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Abstract
This paper aims to study the well-posedness and the stability of two thermoelastic systems.
The derivation of the first system is based on a classical coupling between the mechanical
equations of Timoshenko and the thermal effects which are based on the conductivity of
Fourier’s law. Whereas, the second system is derivable through a thermal coupling on the
shear force. Furthermore, the damping of Kelvin–Voigt type is simultaneously presented in
both the shear stress and the bending moment for the two systems.

Keywords Timoshenko system · Kelvin–Voigt damping · Viscoelsticity · Thermoelastic
system · Well-posedness · Energy decay · Contraction semigroup

Mathematics Subject Classification 35B37 · 35L55 · 93D15 · 74D05

1 Introduction

The study of Kelvin–Voigt materials with viscoelastic structures has been the subject of study
for many researchers, in this regard, we can refer to the basic works [8,16] through which
it was explained that the damping structure of these materials depends on the combination
of elasticity and viscosity. In another context, by considering the mechanical models under
presence of an effective thermal conductivity, e.g., see papers [4,5] and the references therein,
we note that the thermal effects at the level of the elastic structure may plays an important role
in stabilizing the previousmaterials. In addition, looking at the papers [2,18], the authors used
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different types of dissipation, but did not present theKelvin–Voigt type. Therefore, the present
work will address this gap by studying the coupled hyperbolic-parabolic system to achieve
stability results regarding the dissipation efficiency of Kelvin–Voigt in both thermoelastic
type. More precisely, in this paper, on the one hand, we study Timoshenko system with
thermal effects that are effective on the bending moment, the system is given as follows

ρ1utt = k(ux + ϕ)x + γ1(ux + ϕ)xt , in (0, 1) × R+,

ρ2ϕt t = bϕxx + γ2ϕxxt − k(ux + ϕ) − γ1(ux + ϕ)t − βθx , in (0, 1) × R+,

ρ3θt = γ3θxx − βϕxt , in (0, 1) × R+,

(1.1)

subject to the Dirichlet boundary conditions for u and θ

u(0, t) = u(1, t) = θ(0, t) = θ(1, t) = 0, t ≥ 0, (1.2)

and in addition to Neumann boundary condition for ϕ

ϕx (0, t) = ϕx (1, t) = 0, t ≥ 0. (1.3)

On the other hand, we will study the Timoshenko system with thermal effects acting on
shear force, the system is given as follows

ρ1utt = k(ux + ϕ)x + γ1(ux + ϕ)xt − βθx , in (0, 1) × R+,

ρ2ϕt t = bϕxx + γ2ϕxxt − k(ux + ϕ) − γ1(ux + ϕ)t + βθ, in (0, 1) × R+,

ρ3θt = γ3θxx − β(ux + ϕ)t in (0, 1) × R+,

(1.4)

subject to the Dirichlet boundary conditions for ϕ and θ

ϕ(0, t) = ϕ(1, t) = θ(0, t) = θ(1, t) = 0, t ≥ 0, (1.5)

in addition to Neumann boundary condition for u

ux (0, t) = ux (1, t) = 0, t ≥ 0. (1.6)

The unknown functions

(u, ϕ, θ) : (x, t) ∈ I × [0,∞) �−→ R, with I = (0, 1),

represents the transverse displacement, the angle of rotation and the relative temperature of
the beam respectively. ρ1, ρ2, ρ3, k, b, γ3, γ1 and γ2 are strictly positive fixed constants, β

is coupling coefficient.
The both systems (1.1) and (1.4) are complemented with the following initial conditions

u(x, 0) = u0(x), ut (x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), x ∈ I,

ϕt (x, 0) = ϕ1(x), θ(x, 0) = θ0(x), x ∈ I. (1.7)

Models derivation
Wenote that, we can derivate our systems by considering the following evolution equations

of thermoelastic Timoshenko model, for the model representation see [20].

ρ1utt − Tx = 0, in I × R+,

ρ2ϕt t − Hx + T = 0, in I × R+,

(1.8)
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where t is the time, x is the distance along the center line of the beam structure, u is the
transverse displacement, and ϕ is the rotation of the neutral axis due to bending. Here,
ρ1 = ρA and ρ2 = ρ I , where ρ is the density, A is the cross-sectional area, and I is the
second moment of area of the cross-sectional area. When the stress–strain constitutive law
is of Kelvin–Voigt type [11], we can adopt the following two coupling:

First coupling that produce system (1.1)
The Timoshenko system with thermoelastic dissipation, effective in the bending moment

equation is given as follows

T = k(ux + ϕ) + γ1(ux + ϕ)t ,

H = bϕx + γ2ϕxt + βθ.

