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Abstract
We study some qualitative properties of a misaligned journal bearing. The device consists of
two cylinders closely spaced: an inner rotating cylinder (the shaft) whose symmetry axis is
not parallel to the one of the outer cylinder (the bearing). We consider the load capacity of the
system, defined as the force exerted by the pressure. It is given by the integral of the pressure
times the normal vector to the bearing surface. We obtain finite load capacity, even in the
limit case when a point contact occurs. It was also verified by numerical simulations.We used
an adapted Preconditioned Conjugate Gradient Method for solving the direct problem, pre-
serving the A-orthogonality property of the search directions, even after a restarting process.
The solution of the related inverse problem is based on an interior, trust-region algorithm. To
validate the numerical proposal, the predicted pressure values at the bearing mid-plane, are
compared to published experimental data.
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Mathematics Subject Classification 76D08 · 76B10 · 65K15 · 65M32

1 Introduction

A journal bearing is a mechanical device consisting of two cylinders closely spaced and in
relative motion. The annular gap between them is filled with a fluid, the lubricant, to prevent
contact. Ideally, the axes of both cylinders are parallel when installed and remain so during
the operation, under an imposed load and speed [25].

Actually, this ideal condition hardly exists and the inner cylinder, the shaft, tends to expe-
rience some degree of misalignment while rotating within the outer cylinder, the bearing. In
this paper, considering misalignment, cavitation and a radial loading, we provide a mathe-
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matical proof to demonstrate the finite load capacity of the system for the point contact case.
We also present numerical simulations that verify this result. We consider a stationary regime
of a Newtonian, isoviscous, isothermal and incompressible lubricant.

Misalignment is known to have a harmful effect on the steady-state performance of a
journal bearing. It can reduce the fluid film thickness, decreasing the load capacity and finally
altering the entire pressure field [25]. On the other hand, cavitation, represented through the
Reynolds or the Elrod–Adams cavitation model has been also considered in journal bearings.
The differences between these two cavitation models are based on the conditions imposed to
the pressure at the boundary that separates the cavitated and the full filled area, see [19,37]. In
presence of cavitation, it has been shown that the maximum pressure of a misaligned journal
bearing is shifted to the bearing ends. Actually, it is greater than that for the aligned bearing
and an increase in the degree of misalignment could yield two peak values in the pressure,
axially near both ends [25]. A comprehensive study on misalignment and cavitation can be
found in [28].

Representative numerical studies about loaded misaligned journal bearings in [2,23,32,
39], suggest that misaligned bearings have a finite load capacity as the end-plane film thick-
ness goes to zero (the point contact case), as opposed to perfectly aligned journal bearings
which then have a theoretically infinite load capacity (the line contact case), see [12,33]. Con-
versely, Boedo and Booker suggest that misaligned bearings have infinite load and moment
capacity as the end-plane minimum film thickness approaches zero under transient journal
squeezemotion and under steady load and speed conditions [6]. These results differ markedly
from finite capacity trends reported in this work, and in previously mentioned numerical and
experimental studies. Our result is based on the generation of over-pressures at the boundary
of the point contact. Such over-pressures, although unbounded, produce a finite load capacity,
since the integral of the pressure is bounded at such boundary. On the other hand, far from
the contact point, there is not over-pressures that can make the pressure to blow up. So, our
result is independent of the cavitation model used, since it is a local behaviour, where the
pressure is always positive. A similar proof on sliders can be found in [11].

Considering the numerical resolution of the model, the Finite Element Method (FEM)
have been widely used. The discrete problem has been solved by the classical Gauss–Seidel
method or a point-overrelaxation method, including both a projection technique to consider
cavitation [8,16]. We also do a FEM discretization, and solve the system of equations by
a Preconditioned Conjugate Gradient Method (PCG) with both projection and restarting
strategies. In most of the previous studies, the film thickness function h is a given datum and
the pressure p is the main unknown. However, in real engineering applications the position
of the shaft is unknown and consequently the film thickness function h. Thus, to get that
position the Newton’s second law is introduced. The problem consists in finding the pressure
of the lubricant, the shaft position and the projections of the angular misalignment when
considering this last phenomenon. It is referred as an inverse problem, where the coefficient
h depends on the unknown p. This problem has been addressed by several authors, from
the simple case in which the surfaces are two parallel planes to a more general geometry,
including the Reynolds cavitation model, see [11,12,18] for details. Furthermore, it has been
proved the existence of shaft equilibrium positions when the hydrodynamic force created
by the pressure film balances an external radial force [13]. The authors also considered the
problem for both cases, a rigid surface moving over a flat plane and the elastohydrodynamic
problem, see [14]. Nevertheless, none of these works considered misalignment.

As for the numerical resolution of the inverse problem we can mention the work of [20].
They used an implicit Euler method to deal with the dynamical shaft problem coupled with
the fluid hydrodynamic problem. At each time step, the Broyden method combined with the
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(a) (b)

Fig. 1 Misalignment in a journal bearing

Armijo–Goldstein criterion to choose a proper step length in the descent direction, is used to
solve the resulting non-linear system. Conversely, Lombera and Tello proposed a different
approach to deal with the shaft model [27]. It was based on first solving the Elrod–Adams
equation for a known position by minimizing a convex and lower semi-continuous functional
and then using an iterative method to reach the equilibrium, namely a trust-region strategy. A
similar approach will be used in this work but adding to the shaft model two more equations,
to consider the torque components in presence of angular misalignment.

The outline of the paper is the following. In Sect. 2 we derive the expression for the fluid
film thickness and pose a suitable variational formulation for the hydrodynamic problem
consideringmisalignment and the Reynolds cavitationmodel.We also present the admissible
range of misalignment angle projections. In Sect. 3 we prove the finite load capacity of a
misaligned journal bearing for the point contact case. In Sect. 4 we consider a finite element
discretization and perform the minimization stage by a PCG, adapted with both projection
and restarting strategies to account for cavitation. Section 5 is devoted to explaining the
resolution of the inverse problem by an interior, trust-region algorithm subject to bounds.
Numerical experiments and discussion are provided in Sect. 6. A grid convergence study and
the validation of the whole numerical approach are presented in Sect. 7.

