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Abstract
In this paper we will prove in Musielak–Orlicz spaces, the existence of renomalized solution
for nonlinear elliptic equations of Leray-Lions type, in the case where the Musielak–Orlicz
functionϕ doesn’t satisfy the�2 conditionwhile the right hand side f belongs toW −1Eψ(�).
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1 Introduction and basic assumptions

This work deals with existence of solutions for strongly nonlinear boundary value problem
whose model is: {

A(u) − div�(u) + g(x, u,∇u) = f in �

u ≡ 0, on ∂�
(1.1)

where � be a bounded domain of RN , N ≥ 2, A(u) = − div a(x, u,∇u) be a Leray-Lions
operator defined from the space W 1

0 Lϕ(�) into its dual W −1Lψ(�), and � ∈ C0
(
R,RN

)
.

where a is a function satisfying the following conditions :

a(x, s, ξ) : � × R × R
N −→ R

N is a Carathéodory function. (1.2)
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There exist two Musielak–Orlicz functions ϕ and γ such that γ ≺≺ ϕ, a positive function
d(·) ∈ Eψ(�) and positive constants k1, k2 and k3 such that for a.e. x ∈ � and for all
s ∈ R, ξ ∈ R

N

|a(x, s, ξ)| ≤ k1
(
d(x) + ψ−1

x γ (x, k2|s|)
) + ψ−1

x ϕ(x, k3|ξ |); (1.3)(
a(x, s, ξ) − a

(
x, s, ξ ′)) (ξ − ξ ′) > 0; (1.4)

a(x, s, ξ).ξ ≥ αϕ(x, |ξ |). (1.5)

Furthermore, let g(x, s, ξ) : � × R × R
N −→ R be a Carathéodory function such that

for a.e. x ∈ � and for all s ∈ R, ξ ∈ R
N , satisfying the following conditions

|g(x, s, ξ)| ≤ c(x) + b(|s|)ϕ(x, |ξ |); (1.6)

g(x, s, ξ)s ≥ 0; (1.7)

where b : R
+ −→ R

+ is a continuous positive function which belongs to L1
(
R

+) and
c(·) ∈ L1(�) The right-hand side of (1.1) and � : R → R

N are assumed to satisfy

f ∈ W −1Eψ(�); (1.8)

� ∈ C0
(
R,RN

)
. (1.9)

Note that no growth hypothesis is assumed on the function �, which implies that the term
−div �(u) may be meaningless, even as a distribution.

Several researches deals with the existence solutions of elliptic and parabolic problems
under various assumptions and in different contexts (see [1–10,13–20,24–28,35,37,39,40]
for more details), indeed we can’t recite all examples; we will just choose some of them, So
we mention that:

the problem (1.1) was treated by Boccardo (see [23]) in the case g ≡ 0 and for p such that
2−1/N < p < N where he proved the existence and regularity of an entropy solution u that
is u ∈ W 1,q

0 (�), q < p̃ = (p−1)N
N−1 , Tk(u) ∈ W 1,p

0 (�), ∀k > 0. The same problem have
been studied by Diperna and lions in [26] where they introduced the idea of renormalized
solutions.

In the framework of variable exponent Sobolev spaces in [12] have proved the existence
result of solutions for the problem 1.1 without sign condition involving nonstandard growth.

In the setting of Musielak spaces and in variational case, the existence of a weak solution
for the problem (1.1) was treated by Ahmed Oubeid, Benkirane and Sidi El Vally in [11]
where div� ≡ 0.

Our purpose in this paper is to show the existence of renormalized solutions for problem
(1.1) in Musielak Orlicz spaces in the case where the Musielak–Orlicz function ϕ doesn’t
satisfy the �2 condition,while the right-hand side belongs to W −1Eψ(�), � ∈ C0

(
R,RN

)
.

and a nonlinearity g(x, s, ξ) having natural growth with respect to the gradient.
The paper is organized as follows: In Sect. 2 , we give some preliminaries and background.

Section 3 is devoted to some technical lemmas which can be used to our result. In the final
Sect. 4, we state our main result and give the prove of an existence solution.

