
SeMA Journal (2021) 78:435–456
https://doi.org/10.1007/s40324-021-00256-z

On non-locality in the calculus of variations

Pablo Pedregal1

Received: 11 January 2021 / Accepted: 3 June 2021 / Published online: 12 June 2021
© The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2021

Abstract
Non-locality is being intensively studied in various PDE-contexts and in variational prob-
lems. The numerical approximation also looks challenging, as well as the application of these
models to continuum mechanics and image analysis, among other areas. Even though there
is a growing body of deep and fundamental knowledge about non-locality, for variational
principles there are still very basic questions that have not been addressed so far. Taking some
of these as a motivation, we describe a general perspective on distinct classes of non-local
variational principles setting a program for the analysis of this kind of problems. We start
such programwith the simplest problem possible: that of scalar, uni-dimensional cases, under
a particular class of non-locality. Even in this simple initial scenario, one finds quite unex-
pected facts to the point that our intuition about local, classic problems can no longer guide
us for these new problems. There are three main issues worth highlighting, in the particular
situation treated:

(1) natural underlying spaces involve different non-local types of derivatives as, for instance,
fractional Sobolev spaces;

(2) no convexity of integrands is required for existence of minimizers;
(3) optimality is formulated in terms of quite special integral equations rather than differ-

ential equations.

We are thus able to provide some specific answers to the initial questions that motivated
our investigation. In subsequent papers, we will move on to consider the higher dimensional
situation driven by the possibility that no convexity or quasiconvexity might be involved in
weak lower semicontinuity in a full vector, higher dimensional situation.

Mathematics Subject Classification 49J45 · 49K21

1 Introduction

Non-locality is a hot topic these days both in PDE, and in variational problems, as well as in
continuum mechanics and elasticity. The motivation, the ideas, the techniques cover a huge
spectrum of material hard to describe in a few paragraphs. In particular, peridynamics has
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emerged as a main body of ideas of interest in the theory of elasticity. A lot has been written
about non-locality in analysis and applications, and yet it looks as if some of the most basic
issues still require some attention.

To realize how far we are from understanding even the simplest of situations and how
nothing we take for granted in the local case can be translated in a trivial form to this non-
local scenario, we will focus on the following innocent-looking problem.

Problem 1.1 Consider the functional

Ep(u) =
∫ 1

0

∫ 1

0

∣∣∣∣u(x) − u(y)

x − y

∣∣∣∣
p

dx dy

for competing functions u in L p(0, 1). We assume first p > 2. If nothing else is demanded
of feasible functions, then constant functions are minimizers. However, we will check that
functions u ∈ L p(0, 1) for which Ep(u) < +∞, admit end-point conditions because those
functions can be shown to be Hölder continuous. It is legitimate, then, to look for minimizers
of Ep(u) among those functions u ∈ L p(0, 1) complying with, say,

u(0) = 0, u(1) = 1.

Three basic issues require a precise answer:

(1) are there minimizers for such a problem?
(2) if so, is the linear function u(x) = x a minimizer of the problem, or even the unique

minimizer?
(3) what is the form of optimality conditions for such a variational problem?

One would be tempted to let it go led by the corresponding local case in which one tries to
minimize

Ip(u) =
∫ 1

0

∣∣u′(x)
∣∣p dx

under the same end-point conditions. It is elementary to argue that in this case the linear
function u(x) = x is the unique minimizer. However, there are some unexpected facts for the
non-local version above.

For the case 1 ≤ p ≤ 2, functions in L p(0, 1) with finite energy Ep < ∞ need not
be continuous, and hence end-point constraint cannot be imposed to begin with. We use,
however, the case p = 2 for some numerical experiments, to facilitate the implementation.

The central role played by convexity for classic variational principles is something very well
established to the point that the lack of this structural condition leads in many situations
to lack of minimizers. Possibly, the simplest examples are the one-dimensional versions of
two-well Bolza problems.

Problem 1.2 The variational problem

I (u) =
∫ 1

0

[
1

4
(u′(x)2 − 1)2 + 1

2
u(x)2

]
dx

under vanishing end-point conditions lacksminimizers.Minimizing sequences are of the form
of saw-tooth functions with slopes ±1 refining its teeth without limit. The non-local version
would be

E(u) =
∫ 1

0

∫ 1

0

⎡
⎣1

4

((
u(y) − u(x)

y − x

)2

− 1

)2

+ 1

2
u(x)2

⎤
⎦ dy dx,
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under the same end-point conditions. Is it true, as in the local version, that there are no
minimizer for this non-local problem? Again one would be tempted to support that this is so,
and once again one would face a surprise. In fact, one can also think about the variant

E(u) =
∫ 1

0

∫ 1

0

⎡
⎣1

4

((
u(y) − u(x)

y − x

)2

− 1

)2
⎤
⎦ dy dx

without the lower-order term. This time, the local version admit infinitely many minimizers,
but it is not clear if all of those would be minimizers for this non-local version. Note that
these examples have growth of order 4 > 2.

We aim at starting the systematic study of this kind of variational problems for which we
would like to be able to answer very specific and concrete questions, in addition to exploring
all the related functional analytical framework and its potential applicability to other areas
of research. In this initial contribution, further to describing our main general motivation, we
will take our ability to provide specific answers to the two previous problems as a measure
of success.

