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Abstract
The nonlinear dust ion acoustic solitary waves (DIAW) in a magnetized collisional
dusty plasma comprising with negatively charged dust grain, positively charged ions
along with q-nonextensive nonthermal electrons and neutral particles in the presence of
small damping force is studied analytically through the framework of damped modi-
fied Kadomtsev-Petviashvili-Burgers (DMKPB) equation. Reductive perturbation technique
(RPT) is employed to derive the DMKPB equation. It is observed that there is a critical point
for the plasma parameters where the amplitude of the solitary wave of damped KP Burgers
equation diverges. The DMKPB equation is derived from there and the soliton like solutions
with finite amplitude is extracted. The influence of various plasma parameters like entropic
index, dust ion collisional frequency, ion kinematic viscosity, speed of the traveling wave
and the parameter indicating the ratio between unperturbed dust ion density and electron are
investigated on the propagation of dust ion acoustic wave (DIAW). A significant effect on
the wave structures due to the variation of present plasma parameters has been observed.
Finally, the temporal evolution of a solitary wave solution is depicted through a numerical
standpoint.
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1 Introduction

Dusty plasma is an ionized gas comprising with electrons, positive ions, neutral atoms and
massivemicrometer-sized solid chargeddust grains. It exists inmanyastrophysical bodies like
active galactic nuclei [27], pulsar magnetospheres [17,26], solar atmosphere [15,54], plane-
tary rings, comet tails, interstellar medium, noctilucent clouds and so on [14,20,64]. Besides
its application in astrophysical studies, nowadays investigation of the plasma becomes a
promising topic because of its important role in the semiconductor processing industry,
nanoparticle production, and film deposition reactors, etc., [49,63]. During the last three
decades, physicists have gained immense interest to observe DIAW in a dusty plasma sys-
tem. For the first time, Tonks et al. theoretically predicted the presence of ion-acoustic waves
(IAW) in ionized gas [55]whereas Rewans in the year 1933 [40] experimentally first observed
IAW in gas-discharge plasma. Sazdeev [42] studied theoretically these types of wave in
plasma system and Ikezi et.al. [21] observed the same experimentally. Subsequently a lot of
experimental and theoretical works had been accomplished in different plasma field and it
is observed that dust grain produces a number of new wave features viz. dust ion acoustic
mode [50], dust acoustic mode [29,38], dust drift mode [52], dust lattice mode [32] and
Shukla–Varma mode [51], dust cyclotron mode [33], dust Berstain–Green–Krushkal mode
[56] etc.

Inmost investigations, a solitary wave propagating in the plasma system is studied through
the framework of Korteweg de Vries (KdV) equation or modified KdV equation employing
the reductive perturbation technique. Kadomstev and Petviashvili were the first to make an
attempt to observe solitons in two-dimensional systems and successfully developed a new
model which is known as Kadomtsev–Petviashvili (KP) equations [23]. The KP equation as
well as modified KP (MKP) equation in general are considered as an extension of the KdV
equation into two-dimensional space. These models are extensively used in fluid mechanics
[6,18,19,45] and other theoretical physics [16].

Dorranian et al. [9] studied DIAW in a dusty plasma comprising with nonthermal ion
species at various temperatures considering the frameworks of KP as well as MKP equa-
tions.Their observation indicates that the emergence of compressive as well as rarefactive
solitary structure significantly depends on the number and the temperature of nonthermal ions.
Seadawy et al. [44] employing generalized extended tanh method and F-expansion method
obtained exact wave solutions for KP andMKP equations. Samanta et al. [43] considering the
framework of KP equation investigates the wave quantity in a magnetized dusty plasma con-
sisting of q-nonextensive velocity distributed electron. Finally, they found the exact solitary
wave solution as well as periodic traveling wave solutions which are significantly dependent
on the various physical plasma parameters. In all such observation, the system occupies non-
linear weakly dispersive waves whose wavelength is long enough. Also, the KP and MKP
equation possesses a large class of wave variety. The simplest soliton type solution of the KP
equation is a generalization of the solitary wave solution of the KdV equation, propagate in
one direction only. But there are many other varieties other than line soliton. Further depend-
ing on the physical context a large class of investigation [7,10–12,47,48] have been carried
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out through the framework of KP and MKP equation. In general, to study the behaviour
of ion acoustic wave in plasma system, Maxwell distributed electron is considered. How-
ever, Maxwell distribution may not be adequate in many practical situations. For instance,
in plasma systems where long-range wave interaction is considered, see, e.g., [2]. Several
plasma systems contain energetic electron and ions that are not generally found in thermody-
namic equilibrium. Especially, nonthermal electron-ion distributions often remain in space
plasma which includes coherent nonlinear waves actively. Some remarkable observation by
Bouzit et al. [4] confirmed their presence in different space environments. In such cases,
kappa distribution [3,62] and Tsallis distribution [57] may be more appropriate. In the year
1955, Renyi [39] deduced a new distribution on the basis of generalization of Boltzmann–
Gibbs–Shannon entropic measure for statistical equilibrium, called q-nonextensive electron
velocity distribution. Some recent investigations [13,41] studied plasma system employing
this distribution and showed significant dependency of nonextensive parameter (q) in wave
propagation. Additionally it is proved by some experimental observation [1,46] that some-
time external periodic force potential together with a damping [34] may change the wave
propagation significantly in a real physical situations. Recently tremendous interest begins
to study plasma system considering the above physical conditions [30,31].