2 Some preliminaries and background

Here we give some definitions and properties that concernMusielak–Orlicz spaces (see [34]).
Let � be an open subset of Rn , a Musielak–Orlicz function ϕ is a real-valued function

defined in � × R+ such that
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(a) ϕ(x, t) is anN-function i.e. convex, nondecreasing, continuous,ϕ(x, 0) = 0, ϕ(x, t) > 0
for all t > 0 and

lim
t→0

sup
x∈�

ϕ(x, t)

t
= 0, lim

t→∞ inf
x∈�

ϕ(x, t)

t
= 0

(b) ϕ(x, t) is a measurable function for all t ≥ 0 .
Now, let ϕx (t) = ϕ(x, t) and let ϕ−1

x be the non-negative reciprocal function with respect
to t, i.e the function that satisfies

ϕ−1
x (ϕ(x, t)) = ϕ

(
x, ϕ−1

x (t)
) = t

The Musielak–Orlicz function ϕ is said to satisfy the �2 -condition if for some k > 0, and
a non negative function h, integrable in �, we have

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for all x ∈ � and t ≥ 0. (2.1)

When (2.1) holds only for t ≥ t0 > 0, then ϕ is said to satisfy the�2 -condition near infinity.
Let ϕ and γ be two Musielak–Orlicz functions, we say that ϕ dominate γ and we write
γ ≺ ϕ, near infinity (resp. globally) if there exist two positive constants c and t0 such that
for almost all x ∈ �

γ (x, t) ≤ ϕ(x, ct) for all t ≥ t0, ( resp. for all t ≥ 0 i.e. t0 = 0) We say that γ grows
essentially less rapidly than ϕ at 0 (resp. near infinity) and we write γ ≺≺ ϕ if for every
positive constant c we have

lim
t→0

(
sup
x∈�

γ (x, ct)

ϕ(x, t)

)
= 0,

(
resp. lim

t→∞

(
sup
x∈�

γ (x, ct)

ϕ(x, t)

)
= 0

)

Remark 2.1 (see [29]) If γ ≺ ϕ near infinity such that γ is locally integrable on �, then
∀c > 0 there exists a nonnegative integrable function h such that

γ (x, t) ≤ ϕ(x, ct) + h(x), for all t ≥ 0 and for a. e. x ∈ �.

For a Musielak–Orlicz function ϕ and a measurable function u : � −→ R, we define the
functional

ρϕ,�(u) =
∫

�

ϕ(x, |u(x)|)dx

The set Kϕ(�) = {
u : � −→ R measurable /ρϕ,�(u) < ∞}

is called the Musielak–
Orlicz class (or generalized Orlicz class). TheMusielak–Orlicz space (the generalized Orlicz
spaces) Lϕ(�) is the vector space generated by Kϕ(�), that is, Lϕ(�) is the smallest linear
space containing the set Kϕ(�). Equivalently

Lϕ(�) =
{

u : � −→ R measurable /ρϕ,�

(u

λ

)
< ∞, for some λ > 0

}

For aMusielak–Orlicz functionϕ we put:ψ(x, s) = supt>0{st−ϕ(x, t)}, ψ is theMusielak–
Orlicz function complementary to ϕ (or conjugate of ϕ ) in the sens of Young with respect
to the variable s In the space Lϕ(�) we define the following two norms:

‖u‖ϕ,� = inf

{
λ > 0/

∫
�

ϕ

(
x,

|u(x)|
λ

)
dx ≤ 1

}

which is called the Luxemburg norm and the so-called Orlicz norm by:

‖|u|‖ϕ,� = sup
‖v‖ψ≤1

∫
�

|u(x)v(x)|dx
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392 N. E. Amarty et al.

whereψ is theMusielakOrlicz function complementary toϕ.These two norms are equivalent
(see [34])

The closure in Lϕ(�) of the bounded measurable functions with compact support in �̄ is
denoted by Eϕ(�), It is a separable space (see [34], Theorem 7.10) .

We say that sequence of functions un ∈ Lϕ(�) is modular convergent to u ∈ Lϕ(�) if
there exists a constant λ > 0 such that

lim
n→∞ ρϕ,�

(
un − u

λ

)
= 0.

For any fixed nonnegative integer m we define

W m Lϕ(�) = {
u ∈ Lϕ(�) : ∀|α| ≤ m, Dαu ∈ Lϕ(�)

}
and

W m Eϕ(�) = {
u ∈ Eϕ(�) : ∀|α| ≤ m, Dαu ∈ Eϕ(�)

}
where α = (α1, . . . , αn) with nonnegative integers αi , |α| = |α1| + . . . + |αn | and Dαu
denote the distributional derivatives. The space W m Lϕ(�) is called the Musielak Orlicz
Sobolev space.