Non-local variational problems have undergone an unprecedented raise in interest, per-
haps pushed by non-local theories in continuum mechanics. Though these are not new (see
[18] for instance), they have been revived by the more recent theory of peridynamics [36,37].
At the more mathematical level, non-local variational problems were started to be considered
even before peridynamics [10,27], and a lot of work in various different directions has been
performed since then. Another area where non-local functionals have been considered sys-
tematically is that of imaging models and free discontinuity problems where a search of new
ways to approximate difficult local functionals by non-local ones has been pursued [9,14].

We can hardly mention all papers that have contributed to these areas. Note that even more
works deal with non-local theories of PDEs, though this field is not of concern here. We just
mention a bunch of representative contributions in various topics dealing with non-locality
in variational problems:

• Fractional and non-local theories in elasticity, and its relationship to local models: [2,25].
• Mathematical analysis of non-local variational principles: [4,5].
• Convergence of non-local models to their local counterparts: [3,6].
• Relaxation and related issues: [20,21,26].
• Non-local spaces of functions: [8,12,16,29,30,35].
• One-dimensional problems: [13,22].
• Image and free discontinuity models: in addition to those already cited [7,11,23].
• Non-locality in other areas: [1,19].

So far, the family of non-local variational problems that have been considered are of the
general form

E(u) =
∫

�×�

W (x, y, u(x), u( y)) d y dx, (1.1)

and the central issue of weak lower semicontinuity, as a main ingredient for the direct method
of the Calculus of Variations, has been studied only with respect to weak convergence for
feasible functions or fields u. This has led to some important results and some new notions of
(non-local) convexity [5,17,27]. However, no specific variational problem has been examined
from the viewpoint of existence of minimizers, in part because Lebesgue spaces where this
analysis has been carried out do not allow for boundary values to be assigned directly. This is
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also one main trouble with variational problems over fractional Sobolev spaces [16] where,
typically, boundary conditions are imposed by demanding that feasible functions are identical
to a preassigned function off the domain �, or at least in a non-negligible strip around ∂�

[2]. Apparently, the use of fractional Sobolev spaces in variational problems over bounded
domains still need some new ideas. In this context of fractional Sobolev spaces, the so-
called fractional gradient has been considered and extensively studied, together with parallel
central results with respect to its local counterpart. Check [31,33–35]. Variational principles
explicitly depending on the fractional gradient have been considered [33,34], even in a vector
setting involving the property of polyconvexity [2].

Going back to problems of the form (1.1), two important topics have been considered
in greater detail: relaxation of this non-local variational problems, and convergence to local
theories when the horizon parameter of the non-local interaction is sent to zero. The analysis
of the first has shown some unexpected results with no parallelism in local problems, as
sometimes relaxation takes the problem outside the natural family of variational principles
([21,26]); the convergence in the latter has led to some significant limit facts ([3,6]).

Despite all of these deep developments, there is no explicit example, even very simple
cases as the ones stated in Problems 1.1 and 1.2, where basic questions have been answered.
One point we would like to stress is that even if one starts in a big space for a non-local
variational problem (like a Lebesgue space), the class of functions for which the functional
takes on finite values may be a much more restrictive family of more regular functions. This
is trivial when the integrand in the functional depends explicitly on the weak gradient, but it
is not so clear, a priori, if there is no explicit gradient dependence. This is one natural reason
of why weak lower semicontinuity was started to be studied in Lebesgue spaces, rather than
on more restrictive spaces of functions.

On the other hand, we would like to introduce some formalism to somehow classify
non-local variational principles of various kinds (Sect. 2). In particular, we set here a whole
program to undertake the understanding of such non-local variational principles in their
fundamental questions. We select one of those frameworks, and start with such a program
for the simplest case possible: that of scalar, one-dimensional problems. More specifically:

(1) Section 3: we focus on the natural, underlying spaces to appropriately setup this sort
of non-local variational problems. Though these spaces turn out to be, in the one-
dimensional setting, the standard fractional Sobolev spaces, the variational problems
themselves are quite different from the local classical ones.

(2) Those new, non-local variational problems are studied from the point of view of the
direct method in Sect. 4, establishing a basic weak lower semicontinuity result, and, as a
consequence, a typical existence theorem. It is remarkable that no convexity whatsoever
is required.

(3) Section 5. Optimality is explored in this section. Quite surprisingly, it can be formulated
in terms of some special integral equations.

(4) In Sect. 6, we spend somemore time analyzing such integral equations and their solutions
in some easy examples to gain some intuition.

(5) In the scalar, one-dimensional situation, simple approximations of optimal solutions
under convexity, can be performed. In particular, we will see an approximated profile of
the optimal solution for Problem 1.1.

As a result of our investigation in these sections, we are able to provide an answer to
Problems 1.1 and 1.2. Concerning the first, we can say that there are minimizers; in fact, due
to strict convexity, there is a unique such minimizer, but it is not the linear function u(x) = x .
This can be easily checked through optimality conditions that, as indicated above, come in
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the form of some integral equation: as usual, given a functional equation, it may be easy or
doable to check if a given function is or is not a solution; it may be impossible to find the
solution. What is a bit shocking is that there is no convexity requirement involved for the
existence of minimizers: for every continuous, coercive integrand there are minimizers !! In
particular, there are such optimal solutions for the non-local version of the two-well Bolza
problem considered in Problem 1.2.

