1(�). Since (β(m))n
P = β((q(m))n

P ), the
left-hand side of Assertion (10) reads, with ϕ ∈ C∞

c (� × [0, T )):

R(m)
t =

N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
(β(m))n

P − β(U (m))(x, t)
)

ϕ(x, t) dx dt

=
N (m)∑
n=1

∑
P∈P(m)

int

∫ tn

tn−1

∫
P

(
β
(
(q(m))n

P

) − β
(
(q(m))n−1

P

))
ϕ(x, t) dx dt .

We thus have

|R(m)
t | ≤ Cβ ‖ϕ‖L∞(�×[0,T ))

N (m)∑
n=1

(tn − tn−1)
∑

P∈P(m)
int

|(q(m))n
P − (q(m))n−1

P |,

and thus R(m)
t tends to zero thanks to the assumed regularity of the sequence of time discreti-

sations, invoking the bound of the time-translates of a converging sequence of functions of
L1(� × (0, T )) stated by Lemma A.1 in Appendix.

We now check Assumption (11). For n ∈ �0, N (m)�, P ∈ P
(m)
int and ζ ∈ F(P), let

Rn
P,ζ = 1

|P|
∫ tn+1

tn

∫
P

∣∣∣
(
(F(m))n

ζ − f (q(m), v(m))(x, t)
)

· nP,ζ

∣∣∣ dx dt

and let

R(m) =
N (m)−1∑

n=0

∑
P∈P(m)

int

diam(P)
∑
ζ∈F

|ζ | Rn
P,ζ .

We now express Rn
P,ζ , for the RT and MAC discretisations successively.

– RT case—in the case of general quadrangular meshes with the whole vector unknowns
located on the edges, we have

(F(m))n
ζ = g(qn

ζ ) vn
ζ and f (q(m), v(m))(x, t) = g(qn

P ) vn
ζ ′ for x ∈ DP,ζ ′ , ζ ′ ∈ F(P).

We thus get, denoting by |a| the Euclidean norm of any vector a ∈ R
2,∣∣∣

(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ

∣∣∣ ≤ ∣∣g(qn
ζ ) vn

ζ − g(qn
P ) vn

ζ ′
∣∣ for x ∈ DP,ζ ′ , ζ ′ ∈ F(P).
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Let Q be the primal cell such that ζ = P|Q. Since qn
ζ is a convex combination of qn

P
and qn

Q , we thus get, for x ∈ P , and t ∈ [tntn+1),

∣∣∣
(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ

∣∣∣ ≤ C
(
|qn

P − qn
Q | +

∑
ζ ′∈F(P)

|vn
ζ − vn

ζ ′ |
)
,

where C only depends on ‖q(m)‖L∞(�×(0,T )), ‖v(m)‖L∞(�×(0,T ))2 and Cg . Integrating
over P × (tn, tn+1), we obtain

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qn

P − qn
Q | +

∑
ζ ′∈F(P)

|vn
ζ − vn

ζ ′ |
)
.

– MAC case—in this case, the velocity components are piecewise constant on different
grids. Let i be the index such that ζ ∈ F(i), and let ζ ′ be the other edge of P normal to
e(i), i.e. the opposite of ζ in P . We have

(F(m))n
ζ · nP,ζ = g(qn

ζ ) vn
ζ δζ and f (q(m), v(m))(x, t) =

{
g(qn

P ) vn
ζ δζ if x ∈ DP,ζ ,

g(qn
P ) vn

ζ ′ δζ if x ∈ DP,ζ ′ ,

with δζ = nP,ζ · e(i). We thus get

∣∣∣
(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ

∣∣∣ =
{∣∣g(qn

ζ ) vn
ζ − g(qn

P ) vn
ζ

∣∣ if x ∈ DP,ζ ,∣∣g(qn
ζ ) vn

ζ − g(qn
P ) vn

ζ ′
∣∣ if x ∈ DP,ζ ′ ,

and hence, for x ∈ P , and t ∈ [tntn+1), denoting by Q the primal cell such that ζ = P|Q,