Let

ρ̄ϕ,�(u) =
∑

|α|≤m

ρϕ,�

(
Dαu

)
and ‖u‖m

ϕ,� = inf
{
λ > 0 : ρ̄ϕ,�

(u

λ

)
≤ 1

}

for u ∈ W m Lϕ(�). These functionals are a convex modular and a norm on W m Lϕ(�),

respectively, and the pair
(

W m Lϕ(�), ‖‖m
ϕ,�

)
is a Banach space if ϕ satisfies the following

condition (see [34]):

there exist a constant c0 > 0 such that inf
x∈�

ϕ(x, 1) ≥ c0 (2.2)

The spaceW m Lϕ(�)will alwaysbe identified to a subspaceof the product
∏

|α|≤m Lϕ(�) =
Lϕ, this subspace is σ

(
Lϕ,Eψ

)
closed.

The space W m
0 Lϕ(�) is defined as the σ

(
Lϕ,Eψ

)
closure of D(�) in W m Lϕ(�).

and the space W m
0 Eϕ(�) as the (norm) closure of the Schwartz space D(�) in W m Lϕ(�).

LetW m
0 Lϕ(�) be theσ

(
Lϕ,Eψ

)
closure ofD(�) inW m Lϕ(�)The following spaces

of distributions will also be used:

W −m Lψ(�) =
⎧⎨
⎩ f ∈ D′(�); f =

∑
|α|≤m

(−1)|α| Dα fα with fα ∈ Lψ(�)

⎫⎬
⎭

and

W −m Eψ(�) =
⎧⎨
⎩ f ∈ D′(�); f =

∑
|α|≤m

(−1)|α| Dα fα with fα ∈ Eψ(�)

⎫⎬
⎭

Wesay that a sequence of functions un ∈ W m Lϕ(�) ismodular convergent to u ∈ W m Lϕ(�)

if there exists a constant k > 0 such that

lim
n→∞ ρ̄ϕ,�

(
un − u

k

)
= 0
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For ϕ and her complementary function ψ, the following inequality is called the Young
inequality (see [34]):

ts ≤ ϕ(x, t) + ψ(x, s), ∀t, s ≥ 0, x ∈ � (2.3)

This inequality implies that
‖u‖ϕ,� ≤ ρϕ,�(u) + 1 (2.4)

In Lϕ(�) we have the relation between the norm and the modular

‖u‖ϕ,� ≤ ρϕ,�(u) if ‖u‖ϕ,� > 1 (2.5)

‖u‖ϕ,� ≥ ρϕ,�(u) if ‖u‖ϕ,� ≤ 1 (2.6)

For two complementary Musielak Orlicz functions ϕ and ψ, let u ∈ Lϕ(�) and v ∈ Lψ(�),

then we have the Holder inequality (see [34]):∣∣∣∣
∫

�

u(x)v(x)dx

∣∣∣∣ ≤ ‖u‖ϕ,�‖|v|‖ψ,� (2.7)

We will use the following technical lemmas.

3 Some technical lemmas

Lemma 3.1 [19] Let � be a bounded Lipschitz domain in R
N and let ϕ and ψ be two

complementary Musielak–Orlicz functions which satisfy the following conditions:

(i) There exist a constant c > 0 such that inf x∈�ϕ(x, 1) ≥ c.
(ii) There exist a constant A > 0 such that for all x, y ∈ � with |x − y| ≤ 1

2 we have

ϕ(x, t)

ϕ(y, t)
≤ t

(
A

log
(

1|x−y|
)
)

, ∀t ≥ 1 (3.1)

(iii)

If D ⊂ � is a bounded measurable set, then
∫

D
ϕ(x, 1)dx < ∞ (3.2)

(iv) There exist a constant C > 0 such that ψ(x, 1) ≤ C a.e in �.

Under this assumptions, D(�) is dense in Lϕ(�) with respect to the modular topology,
D(�) is dense in W 1

0 Lϕ(�) for the modular convergence and D(�̄) is dense in W 1Lϕ(�)

the modular convergence.

Consequently, the action of a distribution S in W −1Lψ(�) on an element u of W 1
0 Lϕ(�) is

well defined. It will be denoted by < S, u >.

