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Abstract
A large class of physical phenomena in biophysics, chemical engineering, and physical
sciences are modeled as systems of Fredhold integro-differential equations. In its simplest
form, such systems are linear and analytic solutions might be obtained in some cases while
numerical methods can be also used to solve such systems when analytic solutions are not
possible. For more realistic and accurate study of underlying physical behavior, including
nonlinear actions is useful. In this paper, we use the Chebyshev pseudo-spectral method to
solve the pattern nonlinear second order systems of Fredholm integro-differential equations.
The method reduces the operators to a nonlinear system of equations that can be solved
alliteratively. The method is tested against the reproducing kernel Hilbert space (RKHS)
method and shows good performance. The present method is easy to implement and yields
very good accuracy for using a relatively small number of collocation points.

Keywords Chebyshev polynomial · Collocation · Nonlinear · Matrix operation

Mathematics Subject Classification 34A34 · 82M22

1 Introduction

Nonlinear systems of second-order boundary value problems appear as models for studying
many physical systems in science and engineering. Many techniques have been proposed to
solve such systems such as the sinc-collocation method [12,14], homotopy perturbation-
reproducing kernel method [24], variational iteration method [31], continuous genetic
algorithm [2], method of [25], the local radial basis functions based differential quadra-
ture collocation method [13], reproducing kernel method [1], hat basis functions [10], Euler
polynomials approach [5], Chebyshev operational matrix method [32] and a new algorithm
based on reproducing kernel Hilbert space [35]. Simultaneously, system of integral and
integro-differential equations has been solved by discrete Adomian decomposition method
[9], a spectral collocation method [29], Bernoulli Galerkin matrix method [28], Block-Pulse
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functions [41], fractional alternative Legendre functions [34], a Jacobi spectral method [44],
Chebyshev spectral collocation method [23], Taylor expansion [11] and infinite point and
Riemann-Stieltjes integral conditions [15].

We mainly consider the nonlinear second order system of two linear integro-differential
equations of Fredholm type on the interval x ∈ (−1, 1) given by

2∑

i=0
a i (x) y

(i)
1 (x) +

2∑

i=0
b i (x) y

(i)
2 (x) + R1(x, y1, y2)

+ ∫ 1
−1 K11(x, t) y1(t)dt + ∫ 1

−1 K12(x, t) y2(t)dt = f1(x), (1.1)

2∑

i=0
c i (x) y

(i)
1 (x) +

2∑

i=0
d i (x) y

(i)
2 (x) + R2(x, y1, y2)

+ ∫ 1
−1 K21(x, t) y1(t)dt + ∫ 1

−1 K22(x, t) y2(t)dt = f2(x), (1.2)

subject to the following boundary conditions

y(r)
j (1) = θ1r ,

y(r)
j (−1) = θ2r , r = 0, 1, and j = 1, 2. (1.3)

where a i (x), b i (x), c i (x) and d i (x) are continuous functions and the constants θ1r and θ2r
are real. The kernel functions Ki j are Lipschitz continuous over [−1, 1] × [−1, 1] and the
functions f j (x) are given source terms. The functions Ri (x, y1, y2) are nonlinear in terms
of y1 and y2, and we are mainly interested in functions Ri of the form

Ri (x, y1, y2) = gi (x) y
(ω)
j (x) y(ν)

j (x) + hi (x) (y(ω)
j (x))ν,

for positive integers ν and ω.
In recent years, there is an increasing interest in application and development of theCheby-

