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Abstract
In this paper, an autonomous Morse jerk oscillator which is designed by converting an 
autonomous two-dimensional Morse oscillator to a jerk oscillator, is analysed. The stabil-
ity of its unique equilibrium point reveals the existence of Hopf bifurcation. Periodic and 
chaotic oscillations, antimonotonicity, chaotic bubbles and coexisting attractors are gener-
ated in the proposed jerk oscillator. Then, this proposed jerk oscillator is implemented in 
PSIM software and realized in a printed circuit board to verify the numerical results. The 
experimental/PSIM results agree well with the numerical simulations. Moreover, it is pos-
sible to control partially or totally the amplitude of its signals by introducing two additional 
parameters in the rate-equations describing the proposed jerk oscillator. Furthermore based 
on the Routh–Hurwitz conditions and using a single linear feedback controller, the pro-
posed jerk oscillator is controlled to its unique equilibrium point. Finally, the coexistence 
between periodic and chaotic attractors is destroyed and controlled to a desired trajectory 
thank to the linear augmentation method.
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1  Introduction

Chaotic behaviors have been found in many different systems, such as weather and cli-
mate [39], economical [19], mechanical [4], biological [14], electronics systems [13], 
optoelectronics systems [12], optical systems [22] and optomechanics systems [5]. 
Chaos has been found useful with great potential in many fields, including liquid mixing 
with low power consumption, human brain and heartbeat regulation and secure com-
munications [3, 18, 32, 33, 45]. One of the important research directions is constructing 
robust chaotic oscillators with simple structures [31, 35, 42, 43]. There are two kinds of 
chaotic oscillators: Non-autonomous [44] and autonomous oscillators [37]. Among the 
existing autonomous chaotic oscillators, there is a family of chaotic oscillators with easy 
electronic implementation described by a three-dimensional differential equation of the 
form x⃛ = f (x, ẋ, ẍ) . It is called a jerk equation where x , ẋ , ẍ and x⃛ represent a dynamical 
variable, first-, second-, third-order time derivative, respectively [42]. Autonomous cha-
otic jerk oscillators attracted increasingly much attention due to their simplicity. In [42], 
Sprott proposed many new jerk oscillators with several nonlinearities that show chaotic 
behavior with easy electronic implementation. The authors of [9, 17, 50] introduced 
three autonomous chaotic oscillators using the Van der Pol dynamics immersed into a 
jerk oscillator. In [30], the authors proposed and studied theoretically and experimen-
tally an autonomous chaotic Duffing oscillator based on a jerk oscillator. By converting 
the autonomous two-dimensional Van der Pol–Duffing oscillator to a jerk oscillator, the 
authors of [46] obtained a chaotic Van der Pol–Duffing jerk oscillator and investigated 
the dynamical behavior of the integer proposed chaotic jerk oscillator, chaos control and 
synchronization in its fractional-order form. The dynamical analysis, electronic circuit 
realization and synchronization of a proposed autonomous chaotic Helmholtz jerk oscil-
lator has been studied in [36, 47].

Therefore, this paper proposes an autonomous Morse jerk oscillator which is built by 
converting the two-dimensional autonomous Morse oscillator into a three-dimensional 
oscillator using the jerk architecture. Morse oscillator is a two-dimensional equation 
describing an oscillator with two exponential nonlinearities. It is used as a well-known 
model for molecular vibrations [23, 27, 34, 49]. Despite the simplicity of the Morse 
oscillator, its dynamical behavior is extremely rich and research on the area is still going 
on [1]. The rate-equations describing the proposed jerk oscillator has two exponential 
nonlinearities and its investigation reveals multistability phenomenon. The multista-
bility feature is usually found in nonlinear dynamics [11, 15, 21]. Multistable oscilla-
tors are categorized to oscillators with ordinary multistability [24–26], oscillators with 
extreme multistability [6–8] and oscillators with megastability [28, 29, 48]. This paper 
is devoted to the analysis, circuit realization and controls of a proposed autonomous 
Morse jerk oscillator.