Dorranian and Sabetkar [9] describe the characteristic features of dust particles in a dusty
plasma with two ions at two different temperatures through the KP model. Hafeez [61]
observed dust ion-acoustic solitons in pair-ion plasmas considering theKPmodel.Hamid [35]
consideredKPmodel and studied behaviors of IAW in awarmdusty plasmawith variable dust
charge, two-temperature ion and nonthermal electron. Considering Boltzmann distributed
electrons and adopting KP model Sing and Honzawa [53] investigated the behaviors of ion-
acoustic soliton in an unmagnetized, collisionless weakly relativistic plasma comprising hot
isothermal electrons and the ions with a finite temperature. Lin and Duan [28] observed the
IAW for two-ion-temperature dusty plasma considering KP model along with the extensions
such as MKP model, and the coupled KP equations. Pakzad [36] considered coupled dusty
plasma with variable dust charge and non-isothermal ions and studied shock and solitary
waves in the framework of KP burgers as well as the Modified KP-Burger framework. Xue
[66] also considered the same framework and studied dusty plasma with non-adiabatic dust
charge fluctuation. In order to find dust-ion collision effect in IAWwe adopt for the first time
DMKPB equation.

In this present investigation, our aim is to find an analytical solitary wave solution of the
DMKPB equation in a collisional magnetized dusty plasma consisting of q-nonextensive
nonthermal electrons, negatively charged dust grain, positively charged ions and neutral
particles incorporating with a Burger term and damping term. Furthermore, the influence
of different plasma parameters such as the entropic index (q), spectral index (α), dust ion
collisional frequency (νid0), the speed of the traveling wave (M) and ion kinematic viscosity
(ηi0) are studied on the amplitude and width of the solitary waves. The rest of the manuscript
is organized as follows. Following the Introduction, basic equations are provided in Sect. 2.
In Sect. 3 we present the model description and derived DMKPB equation for nonlinear
propagation of DIAW. Section 4 is devoted to the numerical presentation of the solution for
different parameters and Sect. 5 ends with a conclusion.

123



574 S. Raut et al.

2 Governing equations

We consider a magnetized collisional three component dusty plasma consisting of cold iner-
tial ions, nonextensive nonthermal electrons and immobile negatively charged dust grains.
Charges of the dust grains are believed to be a constant term. The basic governing equations
are

∂ni
∂t

+ ∇ · (niui ) = 0 (2.1)

∂ui
∂t

+ (ui .∇)ui = − e

mi
∇φ + eB0

mic
ui × ez + η0∇2ui − ν0ui (2.2)

∇2φ = 4πe [ne − ni + Zdnd ] (2.3)

where n j is the density of the jth species ( j = e, i, d stands for electon, ion and dust grains
respectively) Here ui and mi are the velocity and mass of ion where as φ denotes the plasma
wave potential. Again, e represents elementary charge of electron, Te denotes the temperature
of the electron and Zd is the number of charged dust particle. We consider qd as total charge
of the dust particle and so qd = −eZd . The external magnetic field is directed along z axis i.e.
B = B0ez where ez = unit vector along z-axis.Cairns–Tsallis distribution, first proposed by
Tribeche et al. [58] is used by us in the present work. They suggested that nonthermality and
non-extensivity may act simultaneously and thus may alter the propagation dynamics of ion-
acoustic solitary waves. Such a hybrid distribution function, represented by two parameters,
may be helpful in knowing a great variety of observed nonthermal plasma phenomena. The
electrons are assumed to follow the nonextensive non-thermal velocity distribution function
given by

fe(vx ) = Cqα

(
1 + α

v4x

v4et

) [
1 − (q − 1)

v2x

2v2et

] 1
q−1

(2.4)

where

vet =
√

Te
me

represents the electron thermal velocity, Te represents the electron temperature, me is the
electron mass.Cqα, the normalization constant is given by

Cqα = ne0

(
me

2πTe

) 1
2 Γ

(
1

1−q

)
(1 − q)

5
2

Γ
(

1
1−q − 5

2

) [
3α +

(
1

1−q − 3
2

) (
1

1−q − 5
2

)
(1 − q)2

] for − 1 < q < 1,

= ne0

(
me

2πTe

) 1
2 Γ

(
1

q−1 + 3
2

)
(q − 1)

5
2

(
1

q−1 + 3
2

) (
1

q−1 + 5
2

)

Γ
(

1
q−1 + 1

) [
3α +

(
1

q−1 + 3
2

) (
1

q−1 + 5
2

)
(q − 1)2

] for q > 1.