∣∣∣
(
(F(m))n

ζ − f (U (m))(x, t)
)

· nP,ζ

∣∣∣ ≤ C
(|qn

P − qn
Q | + |vn

ζ − vn
ζ ′ |),

where C only depends on ‖q(m)‖L∞(�×(0,T )), ‖v(m)‖L∞(�×(0,T ))2 and Cg . Therefore,
integrating over P × (tn, tn+1), we finally get

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qn

P − qn
Q | + |vn

ζ − vn
ζ ′ |

)
.

Note that, in these computations, we have not addressed the case where ζ is an external edge,
taking benefit of the fact that, in the expression of R(m), the sum is restricted to the internal
cells.

From the definition of R(m), we thus get that, for both cases, it satisfies the following
inequality:

R(m) ≤ C
(
R(m)
1 + R(m)

2

)
,

with

R(m)
1 =

N (m)−1∑
n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P)
∑

ζ∈F(P),
ζ=P|Q

|ζ | |qn
P − qn

Q |,
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Fig. 4 Left: the primal edges ζ and ζ ′ are adjacent. Right: the primal edges ζ and ζ ′ are opposite

and

R(m)
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N (m)−1∑
n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P)
∑

{ζ,ζ ′}⊂F(P)2

(|ζ | + |ζ ′|) |vn
ζ − vn

ζ ′ | in the RT case,

N (m)−1∑
n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P)
∑

i=1,2,
{ζ,ζ ′}⊂F(i)(P)2

(|ζ | + |ζ ′|) |vn
ζ − vn

ζ ′ | in the MAC case.

There only remains to prove that R(m)
1 and R(m)

2 tend to zero as m tends to +∞. Reordering

the summation in R(m)
1 , we get that

R(m)
1 =

N (m)−1∑
n=0

(tn+1 − tn)
∑

ζ∈F(m)
int ,

ζ=P|Q

ωζ |qn
P − qn

Q |, with ωζ =
(
diam(P) + diam(Q)

)
|ζ |.

Lemma A.1 states that R(m)
1 tends to zero if the weight ωζ is controlled by both |P| and |Q|;

since we have ωζ ≤ 2
(
max(diam(P), diam(Q))

)2, this is easily obtained using Assumption
(28).

As to the term R(m)
2 , let us start with the RT case. We have:

∑
{ζ,ζ ′}⊂F(P)2

(|ζ | + |ζ ′|) |vn
ζ − vn

ζ ′ | ≤ 2 diam(P)
∑

{ζ,ζ ′}⊂F(P)2

|vn
ζ − vn

ζ ′ |,

We distinguish two cases for the subsets {ζ, ζ ′}) ⊂ F(P)2 that appear in the summation:
either the dual cells Dζ and D′

ζ share a common (dual) edge η = ζ |ζ ′ ∈ F∗, where F∗
denotes the set of edges of the dual mesh, or they are opposite edges in the quadrilateral cell
P; in this latter case, we may write that

|vn
ζ − vn

ζ ′ | ≤ |vn
ζ − vn

ζ ′′ | + |vn
ζ ′′ − vn

ζ ′ |,
where ζ ′′ ∈ F(P) is such that the dual cell Dζ ′′ shares a common (dual) edge η (resp. η′)
∈ F∗ with Dζ (resp. Dζ ′ ) as shown in Fig. 4. There is one jump between two adjacent faces
that appears directly in the summation over {ζ, ζ ′}) ⊂ F(P)2, and at most two coming from
the decompositions of the jumps needed for pairs of opposite edges, so that altogether,

∑
(ζ,ζ ′)∈F(P)2

(|ζ | + |ζ ′|) |vn
ζ − vn

ζ ′ | ≤ 6 diam(P)
∑

η=ζ |ζ ′∈F∗(P)

|vn
ζ − vn

ζ ′ |,
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with F∗(P) the edges of the dual mesh included in P . We thus get

R(m)
2 ≤ 6

N (m)−1∑
n=0

(tn+1 − tn)
∑

η=ζ |ζ ′∈F∗
diam(Pη)

2 |vn
ζ − vn

ζ ′ |,

where Pη stands for the primal cell in which η is included. The right-hand side of this
inequality is thus a collection of jumps across the dual edges, with, for an edge η, a weight
given by

ωη = 6 diam(Pη)
2.