Our results here for the scalar, one-dimensional situation are just the starting point to pro-
ceeding to the higher dimensional case, or even the vector case. We will do so in forthcoming
contributions.

2 General overview

Let us start form the well-known local case in which our funcional is of integral-type

I (u) =
∫

�

W (x, u(x),∇u(x)) dx

where

W (x, u,F) : � × R
n × R

n×N → R

is a suitable integrand, and � ⊂ R
N is a bounded, regular domain. This functional can be

interpreted in many different ways depending on the context where modeling is pursued.
In hyperelasticity, for example, it may be a way to measure the energy associated with
deformations in such a way that global minimizers would correspond to stable equilibrium
configurations. For the sake of simplicity, we will omit the (x, u) dependence as it is not
relevant for what we are about to say, and write instead

I (u) =
∫

�

W (∇u(x)) dx.

It is well established that the property of quasiconvexity ofW (F) is a necessary and sufficient
condition for the weak lower semicontinuity of I over typical Sobolev spaces ( [15], [32]),
which in turn is one of the two main ingredients for the direct method of the Calculus of
Variations. When this property does not hold, then non-existence of minimizers may occur,
and the analysis follows by exploring relaxation.

One general way to express the passage from a functional like I (u) to its relaxed version
involves the use of gradient Young measures [28,32] to write

I (u) =
∫

�

∫
Rn×N

W (F) dνx,u(F) dx, (2.1)

where

νu = {νu,x}x∈�, supp νx,u ⊂ R
n×N ,

is a family of probability measures, one for each x ∈ �, referred to as the associated gradient
Young measure. Such family of probability measures generated by relaxation encodes the
information to build minimizing sequences for the original problem. In addition to enjoying
fundamental properties not fully yet understood, we also have

∇u(x) =
∫
M
F dνu,x(F).
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It is not our objective, nor is the appropriate place, to discuss further this issue. Our aim is
to focus on (2.1) as a way to define classes of non-local functionals by selecting rules to
determine the family of probability measures

(x, u) 	→ νx,u.

Definition 2.1 For a bounded, regular domain � ⊂ R
N , consider a mapping

μ = μx,u : � × M(�;Rn) 	→ P(Rn×N )

whereM(�;Rn) designates the class of measurable functions in � taking values inRn , and
P(Rn×N ) stands for the set of Borel probability measures supported in R

n×N . We say that
such a mapping generates the family of variational problems corresponding to functionals

I : M(�;Rn) → R, I (u) =
∫

�

∫
Rn×N

W (x, u(x),F) dμx,u(F) dx,

for Carathéodory integrands

W (x, u,F) : � × R
n × R

n×N → R

which are measurable in x and continuous in (u,F), provided all the maps

x 	→
∫
Rn×N

W (x, u(x),F) dμx,u(F)

are measurable. For each given u ∈ M(�;Rn), the mapping

Dμu(x) : � 	→ μx,u ∈ P(Rn×N )

is called the corresponding non-local gradient for u. Particular rulesmay requiremore restric-
tions on functions u than just measurability.

Let us remind readers that the most straightforward way to define probability measures in
P(Rn×N ) consists of determining its action on continuous functions (with a vanishing limit
at infinity)

〈�,μ〉 =
∫
Rn×N

�(F) dμ(F),

and one of the most efficient ways to define such probability measures proceeds through the
standard process of pushing forward with suitable maps; namely, if (P, �, π) is a probability
space and

�(X) : P → R
n×N

is a measurable mapping, then the push-forward �∗(π) of π on to R
n×N is the probability

measure supported in R
n×N defined through

〈�,�∗(π)〉 = 〈�(�), π〉.
We will be using this procedure in most examples without further notice.

We consider several initial such rules to generate classes of non-local variational problems,
and then focus on the one we would like to concentrate our analysis on here. The rule above
that has motivated this concept is not a true instance because underlying gradient Young
measures come from relaxation and cannot be associated with each u with no reference to
additional ingredients. In fact, they are chosen by minimizing an already-existing functional.

123



On non-locality in the calculus... 441

(1) The trivial case corresponds to local, classical variational principles for Sobolev functions

μx,u = δ∇u(x)(F), 〈�,μx,u〉 = �(∇u(x)).

The corresponding gradient is just the usual weak gradient for Sobolev functions.
(2) The fractional case

〈�,μx,u〉 =
∫

�

�

(
u( y) − u(x)

| y − x|α ⊗ y − x
| y − x|

)
d y

for an appropriate exponentα. The associated non-local gradient would be the probability
measure

Du(x) = 1

|�|
u( y) − u(x)

| y − x|α ⊗ y − x
| y − x| d y|� .

(3) The gradient, average case

〈�,μx,u〉 =
∫
P

�

(
1

V (P(x, X))

∫
P(x,X)

∇u( y) d y
)

dX

where X ∈ P, and P is a probability space of parameters, each of which, together with
x ∈ �, determines a measurable subset

P(x, X) ⊂ �

with N -dimensional measure V (P(x, X)), where to perform the average of the gradient
of u. The obvious case is

〈�,μx,u〉 =
∫ H

0
�

(
1

V (B(x, r))

∫
B(x,r)

∇u( y) d y
)

dr ,

where H > 0would be the “horizon” of the non-locality. Balls are understood intersected
with �. In this situation, non-local gradients are

Du(x) = 1

V (P(x, X))

∫
P(x,X)

∇u( y) d y dX .