shev pseudo-spectral methods in many areas in science and engineering. The Chebyshev
function theory and methods have been developed by the fundamental work of Daşcioǧlu for
solving the linear Fredholm-Volterra integro-differential equations [3]. Daşcioǧlu and Yaslan
studied high-order nonlinear ordinary differential equations in [4], El-Gamel presented a
Chebyshev collocation method for the twelfth-order boundary-value problems [21], Heydari
utilize a new class of nonlinear optimal control problems [27], Karunakar and Chakraverty
used partial differential equations [30], Bai et al., applied three-dimensional Helmholtz-type
equations [8], Secer and Bakir supported Ginzburg-Landau Equation [37], Bermejo and
Sastre illustrated the nonlinear Lithium-ion battery equations [7], Saw and Kumar solved
multi-term the fractional order initial value problem [36], Hassani et al., depicted fractional
optimal control problems [26], Yiğit and Bayram showed third and fourth-order singular
perturbation problems [42], Baccouch and Kaddeche offered Viscous Burgers equations in
one and two space dimensions [6], Yousef et al., gave information about a class of Fredholm
fractional integro-differential equations [43], Saw and Kumar dissolved space fractional
advection dispersion equation [39], Wang et al. presented generalized fractional pantograph
equations with variable coefficients [40], Ghimire et al. displayed elliptic partial differential
equations [22], El-Gamel and Sameeh exhibited singular two-point boundary value problems
[20], El-Gamel et al., two-point BVP inmodellingViscoelastic flows [19], El-Gamel exposed
the Eigenvalues of Sturm-Liouville problems in [18], El-Gamel and Sameeh gave the solu-
tion of Troeschs problem [17], El-Gamel and Sameeh presented an efficient technique for
finding the eigenvalues of fourth-order Sturm-Liouville problems [16] and Öztürk offered a
solution for the system of Lane-Emden type equations [33].
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The rest of the paper is organized as follows. Section 2 outlines essential formulations of
Chebyshev polynomials that are necessary for our proposed method. In Sect. 3, Chebyshev-
collocation method is introduced and developed to solve nonlinear systems of second order
Fredholm integro-differential equations. Section 4 reports some numerical examples and
the efficiency of the method is illustrated in comparison with the RKHS method. Finally, a
conclusion of the study is presented in Sect. 5.

2 Preliminaries

The matrix representation of the approximate solutions to the system in Eqs. (1.1) and (1.2)
can be written as

[y j (x)] ≈ T(x) A j , j = 1, 2, (2.1)

where the entries of the matrix T and the column vectors A j are given by

T =

⎡

⎢
⎢
⎢
⎣

T0(x0) T1(x0) · · · TN (x0)
T0(x1) T1(x1) · · · TN (x1)

...
...

...
...

T0(xN ) T1(xN ) · · · TN (xN )

⎤

⎥
⎥
⎥
⎦

, and A j =
[a j0

2
, a j1, . . . , a jN

]τ

.

where the superscript τ denotes the matrix transpose. Here Tn(x) = cos(n arccos(x)) is the
Chebyshev polynomial of degree n, and

xn = cos(nπ/N ), n = 0, 1, . . . , N (2.2)

are the Chebyshev-Gauss-Lobatto collocation points. An approximation to the nth derivative
of a solution y j takes the form [38]

[y(n)
j (x)] = 2n TMn A j , n ∈ N. (2.3)

The entries of the matrixM are given for the case odd and even number N by

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2 0 3

2 · · · 0 N/2
0 0 2 0 · · · N − 1 0
0 0 0 3 · · · 0 N
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · N
0 0 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N odd

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
2 0 3

2 · · · N−1
2 0

0 0 2 0 · · · 0 N
0 0 0 3 · · · N − 1 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 N
0 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. N even
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For fixed x = xs , the kernel Ki j (x, t) can be approximated in terms of a Chebyshev series
in the variable t by

Ki j (xs, t) =
N∑

c=0

′′ki jc (xs)Tc(t),

where the double prime in summation symbol demonstrates a sum with first and last terms
divided by two. Together with the relationmentioned in (1.1–1.2), the Chebyshev coefficients
ki jc (xs) are given by

ki jc (xs) = 2

N

N∑

m=0

′′ Ki j (xs, tm)Tc(tm),

where

tm = cos
(mπ

N

)
.

As a consequence, Ki j (xs, t) can be expressed in the matrix form as

Ki j (xs, t) = Ki j (xs)T (t)τ , (2.4)

as, T (t)τ symbolizes the transpose of T (t). Concerning,

Ki j (xs) =

⎡

⎢
⎢
⎢
⎣

ki j (x0)
ki j (x1)

...

ki j (xN )

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1
2k

i j
0 (x0) ki j1 (x0) . . . 1

2k
i j
N (x0)

1
2k

i j
0 (x1) ki j1 (x1) . . . 1

2k
i j
N (x1)

...
... . . .