Thanks to Lemma A.1, R(m)
2 tends to zero when m tends to +∞ if ωη is controlled by both

|Dζ | and |Dζ ′ |; this is indeed the case thanks to Assumption (28), since |Dζ | ≥ |Pη|/4 and
|Dζ ′ | ≥ |Pη|/4.

Let us now turn to the MAC case, which is in fact simpler; indeed, the differences of
velocities appearing in the expression of R(m)

2 are all jumps across dual edges, and we may

thus recast R(m)
2 as

R(m)
2 =

N (m)−1∑
n=0

(tn+1 − tn)

2∑
i=1

∑
η=ζ |ζ ′∈F(i,∗)

diam(Pη) (|ζ | + |ζ ′|) |vn
ζ − vn

ζ ′ |,

where, once again, Pη is the primal cell in which lies η (note that this sum only involves a
subset of the dual edges, which corresponds of the dual edges included in primal cell), and
F(1,∗) (resp. F(2,∗)) denotes the set of vertical (respectively horizontal) dual edges. We thus
again have a collection of jumps across the dual edges, with, for an edge η included in a
primal cell Pη and separating the dual cells Dζ and Dζ ′ , a weight given by

ωη = diam(Pη)
(|ζ | + |ζ ′|).

Thus, again thanks to Lemma A.1, R(m)
2 tends to zero when m tends to +∞ since, remarking

that |Dζ | ≥ |Pη|/2, |Dζ ′ | ≥ |Pη|/2 and ωη ≤ 2diam(Pη)
2, so the weight ωη is controlled

by both |Dζ | and |Dζ ′ | thanks to Assumption (28). ��
Remark 4.2 (On the required regularity of the time discretisation) The assumption θ3(T

(m)) ≤
θ , for m ∈ N, may be avoided thanks to a different choice of the interpolation of the test
function (see Remark 2.6). However, this assumption is very mild (in fact, we do not have
in mind any scheme where the ratio between two consecutive time-steps is likely to blow up
when refining the discretisation).

Appendix A. Convergence of discrete functions in L1

We recall a result proven in [5, Lemma 4.3]. To facilitate its use in the proof of Lemma 4.1,
it is rephrased here under more general forms than in [5] (see Remark A.2 below for the
differences).

Let M be a conforming mesh of the domain � of Rd , d = 1, 2, 3, in polygonal or
polyhedral subsets, and T = (ti )i∈�0,N� be a time discretisation of the interval (0, T ), i.e. a
sequence of real numbers such that 0 = t0 < · · · < tn < . . . tN = T . We denote by δtT
the time step, defined by δtT = max{tn+1 − tn, n ∈ �0, N − 1�}. For u ∈ L1(� × (0, T )),
K ∈ M and n such that n ∈ �0, N − 1�, let un

K be the mean value of u over K × (tn, tn+1).
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We denote by Eint the set of internal faces of the mesh and the face σ ∈ Eint separating the
cells K and L is denoted by σ = K |L . We define the following quantity:

TM,T u =
N−1∑
n=0

(tn+1 − tn)
∑

σ∈Eint
σ=K |L

ωσ |un
K − un

L | +
N−2∑
n=0

δn+1/2

∑
K∈M

|K | |un+1
K − un

K |,(29)

where (ωσ )σ∈Eint and (δn+1/2)n∈�0,N−2� are two sets of non-negative weights. We introduce
the two following parameters:

θM = max
K∈M

max
σ∈Eint(K )

ωσ

|K | , θT = max
n∈�0,N−2�

{ δn+1/2

tn+1 − tn
,

δn+1/2

tn+2 − tn+1

}
, (30)

with Eint(K ) the set of internal faces of K . We denote by δ(M) the space step characterizing
M, i.e. δ(M) = maxK∈M diam(K ). Then the following convergence result holds.