Here q stands for nonextensive parameter, α is a parameter representing the number of
nonthermal electrons present in this model, and Γ is the standard Gamma function. For
q > 1,the distribution function shows a thermal cut-off on the maximum value permitted for
the velocity of electron, given by

vmax =
√

2Te
me (q − 1)
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beyond which there is no existence of probable state. Now integrating (2.4) over all velocity
spaces, we get the following electron density

ne(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞∫
−∞

fe (vx ) dvx for − 1 < q < 1,

+vmax∫
−vmax

fe (vx ) dvx for q > 1

= ne0

[
1 + (q − 1)

eφ

Te

] q+1
2(q−1) ×

[
1 + L1

(
eφ

Te

)
+ L2

(
eφ

Te

)2
]

(2.5)

where

L1 = − 16qα

3 − 14q + 15q2 + 12α

L2 = 16qα (2q − 1)

3 − 14q + 15q2 + 12α

The well known nonthermal electron density of Cairns et al. [5]

ne (φ) = ne0

[
1 − 4α

1 + 3α

(
eφ

Te

)
+ 4α

1 + 3α

(
eφ

Te

)2
]

× exp

(
eφ

Te

)

is obtained from the above density in the extensive limiting case (q → 1) and (α �= 0) . On
the other hand for (α = 0) the nonextensive electron density [59]

ne (φ) = ne0

[
1 + (q − 1)

eφ

Te

] q+1
2(q−1)

is obtain from the above density.
The normalized electron density ne is given by

ne = (1 + (q − 1) φ)
q+1

2(q−1) (1 + L1φ + L2φ)

= 1 + Pφ + Qφ2 + Rφ3 + · · · , (2.6)

where

P = L1 + 1 + q

2

Q = L2 + L1.

(
1 + q

2

)
+ (1 + q) (3 − q)

8

R = L2.

(
1 + q

2

)
+ L1

(1 + q) (3 − q)

8
+ (1 + q) (3 − q) (5 − 3q)

48

The effect of spectral index α is to make the number of particles of high energy on the
shoulder of the velocity distribution curve higher. On the other hand, the entropic index q
describes the effect of superthermal particles in the tail of the velocity distribution curve.
Williams et al. [65] discovered the limits and influence of (α, q) . They claimed that the
Cairns–Tsallis hybrid distribution is highly sensitive for looking into ion-acoustic type oscil-
lation. Another crucial condition introduced on (α, q) is α = (2q−1)

4 as studied by Williams
et al. This state is required for the monotonicity of the distribution. Therefore in our analysis,
we go for only specific ranges, i.e. 0 ≤ α < 0.25 and 0.6 < q ≤ 1.
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In order to study the nonlinear dust ion-acoustic wave in x-z plane, the normalized equa-
tions in the component form can be written as

∂n

∂t
+ ∂(nux )

∂x
+ ∂(nuz)

∂z
= 0 (2.7)

∂ux
∂t

+
(
ux

∂

∂x
+ uz

∂

∂z

)
ux = −∂φ

∂x
+ uy + ηi

(
∂2

∂x2
+ ∂2

∂z2

)
ux − νidux (2.8)

∂uy

∂t
+

(
ux

∂

∂x
+ uz

∂

∂z

)
uy = −ux + ηi

(
∂2

∂x2
+ ∂2

∂z2

)
uy − νiduy (2.9)

∂uz
∂t

+
(
ux

∂

∂x
+ uz

∂

∂z

)
uz = −∂φ

∂z
+ ηi

(
∂2

∂x2
+ ∂2

∂z2

)
uz − νiduz (2.10)

(
∂2

∂x2
+ ∂2

∂z2
)φ = β[ne − μ1n + μ2] (2.11)

Here we consider β = r2g
λ2D

, ηi = Ω
C2
s
η0, νid = 1

Ω
ν0, μ1 = ni0

ne0
and μ2 = nd Zd

ne0
where

rg (= Cs
Ω

) represents ion gyroradius, Cs = √
Te/mi is the ion acoustic velocity and λD =√

Te/4πne0e2 is taken to present electron Debye length. In this case ni0 and ne0 stand for
representation of unperturbed ion and electron number density in equilibrium state. ηi is
the normalized ion kinematic viscosity and η0 is the unnormalized kinematic viscocity. Ion
gyrofrequency is presented as Ω = eB0/mic where e is the charge of electron, c represents
speed of light and B0 is the magnitude of ambient magnetic field. We make normalization as
Ωt → Ω , (Cs

Ω
)∇ → ∇, ui

Cs
→ u, ni

ni0
→ n, ne

ne0
→ ne,

eφ
Te

→ φ. νid is taken to present dust
ion collisional frequency.

3 Nonlinear evaluation of DMKPB equation

Reductive perturbation technique (RPT) [24,60] is employed to construct KP equation for
small-amplitude ion-acoustic two dimensional solitary wave in the magnetized dusty plasma.
Nowadays RPT becomes very attractive to study small amplitude ion-acoustic waves in
plasma field. To investigate the DIAW through KP equation, all the standard independent
variables are stretched and written as:

χ = ε2x

ξ = ε(z − V t)

τ = ε3t (3.1)

Here V represents the phase velocity of DIAW and ε is considerd as a small parameter to
measure the strength of the nonlinearity of DIAW. The dependent variables are expanded and
written as bellow,

n = 1 + ε2n1 + ε4n2 + · · ·
ux = ε3ux1 + ε5ux2 + · · ·
uy = ε3uy1 + ε

9
2 uy2 + · · ·

uz = ε2uz1 + ε4uz2 + · · ·
φ = ε2φ1 + ε4φ2 + · · ·
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νid ≈ ε3νid0

