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Abstract
We give a survey on some recent results concerning the Landau–Lifshitz equation, a fun-
damental nonlinear PDE with a strong geometric content, describing the dynamics of the
magnetization in ferromagnetic materials. We revisit the Cauchy problem for the anisotropic
LL equation, without dissipation, for smooth solutions, and also in the energy space in
dimension one. We also examine two approximations of the LL equation given by of the
Sine–Gordon equation and cubic Schrödinger equations, arising in certain singular limits of
strong easy-plane and easy-axis anisotropy, respectively. Concerning localized solutions, we
review the orbital and asymptotic stability problems for a sum of solitons in dimension one,
exploiting the variational nature of the solitons in the hydrodynamical frameworkFinally,
we survey results concerning the existence, uniqueness and stability of self-similar solutions
(expanders and shrinkers) for the isotropic LL equation with Gilbert term. Since expanders
are associated with a singular initial condition with a jump discontinuity, we also review their
well-posedness in spaces linked to the BMO space.
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1 Introduction

The Landau–Lifshitz (LL) equation has been introduced in 1935 by Landau and Lifshitz in
[76] and it constitutes nowadays a fundamental tool in the magnetic recording industry, due
to its applications to ferromagnets [103]. This PDE describes the dynamics of the orientation
of the magnetization (or spin) in ferromagnetic materials, and it is given by

∂tm + m × Heff(m) = 0, (1)

where m = (m1,m2,m3) : RN × I −→ S
2 is the spin vector, I ⊂ R is a time interval, ×

denotes the usual cross-product in R
3, and S

2 is the unit sphere in R
3. Here Heff(m) is the
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effective magnetic field, corresponding to (minus) the L2-derivative of the magnetic energy
of the material. We will focus on energies of the form ELL(m) = Eex(m) + Eani(m), where
the exchange energy

Eex(m) = 1

2

∫
RN

|∇m|2 = 1

2

∫
RN

|∇m1|2 + |∇m2|2 + |∇m3|2,

accounts for the local tendency of m to align the magnetization field, and the anisotropy
energy

Eani(m) = 1

2

∫
RN

〈m, Jm〉R3 , J ∈ Sym3(R),

accounts for the likelihood of m to attain one or more directions of magnetization, which
determines the easy directions. Due to the invariance of (1) under rotations, we can assume
that J is a diagonal matrix J = diag(J1, J2, J3), and thus the anisotropy energy reads

Eani(m) = 1

2

∫
RN

(λ1m
2
1 + λ3m

2
3), (2)

with λ1 = J2 − J1 and λ3 = J2 − J3. Therefore (1) can be recast as

∂tm + m × (�m − λ1m1e1 − λ3m3e3) = 0, (3)

where (e1, e2, e3) is the canonical basis of R3. Notice that for finite energy solutions, (2)
formally implies that m1(x) → 0 and m3(x) → 0, as |x | → ∞, and hence |m2(x)| → 1, as
|x | → ∞.

For biaxial ferromagnets, all the numbers J1, J2 and J3 are different, so that λ1 	= λ3
and λ1λ3 	= 0. Uniaxial ferromagnets are characterized by the property that only two of the
numbers J1, J2 and J3 are equal. For instance, the case J1 = J2 corresponds to λ1 = 0
and λ3 	= 0, so that the material has a uniaxial anisotropy in the direction e3. Hence, the
ferromagnet owns an easy-axis anisotropy along the vector e3 if λ3 < 0, while the anisotropy
is easy-plane along the plane x3 = 0 if λ3 > 0. Finally, in the isotropic case λ1 = λ3 = 0,
Eq. (3) reduces to the well-known Schrödinger map equation

∂tm + m × �m = 0. (4)

The LL Eq. (3) is a nonlinear dispersive PDE, with dispersion relation

ω(k) = ±
√

|k|4 + (λ1 + λ3)|k|2 + λ1λ3, (5)

for linear sinusoidal waves of frequency ω and wavenumber k, i.e. solutions of the form
ei(k·x−ωt). From (5), we can recognize similarities with some classical dispersive equations.
For instance, for the Schrödinger equation i∂tψ +�ψ = 0, the dispersion relation isω(k) =
|k|2, corresponding to λ1 = λ3 = 0 in (5), i.e. the Schrödinger map equation (4).

When considering Schrödinger equations with nonvanishing conditions at infinity, the
typical example is the Gross–Pitaesvkii equation [32]

i∂tψ + �ψ + σψ(1 − |ψ |2) = 0,

σ > 0, and the dispersion relation for the linearized equation at the constant solution equal
to 1 is ω(k) = ±√|k|4 + 2σ |k|2. This corresponds to taking λ1 = 0 or λ3 = 0, with
λ1 + λ3 = 2σ , in (5).

Finally, let us consider the Sine–Gordon equation ∂t tψ − �ψ + σ sin(ψ) = 0, σ > 0,
whose linearized equation at 0 is given by theKlein–Gordon equation,with dispersion relation

123



Recent results for the Landau–Lifshitz equation 255

ω(k) = ±√|k|2 + σ, that behaves like (5) for λ1λ3 = σ and λ1 + λ3 = 1, at least for k
small.

In this context, the Landau–Lifshitz equation is considered as a universal model from
which it is possible to derive other completely integrable equations [43]. We review some
recent rigorous results in this context in Sect. 3.

1.1 The dissipative model

In 1955, T. Gilbert proposed in [53] a modification of equation (1) to incorporate a damping
term. The so-called Landau–Lifshit–Gilbert (LLG) equation then reads

∂tm = −βm × Heff(m) − αm × (m × Heff(m)),

where β ≥ 0 and α ≥ 0, so that there is dissipation when α > 0, and in that case we refer
to α as the Gilbert damping coefficient. Note that, by performing a time scaling, we assume
w.l.o.g. that

α ∈ [0, 1] and β =
√
1 − α2.

Let us remark that the identity a × (b × c) = b(a · c) − c(a · b), for all a, b, c ∈ R
3,

implies that for any smooth function v, valued in S2, satisfies

v × (v × �v) = �v + |∇v|2v.

Then, we see that in the limit case β = 0 (and so α = 1), the LLG equation reduces to the
heat-flow equation for harmonic maps

∂tm − �m = |∇m|2m. (6)

This classical equation is an importantmodel in several areas such as differential geometry and
calculus of variations. It is also relatedwith other problems such as the theory of liquid crystals
and the Ginzburg–Landau equation. For more details, we refer to the surveys [41,78,96].

As before, one way to start the study of the LLG equation is noticing the link with other
PDEs. Let us illustrate this point in the isotropic case Heff(m) = �m. To simplify our
notation, we consider the equation for the opposite vector m → −m, which yields the
equation

∂tm = βm × �m − αm × (m × �m). (7)

For a smooth solution m with m3 > −1, we can use the stereographic projection

u = P(m) = m1 + im2

1 + m3
, (8)

that satisfies the quasilinear Schrödinger equation

iut + (β − iα)�u = 2(β − iα)
ū(∇u)2

1 + |u|2 , (DNLS)

where we used the notation (∇u)2 = ∇u · ∇u = ∑N
j=1(∂x j u)2 (see e.g. [72] for details).

When α > 0, one can use the properties of the semigroup e(α+iβ)t� to establish a Cauchy
theory for rough initial data, as we will see in Sect. 5.

When N = 1, the LLG equation is also related to the Localized Induction Approximation
(LIA), also called binormal flow, a geometric curve flow modeling the self-induced motion
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of a vortex filament within an inviscid fluid inR3 [31,71]. As we will in Sect. 5, this is related
with the geometric representation of the LLG equation in a Serret–Frenet system.

There are several variants of previous equation considering more complex models includ-
ing for instance a demagnetization field and the effects of the boundary in bounded domains.
We refer to [71] for an overview of different models, to [29] for recent developments on the
approximation of solutions, to the survey [57] for more details of the derivation and results
on the initial value problem, and to [70] for a review of methods for pattern formation based
on asymptotic analysis.

1.2 The hydrodynamical formulation

We end this introduction by explaining another useful transformation for the analysis of the
LL equation. For simplicity, we assume that there is no dissipation. In the seminal work [80],
Madelung showed that the nonlinear Schrödinger equation (NLS) can be recast into the form
of a hydrodynamical system. For instance, for the NLS equation

i∂t
 + �
 + 
 f (|
|2) = 0,

assuming that ρ = |
|2 does not vanish, the Madelung transform ψ = √
ρeiφ leads to the

system

∂tρ + 2 div(ρ∇φ) = 0, ∂tφ + |∇φ|2 + f (ρ) = �(
√

ρ)√
ρ

.

Therefore, setting v = 2∇φ, we get the Euler–Korteweg system

∂tρ + div(ρv) = 0, ∂tv + (v · ∇)v + 2∇( f (ρ)) = 2∇
(�(

√
ρ)√

ρ

)
,

which is a dispersive perturbation of the classical Euler equation for compressible fluids,
with the additional term 2∇(�(

√
ρ)/

√
ρ, which is interpreted as quantum pressure in the

quantum fluids models [20,23].
TheMadelung transform is useful to study properties of NLS equations with nonvanishing

conditions at infinity (see [14,27]). Coming back to the LL equation (3), letm be a solution of
this equation such that the map m̌ = m1 + im2 does not vanish. In the spirit of the Madelung
transform, we set

m̌ = (1 − m2
3)

1
2
(
sin(φ) + i cos(φ)

)
.

Thus, setting the hydrodynamical variables u = m3 and φ, we get the system
⎧⎪⎪⎨
⎪⎪⎩

∂t u = div
(
(1 − u2)∇φ

)− λ1

2
(1 − u2) sin(2φ),

∂tφ = − div
( ∇u

1 − u2

)
+ u

|∇u|2
(1 − u2)2

− u|∇φ|2 + u
(
λ3 − λ1 sin

2(φ)
)
,

(H)

at long as |u| < 1 on R
N . As shown in the next sections, the hydrodynamical formulation

will be essential in the study of solutions of the LL equation.
Although it does not quite have the reputation of e.g. the Navier–Stokes equation or the

Ricci flow equation, it can be said that the LL equation is among the most intriguing and
challenging PDEs. The mathematical appeal relies on the combination of difficulties from
nonlinear Schrödinger equations and geometric evolution equations. The aim of this note is
to survey some recent results concerning the different aspects of the LL equation, as follows.
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In Sect. 2 we revisit the Cauchy problem for the anisotropic LL equation, without dissipation.
Concerning smooth solutions, the approach follows amethodology for quasilinear hyperbolic
systems based on a priori estimates by using new well-tailored higher order energies. We
also tackle a subtle well-posedness problem in one space dimension in the energy space by
invoking the hydrodynamical formulation.

Section 3 examines approximations of the Landau–Lifshitz equation by the Sine–Gordon
equation and cubic Schrödinger equations arising in certain singular limits of large easy-plane
and easy-axis anisotropy, respectively, providing quantitative convergence results.

In Sect. 4 we review the orbital and asymptotic stability problems for sum of solitons
and multisolitons for the easy-plane (undamped) LL equation in dimension one. Stability
problems of this kind are well-established in the context of dissipative evolution equations.
Here the hamiltonian structure plays an essential role, that we exploit in the hydrodynamical
framework. The essential idea is to exploit the variational structure given by the energy and
momentum so that stability is essentially captured by spectral bounds for the hessian of the
combined functional.

Finally, in Sect. 5 we consider the (isotropic) dissipative LLG equation. We focus mainly
on the one-dimensional analysis of self-similar solutions: expanders and shrinkers evolving
from or towards a singular time.We survey results concerning their existence and uniqueness
by using a moving frame argument that allows us to obtain the asymptotics of the profiles.
We also consider the question of stability of expanders that calls for a well-posedness result
for solutions with rough initial data.

2 The Cauchy problem for the LL equation

Despite some serious efforts to establish a complete Cauchy theory for the LL equation,
several issues remain unknown. In this section we will focus on the LL equation without
damping, for which the Cauchy theory is even more delicate to handle. Even in the case
where the problem is isotropic, i.e. the Schrödinger map equation, there are several unknown
aspects. Moreover, it is not always possible to adapt results for Schrödinger map equation to
include anisotropic perturbations.

The study of well-posedness in the presence of a damping term is different. Indeed, for
the LLG equation, some techniques related to parabolic equations and for the heat-flow for
harmonic maps (6) can be used. We will discuss this issue in Sect. 5.

2.1 The Cauchy problem for smooth solutions

Let us consider the anisotropic LL equation (3) with λ1, λ3 ≥ 0. Since the associated energy
is given by

Eλ1,λ3(m) = 1

2

∫
RN

(|∇m|2 + λ1m
2
1 + λ3m

2
3), (9)

the natural functional setting for solving this equation is the energy set

Eλ1,λ3(R
N ) = {v ∈ L1

loc(R
N ,R3) : |v| = 1 a.e., ∇v ∈ L2(RN ), λ1v1, λ3v3 ∈ L2(RN )

}
.

In the context of functions taking values on S2, it is standard to use the notation

H(RN ) = {v ∈ L1
loc(R

N ,R3) : |v| = 1 a.e., ∇v ∈ H −1(RN )
}
,
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258 A. de Laire

for an integer  ≥ 1, where H −1 is the classical Sobolev space. Notice that a function
v ∈ H(RN ) does not belong to L2(RN ,R3), since this is incompatible with the constraint
|v| = 1. In this manner, Eλ1,λ3(R

N ) reduces to H1(RN ) if λ1 = λ3 = 0.
For the sake of simplicity, in this section we drop the subscripts λ1 and λ3, and denote the

energy by E(m) and the space by E(RN ), since the constants λ1 and λ3 are fixed.
The first results concerning the existence of weak solutions of (3) in the energy space were

obtained by Zhou and Guo in the one-dimensional case N = 1 [104], and by Sulem, Sulem
and Bardos [97] for N ≥ 1. The approach followed in [104] was to consider a parabolic
regularization by adding the term ε�m and letting ε → 0 (see e.g. [57]), while the strategy
in [97] relied on finite difference approximations and a weak compactness argument. In
both cases, no uniqueness was obtained. The proof in [97] can be generalized to include the
anisotropic perturbation in (3), leading to the existence of a global (weak) solution as follows.

Theorem 2.1 [97] For any m0 ∈ E(RN ), there exists a global solution of (3) with m ∈
L∞(R+, E(RN )), associated with the initial condition m0.

The uniqueness of the solution in Theorem 2.1 not known. To our knowledge, the well-
posedness of the Landau–Lifshitz equation for general initial data in E(RN ) remains an open
question.

Let us now discuss some results about smooth solutions inHk(RN ), k ∈ N, in the isotropic
case λ1 = λ3 = 0. For an initial data inm0 ∈ Hk(RN ), Sulem, Sulem andBardos [97] proved
the local existence and uniqueness1 of a solution m ∈ L∞([0, T ),Hk(RN )), provided that
k > N/2 + 2. By using a parabolic approximation, Ding and Wang [40] proved the local
existence in L∞([0, T ),Hk(RN )), provided that k > N/2+1. They also study the difference
between two solutions, obtaining uniqueness provided that the solutions are of class C3.
Another approach was used by McMahagan [87], showing the existence as the limit of
solutions of a perturbed wave problem, and using parallel transport to compare two solutions,
to conclude local existence and uniqueness in L∞([0, T ),Hk(RN )), for k > N/2 + 1.

When N = 1, these results provided the local existence and uniqueness at levelHk(RN ),
for k ≥ 2. Moreover, in this case the solutions are global in time (see [25,91]).

Of course, there is a large amount of other works with interesting results about the (local
and global) existence and uniqueness for the LL equation and other related equations, see
e.g. [9,56–58,65,94] and the references therein. However, it is not straightforward to adapt
these works to obtain local well-posednes results for smooth solutions to equation (3). For
this reason, in the rest of this section we provide an alternative proof for local well-posedness
by introducing high order energy quantities with better symmetrization properties.