...
1
2k

i j
0 (xN ) ki j1 (xN ) . . . 1

2k
i j
N (xN )

⎤

⎥
⎥
⎥
⎥
⎦

.

In a similar manner, substituting the relation (2.2), the integrals in Eqs. (1.1) and (1.2) takes
the form

Ii (xs) =
∫ 1

−1

2∑

j=1

Ki j (xs, t) y j (t)dt, i = 1, 2. (2.5)

Besides, by using the relation [3]

Z =
∫ 1

−1
T (t)T T (t)dt =

[∫ 1

−1
Tn(t)

τ Tm(t)dt

]

= [znm], n,m = 0, 1, 2, . . . , N

where

znm =
{

1
1−(n+m)2

+ 1
1−(n−m)2

, for even n + m

0. for odd n + m

The integral Ii (xs) in Eq. (2.5) then takes the form

Ii (xs) =
2∑

j=1

Ki j (xs)Z(xs)A j , i = 1, 2.
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3 Method of solution

The present method mainly depends on estimating the values of Chebyshev coefficients by
approximating the operators in Eqs. (1.1–1.2) at the Chebyshev collocation points. This
yields a nonlinear system of equations of the form

(
2∑

i=0
2i Ai (x(s))TMi − k11Z

)

A1 +
(

2∑

i=0
2i B i (x(s))TMi − k12Z

)

A2 + R1 = f1(x(s)),

(
2∑

i=0
2iC i (x(s))TMi − k21Z

)

A1 +
(

2∑

i=0
2i D i (x(s))TMi − k22Z

)

A2 + R2 = f2(x(s)),

(3.1)

where

R j (y1, y2) = Gi (x(s))Y
(n)
j (x(s))Y(r)

j (x(s)) + Hi (x(s)) (Y j (x(s))
(r))ω,

and

Ai (x(s)) =

⎡

⎢
⎢
⎢
⎣

a i (x(0)) 0 · · · 0
0 a i (x(1)) · · · 0
...

...
. . .

...

0 0 · · · a i (x(N + 1))

⎤

⎥
⎥
⎥
⎦

,

similarly Bi (x(s)), Ci (x(s)) ,Di (x(s)) , Gi (x(s)) and Hi (x(s)) .

Z =

⎡

⎢
⎢
⎢
⎣

z00 z10 · · · zN0

z01 z11 · · · zN1
...

...
...

...

z0N z1N · · · zNN

⎤

⎥
⎥
⎥
⎦

, Y(n)
j =

⎡

⎢
⎢
⎢
⎢
⎣

y(n)
j (x0)

y(n)
j (x1)

...

y(n)
j (xN )

⎤

⎥
⎥
⎥
⎥
⎦

,

and

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1(x0)
...

f1(xN+1)

f2(x0)
...

f2(xN+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With this in mind, we initially aim to find out the matrix form for Y and I in terms of
Chebyshev coefficient matrix. Now, it is important to realize the following two lemma

Lemma 3.1 [4] The following relation holds
⎡

⎢
⎢
⎢
⎣

y(ω)(x0)y(ν)(x0)
y(ω)(x1)y(ν)(x1)

...

y(ω)(xN )y(ν)(xN )

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

y(ω)(x0) 0 · · · 0
0 y(ω)(x1) · · · 0
...

...
...

0 0 · · · y(ω)(xN )

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

y(ν)(x0)
y(ν)(x1)

...

y(ν)(xN )

⎤

⎥
⎥
⎥
⎦

= Y
(ω)

Y(ν)

= 2ω+ν(TM
ω
A)TMνA.
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where

T =

⎡

⎢
⎢
⎢
⎣

T(x0) 0 · · · 0
0 T(x1) · · · 0
...

...
...

0 0 · · · T(xN )

⎤

⎥
⎥
⎥
⎦

, M =

⎡

⎢
⎢
⎢
⎣

M 0 · · · 0
0 M · · · 0
...

...
...