(1.9)

Second coupling that produce system (1.4)
The Thermoelastic Timoshenko system acting on shear force is given as follows

T = k(ux + ϕ) + γ1(ux + ϕ)t + βθ,

H = bϕx + γ2ϕxt .

(1.10)

In systems (1.9) and (1.10) the temperature θ following the Fourier law [7] is given as follows

ρ3θt = −qx − βϕxt , in I × R+,

ρ3θt = −qx − β(ux + ϕ)t , in I × R+,

(1.11)

where the flux is obtained by

q = −γ3θx , in I × R+. (1.12)

Finally, by substituting system (1.9) in the system (1.8) and using equation (1.11)1, we
obtain system (1.1) . Similarly, by substituting system (1.10) in the system (1.8) and using
equation (1.11)2, we obtain system (1.4) .

Earlier results
Malacarne and Rivera [11] studied the Timoshenko system [20] with the viscoelastic

dissipative mechanism of Kelvin–Voigt type. Consequently, they found a new results related
to the solution behavior for system

ρ1φt t = k(φx + ψ)x + γ1(φx + ψ)t x , in ]0, L[×]0,∞[,

ρ2ψt t = bψxx + γ2ψxxt + k(φx + ψ) + γ1(φx + ψ)t , in ]0, L[×]0,∞[.
(1.13)

To be more precise, the authors proved that the semigroup is analytical if and only if the
viscoelastic damping is present at the same time in the shear stress and in the bendingmoment,
i.e., γ1, γ2 > 0. Otherwise, the corresponding semigroup is not exponentially stable even
for equal wave speeds. The final result showed that the polynomial rate of decay is t−1/2.
In addition, Liu and Zhang [9] studied the stability and regularity of solution for the system
(1.13).

In [19], Tian andZhang considered aTimoshenko systemwith localKelvin–Voigt damping
modeled by the following system

ρ1ωt t − [κ (ωx + φ) + D1 (ωxt + φt )]x = 0, in (0, L) × R+,

ρ2φt t − (μφx + D2φxt )x + κ (ωx + φ) + D1 (ωxt + φt ) = 0, in (0, L) × R+,

(1.14)
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where

D1(·), D2(·) : [0, L] −→ R+ ∪ {0}, (1.15)

are continuous functions. They proved by using method based on frequency analysis that
the system energy decays exponentially or polynomially where the decay rate depends on
the properties of the material coefficient functions (1.15), for more detail, see references
[1,6,12,14–16].

In the same context but in case of a porous-elastic system with Kelvin–Voigt damping,
Almeida and Ramos [17] proposed the following system

ρutt − (μux + γ1utx )x − bφx = 0, in (0, L) × (0,∞),

Jφt t − (δφx + γ2φt x )x + bux + ξφ = 0, in (0, L) × (0,∞),

(1.16)

where, the variables u and φ represent the displacement of a solid elastic material and the
volume fraction. On the one hand, they showed that the semigroup associated with the
system (1.16) under both Dirichlet–Dirichlet and Dirichlet–Neumann boundary conditions
is founded analytic and consequently exponentially stable. On the other hand, they proved
that the system (1.16) with Dirichlet–Neumann boundary conditions has lack of exponential
decay for the case

γ1 > 0, γ2 = 0 or γ1 = 0, γ2 > 0.

Moreover, they proved the same result in the case of Timoshenko’s model, i.e., if

μ = ξ = b.

In view of the previous works in which there is a total absence of thermal effects in the
systems, we decided to study the Timoshenko system in two different states imposed by the
thermal effects. Hence, in this work we have proved some results about the well-posedness
of solutions and we showed the energy decay of the studied problems.

Remark 1.1

• As in [3], the choice of the spaces of zero-mean functions for the variable u, ϕ and its
derivative is consistent. Indeed, noting

χ1(t) =
∫
I

ϕ(x, t) dx and χ2(t) =
∫
I
u(x, t) dx.

Integrating the previous equations on I, we obtain respectively the following two differ-
ential equations

ρ2χ̈1(t) − γ1χ̇1(t) − kχ1(t) = 0 and ρ1χ̈2(t) = 0. (1.17)

Hence, if

χ1(0) = χ̇1(0) = 0 and χ2(0) = χ̇2(0) = 0. (1.18)

Then, it follows that

χ1(t) ≡ 0 and χ2(t) ≡ 0.

Thus, the use of Poincaré’s inequality for the function ϕ in system (1.1) and the function
u in system (1.4) is justified.
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• By virtue of Cauchy–Schwarz and Poincaré’s inequalities, we have the following inequal-
ity

‖�‖2L2(I)
≤ ‖ϕt‖2L2(I)

, ∀ϕ ∈ L2(I),

where

�(x, t) =
∫ x

0
ϕt (y, t) dy.