To study the Cauchy problem of smooth solutions, given an integer k ≥ 1, we introduce
the set

Ek(RN ) = E(RN ) ∩ Hk(RN ),

which we endow with the metric structure provided by the norm

‖v‖Zk = (‖∇v‖2Hk−1 + ‖v2‖2L∞ + λ1‖v1‖2L2 + λ3‖v3‖2L2

) 1
2 .

Observe that the energy space E(RN ) identifies with E1(RN ). The uniform control on the
second component v2 in the Zk-norm ensures that ‖ · ‖Zk is a norm. Of course, this uniform

1 Actually, in [97] they do not study of the difference between two solutions. It is only asserted that uniqueness
followed from regularity, which it is not clear in this case; see also [65].
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control is not the only possible choice of the metric structure. The main result of this section
is the following local well-posedness result.

Theorem 2.2 [35] Let λ1, λ3 ≥ 0 and k ∈ N, with k > N/2 + 1. For any initial condition
m0 ∈ Ek(RN ), there exist Tmax > 0 and a unique solution m : RN × [0, Tmax) → S

2 to the
LL equation (3), which satisfies the following statements.

(i) The solution m belongs to L∞([0, T ], Ek(RN )) and ∂tm ∈ L∞([0, T ],Hk−2(RN )),
for all T ∈ (0, Tmax).

(ii) If the maximal time of existence Tmax is finite, then∫ Tmax

0
‖∇m(t)‖2L∞ dt = ∞. (10)

(iii) The flow map m0 �→ m is well-defined and locally Lipschitz continuous from Ek(RN )

to C0([0, T ], Ek−1(RN )), for all T ∈ (0, Tmax).
(iv) The energy (9) is conserved along the flow.

Theorem 2.2 provides the local well-posedness of the LL equation in the set Ek(RN ). This
kind of statement is standard in the context of hyperbolic systems (see e.g. [98, Theorem
1.2]). The critical regularity for the equation is given by the condition k = N/2, so that local
well-posedness is expected when k > N/2+1. This assumption is used to control uniformly
the gradient of the solutions by the Sobolev embedding theorem.

The proof of Theorem 2.2 is based on energy estimates using well-tailored high order
energies. A key observation is that any smooth function m valued into S

2, satisfies the
pointwise identities

〈m, ∂im〉R3 = 〈m, ∂i im〉R3 + |∂im|2 = 〈m, ∂i i jm〉R3

+2〈∂im, ∂i jm〉R3 + 〈∂ jm, ∂i im〉R3 = 0,

for any 1 ≤ i, j ≤ N . This allows us to show that a (smooth) solution to (3) satisfies the
equation

∂t tm + �2m − (λ1 + λ3)
(
�m1e1 + �m3e3

)+ λ1λ3
(
m1e1 + m3e3

) = F(m), (11)

where we have set

F(m) =
∑

1≤i, j≤N

(
∂i
(
2〈∂im, ∂ jm〉R3∂ jm − |∂ jm|2∂im

)− 2∂i j
(〈∂im, ∂ jm〉R3m

))

+ λ1F
+
1,3(m) + λ3F

−
3,1(m) + λ1λ3

(
(m2

1 + m2
3)m + m2

1m3e3 + m2
3m1e1

)
,

with

F±
i, j (m) = div

(
(m2

j − 2m2
i )∇m + (m1m3e3 ± m1m − m2

3e1)∇m1

+ (m1m3e1 ∓ m3m − m2
1e3)∇m3

)
± ∇m1 · (m1∇m − m∇m1

)± ∇m3 · (m∇m3 − m3∇m
)+ m j |∇m|2e j

+ (m1∇m3 − m3∇m1
) · (∇m1e3 − ∇m3e1

)+ λim
2
i

(
mi ei − m

)
.

In view of (11), we define the (pseudo)energy of order k ≥ 2, as

Ek(t) =‖∂tm‖2
Ḣ k−2 + ‖m‖2

Ḣ k + (λ1 + λ3)(‖m1‖2Ḣ k−1

+ ‖m3‖2Ḣ k−1) + λ1λ3(‖m1‖2Ḣ k−2 + ‖m3‖2Ḣ k−2),
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260 A. de Laire

for any t ∈ [0, T ]. This high order energy is an anisotropic version of the one used in [97].
To get good energy estimates, we need to useMoser estimates (also called tame estimates)

in Sobolev spaces (see e.g. [89]). Using these estimates and differentiating Ek , we obtain the
following energy estimates.

Proposition 2.3 Let λ1, λ3 ≥ 0 and k ∈ N, with k > 1 + N/2. Assume that m is a solution
to (3) in C0([0, T ], Ek+2(RN )), with ∂tm ∈ C0([0, T ], Hk(RN )).

(i) The LL energy is well-defined and conserved along flow on [0, T ].
(ii) Given any integer 2 ≤  ≤ k, the energies E are of class C1 on [0, T ], and there exists

Ck > 0, depending only on k, such that their derivatives satisfy

E ′
(t) ≤ Ck

(
1 + ‖m1(t)‖2L∞ + ‖m3(t)‖2L∞ + ‖∇m(t)‖2L∞

)
�(t), (12)

for any t ∈ [0, T ]. Here, we have set � =∑
j=1 E j .

We next discretize the equation by using a finite-difference scheme. The a priori bounds
remain available in this discretized setting. We then apply standard weak compactness and
local strong compactness results in order to construct local weak solutions, which satisfy
statement (i) in Theorem 2.2. By applying the Gronwall lemma and the condition in (10),
inequality (12) prevents a possible blow-up.

Finally, we establish uniqueness, as well as continuity with respect to the initial datum,
by computing energy estimates for the difference of two solutions. More precisely, we show

Proposition 2.4 Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Consider two solutions m
and m̃ to (3), which lie in C0([0, T ], Ek+1(RN )), with ∂tm, ∂t m̃ ∈ C0([0, T ], Hk−1(RN )),
and set u = m̃ − m and v = (m̃ + m)/2.

(i) The function E0(t) = ‖u(x, t)−u2(x, 0)e2‖2L2 is of class C1 on [0, T ], and there exists
C > 0 such that for any t ∈ [0, T ],
E′
0(t) ≤ C

(
1+‖∇m̃‖L2 + ‖∇m(t)‖L2 + ‖m̃1‖L2 + ‖m1‖L2

+ ‖m̃3‖L2 + ‖m3‖L2
) (‖u − u02e2‖2L2 + ‖u‖2L∞ + ‖∇u‖2L2 + ‖∇u02‖2L2

)
.

(ii) The function E1(t) = ‖∇u‖2
L2 + ‖u × ∇v + v × ∇u‖2

L2 is of class C1 on [0, T ], and
there exists C > 0 such that

E′
1(t) ≤ C

(
1 + ‖∇m‖2L∞ + ‖∇m̃‖2L∞

) (‖u‖2L∞ + ‖∇u‖2L2

)×
× (1 + ‖∇m‖L∞ + ‖∇m̃‖L∞ + ‖∇m‖H1 + ‖∇m̃‖H1

)
.

(iii) Let 2 ≤  ≤ k − 1,

E(t) =‖∂tu‖2
Ḣ k−2 + ‖u‖2

Ḣ k + (λ1 + λ3)(‖u1‖2Ḣ k−1

+ ‖u3‖2Ḣ k−1) + λ1λ3(‖u1‖2Ḣ k−2 + ‖u3‖2Ḣ k−2),

and S
LL =∑

j=0 E
j
LL. Then E ∈ C1([0, T ]), and there exists Ck > 0, such that

E′
(t) ≤Ck

(
1 + ‖∇m‖2H + ‖∇m̃‖2H + ‖∇m‖2L∞ + ‖∇m̃‖2L∞

+ δ=2
(‖m̃1‖L2 + ‖m1‖L2 + ‖m̃3‖L2 + ‖m3‖L2

)) (
S

LL + ‖u‖2L∞
)
.

When  ≥ 2, the quantities E
LL in Proposition 2.4 are anisotropic versions of the ones

used in [97] for similar purposes. Their explicit form is related to the linear part of the
second-order equation in (11). The quantity E0

LL is tailored to close off the estimates.
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Recent results for the Landau–Lifshitz equation 261

The introduction of the quantity E1
LL is of a different nature. The functions ∇u and

u × ∇v + v × ∇u in its definition appear as the good variables to perform hyperbolic
estimates at an H1-level. They provide a better symmetrization corresponding to a further
cancellation of the higher order terms. Without any use of the Hasimoto transform, nor of
parallel transport, this makes possible a direct proof of local well-posedness at an Hk-level,
with k > N/2 + 1 instead of k > N/2 + 2.

2.2 Local well-posedness for smooth solutions

To state a well-posedness result for (H), we need to introduce a functional setting in which
we can legitimate the use of the hydrodynamical framework. Under the condition |m| < 1, it
is natural to work in the Hamiltonian framework in which the solutions m have finite energy.
In the hydrodynamical formulation, the energy is given by

EH(u, ϕ) = 1

2

∫
RN

( |∇u|2
1 − u2

+ (1 − u2)|∇ϕ|2 + λ1(1 − u2) sin2(ϕ) + λ3u
2
)
.

As a consequence, we work in the nonvanishing

NVk
sin(R

N ) = {(u, ϕ) ∈ Hk(RN ) × Hk
sin(R

N ) : |u| < 1 on R
N},

where

Hk
sin(R

N ) = {v ∈ L1
loc(R

N ) : ∇v ∈ Hk−1(RN ) and sin(v) ∈ L2(RN )
}
.

The set Hk
sin(R

N ) is an additive group, which is naturally endowed with the pseudometric
distance

dksin(v1, v2) = ‖ sin(v1 − v2)‖L2 + ‖∇v1 − ∇v2‖Hk−1 ,

that vanishes if and only if v1 − v2 ∈ πZ. This quantity is not a distance on the group
Hk
sin(R

N ), but it is on the quotient group Hk
sin(R

N )/πZ. In the sequel, we identify the set
H1
sin(R

N ) with this quotient group when necessary, in particular when a metric structure is
required. This identification is not a difficulty as far as we deal with the hydrodynamical
form of the LL equation and with the Sine–Gordon equation. Both the equations are indeed
left invariant by adding a constant number in πZ to the phase functions. This property is one
of the motivations for introducing the pseudometric distance dksin. We refer to [35] for more
details concerning this distance, as well as the set Hk

sin(R
N ).

From Theorem 2.2, we obtain the following local well-posedness result for (H).

Corollary 2.5 ( [35]) Let λ1, λ3 ≥ 0, and k ∈ N, with k > N/2 + 1. Given any (u0, φ0) ∈
NVk

sin(R
N ), there exist Tmax > 0 and a unique solution (u, φ) : RN ×[0, Tmax) → (−1, 1)×

R to (H) with initial data (u0, φ0), which satisfies the following statements.

(i) The solution (u, φ) is in L∞([0, T ],NVk
sin(R

N )), while (∂t u, ∂tφ) is in L∞([0, T ],
Hk−2(RN )2), for any T ∈ (0, Tmax).

(ii) If the maximal time of existence Tmax is finite, then

∫ Tmax

0

(∥∥∥ ∇u(t)

(1 − u(t)2)
1
2

∥∥∥2
L∞ +

∥∥∥(1 − u(t)2)
1
2 ∇φ(t)

∥∥∥2
L∞

)
dt

= ∞, or lim
t→Tmax

‖u(t)‖L∞ = 1.
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(iii) The map (u0, φ0) �→ (u, φ) is locally Lipschitz continuous from NVk
sin(R

N ) to
C0([0, T ],NVk−1

sin (RN )) for any T ∈ (0, Tmax), and the energy EH is conserved along
the flow.

The proof of Corollary 2.5 is complicated by the metric structure corresponding to the
set Hk

sin(R
N ). Establishing the continuity of the flow map with respect to the pseudomet-

ric distance dksin is not so immediate, but this difficulty can be by-passed by using some
trigonometric identities.

2.3 Local well-posedness in the energy space in dimension one

We focus now on the LL equation with easy-plane anisotropy in dimension one, i.e. λ1 = 0
and (3) reads

∂tm + m × (∂xxm − λ3m3e3) = 0. (13)

Asmentioned before, in the isotropic case λ3 = 0, we have the local well-posedness for initial
data in H2(R) [25,90,91]. Theorem 2.2 gives us for instance, the H2-local well-posedness,
while Theorem 2.1 provides the existence of a solution inH1(R), i.e. in the energy space for
the isotropic equation. The isotropic equation is energy critical in H1/2, so that one could
think that local well-posedness at theH1-level would be simple to establish. In this direction,
when the domain is the torus, some progress has been made at the H3/2+

-level [28], and an
ill-posedness type result is given in [65] for the H1/2-weak topology.

The purpose of this section is to provide a local well-posedness theory for (13) in the
energy space, in the case λ3 ≥ 0. To this end, we use the hydrodynamical version of the
equation, considering hydrodynamical variables u = m3 and w = −∂xϕ, that is⎧⎪⎨

⎪⎩
∂t u = ∂x

(
(u2 − 1)w

)
,

∂tw = ∂x

( ∂xxu

1 − u2
+ u

(∂xu)2

(1 − u2)2
+ u
(
w2 − λ3)

)
.

(H1d)

We introduce the notation u = (u, w), that we will refer to as hydrodynamical pair. Notice
that the LL energy is now expressed as

E(u) =
∫
R

e(u) = 1

2

∫
R

( (u′)2

1 − u2
+ (1 − u2

)
w2 + λ3u

2
)
,

and the nonvanishing space is

NV(R) =
{
v = (v,w) ∈ H1(R) × L2(R), s.t. max

R

|v| < 1
}
,

endowed with the metric structure corresponding to the norm ‖v‖H1×L2 = ‖v‖H1 +‖w‖L2 .

Another formally conserved quantity is the momentum P , which is defined by P(u) =∫
R
uw.Aswewill see in Sect. 4, themomentum P , as well as the energy E , play an important

role in the construction and the qualitative analysis of the solitons.
Concerning the Cauchy problem for (H1d), we have the following local well-posedness

result.

Theorem 2.6 [34] Let λ3 ≥ 0 and u0 = (u0, w0) ∈ NV(R). There exist Tmax > 0 and
u = (u, w) ∈ C0([0, Tmax),NV(R)), such that the following statements hold.

(i) The map u is the unique solution to (H1d), with initial condition u0, such that there
exist smooth solutions un ∈ C∞(R × [0, T ]) to (H1d), which satisfy un → u in
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C0([0, T ],NV(R)), as n → ∞, for any T ∈ (0, Tmax). In addition, the energy E
and the momentum P are constant on (0, Tmax).

(ii) The maximal time Tmax is characterized by the condition

lim
t→Tmax

max
x∈R |u(x, t)| = 1, if Tmax < ∞.

(iii) When u0n → u0 in H1(R)× L2(R), as n → ∞, the maximal time of existence Tn of the
solution un to (H1d), with initial condition u0n, satisfies Tmax ≤ lim infn→∞ Tn, and
un → u in C0([0, T ], H1(R) × L2(R)), as n → ∞, for any T ∈ (0, Tmax).

In otherwords, Theorem2.6 provides the existence and uniqueness of a continuousflow for
(H1d) in the energy spaceNV(R). On the other hand, this does not prevent from the existence
of other solutionswhich could not be approached by smooth solutions. In particular, we do not
claim that there exists a unique local solution to (H1d) in the energy space for a given initial
condition. To our knowledge, the question of the global existence in the hydrodynamical
framework of the local solution v remains open. Concerning the equation (13), since we are
in the one-dimensional case, it is possible to endow the energy space with the metric structure
corresponding to the distance

dE (u, v) =
(∣∣ǔ(0) − v̌(0)

∣∣2 + ∥∥u′ − v′∥∥2
L2 + λ3

∥∥u3 − v3
∥∥2
L2

) 1
2
,

and to translate Theorem 2.6 into the original framework of the LL equation. This provides
the existence of a unique continuous flow for (13) in the neighborhood of solutions m, such
that the third component m3 does not reach the value ±1. The flow is only locally defined
due to this restriction.