The organization of the paper is as follows: The proposed jerk oscillator is dynami-
cally analysed in the Sect. 2. The circuit realization of the proposed autonomous Morse 
jerk oscillator is presented in Sect. 3 while Sect. 4 deals with the controls of the signal 
amplitudes, chaotic behavior and coexisting attractors in proposed jerk oscillator. Fin-
lay, the conclusion is given in Sect. 5.
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2 � Analytical and numerical analysis of the proposed autonomous 
Morse jerk oscillator

The autonomous two-dimensional Morse equation is given by [27, 34, 49]:

where the parameter � is a dimensionless damping coefficient (𝛾 > 0) , the parameters 
𝛽 (𝛽 > 0) and 𝛼 (𝛼 > 0) are the dissociation energy and range parameter, respectively. The 
autonomous Morse Eq. (1) can be converted to a jerk oscillator, as follows:

where ẋ(t) = y(t) and ẍ(t) = z(t) . A positive constant parameter � is added in Eq. (2b) in 
order to achieve chaotic behavior in system (2) because for � = � = 1 , � = 0.16 and by 
varying the parameter �, the trajectories of system (2) converge to the equilibrium point 
O = (0, 0, 0) up to � = � = 0.16 where a Hopf bifurcation occurs followed by period-1-os-
cillations and periodic spiking oscillations (not shown). By further increasing the value of 
parameter �, system (2) displays only periodic oscillations. System (2) is dissipative 
because ∇V =

𝜕ẋ

𝜕x
+

𝜕ẏ

𝜕y
+

𝜕ż

𝜕z
= −1 < 0 . It has only one equilibrium point O = (0, 0, 0) . 

The characteristic equation of the Jacobian matrix at the equilibrium point O = (0, 0, 0) is:

Using the Routh–Hurwitz conditions, this equation has all roots with negative real parts 
if and only if:

Since 𝛿 > 0 , the equilibrium point O = (0, 0, 0) of system (2) is stable if 𝛾 > 𝛼𝛽 and 
unstable for 𝛾 < 𝛼𝛽 . Since the equilibrium point O = (0, 0, 0) changes stability properties, 
system (2) has either a Hopf bifurcation or transcritical bifurcation at the equilibrium point 
O for � = �∕�.

Theorem  If 𝛿 > 0 , then system (3) undergoes a Hopf bifurcation at the equilibrium point O 
when � passes through the critical value �H = �∕�.

Proof  Let � = j�(𝜔 > 0 and j2 = −1 ) be a root of Eq.  (3). By inserting � = j� it into 
Eq. (3) and separating real and imaginary parts, it is obtained

(1)ẍ + 𝛾 ẋ + 𝛽
[
1 − exp (−𝛼x)

]
exp (−𝛼x) = 0,

(2a)ẋ = y,

(2b)ẏ = 𝛿z,

(2c)ż = −z − 𝛾y − 𝛽
[
1 − exp (−𝛼x)

]
exp (−𝛼x),

(3)�3 + �2 + ��� + ��� = 0.

(4a)𝛼𝛽𝛿 > 0,

(4b)(𝛾 − 𝛼𝛽)𝛿 > 0.

(5a)� = �0 =
√
���,

(5b)�H = �∕�.
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Differentiating both sides of Eq. (3) with respect to � , it is obtained

and

then

Since the Jacobian matrix of system (2) at the equilibrium point O has two purely imagi-

nary eigenvalues and the real parts of eigenvalues satisfy Re
(

d�

d�

|||�=�H , �=i�0

)

≠ 0 ; all the 

conditions for Hopf bifurcation to occur are met. Consequently, system (2) undergoes a 
Hopf bifurcation at O when � = �H = �∕� and periodic solutions will exist in a neighbour-
hood of the point �H (provided that 𝛿 > 0 holds).

The effect of parameters �, �, � and � on the dynamics behaviours of system (2) can 
be studied by using numerical simulations. So, to identify the dynamical behaviours of 
system (2), the two parameters largest Lyapunov exponents (LLE) diagrams are con-
structed in Fig. 1.