Lemma 3.2 [36] Let F : R −→ R be uniformly Lipschitzian, with F(0) = 0. Let ϕ be a
Musielak–Orlicz function and let u ∈ W 1

0 Lϕ(�). Then F(u) ∈ W 1
0 Lϕ(�) Moreover, if the

set D of discontinuity points of F ′ is finite, we have

∂

∂xi
F(u) =

{
F ′(u) ∂u

∂xi
a.e in{x ∈ � : u(x) ∈ D}

0 a.e in {x ∈ � : u(x) /∈ D}
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394 N. E. Amarty et al.

Lemma 3.3 [29] (Poincare’s inequality) Let ϕ a Musielak Orlicz function which satisfies the
assumptions of lemma 3.1, suppose that ϕ(x, t) decreases with respect of one of coordinate
of x Then, that exists a constant c > 0 depends only of � such that

∫
�

ϕ(x, |u(x)|)dx ≤
∫

�

ϕ(x, c|∇u(x)|)dx, ∀u ∈ W 1
0 Lϕ(�)

Lemma 3.4 [19] Suppose that � satisfies the segment property and let u ∈ W 1
0 Lϕ(�). Then,

there exists a sequence (un) ⊂ D(�) such that

un → u for modular convergence in W 1
0 Lϕ(�)

Furthermore, if u ∈ W 1
0 Lϕ(�) ∩ L∞(�) then ‖un‖∞ ≤ (N + 1)‖u‖∞.

Lemma 3.5 Let ( fn) , f ∈ L1(�) such that

(i) fn ≥ 0 a.e in �

(ii) fn −→ f a.e in �

(iii)
∫
�

fn(x)dx −→ ∫
�

f (x)dx then fn −→ f strongly in L1(�)

Lemma 3.6 [20] If a sequence gn ∈ Lϕ(�) converges in measure to a measurable function
g and if gn remains bounded in Lϕ(�), then g ∈ Lϕ(�) and gn⇀g for σ

(
Lϕ,Eψ

)

Lemma 3.7 (Jensen inequality) [38] Let ϕ : R −→ R a convex function and g : � −→ R is
function measurable, then

ϕ

(∫
�

gdμ

)
≤
∫

�

ϕ ◦ gdμ.

Lemma 3.8 (TheNemytskii Operator) [29]Let � be an open subset ofRN with finite measure
and let ϕ and ψ be two Musielak Orlicz functions. Let f : �×R

p −→ R
q be a Carathodory

function such that for a.e. x ∈ � and all s ∈ R
p :

| f (x, s)| ≤ c(x) + k1ψ
−1
x ϕ (x, k2|s|)

where k1 and k2 are real positives constants and c(.) ∈ Eψ(�) Then the Nemytskii Operator
N f defined by N f (u)(x) = f (x, u(x)) is continuous from

P
(

EM (�),
1

k2

)p

=
∏{

u ∈ L M (�) : d (u, EM (�)) <
1

k2

}

into
(
Lψ(�)

)q
for the modular convergence.

Furthermore if c(·) ∈ Eγ (�) and γ ≺≺ ψ then N f is strongly continuous from

P
(

EM (�), 1
k2

)p
to
(
Eγ (�)

)q

Lemma 3.9 Let � be a bounded open subset of RN with the segment property. If u ∈
(W 1

0 Lϕ(�))N then
∫

�

div u dx = 0.

Proof of lemma 3.9 The proof of this lemma is based on [[30], Lemma 3.2 ]
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4 Main result

We consider the following boundary value problem

(P)

{
A(u) − div�(u) + g(., u,∇u) = f ∈ W −1Eψ(�), in �

u ≡ 0, on ∂�

Let us define

T 1,ϕ
0 (�) = {

u measurable such that Tk(u) ∈ W 1
0 Lϕ(�),∀k > 0

}
.

As in [21] we define the following notion of renormalized solution, which gives a meaning
to a possible solution of (P)

Definition 4.1 Assume that (1.2)–(1.4), (1.6) hold true. A function u is a renormalized solu-
tion of the problem (P) if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ T 1,ϕ
0 (�), g(., u,∇u) ∈ L1(�), g(., u,∇u)u ∈ L1(�)∫

�

a(x, u,∇u)h(u)∇vdx +
∫

�

a(x, u,∇u)h′(u)∇uvdx

+
∫

�

�(u)h(u)∇vdx +
∫

�

�(u)h′(u)∇uvdx

+
∫

�

g(x, u,∇u)h(u)vdx =
∫

�

f h(u)vdx

(4.1)
for all h ∈ W 1,∞(R) such that h′ has a compact support in R, and for all v ∈ W 1

0 Lϕ(�) ∩
L∞(�).

The weaker problem (4.1) is obtained by using the test function h(u)v where h ∈ W 1,∞(R).

and v ∈ W 1
0 Lϕ(�) ∩ L∞(�) in (P).