• By virtue of Poincaré’s inequality, we have the following estimate

‖ux‖2L2(I)
=

∫
I
[(ux + ϕ) − ϕ]2 dx

≤ 2‖ux + ϕ‖2L2(I)
+ 2‖ϕx‖2L2(I)

, ∀u ∈ L2(I).

It is worth noting that this observations will play a major role in the attainment of the
results of this paper.

Paper plan
The paper respects the following plan. Firstly, in Sect. 2, we will prove the well-posedness

of the problems. After that, in Sect. 3, we will show the exponential stability results of both
systems (1.1) and (1.4). Finally, in Sect. 4, we will give some open problem for the interested
readers.

2 Well-posedness

This section will be concerned with the existence and uniqueness of global solutions based
on the classical Lumer–Phillips Theorem, see e.g., the books [10,13].

Theorem 2.1 LetAi be a densely defined linear operators on a Hilbert spacesHi , for (i =
1, 2). Then Ai is the infinitesimal generator of a contraction semigroup s(t) if and only if

• Ai are dissipative; and
• 0 ∈ �(Ai ).

In order to define the operators Ai , we introduce the new variables vi = uit , φi = ϕi
t .

Now, we consider the following Hilbert phase spaces

H1 = H1
0 (I) × L2(I) × H1∗ (I) × L2∗(I) × L2(I),

H2 = H1∗ (I) × L2∗(I) × H1
0 (I) × L2(I) × L2(I).

We note that the closed subspace of L2(I) is defined by

L2∗(I) =
{
ϑ ∈ L2(I) :

∫
I

ϑ dx = 0

}
, (2.1)

and the following Sobolev spaces is defined by

H2∗ (I) = {ϑ ∈ H2(I) : ϑx (0) = ϑx (1) = 0}, H1∗ (I) = L2∗(I) ∩ H1(I). (2.2)

The corresponding norm in Hi is given by

‖Ui‖2Hi
= ρ1‖vi‖2L2(I)

+ ρ2‖φi‖2L2(I)
+ ρ3‖θ i‖2L2(I)

+ k‖uix + ϕi‖2L2(I)
+ b‖ϕi

x‖2L2(I)
.

(2.3)
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where Ui = (ui , vi , ϕi , φi , θ i ) ∈ Hi and Ui∗ = (ui∗, vi∗, ϕi∗, φi∗, θ i∗) ∈ Hi .

The inner product is given by

〈Ui ,Ui∗〉Hi =
∫
I

[
ρ1v

ivi∗ + ρ2φ
iφi∗ + ρ3θ

iθ i∗ + k(uix + ϕi )(ui∗x + ϕi∗) + bϕi
xϕ

i∗x
]
dx.

(2.4)

Let us introduce the operators Ai : D(Ai ) ⊂ Hi −→ Hi as follows

A1 =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 0 0
k
ρ1

∂2x (·) γ1
ρ1

∂2x (·) k
ρ1

∂x (·) γ1
ρ1

∂x (·) − β
ρ1

∂x (·)
0 0 0 I 0

− k
ρ2

∂x (·) − γ1
ρ2

∂x (·) b
ρ2

∂2x (·) − k
ρ2

− γ2
ρ2

∂2x (·) − γ1
ρ2

β
ρ2

0 − β
ρ3

∂x (·) 0 − β
ρ3

γ3
ρ3

∂2x (·)

⎞
⎟⎟⎟⎟⎟⎠

, (2.5)

and

A2 =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 0 0
k
ρ1

∂2x (·) γ1
ρ1

∂2x (·) k
ρ1

∂x (·) γ1
ρ1

∂x (·) 0
0 0 0 I 0

− k
ρ2

∂x (·) − γ1
ρ2

∂x (·) b
ρ2

∂2x (·) − k
ρ2

− γ2
ρ2

∂2x (·) − γ1
ρ2

− β
ρ2

∂x (·)
0 0 0 − β

ρ3
∂x (·) γ3

ρ3
∂2x (·)

⎞
⎟⎟⎟⎟⎟⎠

, (2.6)

with the domains D(Ai ) defined as follows

D(A1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 ∈ H1
0 (I) ∩ H2(I)

v1 ∈ H1
0 (I)

U 1 ∈ H1
∣∣ ϕ1 ∈ H2(I) ∩ H1∗ (I)

φ1 ∈ H1∗ (I)

θ1 ∈ H2(I)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2.7)

and

D(A2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2 ∈ H1∗ (I) ∩ H2∗ (I)

v2 ∈ H1∗ (I)

U 2 ∈ H2
∣∣ ϕ2 ∈ H2(I) ∩ H1

0 (I)

φ2 ∈ H1
0 (I)

θ2 ∈ H2(I)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.8)

Then, the problems (1.1)–(1.7) is equivalent to the following evolution Cauchy problems

d

dt
Ui (t) = AiU

i (t), t > 0,

Ui (0) = Ui
0 =

(
ui0, u

i
1, ϕ

i
0, ϕ

i
1, θ

i
0

)T
.