ηi 	 εηi0 (3.2)

Substituting Eqs. (3.1) and (3.2) in Eqs. (2.7)–(2.11) and collecting the coefficient of different
powers of ε, we obtain the following equations,

n1 = uz1
V

(3.3)

∂n1
∂τ

− V
∂n2
∂ξ

+ ∂ux1
∂χ

+ ∂uz2
∂ξ

+ ∂(n1uz1)

∂ξ
= 0 (3.4)

V
∂ux1
∂ξ

= ∂φ1

∂χ
(3.5)

uz1 = φ1

V
(3.6)

∂uz1
∂τ

− V
∂uz2
∂ξ

+ uz1
∂uz1
∂ξ

= −∂φ2

∂ξ
+ ηi0

∂2uz1
∂ξ2

− νid0uz1 (3.7)

μ1 − μ2 = 1 (3.8)

n1 = P

μ1
φ1 (3.9)

∂2φ1

∂ξ2
= β[Pφ2 + Qφ2

1 − μ1n2] (3.10)

From Eqs. (3.3), (3.6) and (3.9), we have

V 2 = μ1

P
. (3.11)

Using all the results described above we finally get a relation that can be claimed as damped
Kadomstev-Petviashvili Burgers equation. The result is summarized as,

∂

∂ξ

[
∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ Dφ1 + E

∂2φ1

∂ξ2

]
+ C

∂2φ1

∂χ2 = 0 (3.12)

where A = 3
2V − QV

P , B = V 3

2μ1β
, C = V

2 , D = 1
2νid0, E = − 1

2ηi0 For a certain values
of the parameters q , α and μ1 (for example q = 0.95, α = 0.1 and μ1 = 0.74262), we see
a critical point at which A = 0. Nonlinearity vanishes at the critical point and so infinite
divergence of amplitude of the DIAW solution is found. Therefore, stretching of dependent
variables expressed in (3.2) becomes inadequate for the present investigation. To describe
the evolution of the nonlinear system at or near the critical point we consider the same set of
stretched coordinates but with a new expression as follows:

n = 1 + εn1 + ε2n2 + +ε3n3 . . .

ux = ε2ux1 + ε3ux2 + . . .

uy = ε2uy1 + ε4uy2 + . . .

uz = εuz1 + ε2uz2 + +ε3uz3 . . .

φ = εφ1 + ε2φ2 + +ε3φ3 . . .

νid ≈ ε3νid0

ηi 	 εηi0 (3.13)
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Substituting equations (3.1) and (3.13) in equations (2.7)–(2.11) and collecting the coefficient
of different powers of ε, we obtain the following equations:

uz1 = Vn1 (3.14)

−V
∂n2
∂ξ

+ ∂uz2
∂ξ

+ ∂(n1uz1)

∂ξ
= 0 (3.15)

∂n1
∂τ

− V
∂n3
∂ξ

+ ∂ux1
∂χ

+ ∂uz3
∂ξ

+ ∂(n1uz2)

∂ξ
+ ∂(n2uz1)

∂ξ
= 0 (3.16)

V
∂ux1
∂ξ

= ∂φ1

∂χ
(3.17)

uz1 = φ1

V
(3.18)

−V
∂uz2
∂ξ

+ uz1
∂uz1
∂ξ

= −∂φ2

∂ξ
(3.19)

∂uz1
∂τ

− V
∂uz3
∂ξ

+ uz1
∂uz2
∂ξ

+ uz2
∂uz1
∂ξ

= −∂φ3

∂ξ
+ ηi0

∂2uz1
∂ξ2

− νid0uz1 (3.20)

μ1 − μ2 = 1 (3.21)

n1 = P

μ1
φ1 (3.22)

Pφ2 + Qφ2
1 − μ1n2 = 0 (3.23)

∂2φ1

∂ξ2
= β[Pφ3 + 2Qφ1φ2 + Rφ3

1 − μ1n3] (3.24)

From Eqs. (3.14), (3.18) and (3.22), we have

V 2 = μ1

P
(3.25)

and from Eqs. (3.15), (3.19) and (3.23), we have

μ1 = 3P2

2Q
(3.26)

From Eqs. (3.16), (3.17), (3.20) and (3.24) one can obtain the following nonlinear evaluation
equation as:

∂

∂ξ

[
∂φ1

∂τ
+ Aφ2

1
∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ Dφ1 + E

∂2φ1

∂ξ2

]
+ C

∂2φ1

∂χ2 = 0 (3.27)

where A = 15
4V 3 − 3RV

2P , B = V 3

2μ1β
, C = V

2 , D = 1
2νid0, E = − 1

2ηi0
The above equation is termed as damped modified KP Burgers (DMKPB) equation. Inte-

grating with respect to ξwe get

∂φ1

∂τ
+ Aφ2

1
∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ Dφ1 + E

∂2φ1

∂ξ2
+ C

∫
∂2φ1

∂χ2 dξ = c1 (3.28)

We claim φ1 vanish as ξ → ±∞ and thus (3.28) turns into

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
+ Dφ1 + E

∂2φ1

∂ξ2
+ C

∫
∂2φ1

∂χ2 dξ = 0 (3.29)
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In the absence of E and D i.e. for D = 0 and E = 0, the Eq. (3.27) takes the form of
well-known MKP equation with the solitary wave solution [25]

φ1 = φmsech

(
ζ − Mτ

W

)
(3.30)

where ζ = lξ + mχ and l, m are the direction cosines of the wave propagation with respect
to ξ and χ axes respectively.