(4) The mean rule. For every mapping μ as in Definition 2.1, we can consider its mean rule
μ, which is another form of non-locality, namely

μx,u : � × M(�;Rn) 	→ P(Rn×N )

and

〈μx,u,�〉 = �

(∫
Rn×N

F dμx,u(F)

)
.

In compact form, we can write

μx,u = δM1(x,u)(F)

where

M1(x, u) =
∫
Rn×N

F dμx,u(F)

is the first moment ofμx,u, and δ is the Diracmass. The corresponding non-local gradient
for μ is just the average of the non-local gradient of μ, i.e.

Dμu(x) = M1(x, u).
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Note the difference between the variational principles associated with μx,u and with its
mean μx,u

I (u) =
∫

�

∫
Rn×N

W (x, u(x),F) dμx,u(F) dx,

I (u) =
∫

�

W

(
x, u(x),

∫
Rn×N

Fμx,u(F) dF
)

dx

=
∫

�

W
(
x, u(x), Dμ(x)

)
dx.

2.1 One special class of non-locality

Wewould like to focus, however, on a different type of non-locality motivated by its potential
interpretation in the context of hyper-elasticity, though we remain at a purely mathematical
level at this stage. Our basic postulate is the assumption that the internal energy E(u) asso-
ciated with a deformation of a body

u(x) : D ⊂ R
N → R

N ,

where D is some selected, unit reference domain inRN , is measured with a densityW acting
on the basic building blocks for deformations, which are taken to be the affine maps from
R

N to R
N . We know that the linear part of these are identified, once a basis of RN has

been chosen, with N × N -matrices F. Therefore we postulate that the internal energy is
translation-invariant, that the main variables for W are N × N -matrices, and

W (F) : RN×N → R, W (F) = E(uF), (2.2)

when we take

uF(x) = a + Fx, x ∈ D, a ∈ R
N . (2.3)

From here, and realizing that affine deformations are characterized by ∇u(x) = F, one
proceeds with the standard local theory in which the internal energy associated with a general
deformation u(x) is taken to be

E(u) =
∫

�

W (∇u(x)) dx.

Affine deformations in (2.3) and their linear parts F are also generically characterized, in a
unique way, as being generated by the images of N + 1 generic points

x0, x1, . . . , xN ∈ D

and their images

uF(x0), uF(x1), . . . , uF(xN ) ∈ R
N ,

that is to say

F = (
uF(x1) − uF(x0) . . . uF(xN ) − uF(x0)

) (
x1 − x0 . . . xN − x0

)−1
.

This last formula is trivial, but it yields, when the affine deformation uF is replaced by any
feasible u, a non-local way to measure the internal energy E(u) through the multiple integral
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∫
�N+1

W
((
u(x1) − u(x0) . . . u(xN ) − u(x0)

) (
x1 − x0 . . . xN − x0

)−1
)

× dxN . . . dx1 dx0.

Both ways are consistent for the affine deformation uF (provided |�| = 1).
To simplify notation put

X = (
x1 . . . xN

) ∈ R
N×N , x = x0, 1 = (1, . . . , 1) ∈ R

N ,

x ⊗ 1 = (
x . . . x

) ∈ R
N×N ,

and then

u(X) = (
u(x1) u(x2) . . . , u(xN )

) ∈ R
N×N ,

u(x, X) = u(X) − u(x) ⊗ 1 ∈ R
N×N ,

Du(x, X) = (u(X) − u(x) ⊗ 1)(X − x ⊗ 1)−1.

Our way to measure internal energy in a non-local way is written in the compact form

E(u) =
∫

�

∫
�N

W (u(x, X)(X − x ⊗ 1)−1) dX dx

=
∫

�

∫
�N

W ((u(X) − u(x) ⊗ 1)(X − x ⊗ 1)−1) dX dx

=
∫

�

∫
�N

W (Du(x, X)) dX dx.

This corresponds exactly to the rule, in the context of Definition 2.1,

〈�,μx,u〉 =
∫

�N
�(Du(x, X)) dX .

From here, it is easy to generalize it to incorporate other dependencies by putting

E(u) =
∫

�

∫
�N

W (x, u(x), (u(X) − u(x) ⊗ 1)(X − x ⊗ 1)−1) dX dx, (2.4)

or, in compact form,

E(u) =
∫

�

∫
�N

W (x, u(x), Du(x, X)) dX dx. (2.5)

The functional we have written in (2.4) is a general vector problem for a density

W (x, u,F) : � × R
N × R

N×N → R,

and competing mappings

u(x) : � ⊂ R
N → R

N .

Nothing keeps us from considering the general situation in which

W (x, u,F) : � × R
n × R

n×N → R,

for feasible mappings

u(x) : � ⊂ R
N → R

n,
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where dimension n could be different from N . In particular, the case n = 1

E(u) =
∫

�

∫
�N

W (x, u(x), (u(X) − u(x)1)(X − x ⊗ 1)−1) dX dx

=
∫

�

∫
�N

W (x, u(x), Du(x, X)) dX dx

will be referred to as the scalar case. It is not difficult to envision more general ingredients
that can be added to this raw model, like implementing a horizon parameter δ to tame the
range of non-local interactions.