2 Mathematical model

In this section, we depict a 3D formulation of the hydrodynamic behaviour of misaligned
journal bearings. In Fig. 1a we show the journal bearing axes along with their projections
on the XY -plane and the X Z -plane respectively. The origin O is located at the centre of
the bearing “left” end-plane and the shaft rotates at a constant velocity ω about the X axis.
The coordinate system has been rotated, in favour of the graphic comprehension. A typical
misaligned journal bearing is presented in Fig. 1b.

Notice that the axis is rotated an angle ψ , characterized by its projections ϕ and β on
the XY -plane and the X Z -plane respectively. We create a cross section of the inner cylinder
along the plane X = x . The cross section is approximated by a circumference. We compute
the position of the inner cylinder centre, on that plane, considering the eccentricity λ of its
axis.
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Taking into account the auxiliary coordinate system (x ′, y′, z′) located in the Y Z -plane,
at the position (ρ sin α, ρ cosα), the coordinates of the shaft, on the plane X = x , will be:

Sy = νy + ρ sin α = x tan ϕ + ρ sin α,

Sz = νz + ρ cosα = x tan β + ρ cosα.

Therefore, the eccentricity for the cross section located at X=x is:

λ =
(
S2y + S2z

)1/2
,

λ = [
(x tan ϕ + ρ sin α)2 + (x tan β + ρ cosα)2

]1/2
,

λ = (
x2 tan2 ϕ + 2xρ tan ϕ sin α + x2 tan2 β + 2xρ tan β cosα + ρ2)1/2 .

We introduce the angle γ , computed as a function of the eccentricity components:

γ = arctan
Sy
Sz

,

γ = arctan
x tan ϕ + ρ sin α

x tan β + ρ cosα
.

By analogy to the parallel case, see [21,28] for instance, we approximate the fluid film
thickness as follows:

h(ρ, α, ϕ, β, θ, x) = C + λ(ρ, α, ϕ, β, x) cos(θ − γ (ρ, α, ϕ, β, x)), (1)

whereC represents the radial clearance and θ represents a point on the external circumference
at the height Z = z.

In the following, we briefly discuss the governing equations for modelling, in a stationary
regime, the hydrostatic pressure in a misaligned journal bearing considering a thin fluid film
thickness and the cavitation phenomenon. Let L , R be the length and the cross section radius
respectively of the shaft. We consider the unfolded circumferential coordinate z ∈ (0, 2πR)

and the axial coordinate x ∈ (0, L). We define the region Ω : [0, 2πR] × [0, L]. The
unknowns of the problem are:

p(z, x) : Ω → R
+, fluid pressure,

ρ ∈ [0,C), left end-plane eccentricity,
α ∈ [0, 2π], left end-plane angular position,
β ∈ [−C/L;C/L], misalignment angle projection on theX Z − plane,
ϕ ∈ [−C/L;C/L], misalignment angle projection on the XY -plane,

and they satisfy the constraint of positivity of the gap h or equivalently:

C2 > λ2,

i.e.

C2 > x2 tan2 ϕ + 2xρ tan ϕ sin α + x2 tan2 β + 2xρ tan β cosα + ρ2.

We then use the Reynolds cavitation model to describe the cavitation phenomenon, whose
weak formulation is the following inequality:

∫

Ω

h3∇ p∇(φ − p)dzdx ≥
∫

Ω

6μhU∇(φ − p)dzdx ∀φ ∈ K , (2)
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with

K =
{

φ ≥ 0,

(∫

Ω

(∇φ)2dzdx

)1/2

+
(∫

Ω

φ2dzdx

)1/2

< ∞
}

,

φ(z, 0) = φ(z, L) = pa,

pa = atmospheric pressure. (3)

In (2), μ stands for the fluid viscosity, h stands for the fluid film thickness and the velocity
U = (vx , vy, vz) makes reference to the shaft velocity vector.

For steady-state bearing operation the shaft presents only one non-zero velocity compo-
nent, vz = ωR, with ω the angular velocity. Then, (2) becomes:

∫

Ω

h3∇ p∇(φ − p)dzdx ≥
∫

Ω

6μhvz
∂(φ − p)

∂z
dzdx, ∀φ ∈ K , (4)

defined in (3).
We define the bilinear form a and the function f by:

a(p, φ) :=
∫

Ω

h3∇ p∇φdzdx,

f := −6μdiv(hU) ∈ H−1(Ω),

and reformulate (4) as follows:

a(p, φ − p) ≥ 〈 f , φ − p〉,
where notation 〈, 〉 represents the L2-inner product.We express the problem as aminimization
problem of the following convex functional:

J (φ) = 1

2
a(φ, φ) − 〈 f , φ〉 on K . (5)

Taking the parameters of (4) and substituting them in (5)we obtain the dimensional functional
to minimize:

J (φ) = 1

2

∫

Ω

h3(∇φ)T∇φdzdx −
∫

Ω

6μhvz
∂φ

∂z
dzdx, (6)

with h defined in (1).
To make our solution to suffice for a variety of different problems, we introduce the

following dimensionless variables:

θ = z

R
, dz = Rdθ,

x̄ = x

L
, dx = Ldx̄,

φ̄ = C2

μ0ωR2 φ, μ̄ = μ

μ0
, w̄ = vz

ωR
, h̄ = h

C
, ρ̄ = ρ

C
, λ̄ = λ

C
,

where μ0 stands for the reference viscosity. Thus, we transform our domain into the dimen-
sionless domain Ω̄ = [0, 2π ] × [0, 1] for the (θ, x̄) coordinates.
Then, the dimensionless equation for the functional in (6) is:

J (φ̄) = 1

2

∫

Ω̄

LRh̄3(∇φ̄)T∇φ̄dθdx̄ −
∫

Ω̄

6μ̄h̄w̄
μ0ωLR2

C2

∂φ̄

∂θ
dθdx̄, (7)
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with h̄ defined as:

h̄(ρ̄, α, ϕ, β, θ, x̄) = 1 + λ̄(ρ̄, α, ϕ, β, x̄) cos(θ − γ̄ (ρ̄, α, ϕ, β, x̄)), (8)

where

λ̄(ρ̄, α, ϕ, β, x̄) = 1

C

(
(x̄ tan ϕ + C ρ̄ sin α)2 + (x̄ tan β + C ρ̄ cosα)2

)1/2
,

and

γ̄ (ρ̄, α, ϕ, β, x̄) = arctan
x̄ tan ϕ + C ρ̄ sin α

x̄ tan β + C ρ̄ cosα
.