Here φm =
√

6(M−C)
Al and W =

√
Bl3
M−C are the amplitude and width of the solitary

waves.
During the last few decades study of plasma system in the presence of external forces

together with a damping, have gained great interest. Xiao et al. [22] made an experiment
to investigate nonlinear wave propagation under the influence of forcing term in a model of
forced KdV equation employing Hirota’s direct test method. Then in the year 2015, Sen [46]
observes the same using reductive perturbation technique. Very recently, a new trend [8,37]
arises to study plasma system comprising a damping term. Now for the MKP equation

I =
∫ ∞

−∞
φ2
1dζ (3.31)

is a conserved quantity.
The classical KP equation provides the solitary wave solution with constant amplitude as

well as constant width. We assume that the solitary pattern solution also exists for DMKPB
equations with small burgers and damping terms. It is also considered that a small variation
follows in the amplitude, width and the velocity of the wave solution due to the presence
of damping and burgers terms. It leads to form a solitary type wave structure whose ampli-
tude, width and velocity have a small dependency on τ . Thus, the solution of Eq. (3.27) is
approximated as

φ1 = φm(τ )sech

(
ζ − M(τ )τ

W (τ )

)
(3.32)

where φm (τ ) =
√

6(M(τ )−C)
Al and W (τ ) =

√
Bl3

M(τ )−C

From equation (3.31)

I = 12

√
Bl

A
(M(τ ) − C)

1
2 (3.33)

Differentiating (3.31) with respect to τ and using the equation (3.29) we get (for details see
“Appendix”),

d I

dτ
+ 2DI = −2E

∫ ∞

−∞
φ1

∂2φ1

∂ξ2
dζ − 2C

∫ ∞

−∞
φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ (3.34)

Now
∫ ∞

−∞
φ1

∂2φ1

∂ξ2
dζ = −4

(M(τ ) − C)
3
2

A
√
Bl

and ∫ ∞

−∞
φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ = πm2

l
φ2
m(τ )F(χ, τ )
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where F(χ, τ ) is an arbitrary function ofχ and τ . For simplicitywe assume that F(χ, τ ) = 0.
We obtain from Eq. (3.34)

d I

dτ
+ 2DI = 8E

A
√
Bl

(M(τ ) − C)
3
2 (3.35)

Differentiation of (3.33) with respect to τ gives,

d I

dτ
= 6

√
Bl

A
(M(τ ) − C)−

1
2
dM(τ )

dτ
(3.36)

Combining the Eqs. (3.35) and (3.36) we finally get,

d(M(τ ) − C)

dτ
+ 4D(M(τ ) − C) = 4E

3Bl
(M(τ ) − C)2 (3.37)

Solution of the above equation is expressed as,

M(τ ) = C + 3l BD(M0 − C)

E(M0 − C)(1 − e4Dτ ) + 3l BDe4Dτ
(3.38)

Here, M(τ ) represents the time dependent velocity of ion acoustic wave propagating in the
magnetized dusty plasma and M0 is the initial velocity of IAW, i.e at τ = 0, M(τ ) = M0.
Thus, the slow time dependent wave solution for the damped modified KP burgers equation
is expressed as

φ1 = φm(τ )sech

(
ζ − M(τ )τ

W (τ )

)
(3.39)

where ζ = lξ +mχ and the time dependent soliton amplitude, width of DIAW propagating

in dusty plasma are given by φm(τ ) =
√

6(M(τ )−C)
Al , W (τ ) =

√
Bl3

M(τ )−C and M(τ ) is given
by (3.38).

4 Numerical simulation and discussion

Here, the solution of DMKPB equation is illustrated through numerical standpoint. It is
found thatwavepropagation significantly depends ondust ion collisional frequency,kinematic
viscosity and parameter q and α. The effects of the parameters like M0, β, τ etc on the DIAW
solution of the DMKPB Eq. (3.27) have been studied in this section.

Figure 1 expresses the variation of solitary waves of DMKPB equation for different values
of the parameter M0. It shows that an increase for the parameter M0 increases the height of
the soliton. Cause of formation of such a wave structure can be described as follows: An
increase in initial wave velocity M0 boosts the potential energy of the system and naturally
the soliton rises.

Figure 2 exhibits the variation of wave propagation due to the increase in nonextensive
parameter q . This feature can be interpreted as follows: An increase in q boosts a sudden rise
in the velocity of plasma particles and thus potential energy of the plasma system increases
rapidly. As a result, solitary wave acquires a sharp rising diminishing its width.