The most difficult part in Theorem 2.6 is the continuity with respect to the initial data in
the energy space NV(R) when λ3 > 0. In this case, by performing a change of variables,
we can assume that λ3 = 1.The proof relies on the strategy developed by Chang, Shatah and
Uhlenbeck in [25] (see also [58,90]), by introducing the map


 = 1

2

( ∂xu

(1 − u2)
1
2

+ i(1 − u2)
1
2 w
)
exp iθ, with θ(x, t) = −

∫ x

−∞
u(y, t)w(y, t) dy.

Then 
 solves the nonlinear Schrödinger equation

i∂t
 + ∂xx
 + 2|
|2
 + 1

2
u2
 − Re

(


(
1 − 2F(u, 
)

))(
1 − 2F(u, 
)

) = 0,

with F(u, 
)(x, t) = ∫ x−∞ u(y, t)
(y, t) dy, while the function u satisfies

∂t u = 2∂x Im
(


(
2F(u, 
) − 1

))
, ∂xu = 2Re

(


(
1 − 2F(u, 
)

))
.

In this setting, deriving the continuous dependence in NV(R) of u with respect to its initial
data reduces to establish it for u and 
 in L2(R). This can be done by combining an energy
method for u and classical Strichartz estimates for 
.

3 Asymptotics regimes

In this section we will study the connection between the LL equation

∂tm + m × (�m − λ1m1e1 − λ3m3e3) = 0, (14)
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with λ1, λ3 ≥ 0, and the Sine–Gordon and the NLS equations, for certain types of
anisotropies.More precisely, we investigate the caseswhen λ1 � λ3 andwhen 1 � λ1 = λ3.
A conjecture in the physical literature [43,93] is that in the former case, the dynamics of (14)
can be described by the Sine–Gordon equation, while in the latter case, can be approximated
by the cubic NLS equation.

It is well-known that deriving asymptotic regimes is a powerful tool in order to tackle the
analysis of intricate equations. In this direction, we expect that these rigorous derivations
will be a useful tool to describe the dynamical properties of the LL equation, in particular
the role played by the solitons in this dynamics. For instance, this kind of strategy has been
useful in order to prove the asymptotic stability of the dark solitons of the Gross-Pitaevskii
equation by using its link with the KdV equation (see [13,27]).

3.1 The Sine–Gordon regime

In order to provide a rigorous mathematical statement for the anisotropic LL equation with
λ1 � λ3, i.e. for a strong easy-plane anisotropy regime, we consider a small parameter ε > 0,
a fixed constant σ > 0, and set the anisotropy values λ1 = σε and λ3 = 1/ε.

Assuming that the map m̌ = m1 + im2, associated with a solution m to (14) does not

vanish, we write m̌ = (1 − m2
3)

1
2
(
sin(φ) + i cos(φ)

)
, so that the variables u = m3 and φ

satisfy the system (H), as long as the nonvanishing condition holds. To study the behavior of
the system as ε → 0, we introduce the rescaled variables Uε and �ε given by

Uε(x, t) = u(x/
√

ε, t)

ε
, and �ε(x, t) = φ(x/

√
ε, t),

which satisfy the hydrodynamical system⎧⎪⎪⎨
⎪⎪⎩

∂tUε = div
(
(1 − ε2U2

ε )∇�ε

)− σ

2
(1 − ε2U2

ε ) sin(2�ε),

∂t�ε = Uε

(
1 − ε2σ sin2(�ε)

)− ε2 div
( ∇Uε

1 − ε2U2
ε

)
+ ε4Uε

|∇Uε|2
(1 − ε2U2

ε )2
− ε2Uε|∇�ε|2.

(Hε)

Therefore, as ε → 0, we formally see that the limit system is

∂tU = �� − σ

2
sin(2�), ∂t� = U , (SGS)

so that the limit function � is a solution to the Sine–Gordon equation

∂t t� − �� + σ

2
sin(2�) = 0. (SG)

As seen in Corollary 2.5, the hydrodynamical system (Hε) is locally well-posed in the
space NVk

sin(R
N ) for k > N/2 + 1. However, this result gives us time of existence Tε that

could vanish as ε → 0. Therefore, we need to find a uniform estimate for Tε to prevent this
phenomenon. As we will recall later, the Sine–Gordon equation is also locally well-posed
at the same level of regularity, so that we can compare the evolution of the difference in an
interval of time independent of ε. A further analysis of (Hε) involving good energy estimates,
will lead us to the following result.

Theorem 3.1 [35] Let N ≥ 1 and k ∈ N, with k > N/2 + 1, and ε ∈ (0, 1). Consider an
initial condition (U 0

ε ,�0
ε) ∈ NVk+2

sin (RN ), and set

Kε = ∥∥U 0
ε

∥∥
Hk + ε

∥∥∇U 0
ε

∥∥
Hk + ∥∥∇�0

ε

∥∥
Hk + ∥∥ sin(�0

ε)
∥∥
Hk . (15)
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Consider similarly an initial condition (U 0,�0) ∈ L2(RN ) × H1
sin(R

N ), and denote by
(U ,�) ∈ C0(R, L2(RN ) × H1

sin(R
N )) the unique corresponding solution to (SGS). Then,

there exists C > 0, depending only on σ , k and N, such that, if

C εKε ≤ 1, (16)

then the following statements hold.

(i) There exists a positive number Tε ≥ (CK2
ε)

−1, such that there is a unique solution
(Uε,�ε) ∈ C0([0, Tε],NVk+1

sin (RN )) to (Hε) with initial data (U 0
ε ,�0

ε).
(ii) If �0

ε − �0 ∈ L2(RN ), then, for any 0 ≤ t ≤ Tε ,∥∥�ε(t) − �(t)
∥∥
L2 ≤ C

(∥∥�0
ε − �0

∥∥
L2 + ∥∥U 0

ε −U 0
∥∥
L2 + ε2 Kε

(
1 + K3

ε

))
eCt .

(iii) If N ≥ 2, or N = 1 and k > N/2 + 2, then we have, for any 0 ≤ t ≤ Tε ,∥∥Uε(t)−U (t)
∥∥
L2+d1sin(�ε(t),�(t)) ≤ C

(∥∥U 0
ε −U 0

∥∥
L2+d1sin(�

0
ε,�

0)+ε2 Kε

(
1+K3

ε

))
eCt .

(iv) Let (U 0,�0) ∈ Hk(RN ) × Hk+1
sin (RN ) and set κε = Kε + ∥∥U 0

∥∥
Hk + ∥∥∇�0

∥∥
Hk +∥∥ sin(�0)

∥∥
Hk . There exists A > 0, depending only on σ , k and N, such that the solution

(U ,�) lies in C0([0, T ∗
ε ], Hk(RN )×Hk+1

sin (RN )), for some T ∗
ε ∈ [ 1

Aκ2ε
, Tε]. Moreover,

when k > N/2 + 3, we have, for any 0 ≤ t ≤ T ∗
ε ,∥∥Uε(t) −U (t)

∥∥
Hk−3 + ∥∥∇�ε(t) − ∇�(t)

∥∥
Hk−3 + ∥∥ sin(�ε(t) − �(t))

∥∥
Hk−3

≤ A eA(1+κ2ε )t (∥∥U 0
ε −U 0

∥∥
Hk−3 + ∥∥∇�0

ε − ∇�0
∥∥
Hk−3

+ ∥∥ sin(�0
ε − �0)

∥∥
Hk−3 + ε2κε

(
1 + κ3

ε

))
.

In arbitrary dimension, Theorem 3.1 provides a quantified convergence of the LL equation
towards the Sine–Gordon equation in the regime of strong easy-plane anisotropy. Three types
of convergence are proved depending on the dimension, and the levels of regularity of the
solutions. This trichotomy is related to the analysis of the Cauchy problems for the LL and
Sine–Gordon equations.

In its natural Hamiltonian framework, the Sine–Gordon equation is globally well-posed
and its Hamiltonian is the Sine–Gordon energy:

ESG(φ) = 1

2

∫
RN

(
(∂tφ)2 + |∇φ|2 + σ sin(φ)2

)
.

More precisely, given an initial condition (�0,�1) ∈ H1
sin(R

N ) × L2(RN ), there
exists a unique corresponding solution � ∈ C0(R, H1

sin(R
N )) to (SG), with ∂t� ∈

C0(R, L2(RN )). Moreover, the Sine–Gordon equation is locally well-posed in the spaces
Hk
sin(R

N ) × Hk−1(RN ), when k > N/2 + 1. In other words, the solution � remains in
C0([0, T ], Hk

sin(R
N )), with ∂t� ∈ C0([0, T ], Hk−1(RN )), at least locally in time, when

(�0,�1) ∈ Hk
sin(R

N ) × Hk−1(RN ). We refer to [22,35] for more details about the Cauchy
problem for (SG).

As seen in Sect. 2, the LL equation is locally well-posed at the same level of high regularity
as the Sine–Gordon equation. In the hydrodynamical context, this reads as the existence of
a maximal time Tmax and a unique solution (U ,�) ∈ C0([0, Tmax),NVk−1

sin (RN )) to (Hε)
corresponding to an initial condition (U 0,�0) ∈ NVk

sin(R
N ), when k > N/2 + 1 (see

Corollary 2.5); note the loss of one derivative here. This loss explains why we take initial
conditions (U 0

ε ,�0
ε) in NVk+2

sin (RN ), though the quantity Kε is already well-defined when
(U 0

ε ,�0
ε) ∈ NVk+1

sin (RN ).
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In view of this local well-posedness result, we restrict our analysis of the Sine–Gordon
regime to the solutions (Uε,�ε) to the rescaled system (Hε) with sufficient regularity. A
further difficulty then lies in the fact that their maximal times of existence possibly depend
on ε.

Statement (i) in Theorem 3.1 provides an explicit control on these maximal times. Since
Tε ≥ (CK2

ε)
−1, thesemaximal times are bounded frombelowbyapositive number depending

only on the choice of the initial data (U 0
ε ,�0

ε). Notice in particular that if a family of initial
data (U 0

ε ,�0
ε) converges towards a pair (U 0,�0) in Hk(RN ) × Hk

sin(R
N ), as ε → 0, then it

is possible to find T > 0 such that all the corresponding solutions (Uε,�ε) are well-defined
on [0, T ]. This property is necessary in order to make possible a consistent analysis of the
limit ε → 0.

Statement (i) only holds when the initial data (U 0
ε ,�0

ε) satisfy the condition in (16).
However, this condition is not a restriction in the limit ε → 0. It is satisfied by any fixed pair
(U 0,�0) ∈ NVk+1

sin (RN ) provided that ε is small enough, so that it is also satisfied by a family
of initial data (U 0

ε ,�0
ε), which converges towards a pair (U 0,�0) in Hk(RN ) × Hk

sin(R
N )

as ε → 0.
Statements (ii) and (iii) in Theorem 3.1 provide two estimates between the previous solu-

tions (Uε,�ε) to (Hε), and an arbitrary global solution (U ,�) to (SGS) at the Hamiltonian
level. The first one yields an L2-control on the difference �ε − �, while the second one,
an energetic control on the difference (Uε,�ε) − (U ,�). Due to the fact that the difference
�ε −� is not necessarily in L2(RN ), statement (ii) is restricted to initial conditions satisfying
this property.

Finally, statement (iv) bounds the difference between the solutions (Uε,�ε) and (U ,�)

at the same initial Sobolev level. In this case, we also have to control the maximal time of
regularity of the solutions (U ,�). This follows from the control from below for T ∗

ε , which
is of the same order as the one in Tε .

We then obtain the Sobolev estimate in (iv) of the difference (Uε,�ε) − (U ,�) with a
loss of three derivatives. Here, the choice of the Sobolev exponents k > N/2 + 3 is tailored
to gain a uniform control on the functions Uε − U , ∇�ε − ∇� and sin(�ε − �), by the
Sobolev embedding theorem.

A loss of derivatives is natural in the context of long-wave regimes; it is related to the terms
with first and second-order derivatives in the right-hand side of (Hε). This loss is the reason
why the energetic estimate in statement (iii) requires an extra derivative in dimension one, that
is the condition k > N/2+2. Using the Sobolev bounds in (19), we can (partly) recover this
loss by a standard interpolation argument, and deduce an estimate in H (RN ) × H +1

sin (RN )

for any number  < k. In this case, the error terms are no more of order ε2.
As a by-product of the analysis, we can also analyze the wave regime for the LL equation.

This regime is obtained by allowing the parameterσ to converge to 0. Indeed, at least formally,
a solution (Uε,σ ,�ε,σ ) to (Hε) satisfies the free wave system

∂tU = ��, ∂t� = U , (FW)

as ε → 0 and σ → 0. In particular, the function � is solution to the wave equation
∂t t� − �� = 0. The following result provides a rigorous justification for this asymptotic
approximation.

Theorem 3.2 [35] Let N ≥ 1 and k ∈ N, with k > N/2+ 1, and 0 < ε, σ < 1. Consider an
initial condition (U 0

ε,σ ,�0
ε,σ ) ∈ NVk+2

sin (RN ) and set

Kε,σ = ∥∥U 0
ε,σ

∥∥
Hk + ε

∥∥∇U 0
ε,σ

∥∥
Hk + ∥∥∇�0

ε,σ

∥∥
Hk + σ

1
2
∥∥ sin(�0

ε,σ )
∥∥
L2 .
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Let m ∈ N, with 0 ≤ m ≤ k − 2. Consider similarly an initial condition (U 0,�0) ∈
Hm(RN )× Hm−1(RN ), and denote by (U ,�) ∈ C0(R, Hm−1(RN )× Hm(RN )) the unique
corresponding solution to (FW). Then, there exists C > 0, depending only on k and N, such
that, if the initial data satisfies the condition C εK0

ε,σ ≤ 1, the following statements hold.
Then there exists a positive number

Tε,σ ≥ 1

C max(ε, σ )(1 + Kε,σ )max(2,k/2)
,

such that there is a unique solution (Uε,σ ,�ε,σ ) ∈ C0([0, Tε,σ ],NVk+1
sin (RN )) to (Hε) with

initial data (U 0
ε,σ ,�0

ε,σ ). Moreover, if �0
ε,σ −�0 ∈ Hm(RN ), then we have the estimate, for

any 0 ≤ t ≤ Tε,σ ,
∥∥Uε,σ (t) −U (t)

∥∥
Hm−1 + ∥∥�ε,σ (t) − �(t)

∥∥
Hm ≤ C

(
1 + t2

) (∥∥U 0
ε,σ −U 0

∥∥
Hm−1

+ ∥∥�0
ε,σ − �0

∥∥
Hm + max

(
ε2, σ 1/2)K0

ε,σ

(
1 + K0

ε,σ

)max(2,m)
)
.

The wave regime of the LL equation was first derived rigorously by Shatah and Zeng
[92], as a special case of the wave regimes for the Schrödinger map equations with values
into arbitrary Kähler manifolds. The derivation in [92] relies on energy estimates, which
are similar in spirit to the ones we establish in the sequel, and a compactness argument.
Getting rid of this compactness argument provides the quantified version of the convergence
in Theorem 3.2. This improvement is based on the arguments developed by Béthuel, Danchin
and Smets [10] in order to quantify the convergence of the Gross–Pitaevskii equation towards
the free wave equation in a similar long-wave regime. Similar arguments were also applied
in [26] in order to derive rigorously the (modified) KdV and (modified) KP regimes of the
LL equation (see also [49]).