Proposition 2.2 The operators Ai are the infinitesimal generators of a C0-semigroup of
contractions s(t) over the space Hi .

For the proof of the previous Proposition we need to prove the followingLemmas
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Lemma 2.3 The linear operator Ai for i = 1, 2 is a dissipative operator.

Proof In fact, we observe that if Ui ∈ D(Ai ), by using the inner product (2.4) and the
operator Ai defined in (2.5) and (2.6), we can get

〈AiU
i ,Ui 〉Hi = −γ1‖vix + φi‖2L2(I)

− γ2‖φi
x‖2L2(I)

− γ3‖θ ix‖2L2(I)

≤ 0. (2.9)

Then, the proof of Lemma (2.3) is finished. ��
Lemma 2.4 Let the operators A1 and A2 defined by (2.5) and (2.6) respectively. Then, we
have

0 ∈ �(Ai ).

Proof For any F∗ = ( f ∗
1 , f ∗

2 , f ∗
3 , f ∗

4 , f ∗
5 )T ∈ H1, F = ( f1, f2, f3, f4, f5)T ∈ H2, we

want to find Ui = (ui , vi , ϕi , φi , θ i ) ∈ D(Ai ) such that

A1U
1 = F∗,

A2U
2 = F .

In terms of the components, we get
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = f ∗
1 ,

ku1xx + γ1v
1
xx + kϕ1

x + γ1φ
1
x = ρ1 f ∗

2 ,

φ1 = f ∗
3 ,

bϕ1
xx − ku1x − γ1v

1
x − kϕ1 + γ 1

2 φxx − γ1φ
1 − βθ1x = ρ2 f ∗

4 ,

γ3θ
1
xx − βφ1

x = ρ3 f ∗
5 ,

(2.10)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2 = f1,

ku2xx + γ1v
2
xx + kϕ2

x + γ1φ
2
x − βθ2x = ρ1 f2,

φ2 = f3,

bϕ2
xx − ku2x − γ1v

2
x − kϕ2 + γ2φ

2
xx − γ1φ

2 + βθ2 = ρ2 f4,

γ3θ
2
xx − βv2x − βφ2 = ρ3 f5.

(2.11)

By using the equations (2.10)1 and (2.10)3, we can deduce that

v1 ∈ H1
0 (I), φ1 ∈ H1∗ (I). (2.12)

Also, by using the equations (2.11)1 and (2.11)3, we can deduce that

v2 ∈ H1∗ (I), φ2 ∈ H1
0 (I). (2.13)

Now, by using Eqs. (2.10)5 and (2.10)5, we can write

γ3θ
1
xx = ϑ∗

3 ∈ L2(I), (2.14)
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and

γ3θ
2
xx = ϑ3 ∈ L2(I), (2.15)

where

ϑ∗
3 = ρ3 f

∗
5 + β( f ∗

3 )x ,

ϑ3 = ρ3 f5 + β( f1)x + β f3.

Weconclude that there exists a unique function θ i ∈ H1
0 (I) for i = 1, 2. Then, the remaining

point is to prove that there exist ui and ϕi satisfying the following systems
⎧⎨
⎩
ku1xx + kϕ1

x = ϑ∗
1 ,

bϕ1
xx − ku1x − kϕ1 = ϑ∗

2 ,

(2.16)

and ⎧⎨
⎩
ku2xx + kϕ2

x = ϑ1,

bϕ2
xx − ku2x − kϕ2 = ϑ2,

(2.17)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ∗
1 = ρ1 f ∗

2 − γ1( f ∗
1 )xx − γ1( f ∗

3 )x ,

ϑ∗
2 = ρ2 f ∗

4 − γ2( f ∗
3 )xx + γ1( f ∗

1 )x − γ1 f ∗
3 + βθ1x ,

ϑ1 = ρ1 f2 − γ1( f3)x − γ1( f1)xx + βθ2x ,

ϑ2 = ρ2 f4 − βθ2 + γ1 f3 − γ2( f3)xx + γ1( f1)x .

(2.18)

Introducing the spaces

X1 = H1∗ (I) ∩ H1
0 (I), and X2 = H1

0 (I) ∩ H1∗ (I).

Denote the bilinear forms for the systems (2.16) and (2.17) as follows

Bi (U
i , Ũ i ) =

∫
I

−kuix ũ
i
x + kϕi

x ũ
i
x − bϕi

x ϕ̃
i
x − kuix ϕ̃

i
x − kϕi ϕ̃i dx, for i = 1, 2.