Figure 3 shows the variation of downswing solitary waves for increasing α. It is one of
the remarkable observation in this present context as it illustrates the significant outcome
from the electron distribution function. It shows that an increase in the nonthermal parameter
α reduces both the height and width of the soliton. Nature of such like a structure can be
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Fig. 1 Profiles of φ1 is plotted
against ζ for different values of
M0 with the parameters
q = 0.65, τ = 2, ηi0 = 0.1,
α = 0.2,β = 1 and νid0 = 0.01
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Fig. 2 Profiles of φ1 is plotted
against ζ for different values of q
with the parameters M0 = 0.75,
τ = 2, ηi0 = 0.1, α = 0.2, β = 1
and νid0 = 0.01
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Fig. 3 Profiles of φ1 is plotted
against ζ for different values of α

with the parameters q = 0.65,
M0 = 0.75, τ = 2, ηi0 = 0.1,
β = 1 and νid0 = 0.01
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Fig. 4 Profiles of φ1 is plotted
against ζ for different values of β

with the parameters q = 0.65,
M0 = 0.75, τ = 2, ηi0 = 0.1,
α = 0.2, and νid0 = 0.01
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Fig. 5 Profiles of φ1 is plotted
against ζ for different values of
νid0 with the parameters
q = 0.65, M0 = 0.75, τ = 2,
ηi0 = 0.1, α = 0.2 and β = 1
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explained as follows: Increasing α causes a negative effect for total potential energy of the
system. Thus velocity of thewave particle decreases and the amplitude continuously declines.

Figure 4 explores thewave characteristic ofDIAWfor an increase in the physical parameter
β. It is noticed that enhancing β decreases the width of the soliton keeping the amplitude of
the soliton almost same.

On the other hand Fig. 5 shows decreasing solitary wave potential for different νid0. It
exhibits that an increase in collisional frequency νid0 intensifies damping and makes the
pulses shorter. This type of wave formed as increasing νid0 causes decrement in potential
energy due to the loss of velocity of dust particle.

Figure 6a explores the variation of width of the soliton for DMKPB equation with respect
to the dust ion collisional frequency νid0. It declares that W (τ ) increases as νid0 increases.
But it is interesting to note that amplitude of the soliton diminishes rapidly in Fig. 6b for
higher collisional frequencies.

Figure 7 depicts the structure of a decreasing soliton for a particular time interval. It is
observed that as the time τ increases, the peak of the amplitude of DIAW decreases. The
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Fig. 6 a Profiles ofW (τ ) is plotted against νid0 with the parameters q = 0.65, M0 = 0.75, τ = 2, ηi0 = 0.1,
α = 0.2 and β = 1. b Profiles of φm (τ ) is plotted against νid0 with the parameters q = 0.65, M0 = 0.75,
τ = 2, ηi0 = 0.1, α = 0.2 and β = 1

Fig. 7 Profiles of φ1 is plotted
against ζ for different values of τ

with the parameters q = 0.65,
M0 = 0.75, ηi0 = 0.1, α = 0.2,
β = 1 and νid0 = 0.01
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width of the soliton remain same. A right hand shift of the DIAW is also observed as τ

increases.
On the other hand Fig. 8 shows the variation of wave quantities due to the increase in ηi0.

An increase in the normalized kinematic viscosity ηi0 results in the decrease of amplitude
of DIAW soliton. Formation of such a wave frame can be described as follows: Enhancing
kinematic viscosity diminishes wave velocity. Naturally the soliton declines.

Variation of width of soliton against the parameter ηi0 is depicted in Fig. 9a. Keeping the
other parameters same it is observed that width of the solitary wave increases strictly as ηi0
increases. On the other hand Fig. 9b shows strict decreasing of amplitude of wave soliton for
higher ηi0.

Variation of width and amplitude of the soliton against time for different νid0 is observed
through Fig. 10a, b respectively. It is observed that for an increase of collisional frequency
νid0, the width of the soliton increases but the amplitude of the soliton decreases. Moreover
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Fig. 8 Profiles of φ1 is plotted
against ζ for different values of
ηi0 with the parameters
q = 0.65, M0 = 0.75, τ = 2,
α = 0.2, β = 1 and νid0 = 0.01
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Fig. 9 a Profiles of W (τ ) is plotted against ηi0 with the parameters q = 0.65, M0 = 0.75, τ = 2, α = 0.2,
β = 1 and νid0 = 0.01. b Profiles of φm (τ ) is plotted against ηi0 with the parameters q = 0.65, M0 = 0.75,
τ = 2, α = 0.2, β = 1 and νid0 = 0.01

it is also noticed that for higher collisional frequency width of soliton increases rapidly. On
the other hand amplitude of soliton decreases rapidly for higher collisional frequency.

Variation of width and amplitude of the soliton against time for different ηi0 is observed
through Fig. 11a, b. For an increase of kinematic viscosity ηi0 width of soliton increases
but the amplitude of the soliton decreases. Also it is observed that the rate of change of
width of the soliton increases when kinematic viscocity increases. Similarly rate of change
of amplitude of the soliton increases when kinematic viscosity increases.