0 0 · · · M

⎤

⎥
⎥
⎥
⎦

,

and

A =

⎡

⎢
⎢
⎢
⎣

A 0 · · · 0
0 A · · · 0
...

...
...

0 0 · · · A

⎤

⎥
⎥
⎥
⎦

.

Proof See [4]. ��
Lemma 3.2 [21] The following relation holds

⎡

⎢
⎢
⎢
⎣

yω(x0)
yω(x1)

...

yω(xN )

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

yω(x0) 0 · · · 0
0 yω(x1) · · · 0
...

...
...

0 0 · · · yω(xN )

⎤

⎥
⎥
⎥
⎦

= Y
ω−1

Y

= (TA)ω−1 TA.

Proof See [21]. ��
Similarly,

(Y(ω))ν = (Y
(ω)

)ν−1 Y(ω)

= 2ων(TM
ω
A)ν−1 TMωA.

R j (y1, y2) =
2∑

i=1

(
2n+rG j i (TM

n
Ai )TMr + 2ωnH j i (TM

n
Ai )

ω−1TMn
)
Ai . (3.2)

Hence, we can reduplicate nonlinear system of Fredholm integro-differential of 2(N +
1) algebraic equations together with anonymous Chebyshev coefficients into the following
compact essential relation

QA = F (3.3)

[Q ; F] =
[
Q11 Q12 ; f1(x)
Q21 Q22 ; f2(x)

]

In a similar manner, as for the fundamental matrix form of the boundary condition that is
attached to Chebyshev coefficients matrix A gain the posterior modest form

VA = θ (3.4)
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In conclusion, the last rows ofQ and F is substituted by the four rows ofV and θ respectively.
The augmented matrix of this system is

Q̃A = F̃ (3.5)

In that case, solving a nonlinear system of 2(N + 1) equation leads to figure out not only
the matrix A of Chebyshev coefficients but also solution of system (1.1–1.2) under the the
boundary conditions (1.3). We obtain the approximate solution by following the algorithm
in [4] using Matlab.

Algorithm
• Enter (N ) with type integer.
• Enter (tol) with type double.
• Enter xs collocation points vector with dimension (N + 1).
• Enter T andM arrays with dimension ((N + 1) × (N + 1)).
• Enter T andM arrays with dimension ((N + 1) × (N + 1)2) and ((N + 1)2 × (N + 1)2)

respectively.
• Enter F vector with dimension 2(N + 1).
• Set initial approximation AI to satisfy the boundary conditions. Let Aold = AI with

2(N + 1) dimension .
• Q̃(Aold)Anew = F̃ is a linear algebraic 2(N + 1) equations system. Then solve this

system to find Anew .
• If |Aold − Anew| < tol then Anew = A, break. The program is ended.
• Else then Aold ←− Anew.

4 Examples and comparison

Five test examples is constructed so as to clarify the accomplishment Chebyshev method
in finding a solution for nonlinear system of ordinary differential equation. Each example
comprises a particular characteristic problem with the analytical solution that is known in
advance. The first and the second examples present nonlinear system of ODE and the results
are compared with the reproducing kernel Hilbert space (RK HS) method [1]. In the third
example, we solve a fourth order nonlinear system of integro differential fredholm of the
second kind with different three cases. Example 4 and example 5 treat with singular linear
and nonlinear system of ODE. We measure the performance of Chebyshev method by the
maximum absolute error EChebyshev which is defined as

‖EChebyshev‖ = ∣
∣yexact (x) − yChebyshev(x)

∣
∣ ,

Example 1 [1] This is also a nonlinear system of ODE

y′′
1 + 2y′

1 + y2
1 + y22

= f1(x),

y′′
2 + y′

2 + exp(x)y1 + xy22 = f2(x) 0 < x ≤ 1,

f1(x) = 8x(x2 − 1) + 2 + cos(x(1 − x))

1 + (cos(x(1 − x)))2
,

f2(x) = (1 − 2x)(2x − 1) cos(x(1 − x)) + (2x + 1) sin(x(1 − x))