The linear forms is defined as follows

L1(V
1) =

∫
I

ϑ∗
1 ũ

1 + ϑ∗
2 ϕ̃1 dx, ∀V 1 = (ũ1, ϕ̃1) ∈ X1,

L2(V
2) =

∫
I

ϑ1ũ
2 + ϑ2ϕ̃

2 dx, ∀V 2 = (ũ2, ϕ̃2) ∈ X2.

We conclude that the bilinear forms Bi (·, ·) are coercive and continuous over the Hilbert
space Xi . Also the linear forms Li (·) are continuous over the Hilbert space Xi . Therefore,
according to the Lax-Milgram conditions, we deduce that there exists a unique solution to
the following variational formula

Bi (U
i , V i ) = Li (V

i ) ∈ Xi , for i = 1, 2. (2.19)

Thus, the proof of Lemma (2.4) is completed. ��
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Proof of Proposition (2.2) Based on Lemmas (2.3) and (2.4), the operators Ai are m-
dissipative. Then, using the Lumer–Phillips Theorem (2.1), we conclude that the operatorsAi

are infinitesimal generators of aC0-semigroup of contractions. Then, the proof of Proposition
(2.2) is completed. ��

Now, we present our main result as follows

Theorem 2.5 Let Ui
0 ∈ D(Ai ), Problems (1.1)–(1.7) have a unique classical solution

Ui ∈ C (R+,D(Ai )) ∩ C1 (R+,Hi )

Moreover, if U i
0 ∈ Hi , then there exists unique mild solution of the problems (1.1)–(1.7)

Ui ∈ C (R+,Hi ) .

Proof Firstly, it is clear that D(Ai ) dense in Hi . Then, under Proposition (2.2), the proof of
Theorem (2.5) is finished. ��

3 Energy decay

In this section, we introduce our exponential decay result for the problems (1.1)–(1.7).

Remark 3.1 Throughout this section, c is used to denote a generic positive constant that will
be changed from one inequality to another.

First, we define the energy of the problems (1.1)–(1.7) as follows

E(t) := 1

2

[
ρ1‖ut‖2L2(I)

+ ρ2‖ϕt‖2L2(I)
+ ρ3‖θ‖2L2(I)

+ b‖ϕx‖2L2(I)
+ k‖ux + ϕ‖2L2(I)

]
.

(3.1)

Lemma 3.2 Let (u, ϕ, θ) solution to the problems (1.1)–(1.7). Then, the energy functional
(3.1) satisfy the following equality

d

dt
E(t) = −γ3‖θx‖2L2(I)

− γ2‖ϕxt‖2L2(I)
− γ1‖(ux + ϕ)t‖2L2(I)

≤ 0. (3.2)

Proof Multiplying the equations of system (1.1) respectively by (u, ϕ) and θ and integrating
over I, by using integration by parts and the boundary conditions (1.2)–(1.3). By adding the
result, we get the equality (3.2). The same procedure for the problem (1.4)–(1.7) gives the
result. ��

Exponential stability of problem (1.1)–(1.3).
Defining the primitives

• �(x, t) :=
∫ x

0
ut (y, t) dy.

• �(x, t) :=
∫ x

0
ϕt (y, t) dy.

• �(x, t) :=
∫ x

0
(ux + ϕ)(y, t) dy.

• ϒ(x, t) :=
∫ x

0
θ(y, t) dy. (3.3)
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We introduce the following functionals

• �1(t) := ρ1ρ2 〈ut (t),�(t)〉L2(I) .

• �1(t) := ρ2 〈ϕ(t), ϕt (t)〉L2(I) .

• �1(t) := −ρ1 〈(ux + ϕ)(t),�(t)〉L2(I) . (3.4)

Let N a large positive number, we define the Lyapunov functional F1 as follows

F1(t) := NE(t) + N0�1(t) + N1�1(t) + N2�1(t). (3.5)

Lemma 3.3 For N large enough, there exist two positive constants α1 and α2 such that

α1E(t) ≤ F1(t) ≤ α2E(t),∀t ≥ 0. (3.6)

Proof Defining the functional F̃1 by

F̃1(t) = N0�1(t) + N1�1(t) + N2�1(t). (3.7)

Then, by using Young, Poincaré’s inequalities and the previous functionals (3.4), we obtain

|F̃1(t)| ≤ N̂
∫
I

(
ρ1u

2
t + ρ2ϕ

2
t + ρ3θ

2 + k(ux + ϕ)2 + bϕ2
x

)
dx.

Consequently, we get

|F1(t) − NE(t)| ≤ N̂ E(t),

where

N̂ > 0.

That is

(N − N̂ )E(t) ≤ F1(t) ≤ (N + N̂ )E(t).