We now present the admissible range for the misalignment angle projections and the
eccentricity, to satisfy the constraint C > λ. The limit cases are the contact case in x̄ = 0
and x̄ = 1. The former is obtained with ρ̄ = 1, and we will focus on the latter by studying
the condition λ̄2 < 1, which expands to:

(x̄ tan ϕ + C ρ̄ sin α)2 + (x̄ tan β + C ρ̄ cosα)2 < C2.

Working on the first term we get:

(x̄ tan ϕ + C ρ̄ sin α)2 < C2.

Considering the negative solution and the contact:

− tan ϕ − C ρ̄ sin α < C,

−C(1 + ρ̄ sin α) < tan ϕ. (9)

Considering the positive solution and the contact:

tan ϕ + C ρ̄ sin α < C,

tan ϕ < C(1 − ρ̄ sin α). (10)

Putting (9) and (10) together we can set the range for tan ϕ:

− C(1 + ρ̄ sin α) < tan ϕ < C(1 − ρ̄ sin α). (11)

Following the same procedure we set the range for tan β as a function of tan ϕ:

−(C2 − (tan ϕ + C ρ̄ sin α)2)
1
2 − C ρ̄ cosα

< tan β < (C2 − (tan ϕ + C ρ̄ sin α)2)
1
2 − C ρ̄ cosα. (12)

To simplify the notation, we drop arguments of function h̄, λ̄ and γ̄ from now on.
On the other hand, we state the equilibrium of forces and torques acting on the device

as constraints that the problem (7) must satisfy. The resultant dimensional fluid film force
components, acting on the bearing and accordingly to Fig. 1a are:

∫

Ω

p(θ, x) sin θdθdx = Fy,
∫

Ω

p(θ, x) cos θdθdx = Fz,

where sin(θ) and cos(θ) stand for the unitary normal vector components to the bearing
surface. The resultant dimensional torque components acting on the bearing are:

−
∫

Ω

xp(θ, x) cos θdθdx = τy,
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∫

Ω

xp(θ, x) sin θdθdx = τz .

Accordingly to (7), we get the following dimensionless expressions for the equilibrium
of force and torque components:

1

|F|
∫

Ω̄

μ0ωLR3

C2 φ̄ sin θdθdx̄ = F̄y, (13)

1

|F|
∫

Ω̄

μ0ωLR3

C2 φ̄ cos θdθdx̄ = F̄z, (14)

− 1

|τ |
∫

Ω̄

μ0ωL2R3

C2 x̄ φ̄ cos θdθdx̄ = τ̄y, (15)

1

|τ |
∫

Ω̄

μ0ωL2R3

C2 x̄ φ̄ sin θdθdx̄ = τ̄z, (16)

where |F| and |τ | denote the modulus of the external load F and torque τ respectively, used
for scaling. The right-hand side terms F̄y, F̄z, τ̄y and τ̄z stand for the normalized components
of F and τ . Then, the problem is the following:

To find φ̄ ∈ K such that it minimizes (7) satisfying the constraints (13), (14), (15) and
(16) with h̄ given by (8).

3 Finite load capacity for the point contact case

We prove in Theorem 1 that the force exerted by the pressure is indeed finite.

Theorem 1 Let h̄(x̄, α, θ, β) = 1 + x̄
C tan β cos(θ − α) be the fluid film thickness for x̄ ∈

[0, 1], such that min{h̄} = 0 with a contact point at x̄ = 1 if tan β = C, ρ̄ = 0 and
θ − α = π . Then, we have that: lim

tan β→C

∫
Ω̄

φ̄dx̄dθ < k(β,C, ρ̄, α), where φ̄ is the solution

of the variational Reynolds Eq. (2).

Proof We first prove that the term
∫

Ω̄

h̄3|∇φ̄|2dx̄dθ (17)

is uniformly bounded. The proof is obtained from the inequality:
∫

Ω̄

h̄3|∇φ̄|2dx̄dθ = Λ

∫

Ω̄

h̄
∂φ̄

∂θ
dx̄dθ,

≤ 1

2

∫

Ω̄

h̄3|∇φ̄|2dx̄dθ + Λ2

2

∫

Ω̄

h̄−1dx̄dθ, (18)

providing
∫

Ω̄

h̄−1dx̄dθ ≤ k < ∞,

and hence the boundedness of (17). We introduce the set Ω1 defined by:

Ω1 = (x̄, α) ∈ (0, 1) ×
(

α + 5π

6
, α + 7π

6

)
,
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and Ω2 = Ω̄ − Ω1, i.e. a region where no over-pressures nor contacts occur, then:

∫

Ω1

h̄−1dx̄dθ ≤
∫ α+ 7π

6

α+ 5π
6

C

[
ln(C + tan β cos(θ − α))

tan β cos(θ − α)
− ln(C)

tan β cos(θ − α)

]
dθ,

≤ C

tan β

[ ∫ α+ 7π
6

α+ 5π
6

ln(C + tan β cos(θ − α))

cos(θ − α)
dθ − k0

]
< ∞.

We have, in view of

min
(x̄,θ)∈Ω2

h̄−1 ≥ h0 > 0,

the following result:
∫

Ω

h̄−1dx̄dθ ≤ k0 < ∞. (19)

Then, we have:
∫

Ω̄

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞,

which implies:

lim
tan β→C

∫

Ω̄

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞,

and therefore: ∫

Ω̄

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞, ∀β ≤ arctanC . (20)

Thanks to (20) we have:
∫

Ω2

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞.