In Fig. 12a, three dimensional plot of the DIAW of φ1 is drawn in the (ξ , τ ) plane for
DMKPB equation with the parameters q = 0.65, M0 = 0.75, τ = 2, α = 0.2, β = 1 and
νid0 = 0.01, ηi0 = 0.1. In this figure, ξ ∈ (−50, 150), τ ∈ (0, 300) and a compressive
soliton is observed in the presence of damping force νid0 = 0.01. The maximum amplitude
of the compressive solitary wave solution lies between 0.6 and 0.7. Figure 12b shows the
contour plot of the solitary wave solution φ1 in the (ξ , τ ) plane of the DMKPB equation
with other physical parameters are same as Fig. 12a. It depicts the equi-amplitude solution
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Fig. 10 a Profiles of W (τ ) is plotted against τ for different values of νid0 with the parameters q = 0.65,
M0 = 0.75, ηi0 = 0.1, α = 0.2 and β = 1. b Profiles of φm (τ ) is plotted against τ for different values of
νid0 with the parameters q = 0.65, M0 = 0.75, ηi0 = 0.1, α = 0.2 and β = 1
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Fig. 11 a Profiles of W (τ ) is plotted against τ for different values of ηi0 with the parameters q = 0.65,
M0 = 0.75, τ = 2, α = 0.2, β = 1 and νid0 = 0.01. b Profiles of φm (τ ) is plotted against τ for different
values of ηi0 with the parameters q = 0.65, M0 = 0.75, α = 0.2, β = 1 and νid0 = 0.01

space of the solitary wave solution φ1 and follows a specific pattern in the (ξ , τ ) plane. It is
also shown that the outermost contours sustained with a potential 0.1 at τ = 200. It is also
observed that the value of φ1 attains its maximum at the centre of the solution space from
both sides as we are characterized a solitary wave solution.

Again, Fig. 13a represents the three-dimensional plot of the solitary wave solution of φ1

in the presence of negligible damping force potential νid0 = 0.001 with all other physical
parameters are same as in Fig. 12a. It is observed that the soliton is propagated in the disperse
media with a slow decrease in amplitude due to the impact of a negligible amount of damping
effect in comparison to that of in Fig. 12a. The maximum amplitude of the compressive
solitary wave lies between 0.6 and 0.7. Contour plot of φ1 in the (ξ , τ ) plane is shown in the
Fig. 13b when the negligible damping force exists. It is seen from the Fig. 13b that outermost
contours have the same potential 0.1 and it increases with the value of 0.1 towards the centre
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Fig. 12 a 3D plot of φ1 in (ξ , τ ) plane for DKPB equation with the parameters q = 0.65, M0 = 0.75, α = 0.2,
β = 1 and νid0 = 0.01, ηi0 = 0.1. b Contour plot of φ1 in (ξ , τ ) plane for DKPB equation with all others
parameters are same as in Fig. 12a
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Fig. 13 a 3D plot of φ1 in (ξ , τ ) plane for DKPB equation with the parameters q = 0.65, M0 = 0.75, α = 0.2,
β = 1 and νid0 = 0.001, ηi0 = 0.1. b Contour plot of φ1 in (ξ , τ ) plane for DKPB equation with all others
parameters are same as in Fig. 13a
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of the iso-potential contours. The maximum potential achieved by the contour is 0.7 and it
is sustained up to the time τ = 60 whereas in the earlier case the highest potential contour
loses its potential 0.7 at τ = 10. The very next level of potential of contour namely 0.6 is
seen in Fig. 13b up to the time τ = 150 whereas this level of potential exists up to nearly
τ = 25 in Fig. 12b. Significant effects of damping force in a dynamic system are strongly
suggested by this observation.

5 Conclusions

In this present investigation, the propagating behaviors of DIAW in a magnetized colli-
sional dusty plasma system consisting of q-nonextensive nonthermal velocity distributed
electrons in the presence of inherent damping is observed. Both the damped KP Burgers and
damped modified KP Burgers equations are derived for different states employing the reduc-
tive perturbation method. Significant effects of plasma parameters viz. the entropic index (q),
nonthermal parameter (α), dust ion collisional frequency (νid0), speed of the traveling wave
(M), ion kinematic viscosity (ηi0), unperturbed ion densities in the background electron on
the amplitude and width of wave soliton are investigated through simulations. Finally, some
three-dimensional graphs together with contours are depicted to illustrate the consequences
in solitary structure due to the variation in the damping term in the system. The present
analytical study could be helpful for a better understanding of nonlinear wave propagation
in laboratory and space plasma environments.

Appendix

Assuming that conservation property (3.31) holds in the system we write,

I =
∞∫

−∞
φ2
1dζ

= φ2
m(τ )

∞∫
−∞

sec h2
(

ζ − M (τ ) τ

W (τ )

)
dζ (using the result (3.32))

= 2φ2
m(τ )W (τ )

= 2.
6 (M (τ ) − C)

Al

√
Bl3

(M (τ ) − C)

= 12
√
Bl

A
(M (τ ) − C)

1
2 (6.1)

where

∞∫
−∞

sec h2
(

ζ − M(τ )τ

W (τ )

)
dζ = 2W (τ )
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Differentiating (3.31) with respect to τ and using the Eq. (3.29) we get

d I

dτ
= 2

∞∫
−∞

φ1
∂φ1

∂τ
dζ

= −2A

∞∫
−∞

φ3
1
∂φ1

∂ξ
dζ − 2B

∞∫
−∞

φ1
∂3φ1

∂ξ3
dζ − 2E

∞∫
−∞

φ1
∂2φ1

∂ξ2
dζ

−2D

∞∫
−∞

φ2
1dζ − 2C

∞∫
−∞

φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ (6.2)