Our intention here is to start the mathematical analysis of this kind of non-local variational
problems. Nothing will be claimed at this stage from the mechanical point of view.

2.2 Program

As usual, the fundamental steps we would like to start covering concerning these non-local
variational problems can be organized in the following way:

(1) Natural spaces of functions where non-local functionals are well-defined.
(2) Structural hypotheses on integrands to guarantee some suitable weak-lower semiconti-

nuity.
(3) Existence theorems.
(4) Optimality conditions.
(5) Relaxation, if applicable.

On the other hand, one would proceed covering:

(1) Scalar, one-dimensional problems: n = N = 1.
(2) Scalar, higher-dimensional problems: n = 1, N > 1.
(3) Vector problems: n, N > 1.

It is a program to fully understand such family of variational problems. In this initial con-
tribution, we will be contented dealing with the scalar, one-dimensional problem as a way
to anticipate unexpected facts, difficulties, places where emphasis is recommended, etc. In
particular, to measure success in this regard, we seek to provide as complete an answer as
possible to Problems 1.1 and 1.2.

3 Spaces

Each family of non-local problems gives rise to its own collection of natural functional spaces
by demanding that all functions

x ∈ � 	→ 〈| · |p, μx,u〉 (3.1)

belong to L p(�) for u ∈ L p(�), and p ∈ [1,∞]. We are talking about the following
collection of functions{

u ∈ L p(�);
∫

�

∫
RN

|F|p dμx,u(F) dx < ∞
}

. (3.2)

Let us examine, for the sake of illustration, some of the initial situations in the last section.

(1) For the classical local case, natural spaces are, of course, the standard Sobolev spaces
W 1,p(�). There is nothing else to say.
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(2) For the fractional case, we are concerned about functions u ∈ L p(�) such that∫
�×�

|u( y) − u(x)|p
| y − x|α p

d y dx < +∞.

For appropriate exponents α, these are the fractional Sobolev spaces that are being exten-
sively studied these days. We have already commented about this in the Introduction.

(3) For the gradient, average situation we must be concerned about functions u ∈ L p(�) for
which ∫

�

∫
P

1

V (P(x, X))p

∣∣∣∣
∫
P(x,X)

∇u( y) d y

∣∣∣∣
p

dX dx < ∞.

As far as we can tell, these family of functions have not yet been examined.
(4) As in the previous section, for each mapping μ and its corresponding space based on

(3.1), there is a corresponding space changing (3.1) to

x ∈ � 	→ ∣∣〈F, μx,u〉
∣∣p ,

and (3.2) to {
u ∈ L p(�);

∫
�

∣∣∣∣
∫
RN

F dμx,u(F)

∣∣∣∣
p

dx < ∞
}

.

The family of spaces that we would like to consider, from the perspective of the non-local
variational problems that we want to examine, are

NW 1,p(�) = {u ∈ L p(�) : Du(x, X) ∈ L p(� × �N ;RN )}.
One starting point would be to study the relationship of such space to the standard Sobolev
space W 1,p(�), especially in sight of results in [8], and other similar articles. But, given
that we do not have any initial intuition on the corresponding family of non-local variational
problems, we begin by exploring the one-dimensional situation N = 1. In this case

Du(x, X) = u(X) − u(x)

X − x
.

It looks reasonable to consider the space

NW 1,p(0, 1) = {u ∈ L p(0, 1) : Du(x, X) ∈ L p((0, 1)2)},
for an exponent p ∈ [1,∞), and

NW 1,∞(0, 1) = {u ∈ L∞(0, 1) : Du(x, X) ∈ L∞((0, 1)2)}.
The natural norm in these spaces is

‖u‖NW 1,p(0,1) ≡ ‖u‖L p(0,1) + ‖Du‖L p((0,1)2) (3.3)

for all p. The case p = 2 corresponds to a inner product

〈u, v〉 =
∫ 1

0
u(x)v(x) dx +

∫
(0,1)2

Du(x, X)Dv(x, X) dX dx .

We put NH1(0, 1) to mean NW 1,2(0, 1).
In this one-dimensional situation,we recognize that these spaces are the standard fractional

Sobolev spaces [8,16] for

s = 1 − 1/p, 1 < p < ∞.
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Wewill, however, keep the notation NW 1,p(0, 1) to be consistentwith the higher dimensional
case, which will be addressed in a forthcoming work. As far as we can tell, these spaces in
the higher dimensional situation have not been considered yet.

As a consequence of the fact

NW 1,p(0, 1) = W 1/q,p(0, 1),
1

p
+ 1

q
= 1,

we have a lot of fundamental results at our disposal. We focus especially on two of them
taken directly from [16]. We only need here the one-dimensional versions.

Theorem 3.1 (Theorem 7.1, [16]) Every bounded set in NW p(0, 1) is precompact in
L p(0, 1).

In particular, we would like to highlight the following.