Since h ≥ h0 in Ω2 we have that: ∫

Ω2

|∇φ̄|2dx̄dθ ≤ k,

and in particular we have that:

φ̄ ∈ Lq(Ω2), for any q < ∞. (21)

We also have that:∣∣∣∣
∫

Ω̄

φ̄ cos(θ − α)dx̄dθ

∣∣∣∣ =
∣∣∣∣
∫

Ω̄

φ̄
∂

∂ x̄
x̄ cos(θ − α)dx̄dθ

∣∣∣∣ ,

=
∣∣∣∣k0

∫

Ω̄

φ̄
∂ h̄

∂ x̄
dx̄dθ

∣∣∣∣ ,

=
∣∣∣∣k0

∫

Ω̄

h̄
∂φ̄

∂ x̄
dx̄dθ

∣∣∣∣ ,

≤
∣∣∣∣k0

(
1

2

∫

Ω̄

h̄3|∇φ̄|2dx̄dθ + Λ2

2

∫

Ω̄

h̄−1dx̄dθ

)∣∣∣∣ ,
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and we obtain: ∣∣∣∣
∫

Ω̄

φ̄ cos(θ − α)dx̄dθ

∣∣∣∣ ≤ k0. (22)

Since ∫

Ω̄

φ̄ cos(θ − α)dx̄dθ =
∫

Ω1

φ̄ cos(θ − α)dx̄dθ +
∫

Ω2

φ̄ cos(θ − α)dx̄dθ,

we have that:

1

2

∫

Ω1

φ̄dx̄dθ ≤
∣∣∣∣
∫

Ω̄

φ̄ cos(θ − α)dx̄dθ

∣∣∣∣ +
∣∣∣∣
∫

Ω2

φ̄ cos(θ − α)dx̄dθ

∣∣∣∣ ,

and thanks to (22) and (21)

lim
tan β→C

∫

Ω1

φ̄dx̄dθ < ∞.

Then, in view of the previous inequality and (20) we obtain that:

lim
tan β→C

∫

Ω̄

φ̄dx̄dθ < ∞, (23)

which ends the proof. �

However, in [6] the authors suggest thatmisaligned bearings have infinite load andmoment

capacity as the end-plane minimum film thickness approaches zero under transient journal
squeezemotion and under steady load and speed conditions. Those results represent a relevant
difference from this proof and from finite capacity trends reported in previous numerical and
experimental studies.

Corollary 1 As a consequence of the previous theorem we have that:
∫

Ω̄

φ̄ sin(θ − α)dx̄dθ,

∫

Ω̄

φ̄ cos(θ − α)dx̄dθ,

∫

Ω̄

x̄ φ̄ sin(θ − α)dx̄dθ,

∫

Ω̄

x̄ φ̄ cos(θ − α)dx̄dθ,

are uniformly bounded at the contact point limit. Therefore, for |F| or |τ | large enough we
do not have a solution for the problem.

Nevertheless, the inequality (23) does not guarantee the boundedness of the pressure in
L∞(Ω).

Remark 1 The proof of Theorem 1 is given for the variational Reynolds model. Notice that
the proof for the Elrod–Adams cavitation model is equivalent to the one presented before, if
we replace (18) by the inequality:

∫

Ω̄

h̄3|∇φ|2dx̄dθ = −Λ

∫

Ω̄

∂H(φ)h̄

∂θ
φdx̄dθ

= Λ

∫

Ω̄

H(φ)h̄
∂φ

∂θ
dx̄dθ

≤ 1

2

∫

Ω̄

h̄3|∇φ|2dx̄dθ + Λ2

2

∫

Ω̄

h̄−1dx̄dθ (24)

where H(φ) is theHeaviside function describing the concentration of the fluid in the cavitated
region.
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Remark 2 Notice that the gap function in [6] is defined as follows:

h = C − ex cos θ − ey sin θ − zφy cos θ + zφx sin θ,

where ex , ey are components of mid-plane journal eccentricity, and φx , φy are components
of journal axial misalignment angle. In this work, we define the gap h in terms of λ defined
by:

h = C + λ cos(θ − γ ),

λ = (
x2 tan2 ϕ + 2xρ tan ϕ sin α + x2 tan2 β + 2xρ tan β cosα + ρ2)1/2 ,

that can be written as:

λ = (
(x tan ϕ + ρ sin α)2 + (x tan β + ρ cosα)2

)1/2
.

Considering the Taylor polynomial of the square root function, and that the deviations β and
φ are close to zero, we may approximate λ (as a function of tan β and tan ϕ), by the following
function:

λ ≈ ρ + x√
ρ
tan β cosα + x√

ρ
tan ϕ sin α.

Since

cos(θ − γ ) = cos θ cos γ + sin θ sin γ,

we have that:

h ≈ C + (ρ + x√
ρ
tan β cosα + x√

ρ
tan ϕ sin α)(cos θ cos γ + sin θ sin γ ),

i.e.

h ≈ C +
[
ρ cos γ + x√

ρ
(tan β cosα + tan ϕ sin α) cos γ

]
cos θ

+
[
ρ sin γ + x√

ρ
(tan β cosα + tan ϕ sin α) sin γ

]
sin θ,

which corresponds to the gap defined in [6] for:

ex = −ρ cos γ, φy = −(tan β cosα + tan ϕ sin α) cos γ,

and

ey = −ρ sin γ, φx = −(tan β cosα + tan ϕ sin α) sin γ

when the axes are renamed following the corresponding notation.
Since the proof is based on the boundedness of

∫
Ω
h−1dx̄dθ and the approximation in [6]

also satisfies such condition, the proof is also valid for the gap defined in [6].

4 Direct problem resolution

We first consider the direct problem, where the position of the inner cylinder is known, i.e. h
is a given datum determined by α, ρ, ϕ and β. Taking advantage of the region under study, we
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Fig. 2 The mesh topology used in this work (dimensionless)

perform the spatial approximation by piecewise quadrangular Lagrange Q1 finite elements.
That is, φ̄ is approximated as follows:

φ̄ ≈ φf =
n∑

i=1

Niφi ,

where subscript f stands for the finite element approximation.
The topology of the used mesh is shown in Fig. 2. As in [6], we use a uniform mesh

density along the circumferential direction, whereas in the axial direction the mesh density
becomes finer when moving from the bearing mid-plane to the bearing ends. An attenuation
factor δ is used for this purpose.