From Fig.  1a, it is clear that colors are associated with the magnitude of the LLE 
as follows: blue stands for the negative LLE and positive LLE is indicated by a con-
tinuously changing between light blue–red scale passing through green and yellow 
scales. On LLE diagram in (�, �) space, chaotic regions are characterized as a com-
bination of light blue–green–yellow–red colors and periodic regions are character-
ized by blue colors. In Fig. 1b, chaotic regions are illustrated as a combination of light 
blue–green–yellow–red colors and periodic regions are illustrated by blue and light 
blues on LLE diagram in (� , �) space. In order to know the route to chaotic behavior 

(6a)3�2
d�

d�
+ 2�

d�

d�
+ ��

d�

d�
+ �� = 0

(6b)
d�

d�
=

−��

3�2 + 2� + ��

(6c)Re

(
d�

d�

||||�=�H , �=i�0

)

= −
�

2�(1 + ��)
≠ 0.

Fig. 1   (Colour online) Two parameters LLE diagrams in: a (�, �) space for � = 0.16 and b (� , �) space for 
� = 18 . The other parameter is � = 1
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exhibited by system (2), the bifurcation diagrams depicting the local extrema of x(t) as a 
function of the parameter � or � for specific values of � or � are plotted.

In Fig. 2a, the trajectories of system (2) converge to the equilibrium point O = (0, 0, 0) 
up to � = �∕� ≈ 0.16, where a Hopf bifurcation occurs followed by period-1-oscillations 
and period-doubling to chaos interspersed with periodic windows. Therefore, the above 
analytical calculations about Hopf bifurcation are confirmed by Fig.  2a. The LLE of 
Fig. 2b confirms the dynamical behaviors found in Fig. 2a. The phase portraits of chaotic 
oscillations for specific values of the parameter � are plotted in Fig. 3.

System (2) displays one scroll-chaotic attractor as shown in Fig. 3. For � = 1, � = 0.16 
and � = 0.4 , the bifurcation diagram of x(t) and the corresponding LLE versus the param-
eter � is presented in Fig. 4.

Fig. 2   The bifurcation diagram depicting the local maxima (black dots) and local minima (gray dots) of x(t) 
(a) and the LLE (b) versus the parameter � for � = 1, � = 0.16 and � = 18

Fig. 3   The phase portrait of system (2) in planes (x, y) , (y, z) and (x, z) with � = 0.6, � = 1, � = 0.16 and 
� = 18 . Initial conditions (x(0), y(0), z(0)) = (0.1, 0.1, 0.1)
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In Fig.  4a, these forward and reverse period doubling sequences when a parameter � 
increases (or decreases) in a monotone way, called antimonotonicity [10, 16] is revealed. 
By comparing the two set of data [for increasing (black) and decreasing (red)] used to plot 
Fig. 4a, Fig. 4a displays coexistence of attractors between period-6-oscillations and cha-
otic oscillations for 24.74 ≤ � ≤ 24.88 and coexistence of attractors between period-3-os-
cillations and chaotic oscillations in the range 24.88 < 𝛿 ≤ 25.74 . The dynamical behavior 
found in Fig. 4a are confirmed by the LLE shown in Fig. 4b.

The bifurcation diagrams depicting the maxima of x(t) versus the parameter � are com-
puted for some specific values of parameter � as depicted in Fig. 5 in order to illustrate the 
mechanism of the antimonotonicity phenomenon found in Fig. 4.

Chaotic oscillations and bubbles [10] are presented in Fig. 5a, b, respectively while only 
periodic bubbles are found in Fig.  5c–f. For a specific value of parameters � and � , the 
phase portraits of the chaotic bubble presented in Fig. 5b and the first-return map of the 
local maxima of x(t) are plotted in Fig. 6.

The chaotic bubble attractor presented in Fig.  6a–c is confirmed by the numeri-
cal calculation of the Lyapunov exponents which gives LE1 ≈ 0.0412624, LE2 ≈ 0 and 
LE3 ≈ −1.03952 . The Kaplan–Yorke dimension of the chaotic bubble is DKY ≈ 2.0396937 . 
In Fig. 6d, the map is indicative of one-dimensional maps with two critical points p1 and 
p2 , which support the occurrence of antimonotonicity phenomenon in the proposed jerk 
oscillator according to the results of Dawson et al. [16].