Remark 1 Let us note that in (4.1) every term is meaningful in the distributional sense.

Theorem 4.1 Under assumptions (1.2)–(1.4),(1.6) there exists at least a renormalized solu-
tion u in the sense of definition 4.1 of problem (P).

Let us introduce the truncate operator. For a given constant k > 0, we define the function
Tk : R → R as

Tk(s) =
{

s if |s| ≤ k,

k s
|s| if |s| > k.

4.1 Proof of Theorem 4.1

4.1.1 Approximate problem and a priori estimate

We use an idea contained in [37] (Theorem 1.1), based on the approximation of the original
problem and a priori estimate. For n ∈ N, let ( fn)n be a sequence in W −1Eψ(�) ∩ L1(�)

such that fn −→ f in L1(�) with ‖ fn‖1 ≤ ‖ f ‖1, φn(s) = φ (Tn(s)) and gn(x, s, ξ) =
Tn(g(x, s, ξ)). The following approximate problem

(Pn)

⎧⎨
⎩

− div (a (·, un,∇un)) + gn (·, un,∇un) = fn + div(�n(un)) in D′(�)

un = 0 on ∂�,
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396 N. E. Amarty et al.

has a solution un in W 1
0 Lϕ(�) .

Now Choosing un as a function test in problem (Pn), we have∫
�

a (x, un,∇un) · ∇undx +
∫

�

�n (un) · ∇undx +
∫

�

gn (x, un,∇un) undx = 〈 f , un〉
(4.2)

By posing

�̃n(t) =
∫ t

0
�n(τ )dτ

we obtain

�̄n(0) = 0.

As each component of �̄n is uniformly Lipschitizian, and according to [[32], Lemma 2], it

follows that the function �̄n (un) belongs to
(
W 1

0 Lϕ(�)
)N

.

therefore by using Lemma 3.9∫
�

�n (un) · ∇undx =
∫

�

div
(
�̃n (un)

)
dx = 0

According to (1.7) and using Young’s inequality, we have
∣∣∣∣
∫

�

a (x, un,∇un) · ∇undx

∣∣∣∣ ≤ C1 + α

2

∫
�

ϕ (x, |∇Tk (un)|) dx . (4.3)

which together with (1.5) gives∫
�

ϕ (x, |∇Tk (un)|) dx ≤ C2 (4.4)

Poincare inequality (see Lemma3.3) implies that∫
�

ϕ

(
x,

|Tk (un)|
c

)
dx ≤

∫
�

ϕ (x, |∇Tk (un)|) dx ≤ c2k (4.5)

On the other hand we have ∫
�

gn (x, un,∇un) undx ≤ C3 (4.6)

so it follows that (Tk (un))n and (∇Tk (un))n are bounded in Lϕ(�), Thus

(Tk (un))n is bounded in W 1
0 Lϕ(�),

there exists some vk ∈ W 1
0 Lϕ(�) such that{

Tk (un)⇀vk weakly in W 1
0 Lϕ(�) for σ

(
Lϕ,Eψ

)
Tk (un) −→ vk strongly in Eψ(�).

(4.7)

Now one suppose that exists a function ϕ satisfies limt→∞ ϕ(t)
t = ∞ and ϕ(t) ≤

ess inf x∈� ϕ(x, t) Let k > 0 large enough, by using (4.5) we have

ϕ(k)meas {|un | > k} =
∫

{|un |>k}
ϕ (|Tk (un)|) dx

≤
∫

{|un |>k}
ϕ (x, |Tk (un)|) dx ≤

∫
�

ϕ (x, |Tk (un)|) dx

≤ c3k
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Existence of renomalized solution for nonlinear... 397

Hence

meas {|un | > k} ≤ c3k

ϕ(k)
−→ 0 as k −→ ∞

For every λ > 0, we have

meas {|un − um | > λ} ≤ λ} ≤ meas {|un | > k} + meas {|um | > k}
+ meas {|Tk (un) − Tk (um)| > λ} (4.8)

then, by using (4.5) one suppose that (Tk (un))n is a Cauchy sequence in measure in �, Let
ε > 0, then by (4.8) there exists some k = k(ε) > 0 such that

meas {|un − um | > λ} < ε, for all n, m ≥ h0(k(ε), λ)

which means that (un)n is a Cauchy sequence in measure in �, thus converge almost every
where to u.