On the other hand, the discretized form of the dimensionless functional in (7) will be:

J (φf ) = 1

2

n∑
j=1

n∑
k=1

∫

Ω̄

LRh̄3
[∇(

N jφ j
)]T ∇(

Nkφk
)
dθdx̄

−
n∑
j=1

∫

Ω̄

6μ̄h̄w̄
μ0ωLR2

C2

∂
(
N jφ j

)

∂θ
dθdx̄,

J (φf ) = 1

2

n∑
j=1

n∑
k=1

φ j

(∫

Ω̄

LRh̄3(∇N j )
T (∇Nk)dθdx̄

)
φk

−
n∑
j=1

φ j

∫

Ω̄

6μ̄h̄w̄
μ0ωLR2

C2

∂N j

∂θ
dθdx̄ . (25)

It can be easily verified that this functional can be written as a quadratic functional in the
form of 1

2φ
T Aφ − φT b.

Therefore, for the resolution of the direct problem we propose a PCG, adapted with a
projection technique to account for cavitation. Since it is well known that the convergence
rate of the Conjugate Gradient Method (CG) without restart is only linear, we also perform a
restarting process whenever a projection occurs, see [17] for details. This approach corrects at
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each iteration j the pressure value components φi
j and takes up the necessary zero gradients

implicitly, whenever the first one is detected out of the convex set. We use the projection
technique max(φi

j , 0), also proposed in [10].
We determined the following expressions to properly compute the new descent directions

after a restarting procedure when considering preconditioning. In what follows, the search
direction d j and the residual r j applied to the restarting process for the PCG will all be
marked by ˜ , except the deflection parameter ξ j and the correction parameter ζ j , see [5, p.
430] for details. Thus, for the direction d̃ j+1 with j ≥ 2 we have:

d̃ j+1 = r̃ j+1 + ξ j d̃ j + ζ j d̃1.

Let Ψ be a non-singular matrix derived from the decomposition of the preconditioner M of
the matrix A. Due to back transformation

φ = Ψ −T φ̃,

the algorithm has the search direction

d j = Ψ −T d̃ j ,

for the transformed iterate

φ j = Ψ −T φ̃ j . (26)

The residual r j in φ j is given by:

r j = b − Aφ j = Ψ (c − Bφ̃ j ) = Ψ r̃ j , (27)

where B = Ψ −1AΨ −T and c = Ψ −1b are the system matrix and the right-hand side term
respectively after applying a split preconditioning process. Then:

d̃ j+1 = Ψ −1r j+1 + ξ j d̃ j + ζ j d̃1,

Ψ −T d̃ j+1 = Ψ −TΨ −1r j+1 + ξ jΨ
−T d̃ j + ζ jΨ

−T d̃1,

d j+1 = Ψ −TΨ −1r j+1 + ξ j d j + ζ j d1,

d j+1 = M−1r j+1 + ξ j d j + ζ j d1,

with

ζ j = 〈−r̃ j+1, Bd̃1〉
〈d̃1, Bd̃1〉

,

= 〈−Ψ −1r j+1, Ψ
−1AΨ −TΨ T d1〉

〈Ψ T d1, Ψ −1AΨ −TΨ T d1〉 ,

= 〈−Ψ −1r j+1, Ψ
−1Ad1〉

〈Ψ T d1, Ψ −1Ad1〉 ,

where notation 〈, 〉 stands for the inner product of both n-dimensional vectors. Taking the
inner product:

ζ j = (−Ψ −1r j+1)
TΨ −1Ad1

(Ψ T d1)TΨ −1Ad1
,

= −rTj+1Ψ
−TΨ −1Ad1

dT1 Ψ Ψ −1Ad1
,
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= −rTj+1M
−1Ad1

dT1 Ad1
.

If we denote σ1 = Ad1 we have:

ζ j = −rTj+1M
−1σ1

dT1 σ1
.

Notice that we need additionally to solve the system of equations Msσ = σ1, but only when
a restarting procedure occurs. The solution is carried out by easily solving two triangular
systems with coefficient matrices Ψ and Ψ T , respectively. Finally, we have:

ζ j = 〈−r j+1, sσ 〉
〈d1, σ1〉 .

A flow chart for the proposed PCG algorithm considering cavitation with the restarting
technique included is presented in Fig. 3.

As a summary, in the regular iteration when there is no cavitation nor restarting (steps
2, 4, 6, 8), we have the following expressions:

φ j+1 = φ j + ε j d j , ε j = 〈r j , s j 〉
〈d j , Ad j 〉 ,

r j+1 = r j − ε j Ad j , s j+1 = M−1r j+1,

d j+1 = s j+1 + ξ j d j , ξ j = 〈r j+1, s j+1〉
〈r j , s j 〉 . (28)

Whenever we detect cavitation (φi
j < 0), we set the negative pressure and residual compo-

nents to zero. We solve s j in (28), but using the updated residual value r j . We prepare the
restarting procedure by setting d j = s j , computing the inner product 〈s j , r j 〉 and defining
two flags (step 3). Then, in the first iteration of the restarting (when κiter == true) we set
and compute (step 5):

d1 = d j , same value as s j ,

d j+1 = s j + ξ j d1, for j = 1,

sσ = M \ σ1, computed just once per restarting,

σ1 = Ad1.

Subsequent iterations (when κi ter == false and Restart== textsftrue) consider the search
direction computed as follows (step 7):

d j+1 = s j+1 + ξ j d j + ζ j d1, for j ≥ 2,

ζ j = 〈−r j+1, sσ 〉
〈d1, σ1〉 .