Concerning the proof of Theorem 3.1, the first step is to provide a control on Tmax. In view
of the conditions in statement (i i) of Corollary 2.5, this control can be derived from uniform
bounds on the functions Uε , ∇Uε and ∇�ε. Taking into account the Sobolev embedding
theorem and the fact that k > N/2+1, we are left with the computations of energy estimates
for the functions Uε and �ε in the spaces Hk(RN ) and Hk

sin(R
N ), respectively.

In this direction, we recall that the LL energy corresponding to the scaled hydrodynamical
system (Hε) writes as

Eε(t) = 1

2

∫
RN

(
ε2

|∇Uε|2
1 − ε2U 2

ε

+U 2
ε + (1 − ε2U 2

ε )|∇�ε|2 + σ(1 − ε2U 2
ε ) sin2(�ε)

)
.

Inspired in this formula, we proposed to define an energy of order k ≥ 1 as

Ek
ε (t) = 1

2

∑
|α|=k−1

∫
RN

(
ε2

|∇∂α
x Uε|2

1 − ε2U2
ε

+ |∂α
x Uε|2 + (1 − ε2U2

ε )|∇∂α
x �ε|2 + σ(1 − ε2U2

ε )|∂α
x sin(�ε)|2

)
.

The factors 1 − ε2U 2
ε in this expression, as well as the non-quadratic term corresponding to

the function sin(�ε), are of substantial importance since they provide a better symmetrization
of the energy estimates, by inducing cancellations in the higher order terms. More precisely,
we have the following key proposition.

Proposition 3.3 Let ε > 0 and k ∈ N, with k > N/2 + 1. Consider a solution (Uε,�ε)

to (Hε), with (Uε,�ε) ∈ C0([0, T ],NVk+3
sin (RN )) for some T > 0. Assume that

inf
RN×[0,T ]

(1 − ε2U 2
ε ) ≥ 1/2.
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Then there exists C > 0, depending only on k and N, such that
[
E

ε

]′
(t) ≤ C max

(
1, σ 3/2) (1 + ε4

) (‖ sin(�ε(t))‖2L∞

+ ‖Uε(t)‖2L∞ + ‖∇�ε(t)‖2L∞ + ‖∇Uε(t)‖2L∞

+ ‖d2�ε(t)‖2L∞ + ε2‖d2Uε(t)‖2L∞

+ ε ‖∇�ε(t)‖L∞
(‖∇�ε(t)‖2L∞ + ‖∇Uε(t)‖2L∞

))
�k+1

ε (t),

(17)

for any t ∈ [0, T ] and any 2 ≤  ≤ k + 1. Here, we have set �k+1
ε =∑k+1

j=1 E
j
ε .

Thanks to the condition k > N/2 + 1 and the Sobolev embedding, we get from (17) a
differential inequality for y(t) = �k

ε , of the type

y′(t) ≤ Ay2(t), (18)

at least on the interval where y is well-defined and y(t) ≤ 2y(0). Here A is a constant
depending on y(0). Integrating (18), we conclude that

y(t) ≤ y(0)

1 − Ay(0)t
≤ 2y(0),

provided that t ≤ 1/(2Ay(0)). Using this argument, we deduce from Proposition 3.3,
that maximal time Tmax is at least of order 1/(‖U 0

ε ‖Hk + ε‖∇U 0
ε ‖Hk + ‖∇�0

ε‖Hk +
‖ sin(�0

ε)‖Hk )2, when the initial conditions (U 0
ε ,�0

ε) satisfy the inequality in (16). In par-
ticular, the dependence of Tmax on the small parameter ε only results from the possible
dependence of the pair (U 0

ε ,�0
ε) on ε. Choosing suitably these initial conditions, we can

assume without loss of generality, that Tmax is uniformly bounded from below when ε tends
to 0, so that analyzing this limit makes sense and we can work in an interval of the form
[0, Tε]. Moreover, we also get the energy estimate on [0, Tε] in terms og Kε defined in (15),∥∥Uε(t)

∥∥
Hk + ε

∥∥∇Uε(t)
∥∥
Hk + ∥∥∇�ε(t)

∥∥
Hk + ∥∥ sin(�ε(t))

∥∥
Hk ≤ CKε. (19)

The final ingredient in the proof of Theorem 3.1 is the consistency of (Hε) with the
Sine–Gordon system in the limit ε → 0. Indeed, we can rewrite (Hε) as

∂tUε = ��ε − σ

2
sin(2�ε) + ε2RU

ε , ∂t�ε = Uε + ε2R�
ε , (20)

where

RU
ε = − div

(
U 2

ε ∇�ε

)+ σU 2
ε sin(�ε) cos(�ε),

R�
ε = −σUε sin2(�ε) − div

( ∇Uε

1 − ε2U 2
ε

)
+ ε2Uε

|∇Uε|2
(1 − ε2U 2

ε )2
−Uε |∇�ε|2.

In viewof the Sobolev control in (19), the remainder terms RU
ε and R�

ε are bounded uniformly
with respect to ε in Sobolev spaces, with a loss of three derivatives. Due to this observation,
the differences uε = Uε − U and ϕε = �ε − � between a solution (Uε,�ε) to (Hε) and a
solution (U ,�) to (SGS) are expected to be of order ε2, if the corresponding initial conditions
are close enough. The proof of this claim would be immediate if the system (20) would not
contain the nonlinear term sin(2�ε). Due to this extra term, we have to apply a Gronwall
argument in order to control the differences uε and ϕε . This can be done since vε and ϕε

satisfy

∂tvε = �ϕε − σ sin(ϕε) cos(�ε + �) + ε2RU
ε , ∂tϕε = vε + ε2R�

ε ,
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so that we can perform energy estimates as before.

3.2 The cubic NLS regime

We now focus on the cubic Schrödinger equation, which is obtained in a regime of strong
easy-axis anisotropy of equation (14). For this purpose, we consider a uniaxial material
in the direction corresponding to the vector e2 and we fix the anisotropy parameters as
λ1 = λ3 = 1/ε. For this choice, let us introduce the complex-valued function 
ε given by


ε(x, t) = ε−1/2m̌(x, t)eit/ε, with m̌ = m1 + im3,

associated with a solution m of (14). This function is of order 1 in the regime where the map

m̌ is of order ε
1
2 . When ε is small enough, the function m2 does not vanish in this regime,

since the solution m is valued into the sphere S2. Assuming that m2 is everywhere positive,
it is given by the formula

m2 = (1 − ε|
ε|2|
) 1
2 ,

and the function 
ε is a solution to the nonlinear Schrödinger equation

i∂t
ε+
(
1 − ε|
ε|2

)1/2
�
ε+ |
ε|2

1 + (1 − ε|
ε|2)1/2 
ε + ε div
( 〈
ε,∇
ε〉C

(1 − ε|
ε|2)1/2
)

ε = 0,

(NLSε)

where 〈z1, z2〉C = Re(z1 z̄2). As ε → 0, the formal limit is therefore the focusing cubic
Schrödinger equation

i∂t
 + �
 + 1

2
|
|2
 = 0. (CS)

The goal is to justify rigorously this cubic Schrödinger regime of the LL equation. We recall
that (CS) is locally well-posed in Hk(RN ), for k ∈ N; we refer to [24] for an extended review
on this subject. Going on with our rigorous derivation of the cubic Schrödinger regime,
we now express the local well-posedness result in Theorem 2.2 in terms of the nonlinear
Schrödinger equation (NLSε) satisfied by the rescaled function 
ε.

Corollary 3.4 [36] Let ε > 0, and k ∈ N, with k > N/2 + 1. Consider a function 
0
ε ∈

Hk(RN ) such that
ε1/2

∥∥
0
ε

∥∥
L∞ < 1.

Then there exist Tε > 0 and a unique solution 
ε ∈ L∞([0, T ], Hk(RN )) to (NLSε), for
any t ∈ (0, Tε). Moreover, the flow map 
0

ε �→ 
ε is Lipschitz continuous from Hk(RN ) to
C0([0, T ], Hk−1(RN )) for any T ∈ (0, Tε) and the nonlinear Schrödinger energy Eε given
by

Eε(
ε) = 1

2

∫
RN

(
|
ε|2 + ε|∇
ε|2 + ε2〈
ε,∇
ε〉2C

1 − ε|
ε|2
)

,

is conserved along the flow.

We are now in position to state the main result concerning the rigorous derivation of the
cubic Schrödinger regime of the LL equation.
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Theorem 3.5 [36] Let 0 < ε < 1, and k ∈ N, with k > N/2 + 2. Consider two initial
conditions 
0 ∈ Hk(RN ) and 
0

ε ∈ Hk+3(RN ), and set

Sε = ∥∥
0
∥∥
Hk + ∥∥
0

ε

∥∥
Hk + ε

1
2
∥∥∇
0

ε

∥∥
Ḣ k + ε

∥∥�
0
ε

∥∥
Ḣ k .

There is A > 0, depending only on k, such that, if the initial data 
0 and 
0
ε satisfy the

condition
A ε

1
2 Sε ≤ 1, (21)

then there exists a time
Tε ≥ 1

AK2
ε
, such that both the unique solution 
ε to (NLSε) with initial data 
0

ε , and the

unique solution 
 to (CS) with initial data 
0 are well-defined on the time interval [0, Tε].
Moreover, we have the error estimate, for any t ∈ [0, Tε],

∥∥
ε(t) − 
(t)
∥∥
Hk−2 ≤

(∥∥
0
ε − 
0

∥∥
Hk−2 + AεSε

(
1 + S3

ε

))
eAS

2
ε t . (22)

In this manner, Theorem 3.5 establishes rigorously the convergence of the LL equation
towards the cubic Schrödinger equation in any dimension. It is certainly possible to show
only convergence under weaker assumptions by using compactness arguments as for the
derivation of similar asymptotic regimes (see e.g. [27,49,92] concerning Schrödinger-like
equations).

Observe that smooth solutions for both the LL and the cubic Schrödinger equations are
known to exist when the integer k satisfies the condition k > N/2 + 1. The additional
assumption k > N/2+ 2 in Theorem 3.5 is related to the fact that the proof of (22) requires
a uniform control of the difference 
ε − 
, which follows from the Sobolev embedding
theorem of Hk−2(RN ) into L∞(RN ).

Finally, the loss of two derivatives in the error estimate (22) can be partially recovered
by combining standard interpolation theory. Under the assumptions of Theorem 3.5, the
solutions 
ε converge towards the solution 
 in C0([0, Tε], Hs(RN )) for any 0 ≤ s < k,
when 
0

ε tends to 
0 in Hk+2(RN ) as ε → 0, but the error term is not necessarily of order
ε due to the interpolation process.

Note here that condition (21) is not really restrictive in order to analyze such a convergence.
At least when 
0

ε tends to 
0 in Hk+2(RN ) as ε → 0, the quantity Sε tends to twice the
norm ‖
0‖Hk in the limit ε → 0, so that condition (21) is always fulfilled. Moreover, the
error estimate (22) is available on a time interval of order 1/‖
0‖2

Hk , which is similar to the
minimal time of existence of the smooth solutions to the cubic Schrödinger equation.

The proof of Theorem3.5 is similar to the proof of Theorem3.1. It relies on the consistency
between the Schrödinger equations (NLSε) and (CS) in the limit ε → 0. Indeed, we can
recast (NLSε) as

i∂t
ε + �
ε + 1

2
|
ε|2
ε = εRε,

where the remainder term Rε is given by

Rε = |
ε|2
1 + (1 − ε|
ε|2) 1

2

�
ε − |
ε|4
2(1 + (1 − ε|
ε|2) 1

2 )2

ε − div

( 〈
ε,∇
ε〉C
(1 − ε|
ε|2) 1

2

)

ε.

In order to establish the convergence towards the cubic Schrödinger equation, the main goal
is to control the remainder termRε on a time interval [0, Tε] as long as possible. In particular,
we have to show that the maximal time Tε for this control does not vanish in the limit ε → 0.
The main argument is to perform suitable energy estimates on the solutions 
ε to (NLSε).
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These estimates provide Sobolev bounds for the remainder termRε, which are used to control
the differences uε = 
ε − 
 with respect to the solutions 
 to (CS). This further control is
also derived from energy estimates.

Concerning the estimates of the solutions
ε, we rely on the equivalencewith the solutions
m to (14). However, the estimates given in Sect. 2 are not enough in this case. It is crucial to
refine the estimate (12), which can be done when λ1 = λ3.

Proposition 3.6 Let 0 < ε < 1, and k ∈ N, with k > N/2+ 1. Assume that λ1 = λ3 = 1/ε,
and thatm is a solution to (14) in C0([0, T ], Ek+4(RN )), with ∂tm ∈ C0([0, T ], Hk+2(RN )).
Given any integer 2 ≤  ≤ k + 2, the energies E are of class C1 on [0, T ], and there exists
Ck > 0, depending possibly on k, but not on ε, such that their derivatives satisfy

E ′
(t) ≤ Ck

ε

(
‖m1(t)‖2L∞ + ‖m3(t)‖2L∞ + ‖∇m(t)‖2L∞

) (
E(t) + E−1(t)

)
, (23)

for any t ∈ [0, T ]. Here we have set E1(t) = E(m(t)), the LL energy.

As for the proof of Proposition 2.3, the estimates in Proposition 3.6 rely on the identity
(11), that in the case λ1 = λ3 = 1/ε can be simplified. In contrast with the estimate (12), the
multiplicative factor in the right-hand side of (23) now only depends on the uniform norms
of the functions m1, m3 and ∇m. This property is key in order to use these estimates in the
cubic Schrödinger regime.

Finally, it is necessary to find a high order energy, with suitable cancellation properties to
obtain good energy estimates. The energy proposed in [35], which allows us to conclude as
in the sine–Gordon equation, is

Ek
ε(t) =∥∥
ε

∥∥2
Ḣ k−2 + ∥∥ε∂t
ε − i
ε

∥∥2
Ḣ k−2 + ε2

∥∥�
ε

∥∥2
Ḣ k−2

+ ε
(∥∥∂t (1 − ε|
ε|2) 1

2
∥∥2
Ḣ k−2 + ∥∥�(1 − ε|
ε|2) 1

2
∥∥2
Ḣ k−2 + 2

∥∥∇
ε

∥∥2
Ḣ k−2

)
,

for any k ≥ 2. We refer to [35] for detailed computations.

4 Stability of sum of solitons

In dimension one, the LL equation is completely integrable bymeans of the inverse scattering
method [43] and, using this technique, explicit solitons and multisolitons solutions can be
constructed [17]. We consider in this section equation (13), i.e. the one-dimensional easy-
plane LL equation. By a change of variable, we assume that λ3 = 1.

We say that a soliton for (13) is a traveling wave of the form m(x, t) = u(x − ct). The
nonconstant solitons are explicitly given by

uc(x) = (c sech
(√

1 − c2x
)
, tanh

(√
1 − c2x

)
,
√
1 − c2 sech

(√
1 − c2x

)
), |c| < 1,

up to the invariances of the equation, i.e. translations, rotations around the axis x3 and
orthogonal symmetries with respect to any line in the plane x3 = 0. Thus a soliton with
speed c may be also written as

uc,a,θ,s(x) = ( cos(θ)[uc]1 − s sin(θ)[uc]2, sin(θ)[uc]1 + s cos(θ)[uc]2, s[uc]3
)
(x − a),

with a ∈ R, θ ∈ R and s ∈ {±1}. We refer to [34–36] for more properties of solitons for the
LL equation (3).

In addition, using the integrability of the equation and by means of the inverse scattering
method, for any M ∈ N

∗, it can be also computed explicit solutions to (13) that behave like
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a sum of M decoupled solitons as t → ∞. These solutions are often called M-solitons or
simply multisolitons (see e.g. [17, Section 10] for their explicit formula).