Corollary 3.2 Let {u j } be a bounded sequence in NW p(0, 1). Then there is a subsequence,
not relabeled, and a function u ∈ NW 1,p(0, 1) such that

u j → u in L p(0, 1), Du j (x, X) → Du(x, X) for a.e. (x, X) ∈ (0, 1)2, (3.4)

and

Du j (x, X)⇀Du(x, X) in L p((0, 1)2).

Proof By Theorem 3.1, there is a subsequence, not relabeled, such that

u j → u in L p(0, 1), Du j⇀U in L p((0, 1)2),

for some u ∈ L p(0, 1), andU ∈ L p((0, 1)2). But the first convergence implies the pointwise
convergence, possibly for a further subsequence, Du j → Du in (0, 1)2. Hence Du = U,
u ∈ NW 1,p(0, 1), and Du j⇀Du in L p((0, 1)2). ��
Theorem 3.3 (Theorem 8.2, [16]) Every function in NW p(0, 1), for p > 2, is Hölder contin-
uous with exponent α = (p−2)/p. In particular, end-point conditions on {0, 1} for functions
in these spaces are well-defined.

4 Non-local variational problems in one-dimension

The important conclusions in the last section lead to realizing that variational problems of
the form

Minimize in u ∈ NW 1,p
0 (0, 1) : E(u) =

∫ 1

0

∫ 1

0
W (x, u(x), Du(x, X)) dX dx (4.1)

are meaningful under the usual polynomial coercivity condition

C0(|U |p − 1) ≤ W (x, u,U ), C0 > 0, p > 2, (4.2)

for a density

W (x, u,U ) : (0, 1) × R × R → R

which is measurable in x and continuous in (u,U ). We have chosen, for the sake of def-
initeness, vanishing end-point conditions. That is what is meant, as one would expect, by
NW 1,p

0 (0, 1) in (4.1).
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Minimizing sequences {u j } are uniformly bounded in NW 1,p(0, 1). By Corollary 3.2,
there is a limit feasible u ∈ NW p(0, 1) with u j → u in L p(0, 1), and

Du j (x, X) → Du(x, X) (4.3)

for a.e. pair (x, X) ∈ (0, 1). This a.e. convergence points in the direction of the following
surprising result. Note that in this statement we are not assuming the lower bound (4.2).

Theorem 4.1 Let the integrand

W (x, u,U ) : (0, 1) × R × R → R

be measurable in the variable x, continuous in pairs (u,U ), and bounded from below by
some constant.

(1) The corresponding functional E(u) in (4.1) isweak lower semicontinuous in NW 1,p(0, 1).
(2) The same functional E(u) is lower semicontinuous in L p(0, 1).
(3) If, in addition,

|W (x, u,U )| ≤ C(1 + |U |q), q < p, (4.4)

then E(u) is weak continuous in NW 1,p(0, 1).

Note that there is no convexity assumed on W .

Proof The remarks above are already the basis for the proof, which is elementary at this point.
The convergence u j → u in L p(0, 1), implies the a.e. convergence (4.3). Consequently,
because of the continuity of W with respect to variables (u,U ),

W (x, u j (x), Du j (x, X)) → W (x, u(x), Du(x, X))

pointwise for a.e. (x, X) ∈ (0, 1)2. If E(u j ) tends to infinity, there is nothing to be proved, as
the conclusion is trivially true. If {E(u j )} is a bounded collection of numbers, the classical
Fatou’s lemma yields the claimed lower semicontinuity property

E(u) ≤ lim inf
j→∞ E(u j ).

This covers the first two assertions. Concerning the third, just notice that the strict inequality
in the previous argument with Fatou’s lemma can only happen under concentration effects
that are discarded, among other possible conditions, by a more restrictive growth condition
on W like (4.4), if the weak convergence u j⇀u takes place in NW 1,p(0, 1). ��

As a main consequence, we have a quite remarkable existence result for this kind of
variational problems.

Theorem 4.2 Consider problem (4.1) for an integrand W (x, u,U ) which is measurable in
x and continuous in (u,U ), and satisfies (4.2). Suppose that the problem is not trivial (E
is finite for some feasible function). Then there are minimizers u for (4.1), and minimizing
sequences {u j } are such that (3.4) hold.
Proof The proof is nothing but the direct application of the direct method to (4.1). ��

We cannot but conclude that both variational problems in Problems 1.1 and 1.2 admit
minimizers. We do not have any trouble accepting it for the former, but it is indeed a surprise
for the latter.
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5 Optimality

The study of optimality conditions for this kind of non-local variational problems lead to some
unexpected answers too: optimality conditions are written in terms of integral equations, not
differential equations.

Let us place ourselves in a context where Theorem 4.2 can be applied so that variational
problem (4.1) admits optimal solutions. Suppose that the integrandW (x, u,U ) is as smooth
as we may need it to be for the calculations below to be valid.

Let u ∈ NW 1,p(0, 1) be one such minimizer in a certain closed subspace of feasible
functions in NW 1,p(0, 1), and set U ∈ NW 1,∞

0 (0, 1) for a feasible variation. As usual, the
derivative of the section

ε →
∫

(0,1)2
W (x, u(x) + εU (x), Du(x, X) + εDU (x, X)) dX dx

evaluated at ε = 0 must vanish. Since we are assuming whatever properties on W for the
derivation under the integral sign to be legitimate, we can write∫

(0,1)2
[Wu(x, u(x), Du(x, X))U (x) + WU (x, u(x), Du(x, X))DU (x, X)] dX dx = 0

(5.1)

for all such U (x). This is a well-defined double integral provided that

|Wu(x, u,U )| ≤ C(1 + |U |p−1), |WU (x, u,U )| ≤ C(1 + |U |p−1).