Sincewe dealwith a quadratic functional and our proposal guarantees the search directions
{d j } to beA-orthogonal, by Theorem 8.8.3 in [5, p. 405], the CG produces an optimal solution
after one complete application of the main step, that is, after at most n line searches1 have

1 Using exact arithmetic.
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Fig. 3 Flow chart for the PCG considering cavitation and the restarting technique

been performed. We consider the energy norm ‖φ‖A = (φT Aφ)1/2, induced by the energy
scalar product. Due to the deduction of the PCG, see [26] for instance, and the identity

‖φ j − φ‖A = ‖φ̃ j − φ̃‖B , (29)

which results from (26) and the definitionof B in (27), the approximationproperties for theCG
in (30) (see [26, p. 225] for its proof) also hold for the PCG method, if the spectral condition
number κ(A) is replaced by κ(B) = κ(M−1A). Notice that, since Ψ −T BΨ T = M−1A and
Ψ BΨ −1 = AM−1, B, M−1A and AM−1 have the same eigenvalues, and hence the same
spectral condition number κ . Therefore, the error (φ j −φ) at the j th step in the energy norm
‖.‖A is:
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‖φ j − φ‖A ≤ 2

(
κ1/2 − 1

κ1/2 + 1

) j

‖φ0 − φ‖A, (30)

with κ = κ(M−1A). The algorithm stops when either the maximum iteration number is
reached or ‖r‖ ≤ tol‖b‖, with tol the chosen tolerance.

5 Inverse problem numerical solution

For solving the dimensionless inverse problem we first consider the balance of force and
torque components involved. We define the residual E as follows:

E(ρ̄, α, ϕ, β) =

⎡
⎢⎢⎢⎢⎢⎣

F̄y − 1
|F|

∫
Ω̄

μ0ωLR3

C2 φ̄ sin θdθdx̄

F̄z − 1
|F|

∫
Ω̄

μ0ωLR3

C2 φ̄ cos θdθdx̄

τ̄y + 1
|τ |

∫
Ω̄

μ0ωL2R3

C2 x̄ φ̄ cos θdθdx̄

τ̄z − 1
|τ |

∫
Ω̄

μ0ωL2R3

C2 x̄ φ̄ sin θdθdx̄

⎤
⎥⎥⎥⎥⎥⎦

.

The numerical approach is to minimize the L2-norm of the residual E in least squares
sense, i.e. min|E |22. We note that to obtain the dimensionless pressure φ̄, four unknown
parameters are needed: ρ̄ ∈ [0, 1), α ∈ [0, 2π ], ϕ ∈ [−C/L,C/L] and β ∈ [−C/L,C/L]
which determine the shaft position and misalignment in the system. We use an iterative
method in the set of admissible positions (ρ̄, α, ϕ, β) to minimize |E |22, where φ̄ is the
solution to the hydrodynamic direct problem in (7), whose coefficient depends on ρ̄, α, ϕ

and β.
For the optimization routinewe propose a trust-region algorithmic strategy [30]. Following

the idea behind a trust-region method, the information gathered about E is used to construct
an approximation of E in a neighbourhood of dk (the trust region) which we denote by mk .
We find the step sk = dk+1 − dk by solving the following subproblem:

min
sk∈R4

mk(dk + sk), where dk + sk lies inside the trust region.

Let He and G be defined by:

He(dk) := ∇2E(dk), G(dk) := ∇E(dk).

Then, let l and u be the lower and upper bounds of dk , we define a vector function r(dk) :
R
n → R

n as follows:

Definition 1 The vector r(dk) ∈ R
n is defined:

(i) if G(dk)i < 0 and ui < ∞, then ri = (dk)i − ui ,
(ii) if G(dk)i ≥ 0 and li > −∞, then ri = (dk)i − li ,

For any a ∈ R
n , diag(a) denotes an n-by-n diagonal matrix with the vector a defining

the diagonal entries in their natural order. So, we define:

D(dk) = diag(|r(dk)|−1/2).

In this manner and because we are facing a determined non-linear system of equations
and a bounded admissible set of parameters, we propose the following scaled trust-region
subproblem as in [15]:

min
sk∈R4

mk(s) = sTk Gk + 1

2
sTk Mksk, (31)
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where

Jr (dk) = diag(sgn(G(dk))),

C(dk) = D(dk)diag(G(dk))J
r (dk)D(dk),

M(dk) = B(dk) + C(dk),

where B(dk) is the discretization of He.
As the notation indicates, mk and E are in agreement to first order at the current iterate

dk . The matrix Mk and the diagonal matrix Dk are chosen this way such that there is no
need to handle constraints explicitly. Since the quadratic model mk is defined to include the
constraint information, a natural extension to the classical definition of the ratio ηk also takes
place, see [30]. It is given by:

ηk = E(dk + sk) − E(dk) + 1
2 s

T
k C(dk)sk

mk(sk)
,

and measures the agreement between the nonlinear function E(dk) and its quadratic approx-
imation at each iteration; see the work of [15] for a wide explanation on this selection. With
this approach, it is possible to obtain an approximate trust-region solution which can guaran-
tee second-order convergence by simply solving an unconstrained trust-region subproblem.
Each iteration involves the approximate solution of the problem in (31), using the classical
PCG.When the squared 2-normof E is below the prescribed tolerance, the algorithmfinishes.
An implementation of the routine used for the inverse problem can be found in MATLAB
(e.g. lsqnonlin).

It is important to remark that the numerical approach returns the equilibrium position,
which could be in contact with the bearing geometry or outside the region of admissible
positions. If any of them occurs, verified with (11) and (12), we assume that the solution is
the contact. We have considered three cases in which the algorithm for the inverse problem
stops:

1. The equilibrium position is found within the region of admissible positions.
2. The equilibrium position is found, in contact with the bearing geometry or outside the

region of admissible positions. We noticed for the latter case, that the solution is outside
the geometry but it is still close (about 1 µm)2 to its boundary, in such a way that the
algorithm is still able to find it. We say the surfaces are in contact to each other. The
algorithm does not crash.

3. There is a contact but the equilibrium position is not found. Before it occurs, the adapted
PCG, running inside the trust-region algorithm, warns the system matrix is no longer
positive definite for the current iteration of the forward problem. In addition, it shows that
the candidate solution of the inverse problem places the shaft too far from the geometry
boundary and, therefore, the mathematical model is not valid. After several attempts,
trying to find a solution for the inverse problem in a smaller trust region, the algorithm
throws an exception. We catch and handle the exception and say that surfaces are in
contact.