+x2(x − 1)2 exp(x) + x(cos(x(1 − x)))2,
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Table 1 The results of Example 1 y ||EChebyshev || at N = 10 ||ERKHSM|| [1] at N = 51

y1 3.0444E−12 3.15638E−06

y2 2.2204E−12 8.72963E−07

Table 2 The results of Example 2 y ||EChebyshev || at N = 3 ||ERKHSM|| [1] at N = 51

y1 3.2543E−12 7.89095E−07

y2 1.0131E−11 1.07021E−06

under the following boundary condition

y1(0) = 0 y1(1) = 0

y2(0) = 1 y2(1) = 1

whose exact solution is

y1 = x2(x − 1)2,

y2 = cos(x(1 − x)).

Table 1 depicts comparison between maximum absolute errors of the proposed method at
N = 10 and reproducing kernel Hilbert space method (RKHSM) at N = 51 for Example 1.

Example 2 [1] This is also a nonlinear system of ODE

y′′
1 + 2y′

1 + sinh(y1 − (2x3 − 3x2)) − y22 = f1(x),

y′′
2 + x3

x2(1 − x)2 + 1
y′
2 + exp(−y2) + y31 = f2(x) 0 < x ≤ 1,

f1(x) = 12x2 − 4 + sinh(x) − (ln(x2(x − 1)2 + 1))2,

f2(x) = (2x3 − 3x2 + x)3 − 2
6x4 − 4x3 − 5x2 + 6x − 1

(x2(x − 1)2 + 1)2

+ 1

x2(x − 1)2 + 1
,

under the following boundary condition

y1(0) = 0 y1(1) = 0

y2(0) = 0 y2(1) = 0

whose exact solution is

y1 = 2x3 − 3x2 + x,

y2 = ln(x2(x − 1)2 + 1).

Table 2 indicates comparison between maximum absolute errors of the proposed method
at N = 10 and reproducing kernel Hilbert space method (RKHSM) at N = 51.

123
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Table 3 The results of Case 1 in Example 3

N 6 8 9 10

||EChebyshev || for y1 8.2480E−06 1.0539E−08 4.0225E−10 1.6746E−11

||EChebyshev || for y2 1.6123E−05 1.9695E−08 1.5337E−10 4.7656E−11

Example 3 This is fourth order nonlinear systemof integro differential fredholmof the second
kind

y(4)
1 + y′′

2 y
(4)
2 + y1 + A1

∫ 1

0
exp(x − t)y1(t)dt + B1

∫ 1

0
exp((x + 2)t)y2(t)dt = f1(x),

y(4)
2 + (y′′′

1 )3 + y2 + A2

∫ 1

0
exp(xt)y1(t)dt + B2

∫ 1

0
exp(x + t)y2(t)dt = f2(x), 0 < x ≤ 1

(4.1)

under the following boundary condition

y1(0) = y′
1(0) = 1 y1(1) = y′

1(1) = exp(1)

y2(0) = −y′
2(0) = 1 y2(1) = −y′

2(0) = exp(−1)

whose exact solution is

y1 = exp(x),

y2 = exp(−x).

Case 1 : A1 = B1 = A2 = B2 = 1 then the system (4.1) will be fourth order nonlinear
system of integro differential fredholm equations

f1(x) = 3 exp(x) + exp(−2x) + exp(x + 1) − 1

x + 1

f2(x) = exp(3x) + 2 exp(−x) + exp(x) + exp(x + 1) − 1

x + 1

Table 3 demonstrates maximum absolute errors of fourth order nonlinear system of inte-
gro differential fredholm equations with various values of N = 6, 8, 9, 10. The maximum
absolute errors in solutions of our aforementioned method are considerable declined along
with the increasing of N .

Case 2: A1 = B1 = A2 = B2 = 0 then the system (4.1) will be For systems of nonlinear
differential equations

f1(x) = 2 exp(x) + exp(−2x)

f2(x) = exp(3x) + 2 exp(−x)

Table 4 shows maximum absolute errors of systems of nonlinear differential equations
with various values of N = 6, 8, 9, 10 so as to point out the superiority of our aforementioned
method.