The coexistence of attractors found in Fig. 4 is further detailed in Figs. 7, 8.
At � = 24.8, the output x(t) displays period-6-oscillations and one scroll-chaotic 

attractor for two different initial conditions as shown in Figs.  7a1, a2, respectively. 
Period-3-oscillations and one scroll-chaotic attractor are revealed in Fig.  7b1, b2, 
respectively at � = 25 for two different initial conditions. The coexistence of attractors 

Fig. 4   (Colour online) Bifurcation diagram depicting the maxima of x(t) (a) and the corresponding LLE (b) 
versus the parameter � for � = 1, � = 0.16 and � = 0.4 . Bifurcation diagrams are obtained by scanning the 
parameter � upwards (black) and downwards (red)
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Fig. 5   Bifurcation diagrams depicting the maxima of x(t) versus parameter � for specific values of param-
eter � : a The chaotic oscillations at � = 0.37 , b chaotic bubble at � = 0.345 , c bubble of period 16 at 
� = 0.342 , d bubble of period 8 at � = 0.34 , e bubble of period 4 at � = 0.33 and f bubble of period 2 at 
� = 0.32 . The others parameters are given in Fig. 4

Fig. 6   Phase portraits in plane (x, y) (a), (y, z) (b), (x, z) (c) and the first-return map 
( Maxn + 1(x) = f (Maxn(x)) ) of the maxima of x(t) (d) for � = 1, � = 0.16, � = 0.345 and � = 12.85 with the 
initial conditions (x(0), y(0), z(0)) =(0.1, 0.1, 0.1)
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found in Fig.  7 is illustrated in Fig.  8 which depicts the cross section of the basin of 
attraction of system (2) for specific value of parameter �.

The black and green regions in Fig. 8 contain initial conditions that lead to the cha-
otic and periodic behaviors, respectively. The basin of attraction of Fig.  8 shows the 
possibility of occurrence of chaotic attractors is greater than the one of periodic attrac-
tors. The periodic region is located in the range −2 ≤ x(0) < −1.35 while the chaotic 
region is found in the range −1.35 < x(0) ≤ 0.

Fig. 7   Coexistence of attractors for specific values of � and initial conditions: a1 � = 24.8 and 
(x(0), y(0), z(0)) =(0.0545, 0.1829, 0.0358) , a2 � = 24.8 and (x(0), y(0), z(0)) = (0.1, 0.1, 0.1) , b1� = 25 
and (x(0), y(0), z(0)) = (0.0545, 0.1829, 0.0358) , b2 � = 25 and (x(0), y(0), z(0)) = (0.1, 0.1, 0.1) . The 
remaining parameters are given in Fig. 4

Fig. 8   (Color online) Cross 
section of the basin of attrac-
tion of system (2) in the (x, y) 
plane at z = 0. Periodic attractors 
are in green colour and chaotic 
attractors are in black colour. 
The parameters values are � = 25

,� = 1,� = 0.16 and � = 0.4
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3 � Electronic realization of the proposed autonomous Morse jerk 
oscillator

The aim of this section is to realize the electronic circuit describing the proposed jerk 
oscillator and point out some experimental/PSIM results in order to validate the numerical 
simulation results of Sect. 2. The circuit of the proposed autonomous Morse jerk oscillator 
is designed and realized in Fig. 9.

Figure  9 consists of resistors, capacitors, operational amplifiers, analogue multiplier 
device M (AD633JN integrated circuit) and diode D (1N4148). The current flowing inside 

Fig. 9   (Color online) Circuit diagram (a) and printed circuit board (b) of the proposed jerk oscillator
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the diode is given by the relation: Id = Is

[

e

(
−

Rs2

Rs1

Vx

�Vt

)

− 1

]

 where Is is the reversed satured 

current, η is an ideal factor and Vt is the thermal temperature of the experimental room. 
The operations of addition, subtraction and integration are implemented by operational 
amplifiers OP_4, OP_3 and OP_1 (TL084 integrated circuit) associated with ceramic 
capacitors and high precision resistors. The resistors R1 and R3 are knob resistors. The non-
linear term in the proposed autonomous Morse jerk oscillator is successfully implemented 
by combining a diode and an analogue multiplier device. By applying the Kirchhoff’s laws 
on circuit of Fig. 9, the following nonlinear differential equations are obtained:

where Vx , Vy , Vz are the output voltages of the operational amplifiers OP_1, OP_2 and 
OP_4, respectively. Adopting a time unit of RC = 10−4 s, the parameters of system (2) 
are defined in terms of the values of capacitors and resistors as follows:� = 10−4

/
R1C

,� = 10−4
/
R2C , � = 10−4

/
R3C , and � = 10−4

/
RC.We choose convenient values for resis-

tors R = 10 kΩ, capacitor C = 10 nF , RS2 = 0.494 kΩ, RS1 = 10 kΩ and RSIS = 1 V to imple-
ment the electronic circuit described by system (3). The observations from the oscilloscope 
of the phase portraits by using the above values of resistors are shown in Fig. 10.