Lemma A.1 Let θ > 0 and (M(m))m∈N be a sequence of meshes and for each m ∈ N, θM(m)

be defined by (30). We assume that θM(m) ≤ θ for all m ∈ N and limm→+∞ δ(M(m)) = 0. We
suppose that the number of faces of a cell K ∈ M(m) is bounded independently from m ∈ N.
For m ∈ N, we suppose given a time discretisation T(m), and suppose that δtT(m) also tends
to zero when m tends to +∞, and that θT(m) ≤ θ for all m ∈ N. Let u ∈ L1(� × (0, T )) and
(u p)p∈N be a sequence of functions of L1(� × (0, T )) such that u p → u in L1(� × (0, T ))

as p → +∞.
Then TM(m),T(m) u p defined by (29) tends to zero when m tends to +∞ uniformly with

respect to p ∈ N.

Remark A.2 The difference betweenLemmaA.1 and the formulation of the same convergence
result in [5] lies in the definition of the weight of the jumps, which is more general in Lemma
A.1. Indeed, the weight of the jumps through the faces featured in the definition of TM,T u
are defined in [5, Lemma 4.3] as a function of the volume of some dual cells associated to
the faces, but a careful examination of the proof itself shows that the introduction of a dual
mesh is in fact useless. Therefore, the proof of Lemma [5, Lemma 4.3] readily extends to
prove Lemma A.1.

This generalization is in most cases sufficient. However, we may go one step further, still
with minor modifications of the proof of [5], as follows. Let Sx be a set of cardinal 2 - subsets
ofM, and St be a set of cardinal 2 - subsets of �0, N − 1�. Let T̃M,T u be defined by

T̃M,T u =
N−1∑
n=0

(tn+1 − tn)
∑

{K ,L}∈Sx

ωK ,L |un
L − un

K | +
∑

{p,q}∈St

δp,q

∑
K∈M

|K | |u p
K − uq

K |,

(31)

where (ωK ,L){K ,L}∈Sx and (δp,q){p,q}∈St are two sets of non-negative weights. We introduce
the two following parameters:

θM = max
K∈M

1

|K |
∑

L∈M{K ,L}∈Sx

ωK ,L , θT = max
n∈�0,N−1�

1

tn+1 − tn

∑
p∈�0,N−1�
{n,p}∈St

δn,p.
(32)

For {K , L} ∈ Sx and {p, q} ∈ St , let

d({K , L}) = max
(x, y)∈K×L

| y − x|, d({p, q}) =
{

tq+1 − tp if q > p,

tp+1 − tq otherwise
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and let

d(M) = max
{K ,L}∈Sx

d({K , L}), d(T) = max
{p,q}∈St

d({p, q}).

Then the following convergence result holds.

Lemma A.3 Let (M(m))m∈N and (T(m))m∈N be a given sequence of meshes and time discreti-
sations. Let us suppose there exists θ > 0 such that θM(m) ≤ θ and θT(m) ≤ θ for all m ∈ N,
with θM(m) and θT(m) given by Eq. (32). Let us assume that d(M(m)) and d(T(m)) tend to zero
when m tends to +∞. Let u ∈ L1(� × (0, T )) and (u p)p∈N be a sequence of functions of
L1(� × (0, T )) such that u p → u in L1(� × (0, T )) as p → +∞.

Then T̃M(m),T(m) u p defined by (31) tends to zero when m tends to +∞ uniformly with
respect to p ∈ N.
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