We can define properly the solitons in the hydrodynamical framework when c 	= 0,
since the function ǔc = [uc]1 + i[uc]2 does not vanish. More precisely, we recall that for a
function u : R → S

2 such that |u| 	= 0, we set ǔ = (1−u23)
1/2i exp(−iϕ), and we define the

hydrodynamical variables v = u3 and w = −∂xϕ. Thus, equation (13) recasts as in (H1d),
and the soliton uc in the hydrodynamical variables vc = (vc, wc) is given by

vc(x) =
√
1 − c2 sech

(√
1 − c2x

)
, andwc(x)= c vc(x)

1 − vc(x)2
= c

√
1 − c2 cosh

(√
1 − c2x

)
sinh

(√
1 − c2x

)2 + c2
.

(24)
Therefore, the only remaining invariances of solitons in this framework are translations and
the opposite map (v,w) �→ (−v,−w). Any soliton with speed c may be then written as
vc,a,s(x) = s vc(x − a) = (s vc(x − a), s wc(x − a)), with a ∈ R and s ∈ {±1}.

Our goal in this section is to establish the stability of a single soliton uc along the LL
flow. More generally, we will also consider the case of a sum of solitons. In the original
framework, defining this sum is not so easy, since the sum of unit vectors in R

3 does not
necessarily remain in S

2. In the hydrodynamical framework, this difficulty does not longer
arise. We can define a sum of M solitons Sc,a,s as

Sc,a,s = (Vc,a,s,Wc,a,s) =
M∑
j=1

vc j ,a j ,s j ,

with M ∈ N
∗, c = (c1, . . . , cM ), a = (a1, . . . , aM ) ∈ R

M , and s = (s1, . . . , sM ) ∈ {±1}M .
However, we have to restrict the analysis to speeds c j 	= 0, since the function ǔ0, associated
with the black soliton, vanishes at the origin.

Coming back to the original framework, we can define properly a corresponding sum of
solitons Rc,a,s, when the third component of Sc,a,s does not reach the values ±1. Due to the
exponential decay of the functions vc and wc, this assumption is satisfied at least when the
positions a j are sufficiently separated, i.e. when the solitons are decoupled. In this case, the
sum Rc,a,s is given, up to a phase factor, by the expression

Rc,a,s =
(
(1 − V 2

c,a,s)
1
2 cos(�c,a,s), (1 − V 2

c,a,s)
1
2 sin(�c,a,s), Vc,a,s

)
,

with �c,a,s(x) =
∫ x

0
Wc,a,s(y) dy,

for any x ∈ R. This definition presents the advantage to provide a quantity with values on the
sphere S2. On the other hand, it is only defined under restrictive assumptions on the speeds
c j and positions a j . Moreover, it does not take into account the geometric invariance with
respect to rotations around the axis x3.

4.1 Orbital stability in the energy space

In the sequel, ourmain results are proved in the hydrodynamical framework.We establish that,
if the initial positions a0j are well-separated and the initial speeds c

0
j are ordered according to

the initial positions a0j , then the solution corresponding to a chain of solitons at initial time,
that is a perturbation of a sum of solitons Sc0,a0,s0 , is uniquely defined, and that it remains a
chain of solitons for any positive time.
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Let us recall that Theorem 2.6 provides the existence and uniqueness of a continuous
flow for (H1d) in the nonvanishing energy spaceNV(R). To our knowledge, the question of
the global existence (in the hydrodynamical framework) of the local solution v is open. In
the sequel, we by-pass this difficulty using the stability of a well-prepared sum of solitons
Sc,a,s. Since the solitons in such a sum have exponential decay by (24), and are sufficiently
well-separated, the sum Sc,a,s belongs to NV(R). Invoking the Sobolev embedding theo-
rem, this remains true for a small perturbation in H1(R) × L2(R). As a consequence, the
global existence for a well-prepared sum of solitons follows from its stability by applying a
continuation argument.

Concerning the stability of sums of solitons, our main result is

Theorem 4.1 [34] Let s∗ ∈ {±1}M and c∗ = (c∗
1, . . . , c

∗
M ) ∈ ((−1, 1)\{0})M such that

c∗
1 < c∗

2 < · · · < c∗
M . There exist positive numbers α∗, L∗, ν and A, depending only on c∗

such that, if v0 ∈ NV(R) satisfies the condition

α := ∥∥v0 − Sc∗,a0,s∗
∥∥
H1×L2 ≤ α∗,

for points a0 = (a01 , . . . , a
0
M ) ∈ R

M such that L0 := min
{
a0j+1−a0j , 1 ≤ j ≤ M−1

} ≥ L∗,
then the solution v to (H1d) with initial condition v0 is globally well-defined on R+, and
there exists a function a = (a1, . . . , aM ) ∈ C1(R+,RM ) such that, for any t ≥ 0,

M∑
j=1

∣∣a′
j (t)−c∗

j

∣∣ ≤ A
(
α+e−νL0)

, and
∥∥v(·, t)−Sc∗,a(t),s∗

∥∥
H1×L2 ≤ A

(
α+e−νL0)

. (25)

Theorem 4.1 provides the orbital stability of well-prepared sums of solitons with different,
nonzero speeds for positive time. The sums are well-prepared in the sense that their positions
at initial time are well-separated and ordered according to their speeds. As a consequence,
the solitons are more and more separated along the LL flow (see estimate (25)) and their
interactions become weaker and weaker. The stability of the chain then results from the
orbital stability of each single soliton in the chain.

As a matter of fact, the orbital stability of a single soliton appears as a special case of
Theorem 4.1 when M = 1. In this case, stability occurs for both positive and negative
times due to the time reversibility of the LL equation. Time reversibility also provides the
orbital stability of reverselywell-prepared chains of solitons for negative time. The analysis of
stability for both negative and positive time is more involved. It requires a deep understanding
of the possible interactions between the solitons in the chain (see [83,84] for such an analysis
in the context of theKdV equation). This issue is of particular interest because of the existence
of multisolitons.

Special chains of solitons are indeed provided by the exactmultisolitons. However, there is
a difficulty to define them properly in the hydrodynamical framework. Indeed, multisolitons
can reach the values ±1 at some times. On the other hand, an arbitrary multisoliton becomes
well-prepared for large time in the sense that the individual solitons are ordered according
to their speeds and well-separated (see e.g. [17, Section 10]).

If we consider a perturbation of an arbitrary multisoliton at initial time, our theorem does
not guarantee that a perturbation of this multisoliton remains a perturbation of a multisoliton
for large time. In fact, this property would follow from the continuity with respect to the
initial datum of LL equation in the energy space, which remains, to our knowledge, an open
question. We remark that Theorem 4.1 only shows the orbital stability of the multisolitons,
which do not reach the values ±1 for any positive time.
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To our knowledge, the orbital stability of the soliton u0 remains an open question. In
the context of the Gross–Pitaevskii equation, the orbital stability of the vanishing soliton
(often called black soliton) was proved in [12,47]. Part of the analysis in this further context
certainly extends to the soliton u0 of the LL equation.

Let us remark that in case λ3 = 0, there is no traveling-wave solution to (13) with nonzero
speed and finite energy. However, breather-like solutions were found to exist in [73], and their
numerical stability was investigated in [99]. In the easy-axis case, there are traveling-wave
solutions (see e.g. [18]), but their third coordinatem3(x) converges to±1 as |x | → +∞. This
prevents from invoking the hydrodynamical formulation, and thus from using the strategy
developed below in order to prove their orbital stability.

We present now the main elements in the proof of Theorem 4.1, restricting our attention
to the analysis of a single soliton. We underline that these arguments do not make use
of the inverse scattering transform. Instead, they rely on the Hamiltonian structure of the
LL equation, in particular, on the conservation laws for the energy and momentum. As
a consequence, these arguments can presumably be extended to nonintegrable equations
similar to the hydrodynamical LL equation.

The strategy of the proof of Theorem 4.1 is reminiscent of the one developed to tackle
the stability of well-prepared chains of solitons for the generalized KdV equations [85], the
nonlinear Schrödinger equations [86], or the Gross-Pitaevskii equation [14]. A key ingredient
in the proof is theminimizing nature of the soliton vc, which can be constructed as the solution
of the minimization problem

E(vc) = min
{
E(v) | v ∈ NV(R) s.t. P(v) = P(vc)

}
, (26)

where we recall that the energy and the momentum of v = (v,w), are given by

E(v) = 1

2

∫
R

( (v′)2

1 − v2
+ (1 − v2

)
w2 + v2

)
, and P(v) =

∫
R

vw.

This characterization results from the compactness of the minimizing sequences for (26),
and the classification of solitons in (24). The compactness of minimizing sequences can
be proved following the arguments developed for a similar problem in the context of the
Gross–Pitaevskii equation [11,37].

The Euler–Lagrange equation for (26) reduces to the identity E ′(vc) = cP ′(vc), where
the speed c appears as the Lagrange multiplier of the minimization problem. The minimizing

energy is equal to E(vc) = 2(1 − c2)
1
2 , while the momentum of the soliton vc is given by

P(vc) = 2 arctan((1 − c2)
1
2 /c), for c 	= 0. An important consequence is the inequality

d

dc

(
P(vc)

)
= − 2

(1 − c2)
1
2

< 0, (27)

which is related to the Grillakis–Shatah–Strauss condition (see e.g. [54]) for the orbital
stability of a soliton. As a matter of fact, we can use inequality (27) to establish the coercivity
of the quadratic form

Qc = E ′′(vc) − cP ′′(vc),

under suitable orthogonality conditions. More precisely, we show

Proposition 4.2 Let c ∈ (−1, 1)\{0}. There exists �c > 0, such that

Qc(ε) ≥ �c‖ε‖2H1×L2 , (28)
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for any pair ε ∈ H1(R) × L2(R) satisfying the two orthogonality conditions

〈∂xvc, ε〉L2×L2 = 〈P ′(vc), ε〉L2×L2 = 0. (29)

Moreover, the map c �→ �c is uniformly bounded from below on any compact subset of
(−1, 1)\{0}.

The first orthogonality condition in (29) originates in the invariance with respect to trans-
lations of (H1d). Due to this invariance, the pair ∂xvc lies in the kernel of Qc. The quadratic
form Qc also owns a unique negative direction, which is related to the constraint in (26).
This direction is controlled by the second orthogonality condition in (29).

As a consequence of Proposition 4.2, the functional Fc(v) = E(v)− cP(v), controls any
perturbation ε = v− vc satisfying the two orthogonality conditions in (29). More precisely,
we derive from the Euler–Lagrange equation and (28) that

Fc(vc + ε) − Fc(vc) ≥ �c‖ε‖2H1×L2 + O(‖ε‖3H1×L2

)
, (30)

as ‖ε‖H1×L2 → 0. Since the energy E(v) and the momentum P(v) are conserved along the
flow, the left-hand side of (30) remains small for all time if it was small at the initial time.
As a consequence of (30), the perturbation ε remains small for all time, which implies the
stability of vc. We refer to [34] for more detail about the proof of Theorem 4.1.

4.2 Asymptotic stability

We consider now the long-time asymptotics of a solution to (13), with initial condition
a perturbation of a soliton. We would like to determine conditions such that the solution
converges to a (possible different) soliton. Let us remark that the convergence as t → ∞
cannot hold in the energy space. For instance, we could consider a solution v to (H1d) with
an initial condition v0 ∈ NV(R), such that v converges to a hydrodynamical soliton vc in
the norm ‖ · ‖H1×L2 , as t → ∞. By the continuity of the energy and the momentum (with
respect to this norm), we have

E
(
v(·, t))→ E(vc) and P

(
v(·, t))→ P(vc),

as t → ∞. Since these quantities are conserved by the flow, we conclude that E(v0) = E(vc)

and P(v0) = P(vc). Thus, the variational characterization of solitons implies that v0 must
be a soliton. Therefore, the only solutions that converge (in energy norm) to a soliton as
t → ∞, are the solitons.

In conclusion, to establish the asymptotic stability, we need to weaken the notion of
convergence. Indeed, using the weak convergence in the spaceNV(R), Bahri [2] proved the
asymptotic stability of solitons in the hydrodynamical framework.

Theorem 4.3 [2] Let c ∈ (−1, 1)\{0}. There is α∗ > 0 such that, if the initial condition
v0 ∈ NV(R) satisfies that ‖v0−vc‖H1×L2 < α∗, then there exist a unique global associated
solution v ∈ C0(R,NV(R)) to (13), c∗ ∈ (−1, 1)\{0} and a ∈ C1(R,R) such that, as
t → ∞,

v(· + a(t), t)
)
⇀vc∗ in H1(R) × L2(R), and a′(t) → c∗.

This theorem provides the weak convergence towards a soliton, but this long-time dynam-
ics needs to take into account the geometric invariances of the problem, i.e. the translations.
This is precisely the role of the parameter a(t), whose derivative converges to the speed of
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the limit soliton vc∗ . In this fashion, the solution propagates with the same speed as the limit
soliton, as t goes to infinity, as expected.

The weak convergence in Theorem 4.3 can probably be improved. Indeed, Martel and
Merle [81,82] proved the asymptotic stability of solitons of the KdV equation, establishing
a locally (strong) convergence in the energy space. It is possible that a similar result can be
shown for the asymptotic stability of hydrodynamical solitons of theLLequation satisfy a sim-
ilar, i.e. a strong convergence in a norm of the type H1([−R(t), R(t)]) × L2([−R(t), R(t)]),
where R(t) is a linear function of time.

The proof of Theorem 4.3 is based on an approach developed by Martel and Merle for
the KdV equation [81,82]. Their strategy can be decomposed in three steps, that we would
explain in our context, i.e. in the hydrodynamical setting. First, the orbital stability provided
by Theorem 4.1 guarantees that a solution v, with initial condition v0 close enough to a
soliton vc, remains in a neighborhood of the orbit of the soliton. In particular, the solution v
is bounded in the nonvanishing space NV(R) for any t ≥ 0. It is then possible to construct
a sequence of times (tn), with tn → ∞, and a limit function v0∗ ∈ NV(R), such that, up to a
subsequence,

v(·, tn)⇀v0∗ in H1(R) × L2(R),

as n → ∞. In addition, v0∗ remains close to the orbit of the soliton vc. Moreover, the solution
v∗ to (H1d) with initial condition v0∗ is global, and is also close to this orbit. We point out that
is also necessary to introduce a modulation parameter due to the invariance by translation,
but we will omit it for the sake of clarity.

We need to prove that the limit profile v0∗, and the associated solution v∗, are indeed
solitons. Thus, the second step is to study the regularity and decay properties of v∗. To this
end, it is useful to establish the weak continuity of the flow of the hydrodynamical equation
with respect to the initial condition, which implies that the solution v converges to v∗, i.e.
for any t ∈ R (fixed),

v(·, tn + t)⇀v∗(·, t) in H1(R) × L2(R), as n → ∞.

Using also a monotonicity formula for the momentum, from this convergence it is possible to
deduce that v∗ is localized in space, uniformly in time, and that v∗ has an exponential decay
in space, uniformly in time. Thus, using the Kato smoothing effect that gives regularizing
properties of the Schrödinger-type equations, it follows that v∗ is of class C∞ on R×R, and
that all its derivatives also decay in space, uniformly in time.

The third step is to show that in the neighborhood of a soliton, the only solutions to (H1d)
having this behavior are the solitons. This rigidity property follows from a Liouville type
theorem. The proof of this theorem requires another monotonicity formula, and it is the most
difficult part of the argument. We refer to [2] for more details.

By refining the approach described above, Bahri [3] also established the asymptotic sta-
bility for initial data close to a sum of solitons, that are as usual well-prepared according to
their speeds and have sufficiently separated initial positions. The proof of this theorem relies
on the strategy developed byMartel, Merle and Tsai in [85] for the KdV equation. Let us also
remark that the locally strong asymptotic stability result for multisolitons in [85] is stronger
than the statement in [3] with M = 2. Indeed, the proof in [85] is based on a monotonicity
argument for the localized energy. It is an open problem if this kind of argument can be
adapted to the study of the LL equation, or more generally, if it possible to get a locally
strong asymptotic stability result.