2 For the mesh size of this work.
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Table 1 Geometrical and
physical constants

Parameter Symbol Value

Shaft angular velocity ω (rpm) 1500

Journal bearing length L (mm) 80

Radial clearance C (µm) 117.5

Shaft radius R (mm) 49.89

Fluid viscosity μ (Pa s) 0.023

Reference viscosity μ0 (Pa s) 0.0813

Atmospheric pressure pa (MPa) 0.101325
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Fig. 4 Behaviour of the minimum gaps at the end-planes, related to the force applying position

6 Numerical results and discussion

In this section, we present numerical tests to verify the finite load capacity in misaligned
journal bearings. The dimensionless domain Ω̄ = [0, 2π] × [0, 1] is discretized using a
400 × 160 finite elements mesh (64000 four-noded quadrangles) and an attenuation factor
δ = 0.93. Unless other values are specified, the geometrical and physical constants of the
journal bearing used during the experiments are those in Table 1. They are real values taken
from an experimental analysis accomplished in [7].

Although the problem is solved in a dimensionless domain, most of the results are back
transformedandpresented in their real scales andunitswhen it does not affect the visualization
purpose. From now on, the terms front and rear ends of the bearing will be used in place of
the left and right end-planes respectively.

In Fig. 4 we present the behaviour of the minimum film thickness hMin with respect to
the position of the applied force, in both front and rear ends of the device. This case has
been conducted using different forces of 1000 N, 2000 N and 3000 N for an angular velocity
of 1500 rpm. The force position, as a way of generating different torques, has been applied
every 2 mm from the bearing mid-plane to its rear end (21 points in total).

In Fig. 4a the behaviour at the rear end is presented. Notice that, when the position of
the application of the force increases, the minimum film thickness monotonically decreases,
reaching even some contact point detected by the algorithm and shown as a black square
marker. This result proves numerically, that the device is unable to generate a force that can
balance a large imposed load under that operating conditions. Thus, we found finite load
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(a) Centre path at the rear end of the bearing
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Fig. 5 Paths of both centres at their end-planes for a F = 3000 N. Both views are seen from the front end of
the bearing

capacity as stated in [2,23,32,39]. Also, notice that for higher force values the same pattern
get repeated, but the contact is reached faster.

In Fig. 4b we present the same study at the front end. The behaviour is no longer strictly
monotone. This obeys the fact that at the beginning, when the force is applied at the mid-
plane (centre of mass), there is not misalignment and both end-planes centres decrease their
position in the same way. Nevertheless, when the distance between the centre of mass and
the application point of the force increases, the centre of the front end goes up due to the
torque, and the film thickness at that end-plane increases as well. At some point, the centre
of the front end crosses the closest point to the bearing axis (where the film thickness is
maximum) and subsequent movements decrease the film thickness again, since the shaft is
now approaching towards the bearing top at this end.

We show in Fig. 5 the paths of both end-planes centres for the case conducted with a force
of 3000 N in Fig. 4.

Similarly, if some contact point is found the position where the centre is located is shown
as a black square marker. Notice that both views are seen from the front end of the bearing.
It can be easily confirmed the behaviour of both centres, as described above. On the other
hand, Fig. 6 presents a similar experiment as in Fig. 4, but increasing the angular velocity
to 3000 rpm. As expected the carrying capacity increases, and in consequence the contact
points disappear. This demonstrates the influence of the velocity and also the consistence of
our proposal.

Additionally, Fig. 7 shows the effect on the force exerted by the pressure when the slen-
derness ratio (L/D) changes.

In the experiment the bearing length varies from 10 to 160 mm, with a step of 10 mm.
The force was always computed for α = 0.610865 rad, ρ = 82.25 µm, β = −0.000067 rad
and ϕ = −0.000047 rad. We notice, as stated in the literature, how the carrying capacity of
the journal bearing is compromised as the slenderness ratio is much less than about 1/4, see
[40].

Finally, it is important to remark that in [8], the authors solved the associated system of
equations Ax = b by the classical Gauss–Seidel, projecting over a convex set to account for
cavitation, at each iteration. Its convergence is also guaranteed for this problem, since it is
well known that the Gauss–Seidel algorithm converges globally if the system matrix A is
symmetric and positive definite. Let M be the iteration matrix used in the definition of the
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Fig. 6 Behaviour of the minimum gaps at the end-planes, related to the force applying position for an angular
velocity of 3000 rpm
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Fig. 7 The effect on the force exerted by the pressure when the ratio (L/D) changes

Gauss–Seidel algorithm; if matrix and vector norms applied are consistent, then its conver-
gence is monotone in the sense ‖e(k+1)‖ ≤ ‖M‖‖ek‖, and hence the condition ‖M‖ < 1
must meet, see [22,26]. Its convergence is also guaranteed if the matrix A is strictly diagonal
dominant, which implies that ‖M‖∞ < 1, see [22, p. 295] for details. But these qualitative
statements of convergence do not say anything about the usefulness of the Gauss–Seidel
method for finite element discretization. Actually, it has been proved that, when solving the
Poisson equation on a rectangular domain, if the number of interior nodes grows, the rate of
convergence becomes worse. The effort to gain an approximative solution, which means to
reduce the error level below a given threshold ε, is proportional to the number of iteration
× operations for an iteration, as it was discussed in [26, p. 206]. Therefore, the classical
Gauss–Seidel is of use for only moderately large matrices. Our proposal, which includes pre-
conditioning, not only presents better approximation properties according to (30), but also
low memory space requirements and number of operations per iteration. Our proposal also
finds the solution in a finite number of steps and in particular preserves the A-orthogonality
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Table 2 Grid information for the
convergence study

No Grid elements Force ID Force value (N)

1 800 × 320 F1 7.335851 × 103

2 400 × 160 F2 7.353513 × 103

3 200 × 80 F3 7.390402 × 103

of the search directions after the restarting process, without sacrificing preconditioning. This
is our contribution to ensure that the adapted PCG holds its convergence properties when
solving the direct problem (7). It is important to remark that PCG has proved to be extremely
effective in dealing with general objective functions and it is considered a powerful solution
scheme for solving unconstrained optimization problems, especially for large-scale problems
[17,29].