(7a)
dVx

dt
=

1

RC
Vy,

(7b)
dVy

dt
=

1

R1C
Vz,

(7c)

dVz

dt
= −

1

RC
Vz −

1

R2C
Vy −

1

R3C

[

1 − RSIS exp

(

−
RS2Vx

RS1�VT

)]

RSIS exp

(

−
RS2Vx

RS1�VT

)

,

Fig. 10   (Colour online) Phase portraits of chaotic attractors observed on oscilloscope. In panels 1, 2, and 
3, we depict the phase portraits in planes 

(
Vx, Vy

)
 , 
(
Vy, Vz

)
 and 

(
Vx, Vz

)
 , respectively. The values resist-

ances are R = 10 kΩ, R1 = 0.349 kΩ, R2 = 65.5kΩ, R3 = 67.5 kΩ (first line reproduces Fig.  3) and 
R = 10 kΩ, R1 = 0.274 kΩ, R2 = 65.5 kΩ, R3 = 67.5 kΩ (second line reproduces Fig. 6a–c)
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The experimental results of Fig.  10 have in a good qualitative agreement with the 
numerical results of Figs.  3, 6a–c. PSIM software is used to validate the coexistence 
between periodic oscillations and one scroll-chaotic attractor as shown in Fig.  11 
because it is not easy to achieve special initial voltages of three capacitors in hardware 
circuit experiment [8].

A good qualitative agreement is shown between coexistence attractors illustrated in 
Fig. 11 using PSIM software and the coexistence attractors obtained during the numeri-
cal simulations results of Fig. 7.

4 � Controls of the signal amplitudes, chaotic behavior and coexisting 
attractors in the proposed autonomous Morse jerk oscillator

The goal of this section is to control the signal amplitudes, chaotic behavior and coex-
isting attractors in the proposed jerk oscillator.

Fig. 11   The phase portraits in plane 
(
Vx, Vy

)
 of coexisting attractors observed on PSIM. 

The values resistances are: a R = 10 kΩ, R1 = 0.73 kΩ, R2 = 60.024 kΩ, R3 = 23 kΩ and 
b R = 10 kΩ, R1 = 0.78 kΩ, R2 = 60.024 kΩ, R3 = 23 kΩ . Initial conditions are: a1 and b1 
(Vx(0),Vy(0),Vz(0)) =(−2.0V ,−4.0V , 0.0V) , a2 and b2 (Vx(0),Vy(0),Vz(0)) =(2.0V , 2.0V , 2.0V)
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4.1 � Partial and total controls of the signal amplitudes

In this subsection, it is demonstrated that system (2) has the feature of partial and total control 
of the signal amplitudes. The state variable x appears only in the third equation of system (2). 
So, its amplitude can be controlled by replacing x → x + � into system (2) where � is a boost-
ing controller. Then, system (2) becomes:

System (8) has only one equilibrium point E1 = (−� , 0, 0) . The local stability of 
E1 = (−� , 0, 0) reveals that if 𝛿 > 0 , system (8) has a Hopf bifurcation when � passes through 
the critical value �H = �∕� . So, the stability of equilibrium point E1 = (−� , 0, 0) is independ-
ent from the boosting controller � . The average values of the state variables x , y and z versus 
the boosting controller � are plotted in Fig. 12 in order to check the amplitude control of the 
state variable x.

By increasing the boosting controller � , the average of the state variable x decreases while 
other two state variables y and z remain unchanged as shown in Fig. 12. The phase portraits 
and time series of the state variable x of system (8) are presented in Fig. 13 for different values 
of boosting controller � .

The amplitude of chaotic signal x is boosted from a bipolar signal to unipolar signal by 
decreasing the boosting controller � as shown in Fig. 13.