By choosing N large enough, the inequality (3.6) follows. ��

Lemma 3.4 The functionals �1, �1 and �1 satisfy the following differential inequalities

• d

dt
�1(t) + γ1ρ1

2
‖ut‖2L2(I)

≤ c
(
‖ux + ϕ‖2L2(I)

+ ‖ϕx‖2L2(I)
+ ‖ϕxt‖2L2(I)

)
.

• d

dt
�1(t) + b

2
‖ϕx‖2L2(I)

≤ c
(
‖ϕxt‖2L2(I)

+ ‖ux + ϕ‖2L2(I)

+‖(ux + ϕ)t‖2L2(I)
+ ‖θx‖2L2(I)

)
.

• d

dt
�1(t) + k

2
‖ux + ϕ‖2L2(I)

≤ ε‖ut‖2L2(I)
+ c

ε
‖(ux + ϕ)t‖2L2(I)

, (3.8)

where ε > 0.

Proof

• Taking the derivative of (3.4)1, by using the first and the second equations in (1.1) and
the boundary conditions (1.2)–(1.3), yields
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d

dt
�1(t) + γρ1‖ut‖2L2(I)

= −ρ2k 〈(ux + ϕ)(t), ϕt (t)〉L2(I) − ρ2γ1 〈(ux + ϕ)t (t), ϕt (t)〉L2(I)

+ρ1 〈ut (t), bϕx (t) + γ2ϕxt (t) − k�(t) − γ1�(t) − βθ(t)〉L2(I) . (3.9)

By using Young’s inequality and Remark (1.1), we obtain

−kρ1 〈ut (t),�(t)〉L2(I) = −kρ1

〈
ut (t), u(t) +

∫ x

0
ϕ(y, t)dy

〉
L2(I)

≤ 3γ1ρ1
10

‖ut‖2L2(I)
+ c

(
‖ux + ϕ‖2L2(I)

+ ‖ϕx‖2L2(I)

)
.

Now, applying Young and Poincaré’s inequalities to estimate all remaining terms in
equality (3.9). Then, we get the desired inequality (3.8)1.

• Taking the derivative of (3.4)2, by using the second equations in (1.1) and the boundary
conditions (1.2)–(1.3), we get

d

dt
�1(t) + b‖ϕx‖2L2(I)

= −〈ϕ(t), k(ux + ϕ)(t) + γ1(ux + ϕ)t (t)〉L2(I)

+ 〈ϕx (t), βθ(t) + γ2ϕxt (t)〉L2(I) .

Applying Young and Poincaré’s inequalities, it appear directly inequality (3.8)2.
• Taking the derivative of (3.4)3, by using the first equations in (1.1), we obtain

d

dt
�1(t) + k‖ux + ϕ‖2L2(I)

= −〈(ux + ϕ)t (t), ρ1�(t) + γ1(ux + ϕ)(t)〉L2(I) .

Applying Young and Poincaré’s inequalities, we obtain the inequality (3.8)3. ��
The main result of stability for the system (1.1) is given by the following Theorem.

Theorem 3.5 Let (u, ϕ, θ) ∈ H1 solution to the system (1.1)with boundary conditions (1.2)–
(1.3) and initial condition (1.7). Then, the energy functional (3.1) satisfies

E(t) ≤ λ1e
−λ2t ,∀t ≥ 0, (3.10)

for λ1, λ2 positive constants.

Proof By differentiating equality (3.5) and by using estimates (3.8), we obtain

d

dt
F1(t) ≤ −�1‖ut‖2L2(I)

− �2‖ϕx‖2L2(I)
− �3‖ux + ϕ‖2L2(I)

− �4‖ϕxt‖2L2(I)

−�5‖θx‖2L2(I)
− �6‖(ux + ϕ)t‖2L2(I)

, (3.11)

where

�1 = N0
γρ1

2
− N2ε,

�2 = N1
b

2
− N0c, �3 = N2

k

2
− c(N0 + N1),

�4 = Nγ2 − c(N0 + N1),

�5 = Nγ3 − N1c,

�6 = Nγ1 − N1c − N2
c

ε
. (3.12)

Now, all the terms on the right-hand side of (3.11) become negative ifwe select our parameters
carefully.
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First, let us pick ε = γ1ρ1
2N2

. Then, we choose N1 large enough such that

N0
γ1ρ1

2
− N2ε > 0.

Hence, we get

N0 > 1.

We choose N1 such that

N1b

2
− N0c > 0,

we can choose N2 such that

N2k

2
− cN0 − cN1 > 0.

The constants N0, N1 and N2 check the following inequality

N2 � N1 � N0. (3.13)

Finally, we choose N large enough such that

Nγ2 − c(N0 + N1) > 0,

Nγ3 − N1c > 0,

Nγ1 − N1c − N2
c
ε

> 0.