Consequently

{
un⇀u weakly in W 1

0 Lϕ(�) for σ
(
Lϕ,Eψ

)
un −→ u strongly in Eψ(�).

(4.9)

4.1.2

In this step we shall show the boundedness of (a (·, Tk (un) ,∇Tk (un)))n in
(
Lψ(�)

)N

Let ϑ ∈ Eϕ(�)N such that ‖ϑ‖ϕ,� ≤ 1, the hypothesis (1.4) gives We have

∫
�

[
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,

ϑ

k3

)][
∇Tk (un) − ϑ

k3

]
dx > 0

This implies that

∫
�

1

k3
a (x, Tk (un) ,∇Tk (un)) ϑdx

≤
∫

�

a (x, Tk (un) ,∇Tk (un)) ∇Tk (un) dx

−
∫

�

a

(
x, Tk (un) ,

ϑ

k3

)(
∇Tk (un) − ϑ

k3

)
dx

≤ c2k −
∫

�

a

(
x, Tk (un) ,

ϑ

k3

)
∇Tk (un) dx

+ 1

k3

∫
�

a

(
x, Tk (un) ,

ϑ

k3

)
ϑdx
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398 N. E. Amarty et al.

By using Young’s inequality in the last two terms of the last side and (4.5) we get∫
�

a (x, Tk (un) ,∇Tk (un)) ϑdx ≤ c2kk3

+3k1 (1 + k3)
∫

�

ψ

⎛
⎝x,

∣∣∣a (x, Tk (un) , ϑ
k3

)∣∣∣
3k1

⎞
⎠ dx

+3k1k3

∫
�

ϕ (x, |∇Tk (un)|) dx + 3k1

∫
�

ϕ(x, |ϑ |)dx

≤ c2kk3 + 3k1k3c2k + 3k1

+3k1 (1 + k3)
∫

�

ψ

⎛
⎝x,

∣∣∣a (x, Tk (un) , ϑ
k3

)∣∣∣
3k1

⎞
⎠ dx

Now, by using (1.3) and the convexity of ψ we get

ψ

⎛
⎝x,

∣∣∣a (x, Tk (un) , ϑ
k3

)∣∣∣
3k1

⎞
⎠ ≤ 1

3
(ψ(x, d(x)) + γ (x, k2 |Tk (un)|) + ϕ(x, |ϑ |)) .

Thanks to “Remark 2.1” there exists h ∈ L1(�) such that

γ (x, k2 |Tk (un)|) ≤ γ (x, k2k) ≤ ϕ(x, 1) + h(x);
then by integrating over � we deduce that

∫
�

ψ

⎛
⎝x,

∣∣∣a (x, Tk (un) , v
k3

)∣∣∣
3k1

⎞
⎠ dx ≤ 1

3

(∫
�

ψ(x, d(x))dx +
∫

�

h(x)dx

+
∫

�

ϕ(x, 1)dx +
∫

�

ϕ(x, |ϑ |)dx

)
≤ ck,

where ck is a constant depending on k. So,∫
�

a (x, Tk (un) ,∇Tk (un)) ϑdx ≤ ck, ∀ϑ ∈ (
Eϕ(�)

)N with ‖ϑ‖ϕ,� = 1

and thus ‖a (x, Tk (un) ,∇Tk (un))‖ψ,� ≤ ck, which implies that,

(a (x, Tk (un) ,∇Tk (un)))n is bounded in Lψ(�)N . (4.10)

4.1.3

Let us show that :

lim
m→∞ lim

n→∞

∫
(m≤|un |≤m+1|

a (x, un,∇un) · ∇undx = 0

Defining

θm(r) = Tm+1(r) − Tm(r) For any m ≥ 1,

in view of [[32], Lemma2] one get θm (un) ∈ W 1
0 Lϕ(�).
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Now let us taking θm (un) as a test function in (Pn) we have∫
�

a (x, un,∇un) ∇θm (un) dx +
∫

�

�n (un) ∇θm (un) dx

+
∫

�

gn (x, un,∇un) θm (un) dx =
∫

�

fnθm (un) dx

Consider,

φ(t) = �n(t)χ{s∈R,m≤|s|≤m+1}(t)