In the higher dimensional case N ≥ 2, most of the questions about solitons are still open.
We refer to [33] and the references therein for more details.
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5 Self-similar solutions for the LLG equation

In this section we will study the dissipative LLG equation (7). We will focus on the existence
of self-similar solutions and provide their asymptotics in dimension N = 1. We also analyze
the qualitative and quantitative effect of the damping α on the dynamical behavior of these
self-similar solutions.

As we will see, these kinds of solutions do not belong to classical Sobolev spaces, and
we cannot invoke the Cauchy theory developed in Sect. 2 to give a meaning to their stability.
Therefore, wewill provide a well-posedness result in amore general framework related to the
BMO space to give some stability results. We point out that the proof of the well-posedness
result uses the parabolic behavior of the equation in presence of damping, and cannot be
applied for the pure dispersive equation (i.e. α = 0) analyzed in previous sections.

5.1 Self-similar solutions

A natural question, that has been proven relevant for understanding the global behavior of
solutions and formation of singularities, is whether there exist solutions which are invariant
under scalings of the equation. In the case of equation (7), it is straightforward to see that it is
invariant under the following scaling: If m is a solution of (7), then mλ(x, t) = m(λx, λ2t)
is also a solution, for any λ > 0. Associated with this invariance, a solution m of (7) defined
for I = R

+ or I = R
− is called self-similar if it is invariant under rescaling, that is

m(x, t) = m(λx, λ2t), ∀λ > 0, ∀x ∈ R
N , ∀t ∈ I . (31)

Setting T ∈ R and performing a translation in time, this definition leads to two types of
self-similar solutions: A forward self-similar solution, or expander, is a solution of the form
m(x, t) = f (x/

√
t − T ) for (x, t) ∈ R

N × (T ,∞), and a backward self-similar solution,
or shrinker, is a solution of the form m(x, t) = f (x/

√
T − t) for (x, t) ∈ R

N × (−∞, T ),

for certain profile f : RN −→ S
2. Expanders evolve from a singular value at time T , while

shrinkers evolve towards a singular value at time T .
Self-similar solutions have brought a lot of attention in the study on nonlinear PDEs

because they can provide some important information about the dynamics of the equation.
While expanders are related to nonuniqueness phenomena, resolution of singularities and
long time description of solutions, shrinkers are often related to phenomena of singularity
formation (see e.g. [42,52]). On the other hand, the construction and understanding of the
dynamics and properties of self-similar solutions also provide an idea of which are the natural
spaces to develop a well-posedness theory, that captures these very often physically relevant
structures. Examples of equations for which self-similar solutions have been considered, and
a substantial work around these types of solutions has been done, include among others the
Navier–Stokes equation, semilinear parabolic equations, and geometric flows such as Yang-
Mills, mean curvature flow and harmonic map flow. We refer to [66,96] and the references
therein for more details.

Most of the works in the literature related to the study of self-similar solutions to the LLG
equation are confined to the heat flow for harmonic maps equation, i.e. α = 1. In this setting,
the main works on the subject restrict the analysis to corotational maps taking values in S

d ,
which reduces the analysis of (6) to the study of a second order real-valued ODE. Then tools
such as the maximum principle or the shooting method can be used to show the existence
of solutions. We refer to [15,16,19,44,46,48,50] for more details on such results for maps
taking values in Sd , with d ≥ 3. Recently, Deruelle and Lamm [38] have studied the Cauchy
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problem for the harmonic map heat flow with initial data m0 : R
N → S

d , with N ≥ 3
and d ≥ 2, where m0 is Lipschitz 0-homogeneous function, homotopic to a constant, which
implies the existence of expanders coming out of m0.

When 0 < α ≤ 1, we established the existence of self-similar expanders for the LLG
equation in [60]. This result is a consequence of a well-possedness theorem for the LLG
equation considering an initial datam0 : RN → S

2 in the spaceBMOof functions of bounded
mean oscillation. Notice that this result includes in particular the case of the harmonic map
heat flow. We will explain more precisely this result in Sect. 5.3.

As seen before, in absence of damping (α = 0), (7) reduces to the Schrödinger map
equation (4), which is reversible in time, so that the notions of expanders and shrinkers
coincide. For this equation, Germain, Shatah and Zeng [51] established the existence of
(k-equivariant) self-similar profiles f : R2 → S

2.
In the one-dimensional case, when α = 0, (4) is closely related Localized Induction

Approximation (LIA), and self-similar profiles f : R → S
2 were obtained and analyzed

in [62,63,74]. In the context of LIA, self-similar solutions constitute a family of smooth
solutions that develop a singularity in the shape of a corner in finite time. For further work
related to these solutions, including the study of the continuation of these solutions after the
blow-up time and their stability, we refer to the reader to [5,8]. At the level of the Schrödinger
map equation, these self-similar solutions provide examples of smooth solutions that develop
a jump singularity in finite time.

In the following sections we explain how to construct the family of expanders profiles for
α ∈ [0, 1], and provide their analytical study and we discuss the Cauchy problem associated
with these solutions and their stability. Finally, in Sect. 5.5 we construct and analyze the
family of shrinkers profiles.

5.2 Expanders in dimension one

We consider in this section Eq. (7) in dimension N = 1, and α ∈ [0, 1], in order to include
both the damped and undamped cases. We seek self-similar solutions of the form

m(x, t) = m(x/
√
t), x ∈ R, t > 0,

and we will say thatm is the profile of the solution m. Observe that if m is a smooth solution
to (7), it can be checked that m solves the following system of ODEs

αm′′ + α|m′|2m + β(m × m′)′ + xm′

2
= 0, on R, (32)

due to the fact thatm takes values in S2. Thus, we can give aweak formulation to this equation
in the form −(A(m)m′)′ = G(x,m,m′), with

A(u) =
⎛
⎝ α −βu3 βu2

βu3 α −βu1
−βu2 βu1 α,

⎞
⎠ , G(x, u, p) =

⎛
⎜⎝

αu1| p|2 − xp1
2

αu2| p|2 − xp2
2

αu3| p|2 − xp3
2

⎞
⎟⎠ ,

where u = (u1, u2, u3) and p = (p1, p2, p3).
Therefore, if α > 0, the system is uniformly elliptic, since A(u)ξ · ξ = α|ξ |2, for all

ξ , u ∈ R
3, and we can then invoke the regularity theory for quasilinear elliptic systems, to

verify that the solutions are smooth.
In the limit case α = 0, we can show directly that the solutions are also smooth. Most

importantly, we have the following theorem that provides a rigidity result concerning the
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possible solutions to (32): The modulus of the gradient of any solution must be ce−αx2/4, for
some c ≥ 0.

Theorem 5.1 [61] Let α ∈ [0, 1]. Assume that m ∈ H1
loc(R;S2) is a weak solution to (32).

Then m belongs to C∞(R;S2) and there exists c ≥ 0 such that |m′(x)| = ce−αx2/4, for all
x ∈ R.

In the limit cases α = 1 and α = 0, it is possible to find explicit solutions to (32), as we
will see later on. However, this seems unlikely in the case α ∈ (0, 1), and even the existence
of such solutions is not clear. We proceed now to give a way of establishing the existence
of solutions satisfying the condition |m′(x)| = ce−αx2/4, for any c > 0 and any α ∈ [0, 1]
(notice that the case c = 0 corresponds to the trivial constant solution).

The idea is to look for m as the tangent vector to a curve in R
3, so we first recall some

facts about curves in the space. Given m : R → S
2 a smooth function, we can define the

curve

Xm(x) =
∫ x

0
m(s)ds, (33)

so that Xm is smooth, parametrized by arclenght, and its tangent vector is m. In addition, if
|m′| does not vanish on R, we can define the normal vector n(x) = m′(x)/|m′(x)| and the
binormal vector b(x) = m(x) × n(x). Moreover, we can define the curvature and torsion of
Xm as k(x) = |m′(x)| and τ(x) = −b′(x) · n(x). Since |m(x)|2 = 1, for all x ∈ R, we
have that m(x) · n(x) = 0, for all x ∈ R, that the vectors {m, n, b} are orthonormal and it is
standard to check that they satisfy the Serret–Frenet system

m′ = kn, n′ = −km + τb, b′ = −τn. (34)

Let us apply this method to find a solution to (32).We define Xm as in (33), and we remark
that equation (32) rewrites in terms of {m, n, b} as

− x

2
kn = β(k′b − τkn) − α(−k′n − kτb).

Therefore, from the orthogonality of the vectors n and b, we conclude that the curvature and
torsion of Xm are solutions of the equations −xk = 2αk′ − βτk and βk′ + αkτ = 0, that is

k(x) = ce−αx2/4 and τ(x) = βx/2, (35)

for some c ≥ 0. Of course, the fact that k(x) = ce−αx2/4 is in agreement with |m′(x)| =
ce−αx2/4.

Now, given α ∈ [0, 1] and c > 0, consider the Serret–Frenet system (34) with curvature
and torsion function given by (35) and initial conditions m(0) = e1, n(0) = e2, b(0) = e3.
Then, by standard ODE theory, there exists a unique global solution {mc,α, nc,α, bc,α} in
(C∞(R;S2))3, and these vectors are orthonormal. Also, it is straightforward to verify that
mc,α is a solution to (32) satisfying |m′

c,α(x)| = ce−αx2/4.
Finally, using the uniqueness of the Cauchy–Lipschitz theorem and the Serret–Frenet

system, it is simple to show the uniqueness of such solutions, up to rotations.

Theorem 5.2 [61] The set of nonconstant solutions to (32) is {Rmc,α : c > 0,R ∈ SO(3)},
where SO(3) is the group of rotations about the origin preserving orientations.

The above proposition reduces the study of expanders to the understanding of the family
of expanders associatedwith the profiles {mc,α}c,α . The next result summarizes the properties
of these solutions.
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(b) α = 0.2
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(c) α = 0.4

m2m2

Fig. 1 The profile mc,α for c = 0.8 and different values of α

Theorem 5.3 [59] Let α ∈ [0, 1], c ≥ 0 and mc,α be the solution of the Serret–Frenet
system constructed above. Let mc,α(x, t) = mc,α

(
x/

√
t
)
, for (x, t) ∈ R× (0,∞). Then the

following statements hold.

(i) The function mc,α is a C∞-solution of (7) on R × (0,∞), with |∂xmc,α(x, t)| =
c√
t
e−αx2/4t .

(ii) There exists a unitary vector A+
c,α = (A+

j,c,α)3j=1 ∈ S
2 such that mc,α(·, t) converges

pointwise to the initial condition

m0
c,α = A+

c,αχR+ + A−
c,αχR− , (36)

i.e.

lim
t→0+ mc,α(x, t) = A+

c,α, if x > 0, and lim
t→0+ mc,α(x, t) = A−

c,α, if x < 0,

where A−
c,α = (A+

1,c,α,−A+
2,c,α,−A+

3,c,α) and χE is the characteristic function of the
set E.

(iii) Moreover, there exists a constant C(c, α, p) such that for all t > 0 and all for all
p ∈ (1,∞),

‖mc,α(·, t) − m0
c,α‖L p(R) ≤ C(c, α, p)t

1
2p .

The graphics in Fig. 1 depict the profilemc,α for fixed c = 0.8 and the values of α = 0.01,
α = 0.2, and α = 0.4. In particular, it can be observed how the convergence ofmc,α to A±

c,α
is accelerated by the diffusion α.

Notice that the initial condition m0
c,α has a jump singularity at the point x = 0 whenever

the vectors A+
c,α and A−

c,α satisfy A+
c,α 	= A−

c,α. In this situation (and we will be able to prove
analytically that this is the case, at least for certain ranges of the parameters α and c, see
Proposition 5.5 below), Theorem 5.3 provides a family of global smooth solutions of (7)
associated with a discontinuous singular initial data (jump-singularity).

As already mentioned, in the absence of damping (α = 0), singular self-similar solutions
of the Schrödinger map equation were previously obtained in [62,74]. In this framework,
Theorem 5.3 establishes the persistence of a jump singularity for self-similar solutions in the
presence of dissipation.

When α = 0, the stability of the self-similar solutions was considered in a series of papers
by Banica and Vega [5–7]. The stability in the case α > 0 is a natural question that we will
discuss later.
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Some further remarks on the results stated in Theorem 5.3 are in order. First, the energy
is given by

ELLG(t) = 1

2

∫ ∞

−∞
|∂xmc,α(x, t)|2 dx = 1

2

∫ ∞

−∞

(
c√
t
e− αx2

4t

)2
dx = c2

√
π

αt
, t > 0.

It follows that the energy at the initial time t = 0 is infinite, while it becomes finite for all
positive times, showing the dissipation of energy in the system in the presence of damping.

Secondly, it is also important to remark that in the setting of Schrödinger equations,
for fixed α ∈ [0, 1] and c > 0, the solution mc,α is associated through the Hasimoto

transformation with the filament function [64], that is uc,α(x, t) = c√
t
e(−α+iβ) x

2
4t , which

solves

i∂t u + (β − iα)∂xxu + u

2

(
β|u|2 + 2α

∫ x

0
Im(ū∂xu) − A(t)

)
= 0, with A(t) = βc2

t
,

(37)
with initial condition a Dirac delta function since limt→0+ uc,α(x, t) = 2c

√
π(α + iβ)δ0.

Therefore uc,α is very rough at initial time and the standard arguments (e.g. a Picard itera-
tion scheme based on Strichartz estimates and Sobolev–Bourgain spaces) cannot be applied,
at least not straightforwardly, to study the local well-posedness of the initial value problem
for the Schrödinger equation (37). The existence of solutions to equation (37) associated with
an initial data proportional to a Dirac delta opens the question of developing a well-posedness
theory for Schrödinger equations of the type considered here to include initial data of infinite
energy. In the case α = 0, A(t) = 0 and when the initial condition is proportional to the
Dirac delta, Kenig, Ponce and Vega [67] proved that the Cauchy problem for (37) is ill-posed
due to some oscillations. Moreover, even after removing these oscillations, Banica and Vega
[5] showed that equation (37) (with α = 0 and A(t) = c2/t) is still ill-posed. This question
was also addressed by Vargas and Vega in [100] and Grünrock in [55] for other types of
initial data of infinite energy (see also [4]), but we are not aware of any result in this setting
when α > 0 (see [57] for related well-posedness results in the case α > 0 for initial data in
Sobolev spaces of positive index).

5.2.1 Asymptotics for the profile

We want now to study the qualitative and quantitative effect of the damping α and the
parameter c on the dynamical behavior of the family (mc,α)c,α of self-similar solutions of
(7) found in Theorem 5.3. Precisely, in an attempt to fully understand the regularization of the
solution at positive times close to the initial time t = 0, and to understand how the presence
of damping affects the dynamical behavior of these self-similar solutions, we aim to give
answers to the following questions: Can we obtain a more precise behavior of the solutions
mc,α at positive times t close to zero? Can we understand the limiting vectors A±

c,α in terms
of the parameters c and α?

In order to address our first question, we observe that, due to the self-similar nature of these
solutions, the behavior of the family of solutions mc,α at positive times close to the initial
time t = 0 is directly related to the study of the asymptotics of the associated profilemc,α(x)
for large values of |x |. In addition, the symmetries of mc,α (see Theorem 5.4 below) allow
to reduce ourselves to obtain the behavior of the profile as x → ∞. The precise asymptotics
of the profile is given in the following theorem.
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Theorem 5.4 [59] Let α ∈ [0, 1], c > 0. The components of mc,α satisfy respectively that
m1,c,α is an even function, and m j,c,α is an odd function for j ∈ {2, 3}. In addition, for all
s ≥ s0 = 4

√
8 + c2,

mc,α(s) = A+
c,α − 2c

s
B+
c,αe

−αs2/4(α sin(φc,α(s)) + β cos(φc,α(s)))

− 2c2

s2
A+
c,αe

−αs2/2 + O(e−αs2/4

s3
)
.