(3.14)

Then, �i , for i = 1, . . . , 6 are all negative constants.
At this point, there exists a constant ϑ, and, further,F1(t) ∼ E(t). Then, inequality (3.11)

takes the following form

d

dt
F1(t) ≤ −ϑ1E(t),∀t ≥ 0. (3.15)

Recalling by (3.6), the fact that F1 ∼ E, so we get

d

dt
F1(t) ≤ −ζ1F1(t),∀t ≥ 0,

for some positive constant ζ1.
Integrating the last inequality over (0, t), we arrive at

F1(t) ≤ F1(0)e
−ζ1t ,∀t ≥ 0.

By using the other side of the equivalence relation (3.6). Then, the proof of Theorem (3.5) is
finished. ��

Exponential stability of problem (1.4)–(1.6)
Let Ñ a large positive number, we define the Lyapunov functional F2 as follows

F2(t) := Ñ E(t) + N3�2(t) + N4�2(t) + N5�2(t), (3.16)

where

�2(t) := ρ1ρ3 〈ϒ(t), ut (t)〉L2(I) .

�2(t) := ρ2 〈ϕ(t), ϕt (t)〉L2(I) .

�2(t) := −ρ1 〈�(t), (ux + ϕ)(t)〉L2(I) . (3.17)
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Lemma 3.6 For Ñ large enough. Then, there exist two positive constants α3 and α4 such
that

α3E(t) ≤ F2(t) ≤ α4E(t), ∀t ≥ 0. (3.18)

Proof For the proof, we use the same procedure that used for the proof of Lemma (3.3). ��
Lemma 3.7 The functionals �2, �2 and �2 satisfy the following differential inequalities

• d

dt
�2(t) + βρ1

2
‖ut‖2L2(I)

≤ ε1‖ux + ϕ‖2L2(I)
+ c

(
‖θx‖2L2(I)

+ ‖ϕxt‖2L2(I)

)

+ c

ε1
‖(ux + ϕ)t‖2L2(I)

.

• d

dt
�2(t) + b

2
‖ϕx‖2L2(I)

≤ c
(
‖ux + ϕ‖2L2(I)

+ ‖(ux + ϕ)t‖2L2(I)
+ ‖θx‖2L2(I)

+‖ϕxt‖2L2(I)

)
.

• d

dt
�2(t) + k

2
‖ux + ϕ‖2L2(I)

≤ ε2‖ut‖2L2(I)
+ c‖θ‖2L2(I)

+ c

ε2
‖(ux + ϕ)t‖2L2(I)

,

(3.19)

where ε1, ε2 > 0.

Proof • Taking the derivative of (3.17)1, by using both the first and the third equation of
system (1.4) together with boundary conditions (1.5)–(1.6), yields

d

dt
�2(t) + βρ1‖ut‖2L2(I)

= ρ3β‖θ‖2L2(I)
− ρ3 〈θ(t), k(ux + ϕ)(t) + γ1(ux + ϕ)t (t)〉L2(I)

+ρ1 〈ut (t), γ3θx (t) − β�(t)〉L2(I) . (3.20)

Now, for the remaining terms in equality (3.20), we use Young, Poincaré and Cauchy-
Schwarz’s inequalities. Hence, the inequality (3.19)1 appears directly.

• Taking the derivative of (3.17)2, by using the second equation in system (1.4), we get

d

dt
�2(t) + b‖ϕx‖2L2(I)

= ρ2‖ϕt‖2L2(I)
− γ2 〈ϕx (t), ϕxt (t)〉L2(I) − k 〈ϕ(t), (ux + ϕ)(t)〉L2(I)

−γ1 〈ϕ(t), (ux + ϕ)t (t)〉L2(I) + β 〈ϕ(t), θ(t)〉L2(I) . (3.21)

By Young and Poincaré’s inequalities, we obtain the inequality (3.19)2.
• Taking the derivative of (3.17)3, by using the first equation in system (1.4), we obtain

d

dt
�2(t) + k‖ux + ϕ‖2L2(I)

= −γ1 〈(ux + ϕ)t (t), (ux + ϕ)(t)〉L2(I) + β 〈θ(t), (ux + ϕ)(t)〉L2(I)

−〈�(t), (ux + ϕ)t (t)〉L2(I) . (3.22)

By Young and Poincaré’s inequalities, we obtain the inequality (3.19)3. ��
The main result of stability for the system (1.4) is given by the following Theorem.

Theorem 3.8 Let (u, ϕ, θ) ∈ H2 solution to the system (1.4)with boundary conditions (1.5)–
(1.6) and initial condition (1.7). Then, the energy functional (3.1) satisfies

E(t) ≤ λ3e
−λ4t , ∀t ≥ 0, (3.23)
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for λ3, λ4 positive constants.