The feature of total amplitude control in system (2) can be demonstrated by inserting 
x → x∕�, y → y∕� and z → z∕� in system (2) where � is a control parameter. So, system (3) 
becomes:

(8a)ẋ = y,

(8b)ẏ = 𝛿z,

(8c)ż = −z − 𝛾y − 𝛽
[
1 − e−𝛼(x+𝜁 )

]
e−𝛼(x+𝜁 ).

(9a)ẋ = y,

(9b)ẏ = 𝛿z,

Fig. 12   (Color online) The aver-
age values of the state variables 
x (black), y(blue) and z (red) 
versus the boosting controller � 
for � = 1, � = 0.16, � = 18 and 
� = 0.6
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System (9) has only one equilibrium point O = (0, 0, 0) . The local stability of 
O = (0, 0, 0) shows that if 𝛿 > 0 , system (9) has a Hopf bifurcation when � passes through 
the critical value �H = �∕� . So the stability of equilibrium point O = (0, 0, 0) is independ-
ent from the control parameters � . In Fig. 14, the phase portraits of system (9) are depicted 
for different values of control parameter �.

The amplitudes of chaotic signals x , y and z are controlled simultaneously by varying 
the control parameter � as shown in Fig. 14.

4.2 � Chaos control in proposed autonomous chaotic Morse jerk oscillator

The aim of this subsection is to suppress chaotic behavior and stabilize system (2) at its 
equilibrium O = (0, 0, 0) . To achieve this goal, it is introduced an external feedback con-
trol law u =

[
u1 u2 u3

]T where for simplicity it is chosen ui≠2 = 0 and u2 = −k
(
y − y0

)
 , y0 

being the first coordinate of the equilibrium point O ( x0 = 0, y0 = 0, z0 = 0 ) and k is the 
positive feedback control gain. The controlled system takes the form:

(9c)ż = −z − 𝛾y − 𝜀𝛽
[
1 − exp (−𝛼x∕𝜀)

]
exp (−𝛼x∕𝜀).

(10a)
dx

dt
= y,

(10b)
dy

dt
= �z − k

(
y − y0

)
,

Fig. 13   Phase portraits in the plane (x, y) and time series of the signal x of system (9) for 
� = 1, � = 0.16, � = 18,� = 0.6 and different values of boosting controller � : � = 3(black), � = 1.5 (red) 
and � = −1 (blue). Initial conditions are(x (0), y (0), z (0)) = (0.1, 0.1, 0.1)
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The controlled system (10) has only one equilibrium point O = (0, 0, 0) and its Jaco-
bian matrix has the characteristic polynomial:

The Routh–Hurwitz conditions for the stability of the controlled system (10) at its equi-
librium are the following:

For � = 1, � = 0.16, � = 0.6 and � = 18 , the inequalities (12c) is positive for 
k < −5.36 and k > 1.48 . According to the set of inequalities (12), the equilibrium point 
O = (0, 0, 0) is stable for k > 1.48 and unstable for k < 1.48 . Using the numerical simula-
tions of system (10) for � = 1, � = 0.16, � = 0.6 and � = 18 , the bifurcation diagram of 
x(t) and the LLE versus the control gain k is plotted in Fig. 15 in order to check the validity 
of the analytical results found.

From Fig.  15a, a reverse period-doubling to chaos interspersed with periodic windows 
is observed up to k ≈ 1.48 where a Hopf bifurcation appears followed by no oscillation 

(10c)
dz

dt
= −z − �y − �

[
1 − exp (−�x)

]
exp (−�x).

(11)�3 + ( k + 1)�2 + (k + �� )� + ��� = 0.

(12a)k + 1 > 0,

(12b)𝛼𝛽𝛿 > 0,

(12c)k2 + (1 + 𝛾𝛿)k + 𝛿(𝛾 − 𝛼𝛽) > 0.