Here, sin(φc,α) and cos(φc,α) are understood acting on each of the components given by

φ j,c,α(s) = a j,α,c + β

∫ s2/4

s20/4

√
1 + c2

e−2ασ

σ
dσ, j ∈ {1, 2, 3}, (38)

for some constants a1,α,c, a2,α,c, a1,α,c ∈ [0, 2π), and the vector B+
c,α is given in terms of

A+
c,α by B+

c,α = ((1 − (A+
1,c,α)2)1/2, (1 − (A+

2,c,α)2)1/2, (1 − (A+
3,c,α)2)1/2).

The convergence and rate of convergence of the solutions mc,α to m0
c,α established in

Theorem 5.3 are simple consequences of the asymptotics in Theorem 5.4. Also, similar
asymptotics hold for the normal vector nc,α and the binormal vector bc,α .

With regard to the asymptotics in Theorem 5.4, it is important to mention that the error
depends only on c. More precisely, we use the notation O( f (s)) to denote a function for
which there exists a constant C(c) > 0 depending on c, but not on α, such that

|O ( f (s))| ≤ C(c)| f (s)|, for all s ≥ s0.

At first glance, one might think that the term −2c2A+
c,αe

−αs2/2/s2 in the asymptotics could

be included in the error term O(e−αs2/4/s3). However, we cannot do this because in our
notation the big-O must be independent of α.

When α = 1 (so β = 0), we can solve explicitly the Serret–Frenet system, to obtain

mc,1(s) = (cos(c Erf(s)), sin(c Erf(s)), 0), (39)

for all s ∈ R, where Erf is the non-normalized error function Erf(s) = ∫ s
0 e−σ 2/4 dσ. In

particular, the limiting vectors in Theorem 5.4 are given by

A±
c,1 = (cos(c

√
π),± sin(c

√
π), 0), B+

c,1 = (| sin(c√π)|, | cos(c√π)|, 1). (40)

When α = 0, the solution of (34) can be solved explicitly in terms of parabolic cylinder
functions or confluent hypergeometric functions (see [45]). Another analytical approach
using Fourier analysis techniques has been taken in [62], leading to the asymptotics

mc,0(s) = A+
c,0 − 2c

s
B+
c,0 sin(ψc) + O (1/s2) , with ψc(s) = s2

4
+ c2 ln(s). (41)

Moreover, A+
c,0 can be computed explicitly. On the other hand, when α = 0, the phase φc,α

in (38) can be expanded as

φ j,c,0(s) = a j,c,α + s2

4
+ c2 ln(s) + C(c) + O (1/s2) .

Thus the asymptotics in Theorem 5.14 allows us to recover the logarithmic contribution in
the oscillation in (41).
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When α > 0, φc,α behaves like

φ j,c,α(s) = a j,c,α + βs2

4
+ C(α, c) + O(e−αs2/2

αs2
)
,

and there is no logarithmic correction in the oscillations in the presence of damping. Conse-
quently, the phase function φc,α captures the different nature of the oscillatory character of
the solutions in both the absence and the presence of damping.

It can be seen that the terms A+
c,α , B

+
c,α , B

+
c,α · sin(ac,α), B+

c,α · cos(ac,α) and the error
term depend continuously on α ∈ [0, 1]. Therefore, the asymptotics in Theorem 5.14 shows
how the profile mc,α converges to mc,0 as α → 0+ and to mc,1 as α → 1−. In particular, we
recover the asymptotics in (41).

Finally, the amplitude of the leading order term controlling the wave-like behavior of the

solution mc,α(s) around A±
c,α for values of s sufficiently large is of the order c e−αs2/4/s,

from which one observes how the convergence of the solution to its limiting values A±
c,α is

accelerated in the presence of damping in the system, as depicted in Fig. 1.
Let us discuss now some results answering the second of our questions. Bearing in mind

that A−
c,α is expressed in terms of the coordinates of A+

c,α , we only need to focus on A+
c,α .

When α = 1 or α = 0, the vector A+
c,α is explicitly given in terms of the parameter c. When

α ∈ (0, 1), we do not have explicit expressions for these vectors, however the following
result establishes that the solutions mc,α of the LLG equation found in Theorem 5.3 are
indeed associated with a discontinuous initial data at least for certain ranges of α and c.

Theorem 5.5 [59]

(i) Let α ∈ (0, 1]. There exists c∗ > 0 depending on α such that A+
c,α 	= A−

c,α , for all
c ∈ (0, c∗).

(ii) Let c > 0. There exists α∗
0 > 0 such that A+

c,α 	= A−
c,α , for all α ∈ (0, α∗

0).

(iii) Let c > 0, with c /∈ N
√

π . There exists α∗
1 ∈ (0, 1) such that A+

c,α 	= A−
c,α , for all

α ∈ (α∗
1 , 1).

Remark 5.6 It can be checked that A+
c,0 	= A−

c,0 for all c > 0. Based on the numerical results
in [59], we conjecture that A+

c,α 	= A−
c,α for all α ∈ (0, 1) and c > 0.

Concerning, the proof of the asymptotics of mc,α , a key tool is a classical change of
variables from the differential geometry of curves that allows us to reduce the nine equations
in the Serret–Frenet system into three complex-valued second order equations (see e.g. [75]).
This change of variables is related to the stereographic projection; this approach was used in
[62]. In our case, the change of variables reduces the analysis of the solution {mc,α, nc,α, bc,α}
of the Serret–Frenet system to the study of three solutions to the second order differential
equation

f ′′
c,α(s) + s

2
(α + iβ) f ′

c,α(s) + c2

4
e−αs2/2 fc,α(s) = 0, (42)

associatedwith three different initial conditions. The analysis of the solutions of (42) requires
the control of certain integrals by exploiting their oscillatory character. This can be achieved
by using repeated integration by parts, in the spirit of the method of stationary phase. We
refer to [60] for more details of the proof.
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5.3 The Cauchy problem for LLG in BMO

A natural question in the study of the stability properties of the family of solutions (mc,α)c>0

is whether it is possible to develop a well-posedness theory for the Cauchy problem for (7)
in a functional framework that allows us to handle initial conditions of the type (36). In view
of (36), such a framework should allow some “rough” functions (i.e. function spaces beyond
the “classical” energy ones) and step functions.

In the case α > 0, global well-posedness results for (7) have been established in N ≥ 2 by
Melcher [88] and by Lin, Lai andWang [79] for initial conditions with a smallness condition
on the gradient in the LN (RN ) and on the Morrey M2,2(RN )-norm, respectively. Therefore,
these results do not apply to the initial condition m0

c,α . When α = 1, global well-posedness
results for the heat flow for harmonic maps (6) have been obtained by Koch and Lamm [68]
for an initial condition L∞-close to a point and improved to an initial data with small BMO
semi-norm by Wang [102]. The ideas used in [68] and [102] rely on techniques introduced
by Koch and Tataru [69] for the Navier–Stokes equation. Since m0

c,α has a small BMO
semi-norm if c is small, the results in [102] apply to the case α = 1.

In this subsection we explain the main results in [60] that allow us to adapt and extend
the techniques developed in [68,69,102] to prove a global well-posedness result for (7) with
α ∈ (0, 1], for data m0 in L∞(RN ;S2) with small BMO semi-norm. As an application of
these results, we can establish the stability of the family of self-similar solutions (mc,α)c>0

and derive further properties for these solutions. In particular, we can prove the existence of
multiple smooth solutions of (7) associated with the same initial condition, provided that α
is close to one.

Our approach to study the Cauchy problem for (7) consists in analyzing the Cauchy prob-
lem for the associated dissipative quasilinear Schrödinger equation through the stereographic
projection, and then “transferring” the results back to the original equation. To this end, we
use the stereographic projection from the South Pole defined in (8). As mentioned in the
introduction, if m is a smooth solution of (7) with m3 > −1, then its stereographic projec-
tion u = P(m) satisfies the quasilinear dissipative Schrödinger equation (DNLS). At least
formally, the Duhamel formula gives the integral equation:

u(x, t) = Sα(t)u0 +
∫ t

0
Sα(t − s)g(u)(s) ds, with g(u) = −2i(β − iα)

ū(∇u)2

1 + |u|2 ,

(IDNLS)

where u0 = u(·, 0) corresponds to the initial condition, and Sα(t) is the dissipative
Schrödinger semigroup (also called the complex Ginzburg–Landau semigroup) given by
Sα(t)φ = e(α+iβ)t�φ, i.e.

(Sα(t)φ)(x) =
∫
RN

Gα(x − y, t)φ(y) dy, with Gα(x, t) = e− |x |2
4(α+iβ)t

(4π(α + iβ)t)N/2 .

One difficulty in studying (IDNLS) is to handle the term g(u).We see that |g(u)| ≤ |∇u|2,
so we need to control |∇u|2. Koch and Taratu dealt with a similar problem when studying
the well-posedness for the Navier–Stokes equation in [69]. Their approach was to introduce
some new spaces related to BMO and BMO−1. Later, Koch and Lamm [68], andWang [102]
have adapted these spaces to study some geometric flows. Following these ideas, we define
the Banach spaces

X(RN × R
+; F) = {v : RN × R

+ → F : v,∇v ∈ L1
loc(R

N × R
+), ‖v‖X < ∞} and
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Y (RN × R
+; F) = {v : RN × R

+ → F : v ∈ L1
loc(R

N × R
+), ‖v‖Y < ∞},

where ‖v‖X = supt>0 ‖v‖L∞ + [v]X , with

[v]X = sup
t>0

√
t‖∇v‖L∞ + sup

x∈RN

r>0

(
1

r N

∫
Qr (x)

|∇v(y, t)|2 dt dy
) 1

2

, and

‖v‖Y = sup
t>0

t‖v‖L∞ + sup
x∈RN

r>0

1

r N

∫
Qr (x)

|v(y, t)| dt dy.

Here Qr (x) denotes the parabolic ball Qr (x) = Br (x)×[0, r2] and F is eitherC orR3. The
absolute value stands for the complex absolute value if F = C and for the euclidean norm if
F = R

3. We denote with the same symbol the absolute value in F and F3.
The spaces X and Y are related to the spaces BMO(RN ) and BMO−1(RN ) and are well-

adapted to study problems involving the heat semigroup S1(t) = et�. In order to establish
the properties of the semigroup Sα(t) with α ∈ (0, 1], we introduce the spaces BMOα(RN )

and BMO−1
α (RN ) as the space of distributions f ∈ S′(RN ; F) such that the semi-norm and

norm given respectively by

[ f ]BMOα = sup
x∈RN

r>0

( 1

r N

∫
Qr (x)

|∇Sα(t) f |2
) 1

2
, ‖ f ‖BMO−1

α
= sup

x∈RN

r>0

( 1

r N

∫
Qr (x)

|Sα(t) f |2
) 1

2
,

are finite.
On the one hand, the Carlesonmeasure characterization of BMO functions (see [95, Chap-

ter 4] and [77, Chapter 10]) yields that for fixed α ∈ (0, 1], BMOα(RN ) coincides with the
classical BMO(RN ) space, that is for all α ∈ (0, 1] there exists a constant � > 0 depending
only on α and N such that �[ f ]BMO ≤ [ f ]BMOα ≤ �−1[ f ]BMO . On the other hand, Koch
and Tataru proved in [69] that BMO−1 (or equivalently BMO−1

1 , using our notation) can
be characterized as the space of derivatives of functions in BMO. A straightforward gener-
alization of their argument shows that the same result holds for BMO−1

α . Hence, using the
Carleson measure characterization theorem, we conclude that BMO−1

α coincides with the
space BMO−1 and that there exists a constant �̃ > 0, depending only on α and N , such that
�̃‖ f ‖BMO−1 ≤ ‖ f ‖BMO−1

α
≤ �̃−1‖ f ‖BMO−1 .

The above remarks allow us to use several of the estimates proved in [68,69,102] in the
case α = 1, to study the integral equation (IDNLS) by using a fixed-point approach. Finally,
this leads to the next result that provides the global well-posedness of the Cauchy problem
for (IDNLS) with small initial data in BMO(RN ).

Theorem 5.7 [60] Let α ∈ (0, 1]. There exist constants C, K ≥ 1 such that for every L ≥ 0,
ε > 0, and ρ > 0 satisfying

8C(ρ + ε)2 ≤ ρ, (43)

if u0 ∈ L∞(RN ;C), with

‖u0‖L∞ ≤ L and [u0]BMO ≤ ε, (44)

then there exists a unique solution u ∈ X(RN × R
+;C) to (IDNLS) such that

[u]X ≤ K (ρ + ε). (45)

Moreover, u ∈ C∞(RN × R
+), (DNLS) holds pointwise, supt>0 ‖u‖L∞ ≤ K (ρ + L) and

u(·, t) → u0, as t → 0+, as tempered distributions.
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1
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1
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ρ
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Fig. 2 The shape of the set S(C)

In addition, assume that u and v are respectively solutions to (IDNLS) fulfilling (45) with
initial conditions u0 and v0 satisfying (44). Then ‖u − v‖X ≤ 6K‖u0 − v0‖L∞ .

Although condition (43) appears naturally from the fixed-point used in the proof, it may not
be so clear at first glance. To better understand it, let us define for C > 0

S(C) = {(ρ, ε) ∈ R
+ × R

+ : C(ρ + ε)2 ≤ ρ}.

We see that if (ρ, ε) ∈ S(C), then ρ, ε > 0 and ε ≤
√

ρ√
C

− ρ. Therefore, the set S(C) is
non-empty and bounded. The shape of this set is depicted in Figure 2. In particular, we infer
that if (ρ, ε) ∈ S(C), then ρ ≤ 1

C and ε ≤ 1
4C . In addition, if C̃ ≥ C , then S(C̃) ⊆ S(C).

Moreover, taking ρ = 1/(32C), Theorem 5.7 asserts that for fixed α ∈ (0, 1], we can take
for instance ε = 1/(32C) (that depends on α and N , but not on the L∞-norm of the initial
data) such that for any given initial condition u0 ∈ L∞(RN ) with [u0]BMO ≤ ε, there exists
a global (smooth) solution u ∈ X(RN × R

+;C) of (DNLS). Notice that u0 is allowed to
have a large L∞-norm as long as [u0]BMO is sufficiently small; this is a weaker requirement
that asking for the L∞-norm of u0 to be sufficiently small, since [ f ]BMO ≤ 2‖ f ‖L∞ , for
all f ∈ L∞(RN ).

We remark that the smallness condition in (45) is necessary for the uniqueness of the
solution. As we will see in Theorem 5.12, at least in dimension one, it is possible to construct
multiple solutions of (IDNLS) in X(RN × R

+;C), if α is close enough to 1.
By using the inverse of the stereographic projection P−1 : C → S

2\{0, 0,−1}, that is
explicitly given by m = (m1,m2,m3) = P−1(u), with

m1 = 2Re u

1 + |u|2 , m2 = 2 Im u

1 + |u|2 , m3 = 1 − |u|2
1 + |u|2 ,

we can deduce fromTheorem 5.7 a global well-posedness result for (7).Moreover, the choice
of the South Pole is of course arbitrary. By using the invariance of (7) under rotations, we
have the existence of solutions provided that the essential range of the initial condition m0

is far from an arbitrary point Q ∈ S
2.