Proof Let Ñ > 0, we define the Lyapunov functional F2 as follows

F2(t) = Ñ E(t) + N3�2(t) + N4�2(t) + N5�2(t). (3.24)

By differentiating inequality (3.24) and by using the inequalities (3.19), we obtain

d

dt
F2(t) ≤ −�̃1‖ut‖2L2(I)

− �̃2‖ϕx‖2L2(I)
− �̃3‖ux + ϕ‖2L2(I)

− �̃4‖ϕxt‖2L2(I)

−�̃5‖θx‖2L2(I)
− �̃6‖(ux + ϕ)t‖2L2(I)

, (3.25)

where

�̃1 = N3
βρ1

2
− N5ε2,

�̃2 = N4
b

2
,

�̃3 = N5
k

2
− N3ε1 − N4c,

�̃4 = Ñγ2 − c(N3 + N4),

�̃5 = Ñγ3 − c(N3 + N4 + N5),

�̃6 = Ñγ1 − N3
c

ε1
− N4c − N5

c

ε2
. (3.26)

We choose the constants N3, N4 and N5 such that

N5 � N4 and N3, N4 > 0. (3.27)

Then, We choose ε1, ε2 small enough such that

ε2 <
N3βρ1

2N5
,

ε1 <
N5k

2N3
− N4c

N3
. (3.28)

Next, we can choose Ñ large enough such that

Ñγ1 − N3
c

ε1
− N4c − N5

c

ε2
> 0,

Ñγ3 − c(N3 + N4 + N5) > 0,

Ñγ2 − c(N3 + N4) > 0. (3.29)

Hence, the constants �̃i fori = 1, . . . , 6 are all negative; at this point, there exists a constant
ϑ2, and, further, F2(t) ∼ E(t), so inequality (3.25) takes the following form

d

dt
F2(t) ≤ −ϑ2E(t),∀t ≥ 0. (3.30)

Now, by using the fact that F2 ∼ E we get

d

dt
F2(t) ≤ −ζ2F2(t),∀t ≥ 0, (3.31)

for some positive constant ζ2. Integrating the last inequality over (0, t), we finally arrive at

F2(t) ≤ F2(0)e
−ζ2t ,∀t ≥ 0. (3.32)
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By using the other side of the equivalence relation (3.6). Then, the proof of Theorem (3.8) is
finished. ��

4 Some open problems

In this section, we will give some open problems for the interested reader.

• Viscoelasticity more Cattaneo’s law acting on bending moment:

ρ1utt − k(ux + ϕ)x − γ1(ux + ϕ)xt = 0, in (0, L) × (0,∞),

ρ2ϕt t − bϕxx − γ2ϕxxt + k(ux + ϕ) + γ1(ux + ϕ)t + δθx = 0, in (0, L) × (0,∞),

ρ3θt + qx + δϕxt = 0, in (0, L) × (0,∞),

τqt + βq + θx = 0, in (0, L) × (0,∞).

• Viscoelasticity more Cattaneo’s law acting on shear force:

ρ1utt − k(ux + ϕ)x − γ1(ux + ϕ)xt + δθx = 0, in (0, L) × (0,∞),

ρ2ϕt t − bϕxx − γ2ϕxxt + k(ux + ϕ) + γ1(ux + ϕ)t − δθ = 0, in (0, L) × (0,∞),

ρ3θt + qx + δ(ux + ϕ)t = 0, in (0, L) × (0,∞),

τqt + βq + θx = 0, in (0, L) × (0,∞).

• Viscoelasticity more Cattaneo’s law acting on bending moment for truncated version:

ρ1utt − k(ux + ϕ)x − γ1(ux + ϕ)xt = 0, in (0, L) × (0,∞),

− ρ2ϕxxt − bϕxx + k(ux + ϕ) + γ1(ux + ϕ)t + δθx = 0, in (0, L) × (0,∞),

ρ3θt + qx + δϕxt = 0, in (0, L) × (0,∞),

τqt + βq + θx = 0, in (0, L) × (0,∞).

• Viscoelasticity more Cattaneo’s law acting on shear force for truncated version:

ρ1utt − k(ux + ϕ)x − γ1(ux + ϕ)xt + δθx = 0, in (0, L) × (0,∞),

− ρ2ϕxxt − bϕxx + k(ux + ϕ) + γ1(ux + ϕ)t − δθ = 0, in (0, L) × (0,∞),

ρ3θt + qx + δ(ux + ϕ)t = 0, in (0, L) × (0,∞),

τqt + βq + θx = 0, in (0, L) × (0,∞).

It will be interesting to extend our results to the previous systems.
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