Fig. 14   (Color online) Phase portraits in the planes (x, y) and (y, z) of system (9) for 
� = 1, � = 0.16, � = 18,� = 0.6 and different values of control parameter � : � = 0.85(black), � = 2 (red) 
and � = 3 (blue). Initial conditions are(x (0), y (0), z (0)) = (0.1, 0.1, 0.1)
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Fig. 15   Bifurcation diagram depicting the local maxima (black dots) and local minima (gray dots) of x(t) 
(a) and the LLE (b) versus the control gain k for � = 1, � = 0.16, � = 0.6 and � = 18

Fig. 16   Time series of the outputs of x, y and z for k = 1.6, � = 1, � = 0.16, � = 0.6 and � = 18 . The ini-
tial condition is (x(0), y(0), z(0)) = (0.1, 0.1, 0.1)
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(equilibrium point). Therefore, the analytical results confirm the results obtained during 
numerical integration of controlled system (10) as shown in Fig. 15. The dynamical behaviors 
found in Fig. 15a are confirmed by the LLE shown in Fig. 15b. For k = 1.6 , the time series of 
the outputs of x, y and z is plotted in Fig. 16.

The trajectories of controlled system (10) are controlled to the equilibrium point 
O = (0, 0, 0) as shown in Fig. 16.

4.3 � Control of coexisting attractors in proposed autonomous Morse jerk oscillator

In the most dynamical systems, multistability can create inconveniences which contribute to 
reduce considerably the performances of such systems. Several methods have been proposed 
and developed for the control of multistabilty in multistable oscillators [2, 20, 38, 40, 41]. It 
is demonstrated that such methods are capable to stabilize the dynamics of these systems to a 
monostable state [38, 40, 41]. Among these methods, linear augmentation method is one of 
the most used methods because of its large applicability, simplicity in designing and physical 
implementation. In order to destroy the coexistence between periodic and chaotic attractors, 
system (2) is coupled with a linear system as follows:

where � is the coupling strength, � is the control parameter which serves to locate the posi-
tion of equilibrium point and � is the decay parameter of the linear system w . System (13) 
has no-equilibrium point for 4𝜃𝜇2

/
𝜂𝛽 > 1 while for 4𝜃𝜇2

/
𝜂𝛽 < 1 two equilibrium points 

E1 = (−x1∕�, 0, 0, ��∕� ) and E2 = (−x2∕�, 0, 0, ��∕� ) where 

x1,2 = ln

(

1∕2 ±

√
1 − 4��2

/
��

/

2

)

 . The bifurcation diagram depicting local extrema of 

the controlled system (13) and the corresponding LLE versus the coupling strength � are 
shown in Fig. 17.

By increasing the coupling strength � , the bifurcation diagram of the controlled system 
(13) in Fig. 17a displays a reverse period-doubling bifurcation to chaotic behavior interspersed 
with periodic windows. By further increasing the coupling strength � , a limit cycle is observed 
up to µ ≈ 0.3156 where a Hopf bifurcation occurs followed by converging of the trajectories 
of the controlled system (13) to the equilibrium point E2. The dynamical behaviors found in 
Fig. 17a are confirmed by the LLE shown in Fig. 17b. Therefore, the controlled system (13) 
transforms the multistable attractors to desired monostable attractors.

5 � Conclusion

In this paper, an autonomous Morse jerk oscillator was proposed and analyzed. It was 
demonstrated that the proposed jerk oscillator displays Hopf bifurcation, antimonotonic-
ity, one scroll-chaotic attractor, periodic and chaotic bubbles and coexistence between 

(13a)ẋ = y,

(13b)ẏ = 𝛿z,

(13c)ż = −z − 𝛾y − 𝛽
[
1 − exp (−𝛼x)

]
exp (−𝛼x) + 𝜇w,

(13d)ẇ = −𝜂w − 𝜇(z − 𝜃),
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periodic and one scroll-chaotic attractors by tuning the parameters. Then, an analogue cir-
cuit was designed to realize the rate-equations describing the proposed autonomous Morse 
jerk oscillator. The experimental/PSIM results were shown consistency with numerical 
simulations results. Then, a flexible chaotic autonomous jerk oscillator with partial and 
total amplitude controls was achieved by adding two new parameters in the rate-equations 
describing the proposed Morse jerk oscillator. Moreover, a single linear feedback controller 
was used to stabilize the chaotic proposed jerk oscillator to its unique equilibrium point. 
Finally, the coexisting of attractors found in the proposed jerk oscillator was controlled to a 
desired trajectory by using a linear augmentation method.
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