We examine the second term in this integral∫
(0,1)2

WU (x, u(x), Du(x, X))

X − x
(U (X) −U (x)) dX dx .

The inner single integrals
∫ 1

0

WU (x, u(x), Du(x, X))

X − x
dX

for each fixed x ∈ (0, 1), can be understood in a principal-value sense provided WU is
continuous in all of its variables. Indeed, for X near x , i.e. for ε small,

∫ x+ε

x−ε

WU (x, u(x), Du(x, X))

X − x
dX

is approximately equal to

WU (x, u(x), u′(x))
∫ x+ε

x−ε

1

X − x
dX = 0.

Hence, if we set

W (x, X) ≡ WU (x, u(x), Du(x, X)), (5.2)

and examine the integral ∫
(0,1)2

W (x, X)
U (X) −U (x)

X − x
dX dx,
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which is the second full term in (5.1), after a few simple, formal manipulations related to
interchanging the order of integration, we find that the previous integral can be recast as

−
∫

(0,1)2

[
W (X , x) + W (x, X)

X − x

]
dX U (x) dx .

If go back to (5.2), and take back this fact to (5.1), we end up with the condition
∫ 1

0

∫ 1

0
[Wu(x, u(x), Du(x, X))+

− 1

X − x
(WU (x, u(x), Du(x, X)) + WU (X , u(X), Du(x, X)))

]
U (x) dX dx = 0,

for every admissible variation U ∈ NW 1,∞
0 (0, 1). Recall that Du(x, X) is symmetric. The

arbitrariness of this test function U leads to the condition∫ 1

0
[Wu(x, u(x), Du(x, X))+

− 1

X − x
(WU (x, u(x), Du(x, X)) + WU (X , u(X), Du(x, X)))

]
dX = 0,

valid for a.e. x ∈ (0, 1). For every such fixed x ∈ (0, 1), these integrals should be understood
in a principal-value sense, as indicated above, whenever necessary. The end-point conditions
are irrelevant in these manipulations.

Seeking some parallelismwith the local case,we stick to the following definition following
[2,31,33–35].

Definition 5.1 For a measurable function

F(x, X) : (0, 1)2 → R

we define its non-local divergence as the function

Ndiv F(x, X) = 1

X − x
(F(x, X) + F(X , x)).

The previous manipulations show the following fact.

Theorem 5.1 Let W (x, u,U ) be a C1-integrand with respect to pairs (u,U ), such that

C0(|U |p − 1) ≤ W (x, u,U ) ≤ C(|U |p + 1),

|Wu(x, u,U )| ≤ C(|U |p−1 + 1), |WU (x, u,U )| ≤ C(|U |p−1 + 1),

for some exponent p > 1, and constants 0 < C0 ≤ C. Suppose u ∈ NW 1,p(0, 1) is a
minimizer for (4.1) in a certain closed subspace of NW 1,p(0, 1). Then

∫ 1

0
[−NdivWU (x, u(x), Du(x, X)) + Wu(x, u(x), Du(x, X)] dX = 0, (5.3)

for a.e. x ∈ (0, 1), where the integrals of the first term should be understood in a principal-
value sense whenever necessary.

To gain a bit of familiarity and realize what kind of integral equation these are, let us
explore the form of this condition for the particular case in our Problem 1.1 in which, for the
sake of simplicity in the computations, we take p = 2 and

W (x, u,U ) = 1

2
U 2, Wu = 0, WU = U .
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The previous condition simplifies, after a few simple manipulations, to
∫ 1

0

u(X) − u(x)

(X − x)2
dX = 0, a.e. x ∈ (0, 1). (5.4)

One would be tempted to separate the two integrals so as to write the condition as a more
explicit integral equation. However, this separation is meaningless because the integral

∫ 1

0

1

(X − x)2
dX

is not finite for X near x .
Condition (5.4) is definitely some sort of integral equation, but of a very special nature. In

this form, no classic framework in the field of integral equations [38] seems to match (5.4).
One thing is however clear: the admissible function u(x) = x cannot be a minimizer because
the integral

∫ 1

0

1

X − x
dX

does not vanish for every x ∈ (0, 1). This is elementary to check.
For problem 1.2, we find the impressive integral equation, after a few algebraic manipu-

lations,

u(x)

2
=

∫ 1

0

u(X) − u(x)

(X − x)2

[
(u(X) − u(x))2

(X − x)2
− 1

]
dX .

Note that the trivial function u ≡ 0 is a solution.

6 Integral equations

The classical theory of integral equations in one independent variable [38] focuses on func-
tional equations of the form

h(x)u(x) = f (x) +
∫ b(x)

a
K (x, X)u(X) dX , (6.1)

for functions h(x), f (x), and b(x). a is a real number, and K (x, X) is the kernel of the
equation. The nature of the three functions h, f and b, and the properties of the kernel K
determine the type of equation (homogeneous/non-homogeneous, Fredholm, Voterra, of the
first/second kind, etc), and, eventually, its understanding and potential methods of solution.
It is not clear how an integral equation of the form in Theorem 5.1 could be recast to fit the
form (6.1).