7 Grid convergence study

In this section we conduct a convergence study for verification of calculation, as suggested
in [34,36]. Since the exact solution for the force exerted by the fluid pressure is unknown we
perform three computations of forces, on a different grid each. We then calculate two Grid
Convergence Indexes (GCIs) from fine grid to intermediate (GCI12) and from intermediate
to coarse grid (GCI23). The GCI indicates howmuch the computed force will change with an
additional refinement of the grid [35]. A small value is preferable, since it suggests the force
is within the asymptotic range. The grid information for the convergence study is provided in
Table 2. It includes, for each experiment, the corresponding force value for the direct problem,
computed for α = 0.523599 rad, ρ = 58.75 µm, β = 0.000017 rad and ϕ = 0.000017 rad.
Notice also that every grid has twice the number of elements as the previous grid on each
direction. The geometrical and physical constants used are those in Table 1.

We determine the order of convergence pg according to the force values. As we use in the
convergence study a constant refinement ratio r = 2, we can perform a direct evaluation of
pg by (32), see [34]:

pg = ln

(
F3 − F2
F2 − F1

) /
ln r ,

pg = ln

(
7.390402 × 103 N − 7.353513 × 103 N

7.353513 × 103 N − 7.335851 × 103 N

) /
ln 2,

pg = 1.0625. (32)

The GCI for the fine grid solution is then computed. It is defined as:

GC I jk = fs
(r pg − 1)

∣∣∣∣
Fj − Fk

Fj

∣∣∣∣ ,

where fs is a factor of safety, recommended to be fs = 1.25 for comparisons of three grids,
see [35]. The GCI for grids 1 and 2 is:

GC I12 = 1.25

(21.0625 − 1)

∣∣∣∣
7.335851 × 103 N − 7.353513 × 103 N

7.335851 × 103 N

∣∣∣∣ ,
GC I12 = 0.0028.
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Similarly, the GCI for grids 2 and 3 is:

GC I23 = 1.25

(21.0625 − 1)

∣∣∣∣
7.353513 × 103 N − 7.390402 × 103 N

7.353513 × 103 N

∣∣∣∣ ,
GC I23 = 0.0058.

We then check that these solutions are within the asymptotic range of convergence by (33):

GC I23 = r pgGC I12,
0.0058

21.0625 0.0028
= 0.997598, (33)

which is approximately 1 and indicates that the test succeeded.
Based on this study we can also estimate the exact solution Fe by the Richardson extrap-

olation, using (34), see [34]:

Fe � F1 + F1 − F2
r pg − 1

,

Fe � 7.335851 × 103 N + 7.335851 × 103 N − 7.353513 × 103 N

21.0625 − 1
,

Fe � 7.319626 × 103 N. (34)

Finally, we could say that the force exerted by the fluid pressure, for the direct problem
depicted, is estimated to be 7.319626 × 103 N with an error band of 0.0028.

7.1 Validation

To validate the whole numerical approach, we compare the predicted pressure values at the
bearing mid-plane with published experimental measurements reported in [31]. For that,
the work of Pierre et al. was used, where the same geometrical and physical constants of
the journal bearing were considered. Two experiments, one showing the maximum pressure
and the other one showing the pressure field both for different misalignment torques are
presented. For both simulations the pressure values at the bearing mid-plane were collected
at the equilibrium position, after solving the corresponding inverse problem for each different
misalignment torque. As in [31], we performed the simulation for an angular velocity of
4000 rpm and a radial load of 9000 N. The misalignment torques, taken with respect to the
bearing mid-plane, vary from 0 Nm (aligned case) to 70 Nm.

In Fig. 8a we show the maximum pressure computed by the algorithm in the bearing mid-
plane and the experimental data, as shown in [31]. Comparison between the experimental and
the numerical results shows small discrepancies for all the misalignment torques. In Fig. 8b
we present the pressure field obtained in the bearing mid-plane for both the experiment and
the numerical approach.

The differences can be related to the fact that not all the surrounding phenomena (as
temperature) are considered in our numerical model. Nevertheless, both experiments show
an acceptable agreement between the output of our model and the experimental data. Such
differences do not influence the determination of the maximum pressure (discrepancy less
than 0.0963 MPa), which is an essential factor when designing a journal bearing. Thus,
it makes us think that the algorithm can be used as a first prediction of the final position
of a journal bearing under an imposed radial loading, considering misalignment and the
cavitation phenomenon. In addition, it could be verified that misalignment tends to decrease
the maximum pressure at the bearing mid-plane, as stated in the literature, see [7].
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Fig. 8 Validation of the numerical results comparing the predicted pressure to experimental data

8 Future work

In many lubricated devices, the high pressure values can deform the surfaces in contact
(elastohydrodynamic regime), and a pressure gap relation needs to be introduced, see [4].
Other significant topics have also received attention, as non-Newtonian fluids, thermohy-
drodynamic lubrication and roughness, see [1,1,3,24,25,38,41] for instance. These various
aspects are taken into account by plugging into the Reynolds equation these new relations.
Nevertheless, the general characterization of the behaviour of misaligned journal bearings
considering all mentioned factors and including the prediction of its final position is a very
complex task. We plan to continue our work in the future, adding these realistic factors
to the current problem. In particular, studying the influence of misalignment on the elastic
behaviour of the surfaces is our first interest, to investigate whether the elastohydrodynamic
characteristics can also easily deviate from their desired state due to this factor [9].

9 Conclusions

We considered a misaligned journal bearing device with an unknown inner cylinder position.
The position of the inner cylinder presents four degrees of freedom, which are obtained by
the Newton’s second law.We assumed that the lubricant filling the gap between the cylinders
satisfies the Reynolds cavitation model. In this paper we presented a mathematical proof of
the finite load capacity inmisaligned journal bearings, whichwas also numerically verified by
providing an algorithm to get the position of the inner cylinder at the equilibrium state. The
adapted PCG used for solving the direct problem, preserves the A-orthogonality property
of the search directions after a restarting process. The numerical simulations showed the
existence of contact points for finite loading when misalignment occurs. The results also
showed the continuous dependence of the maximum load capacity of the bearing on the shaft
angular velocity, in such a way that it increases with the latter. In addition, the numerical
experiments showed an acceptable agreement with experimental data.
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