Case 3: A1 = A2 = 1 and B1 = B2 = 0 then the system (4.1) will be nonlinear systems of
Fredholm integro-differential equations

y(4)
1 + y′′

2 y
(4)
2 + y1 +

∫ 1

0
exp(x − t)y1(t)dt = f1(x),
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Table 4 The results of Case 2 in Example 3

N 6 8 9 10

||EChebyshev || for y1 8.2149E−06 1.0510E−08 3.7699E−10 1.6183E−11

||EChebyshev || for y2 1.6186E−05 1.9785E−08 8.8191E−11 4.7772E−11

Table 5 The results of Case 3 in Example 3

N 6 8 9 10

||EChebyshev || for y1 8.2497E−06 1.0546E−08 3.7632E−10 1.6487E−11

||EChebyshev || for y2 1.6106E−05 1.9708E−08 9.0600E−11 4.7895E−11

Fig. 1 The numerical results for chebyshev solution for Example 3 case 1 at N = 6

y(4)
2 + (y′′′

1 )3 + y2 +
∫ 1

0
exp(xt)y1(t)dt = f2(x), 0 < x ≤ 1

f1(x) = 2 exp(x) + exp(−2x) + exp(x + 1) − 1

x + 1
f2(x) = exp(3x) + 2 exp(−x) + exp(x)

Table 5 illustrate the maximum absolute errors of systems of nonlinear Fredholm integro-
differential equationswith various values of N = 6, 8, 9, 10. Themaximumabsolute errors in
solutions of our aforementioned method are considerable declined along with the increasing
of N (Figs. 1, 2 and 3).

Example 4 This is a singular nonlinear system of ODE

y′′
1 + 1

x
y′
1 + 1

x2
y1 + y22 y′′

2 + y2 = f1(x),

y′′
2 + 1

x
y′
2 + 1

x2
y2 + y1 = f2(x) 0 < x ≤ 1,
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Fig. 2 The numerical results for chebyshev solution for Example 4 at N = 10

Fig. 3 The numerical results for chebyshev solution for Example 5 at N = 10

under the following boundary condition

y1(0) = 0 y1(1) = 0

y2(0) = 0 y2(1) = exp(1)

whose exact solution is

y1 = x2(1 − x),

y2 = x3 exp(x).

f1(x) = 5 − 10x + x3 exp(x) + x7 exp(3x)(x2 + 6x + 6)

f2(x) = x2(1 − x) + x exp(x)(x + 4) + x exp(x)(x2 + 6x + 6)
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Table 6 The results of Example 4

N 6 8 10 12

||EChebyshev || for y1 3.3602E−05 4.3173E−08 2.2598E−11 8.0138E−11

||EChebyshev || for y2 4.3354E−05 6.2679E−08 5.3232E−11 4.7935E−12

Table 7 The results of Example 5 N 2 3

||EChebyshev || for y1 2.2204E−16 3.3307E−16

||EChebyshev || for y2 2.2204E−16 8.8818E−16

Maximum absolute errors for Example 4 are tabulated in Table 6 together with different
value of N .

Example 5 [33] This is a singular linear system of ODE

y′′
1 + 3

x
y′
1 − 4(y1 + y2) = 0,

y′′
2 + 2

x
y′
2 + 3(y1 + y2) = 0 0 < x ≤ 1,

under the following boundary condition

y1(0) = 1 y′
1(0) = 0

y2(0) = 1 y′
2(0) = 0

whose exact solution is

y1 = 1 + x2,

y2 = 1 − x2.

Table 7 gives an information about themaximum absolute errors for Example 5 in different
value of N .

5 Conclusion

Nonlinear systems of Fredholm integro-differential equations appear in many important
applications in science and engineering. Due to the complexity of such systems, the search for
accurate and efficientmethods is necessary. In this paper,we presented a simple-to-implement
yet accurate method using the Chebyshev collocation scheme. In view of the aforementioned
numerical results, the accuracy of this method is considerably manifest.

Although the method was shown to be successful in handling the class of problems con-
sidered in this paper, we believe the extension of this work to treat problems in two or
more spatial variables is a challenge for future work. Besides, special treatment should be
considered if singular kernels are present.
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