Theorem 5.8 [60] Let α ∈ (0, 1]. There exist constants C ≥ 1 and K ≥ 4, such that if
δ ∈ (0, 2], ε0, ρ > 0, δ ∈ (0, 2], ε0 > 0 and ρ > 0 satisfy

8K 4Cδ−4(ρ + 8δ−2ε0)
2 ≤ ρ,
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the following holds. Given any m0 = (m0
1,m

0
2,m

0
3) ∈ L∞(RN ;S2) and any Q ∈ S

2

satisfying
inf
RN

|m0 − Q|2 ≥ 2δ and [m0]BMO ≤ ε0,

there exists a unique smooth solution m ∈ X(RN ×R
+;S2) of (7) with initial condition m0

such that

inf
x∈RN

t>0

|m(x, t) − Q|2 ≥ 4

1 + K 2(ρ + δ−1)2
and [m]X ≤ 4K (ρ + 8δ−2ε0).

We point out that the results are valid only for α > 0. If we let α → 0+, then the estimates
blow up. Indeed, the proofs rely on the exponential decay of the semigroup e(α+iβ)t�, so that
these techniques cannot be generalized (at least not straightforwardly) to cover the critical
case α = 0. In particular, we cannot recover the stability results for the self-similar solutions
in the case of Schrödinger maps proved by Banica and Vega in [5–7].

Asmentioned before, in [79,88] some global well-posedness results for (7) withα ∈ (0, 1]
were proved for initial conditionswith small gradient in LN (RN ) andM2,2(RN ), respectively.
In view of the embeddings

LN (RN ) ⊂ M2,2(RN ) ⊂ BMO−1(RN ),

for N ≥ 2, Theorem 5.8 can be seen as generalization of these results since it covers the
case of less regular initial conditions. The arguments in [79,88] are based on the method of
moving frames that produces a covariant complex Ginzburg–Landau equation.

The existence and uniqueness results given by Theorem 5.8 require the initial condition
to be small in the BMO semi-norm. Without this condition, the solution could develop a
singularity in finite time. In fact, in dimensions N = 3, 4, Ding and Wang [39] proved that
for some smooth initial conditions with small energy, the associated solutions of (7) blow up
in finite time.

Another consequence of Theorem 5.8 is the existence of self-similar solutions of expander
type in R

N , in any dimension N ≥ 1, i.e. a solution m of the form m(x, t) = f (x/
√
t),

for some profile f : RN → S
2. In particular, we have the relation f (y) = m(y, 1), for all

y ∈ R
N . From the scaling (31), we see that, at least formally, a necessary condition for the

existence of a self-similar solution is that initial condition m0 be homogeneous of degree 0,
i.e. m0(λx) = m0(x), for all λ > 0. Since the norm in X(RN × R

+;R3) is invariant under
this scaling, Theorem 5.8 yields the following result concerning the existence of self-similar
solutions.

Corollary 5.9 With the same notations and hypotheses as in Theorem 5.8, assume also that
m0 is homogeneous of degree zero. Then the solution m of (7) provided by Theorem 5.8
is forward self-similar. In particular there exists a smooth profile f : RN → S

2 such that
m(x, t) = f (x/

√
t), for all x ∈ R

N and t > 0.

Other authors have considered expanders for the harmonic map flow (6) in different
settings. Actually, equation (6) can be generalized for mapsm : M×R

+ → N , withM and
N Riemannian manifolds. Biernat and Bizoń [15] established results when M = N = S

d

and 3 ≤ d ≤ 6. Also, Germain and Rupflin [50] have investigated the case M = R
d and

N = S
d , in d ≥ 3. In both works the analysis is done only for equivariant solutions and does

not cover the case M = R
N and N = S

2.
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5.4 LLG with a jump initial data

Wewant now to apply the well-posedness result to the self-similar solutionsmc,α with initial
conditions m0

c,α = A+
c,αχR+ + A−

c,αχR− . Let us remark that the first term in the definition of
[v]X allows us to capture a blow-up rate of 1/

√
t for ‖∇v(t)‖L∞ , as t → 0+. This is exactly

the blow-up rate for the self-similar solutions mc,α . The integral term in the semi-norm [·]X
is also well-adapted to these solutions. Indeed, for any α ∈ (0, 1] and c ≥ 0, we have

[m0
c,α]BMO ≤ 2c

√
2π/

√
α and [mc,α]X ≤ 4c/α

1
4 . (46)

Let us start by considering a more general problem: the LLG equation, in dimension one,
with a jump initial data given bym0

A± = A+χR+ + A−χR− ,where A± are two given unitary

vectors in S
2. The smallness condition in the BMO semi-norm of m0

A± is equivalent to the
smallness of the angle between A+ and A−. From Theorem 5.8 we can deduce that the
solution associated with m0

A± is a rotation of a self-similar solution mc,α for an appropriate
value of c. Precisely,

Theorem 5.10 ( [60]) Let α ∈ (0, 1]. There exist L1, L2 > 0, δ∗ ∈ (−1, 0) and ϑ∗ > 0
such that the following holds. Let A+, A− ∈ S

2 and let ϑ be the angle between them. If
0 < ϑ ≤ ϑ∗, then there exists a solution m of (7) with initial condition m0

A±. Moreover,

there exists 0 < c <
√

α

2
√

π
, such that m coincides up to a rotation with the self-similar

solution mc,α , i.e. there exists R ∈ SO(3), depending only on A+, A−, α and c, such that
m = Rmc,α, and m is the unique solution satisfying

inf
x∈R
t>0

m3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

A second consequence of Theorem 5.8 concerns the stability of the self-similar solutions.
Indeed, from the dependence of the solution with respect to the initial data in this theorem
and the estimates in (46), we obtain the following result: For any givenm0 ∈ S

2 close enough
to m0

A± , the solution m of (7) associated with m0 given by Theorem 5.8 must remain close
to a rotation of a self-similar solution mc,α , for some c > 0. In particular, m remains close
to a self-similar solution. The precise statement is provided in the following theorem.

Theorem 5.11 [60] Let α ∈ (0, 1]. There exist constants L1, L2, L3 > 0, δ∗ ∈ (−1, 0),
ϑ∗ > 0 such that the following holds. Let A+, A− ∈ S

2 with angle ϑ between them. If
0 < ϑ ≤ ϑ∗, then there is c > 0 such that for every m0 satisfying

‖m0 − m0
A±‖L∞ ≤ c

√
π

2
√

α
, there exists R ∈ SO(3), depending only on A+, A−, α and c,

such that there is a unique global smooth solution m of (7) with initial condition m0 that
satisfies

inf
x∈R
t>0

(Rm)3(x, t) ≥ δ∗ and [m]X ≤ L1 + L2c.

Moreover, ‖m − Rmc,α‖X ≤ L3‖m0 − m0
A±‖L∞ . In particular,

‖∂xm − ∂xRmc,α‖L∞ ≤ L3√
t
‖m0 − m0

A±‖L∞ , for all t > 0.

Let us now discuss themultiplicity of solutionswith initial conditionm0
A± . As seen before,

when α = 1, the self-similar solutions are explicitly given by (39) and limit vectors A±
c,1

given in (40).
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Fig. 3 The angle ϑc,α as a
function of c for α = 1

ϑc,1
π

c

Figure 3 shows that there are infinite values of c that allow to reach any angle in [0, π].
Therefore, using the invariance of (7) under rotations, in the case when α = 1, one can easily
prove the existence of multiple solutions associated with a given initial data of the formm0

A±
for any given vectors A± ∈ S

2. In the case that α is close enough to 1, we can use a continuity
argument to prove that we still have multiple solutions. More precisely, we can establish that
for any given initial data of the form m0

A± , with angle between A+ and A− in the interval
(0, π), if α is sufficiently close to one, then there exist at least k-distinct solutions of (7)
associated with the same initial condition, for any k ∈ N. In other words, given any angle
ϑ ∈ (0, π) between two A+ and A−, we can generate any number of distinct solutions by
considering values of α sufficiently close to 1. Precisely,

Theorem 5.12 [60] Let k ∈ N, A+, A− ∈ S
2 and let ϑ be the angle between A+ and A−. If

ϑ ∈ (0, π), then there exists αk ∈ (0, 1) such that for every α ∈ [αk, 1] there are at least k
distinct smooth self-similar solutions {m j }kj=1 in X(R×R

+;S2) of (7)with initial condition
m0

A± . These solutions are characterized by a strictly increasing sequence of values {c j }kj=1,
with ck → ∞ as k → ∞, such that m j = R jmc j ,α, where R j ∈ SO(3). In particular

√
t‖∂xm j (·, t)‖L∞(R) = c j , for all t > 0. (47)

Furthermore, if α = 1 and ϑ ∈ [0, π ], then there is an infinite number of distinct smooth
self-similar solutions {m j } j≥1 in X(R × R

+;S2) of (7) with initial condition m0
A± .

It is important to remark that in particular Theorem 5.12 asserts that when α = 1, given
A+, A− ∈ S

2 such that A+ = A−, there exists an infinite number of distinct solutions
{m j } j≥1 in X(R×R

+;S2) of (7) with initial conditionm0
A± such that [m0

A±]BMO = 0. This
particular case shows that a condition on the size of X -norm of the solution in Theorem 5.8
is necessary for the uniqueness of solution. We recall that for finite energy solutions of
(6), there are several nonuniqueness results based on Coron’s technique [30] in dimension
N = 3. Alouges and Soyeur [1] successfully adapted this idea to prove the existence of
multiple solutions of (7), with α > 0, for maps m : � −→ S

2, with � a bounded regular
domain of R3. In our case, since {c j }kj=1 is strictly increasing, we have at least k different
smooth solutions. Notice also that the identity (47) implies that the X -norm of the solution
is large as j → ∞.

5.5 Shrinkers

We end this note by discussing the backward self-similar solutions to (7), i.e. the shrinker

solutions of the form m(x, t) = f
(

x√
T−t

)
, for x ∈ R and t ∈ (−∞, T ). As in Sect. 5.2, we
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can reduce our problem to the study of the ODE

α f ′′ + α| f ′|2 f + β( f × f ′)′ − x f ′

2
= 0, on R, (48)

which is the same equation that we obtained for the expanders, except for the minus sign in
the last term. Following similar arguments, we get

Theorem 5.13 [61] Let α ∈ (0, 1]. Assume that f ∈ H1
loc(R;S2) is a weak solution to (48).

Then f belongs to C∞(R;S2) and there exists c ≥ 0 such that | f ′(x)| = ceαx2/4, for all
x ∈ R. Moreover, the set of nonconstant solutions to (48) is {R f c,α : c > 0,R ∈ SO(3)},
where is f c,α is given by the solution { f , g, h} of the Serret–Frenet system with curvature

k(x) = ceαx2/4 and torsion τ(x) = −βx/2, and initial conditions f (0) = e1, g(0) = e2,
and h(0) = e3.

As done for the expanders, we provide now some properties of these solutions, that are
obtained by studying the Serret–Frenet system.

Theorem 5.14 [61] Let α ∈ (0, 1], c > 0, T ∈ R and f c,α as above. Set m̃c,α(x, t) =
f c,α

(
x√
T−t

)
, for x ∈ R, t < T . Then m̃c,α belongs to C∞(R× (−∞, T );S2), solves (7) for

t ∈ (−∞, T ), and |∂x m̃c,α(x, t)| = c√
T−t

e
αx2

4(T−t) , for all (x, t) ∈ R × (−∞, T ). Moreover,

the following properties hold.

(i) The first component of f c,α is even, while the others are odd.
(ii) There exist constants ρ j,c,α ∈ [0, 1], Bj,c,α ∈ [−1, 1], and φ j,c,α ∈ [0, 2π), for

j ∈ {1, 2, 3}, such that we have the following asymptotics for the profile f c,α:

f j,c,α(x) =ρ j,c,α cos(c�α(x) − φ j,c,α) − βBj,c,α

2c
xe−αx2/4

+ β2ρ j,c,α

8c
sin(c�α(x) − φ j,c,α)

∫ ∞

x
s2e−αs2/4ds + β

α5c2
O(x2e−αx2/2),

for all x ≥ 1, where �α(x) = ∫ x0 e
αs2
4 ds.

(iii) The solution m̃c,α = (m̃1,c,α, m̃2,c,α, m̃3,c,α) satisfies the following pointwise conver-
gences

lim
t→T−(m̃ j,c,α(x, t) − ρ j,c,α cos

(
c�α

( x√
T − t

)− φ j,c,α
) = 0, if x > 0,

lim
t→T−(m̃ j,c,α(x, t) − ρ−

j,c,α cos
(
c�α

( −x√
T − t

)− φ j,c,α
) = 0, if x < 0,

for j ∈ {1, 2, 3}, where ρ−
1,c,α = ρ1,c,α , ρ

−
2,c,α = −ρ2,c,α and ρ−

3,c,α = −ρ3,c,α .
(iv) m̃c,α(·, t) → 0 as t → T−, as a tempered distribution.

As for the expanders, the big-O in the asymptotics does not depend on α ∈ [0, 1]. In this
manner, the constants multiplying the big-O are meaningful and in particular, big-O vanishes
when β = 0. Let us remark that the behavior of the profile for x ≤ −1 follows from the
symmetries of the profile established in part (i).

In Fig. 4, we have depicted the profile m̃c,α for α = 0.5 and c = 0.5, where we can
see the oscillating behavior. Moreover, the plots in Fig. 4 suggest that the limit sets of the
trajectories are great circles on the sphere S2 when x → ±∞. This is indeed the case. The
next result establishes analytically that m̃c,α oscillates in a plane passing through the origin
whose normal vector is given by B±

c,α = (B1,c,α, B2,c,α, B3,c,α), as x → ±∞, respectively.
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Fig. 4 Profile f c,α for c = 0.5 and α = 0.5. The figure on the left depicts profile for x ∈ R
+ and the normal

vector Bc,α ≈ (−0.72,−0.3, 0.63). The figure on the center shows the profile for x ∈ R; the angle between
the circles C±

c,α is ϑc,α ≈ 1.5951. At the right, the projection of limit cycles C±
c,α on the plane R2

Theorem 5.15 [60] Let P±
c,α be the planes passing through the origin with normal vectors

B±
c,α , respectively. Let C±

c,α be the circles in R
3 given by C±

c,α = P±
c,α ∩ S

2. Then for all
|x | ≥ 1,

dist(m̃c,α(x), C±
c,α)) ≤ 15

√
2β

cα2 |x |e−αx2/4. (49)

In particular

lim
t→T− dist(m̃c,α(x, t),C+

c,α)) = 0, if x > 0, and lim
t→T− dist(m̃c,α(x, t),C−

c,α)) = 0, if x < 0.

Theorem 5.15 establishes the convergence of the profile f c,α to the great circles C±
c,α as

shown in Fig. 4. Moreover, (49) gives us an exponential rate for this convergence. In terms of
the solution m̃c,α to the LLG equation, this provides a more precise geometric information
about the way that the solution blows up at time T . The existence of limit cycles for related
ferromagnetic models have been investigated for instance in [21,101], but to the best of our
knowledge this is the first time that this type of phenomenon has been observed for the LLG
equation. In Fig. 4 one can see that ϑc,α ≈ 1.5951 for α = 0.5 and c = 0.5, where we have
chosen the value of c such that the angle is close to π/2.

In the case α = 1, the torsion vanishes, and it easy to deduce that the profile is explicitly
given by the plane curve f c,1(x) = (cos(c�1(x)), sin(c�1(x)), 0). In particular, we see
that the asymptotics in Theorem 5.14 are satisfied with ρ1,c,1 = 1, ρ2,c,1 = 1, ρ3,c,1 = 0,
φ1,c,1 = 0, φ2,c,1 = 3π/2, φ3,c,1 ∈ [0, 2π).

In the case α = 0, f c,0 is equal to mc,0 in (41), so that f c,0 converges to the point A+
c,0,

as x → ∞. Hence, there is a drastic change in the behavior of the profile in the cases α = 0
and α > 0: In the first case f c,0 converges to a point at infinity, while in the second case
(49) tells us that f c,α converges to a great circle. In this sense, there is a discontinuity in the
behavior of m̃c,α at α = 0.
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