Definition 6.1 An integral equation is called variational if there is a C1-function
W (x, u,U ) : (0, 1) × R × R → R,

with continuous partial derivatives Wu(x, u,U ) and WU (x, u,U ), such that the integral
equation is written in the form (5.3).

We can translate Theorems 4.2 and 5.1 into an existence theorem for this kind of integral
equations.
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Theorem 6.1 Let

W (x, u,U ) : (0, 1) × R × R → R

be a C1-function in pairs (u,U ) such that

C0(|U |p − 1) ≤ W (x, u,U ) ≤ C(|U |p + 1), C ≥ C0 > 0, p > 2,

and

|Wu(x, u,U )| ≤ C(|U |p−1 + 1), |WU (x, u,U )| ≤ C(|U |p−1 + 1).

Then for arbitrary end-point conditions

u(0) = u0, u(1) = u1,

the variational integral equation
∫ 1

0
[−NdivWU (x, u(x), Du(x, X)) + Wu(x, u(x), Du(x, X)] dX = 0

for a.e. x ∈ (0, 1) admits solutions.

We go back to our basic example (5.4) to perform some simple formal manipulations,
again taking p = 2. The pecularities of such an integral equation make it impossible to
follow some of the methods that are used for more standard integral equations ( [38]). In
particular, integral transform techniques seem out of context as the interval of integration
is finite, while the reduction to some kind of differential equation by direct differentiation
with respect to the variable x looks hopeless too. If we are contented with some sort of
approximation, then we can play with it in several ways. It is legitimate a first integration by
parts to find

∫ 1

0

u′(X)

X − x
dX = 1

1 − x
− 1

x(1 − x)
u(x),

or even better ∫ 1

0

x(1 − x)

X − x
u′(X) dX = x − u(x). (6.2)

The integral in the left-hand side ought to be understood in a principal-value sense. If we put

u′(X) = v(X),

∫ 1

0
v(X) dX = 1,

then, for the kernel

K (x, X) = x(1 − x)

X − x
+ χ(0,x)(X),

where χ(0,x)(X) is the indicator function of the interval (0, x), then (6.2) becomes
∫ 1

0
K (x, X)v(X) dX = x .

To find some approximation of the function we are searching for, let us go back to (5.4),
and write the approximation

u(X) − u(x) ∼ u′(x)(X − x) + 1

2
u′′(x)(X − x)2.
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Fig. 1 An approximation of the
derivative of the optimal solution
for the classical quadratic,
homogeneous case
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Then (5.4) becomes

u′(x)
∫ 1

0

1

X − x
dX + 1

2
u′′(x) ∼ 0 in (0, 1),

where the integral is again interpreted in a principal-value sense. We are led to consider the
second-order ODE

log
1 − x

x
u′(x) + 1

2
u′′(x) = 0 in (0, 1),

which after some elementary manipulations is transformed into

u′(x) = kx2x (1 − x)2(1−x), x ∈ (0, 1),

where the constant k is chosen so that

k−1 =
∫ 1

0
x2x (1 − x)2(1−x) dx .

Check this profile in Fig. 1 for k = 2.

7 Approximation of optimal solution for simple examples

Even though our existence Theorem 4.2 yields optimal solution for non-local variational
problems of the kind considered here, when the integrand is not (strictly) convex one misses
three main points: uniqueness, sufficiency of optimality conditions, and reliable numerical
approximation. One can hardly rely on numerical calculations for the optimal solutions of
Problem 1.2, but one can go through simple approximation schemes for convex problems.
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Fig. 2 The classical quadratic, homogeneous case
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Fig. 3 A variant of the quadratic case
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Fig. 4 The non-convex case

For the sake of illustration, we show results for Problem 1.1 for the exponent p = 2, and
some easy variation.

(1) The unique optimal profile for Problem 1.1 is depicted in Fig. 2. Note how, qualitatively,
its derivatives yields the graph in Fig. 1.

(2) We look at the problem

E(u) =
∫ 1

0

∫ 1

0

1

2

(
u(x) − u(y)

x − y

)2

dx dy + 8
∫ 1

0
u(x)2 dx

again under end-point conditions u(0) = 0, u(1) = 1. The unique solution for the
corresponding local problem

I (u) =
∫ 1

0

[
1

2
u′(x)2 + 8u(x)2

]
dx

is

u(x) = e4

e8 − 1
(e4x − e−4x ).

Both are compared in Fig. 3.
(3) As indicated above, it is not possible to perform reliable numerical calculations for the

non-convex case Problem 1.2, either with the lower-order term or without it. Check Fig.
4 for a couple of simulations for a functional without the lower-order term, starting from
the trivial map. The difference of the two picture is in the discretization used: the one on
the right used asmuch as twice elements than the one on the left, and yet the computations
were unable to produce finer oscillations. The two drawings are indistinguishable. This
fact has to be taken with extreme caution. What is true is that, according to our Theorem
4.2, there are minimizers for such a non-convex problem which, presumably, would
show a certain finite number of oscillations. This is also true for the functional with the
lower-order contribution.
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