From (3.32), we have

φ1 = φm (τ ) sec h

(
ζ − M (τ ) τ

W (τ )

)

So

∂φ1

∂ξ
= − lφm (τ )

W (τ )
sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h

(
ζ − M (τ ) τ

W (τ )

)

Therefore
∞∫

−∞
φ3
1
∂φ1

∂ξ
dζ = − lφ4

m (τ )

W (τ )

∞∫
−∞

sec h4
(

ζ − M (τ ) τ

W (τ )

)
tan h

(
ζ − M (τ ) τ

W (τ )

)
dζ

= 0 (6.3)

Similarly

∞∫
−∞

φ1
∂3φ1

∂ξ3
dζ = 0 (6.4)

Using (6.3) and (6.4), we have from (6.2),

d I

dτ
= −2E

∞∫
−∞

φ1
∂2φ1

∂ξ2
dζ − 2D

∞∫
−∞

φ2
1dζ − 2C

∞∫
−∞

φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ or

d I

dτ
+ 2DI = −2E

∞∫
−∞

φ1
∂2φ1

∂ξ2
dζ − 2C

∞∫
−∞

φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ (6.5)

Again

∂2φ1

∂ξ2
= l2φm (τ )

W 2 (τ )

{
sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
− sec h3

(
ζ − M (τ ) τ

W (τ )

)}

and

φ1
∂2φ1

∂ξ2
= l2φ2

m (τ )

W 2 (τ )

{
sec h2

(
ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
− sec h4

(
ζ − M (τ ) τ

W (τ )

)}

123



590 S. Raut et al.

Therefore
∞∫

−∞
φ1

∂2φ1

∂ξ2
dζ = l2φ2m (τ )

W2 (τ )

∞∫
−∞

{sec h2
(

ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
− sec h4

(
ζ − M (τ ) τ

W (τ )

)
}dζ

= l2φ2m (τ )

W2 (τ )

⎧⎨
⎩2

∞∫
−∞

sec h2
(

ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
dζ −

∞∫
−∞

sec h2
(

ζ − M (τ ) τ

W (τ )

)
dζ

⎫⎬
⎭

= − 2l2

3

φ2m (τ )

W (τ )

= − 2l2

3

6 (M (τ ) − C)

Al

√
(M (τ ) − C)

Bl3

= − 4

A
√
Bl

(M (τ ) − C)
3
2 (6.6)

where
∞∫

−∞
sec h2

(
ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
dζ = 2

3
W (τ )

and
∞∫

−∞
sec h2

(
ζ − M (τ ) τ

W (τ )

)
dζ = 2W (τ )

Again

∂φ1

∂χ
= −mφm (τ )

W (τ )
sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h

(
ζ − M (τ ) τ

W (τ )

)

∂2φ1

∂χ2 = m2φm (τ )

W 2 (τ )

{
sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
− sec h3

(
ζ − M (τ ) τ

W (τ )

)}

∫
∂2φ1

∂χ2 dξ = m2φm (τ )

W 2 (τ )

∫ {
sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h2

(
ζ − M (τ ) τ

W (τ )

)
− sec h3

(
ζ − M (τ ) τ

W (τ )

)}
dξ

= m2φm (τ )

lW (τ )

{
− sec h

(
ζ − M (τ ) τ

W (τ )

)
tan h

(
ζ − M (τ ) τ

W (τ )

)
+ F (χ, τ )

}

Therefore
∞∫

−∞
φ1

(∫
∂2φ1

∂χ2 dξ

)
dζ = m2φ2

m (τ )

lW (τ )

∞∫
−∞

{
− sec h2

(
ζ − M (τ ) τ

W (τ )

)
tan h

(
ζ − M (τ ) τ

W (τ )

)

+F (χ, τ ) sec h

(
ζ − M (τ ) τ

W (τ )

)}
dζ

= m2φ2
m (τ )

lW (τ )
F (χ, τ )

∞∫
−∞

sec h

(
ζ − M (τ ) τ

W (τ )

)
dζ

= πm2φ2
m (τ )

l
F (χ, τ ) (6.7)

where
∞∫

−∞
sec h

(
ζ − M (τ ) τ

W (τ )

)
dζ = πW (τ )
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Using (6.6) and (6.7), we have from (6.5)

d I

dτ
+ 2DI = 8E

A
√
Bl

(M (τ ) − C)
3
2 − 2Cπm2

l
φ2
m(τ )F(χ, τ )

Combining the equations (3.35) and (3.36) we finally get

6
√
Bl

A
(M (τ ) − C)−

1
2
dM (τ )

dτ
+ 2D

12
√
Bl

A
(M (τ ) − C)

1
2 = 8E

A
√
Bl

(M (τ ) − C)
3
2

or,
dM (τ )

dτ
+ 4D (M (τ ) − C) = 4E

3Bl
(M (τ ) − C)2

i.e.,
d (M (τ ) − C)

dτ
+ 4D (M (τ ) − C) = 4E

3Bl
(M (τ ) − C)2 (6.8)
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