φ̃(t) =
∫ t

0
φ(τ)dτ

hence φ̃ (un) ∈ (
W 1

0 Lϕ(�)
)N

(by Lemma3.2). We obtain, by Lemma 3.9,
∫

�

�n (un) ∇θm (un) dx =
∫

�

�n (un) χ{s∈R,m≤|s|≤m+1} (un)∇undx

=
∫

�

φ (un)∇undx =
∫

�

div
(
φ̃ (un)

)
dx = 0

Using the sign condition (1.7) we have gn (x, un,∇un) θm (un) ≥ 0 a.e. in �, and knowing
that ∇θm (un) = ∇unχ{m≤|un |≤m+1} a.e. in �, we get∫

{m≤|un |≤m+1}
a (x, un,∇un)∇undx ≤ 〈 f , θm (un)〉 .

It is not difficult to see that

‖∇θm (un)‖ϕ,� ≤ ‖∇un‖ϕ,� .

then in view of (4.4) and (4.9) it follows that

θm (un) ⇀θm(u) weakly in W 1
0 Lϕ(�) for σ

(
Lϕ(�),Eϕ(�)

)
Therefore, we get

lim
n→∞

∫
{m≤|uu |≤m+1}

a (x, un,∇un) · ∇undx ≤ 〈 f , θm(u)〉

as θm(u)⇀0 weakly in W 1
0 Lϕ(�, ) for σ

(
Lϕ(�),Eϕ(�)

)
one obtain

lim
m→∞ lim

n→∞

∫
(m≤||nn |≤m+1|

a (x, un,∇un) · ∇undx ≤ lim
m→∞ 〈 f , θm(u)〉 = 0

By (1.5), we get

lim
m→∞ lim

n→∞

∫
(m≤|uk |≤m+1|

a (x, un,∇un) · ∇undx = 0 (4.11)

4.1.4

In this subsubsection we pose φ(s) = seλs2 where λ =
(

b(k)
2α

)2
. it is easy to get,

for all s ∈ R, φ′(s) − b(k)

α
|φ(s)| ≥ 1

2
(4.12)
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For m ≥ k, definning

ψm(s) =
⎧⎨
⎩
1 if |s| ≤ m
m + 1 − |s| if m ≤ |s| ≤ m + 1
0 if |s| ≥ m + 1

Let
{
v j
}

j ⊂ D(�) be a sequence such that v j → u in W 1
0 Lϕ(�) for the modular

convergence and a e. in �. And let us define the functions

θ
j

n = Tk (un) − Tk
(
v j
)
, θ j = Tk(u) − Tk

(
v j
)
and z j

n,m = φ
(
θ

j
n

)
ψm (un) .

Using z j
n,m ∈ W 1

0 Lϕ(�) as a test function in (Pn) we get∫
�

a (x, un,∇un) · ∇z j
n,mdx

+
∫

{m≤|un |≤m+1}
�n (un) · ∇unψ ′

m (un) φ
(
Tk (un) − Tk

(
v j
))

dx

+
∫

�

�n (un) · ∇φ
(
Tk (un) − Tk

(
v j
))

ψm (un) dx

+
∫

�

gn (x, un,∇un) z j
n,mdx =

∫
�

f z j
n,mdx (4.13)

From now on, we denote by εi (n, j), i = 0, 1, 2, . . . , various sequences of real numbers
which tend to zero as n and j → ∞, i.e.,

lim
j→+∞ lim

n→+∞ εi (n, j) = 0

by using (4.7) one has z j
n,m → φ

(
θ j
)
ψm(u) weakly in L∞(�) for σ ∗ (L∞, L1

)
as

n → ∞ which give

lim
n→∞

∫
�

f z j
n,mdx =

∫
�

f φ
(
θ j
)

ψm(u)dx

and φ
(
θ j
) → 0 weakly in L∞(�) for σ

(
L∞, L1

)
as j → ∞, we have

lim
j→∞

∫
�

f φ
(
θ j
)

ψm(u)dx = 0

Therefore, by denoting ∫
�

f z j
n,mdx = ε0(n, j),

the divergence lemma implies that∫
{m≤|un |≤m+1}

�n (un) · ∇unψ ′
m (un) φ

(
Tk (un) − Tk

(
v j
))

dx = 0.

The third term in the left-hand side of (4.13) can be written as follows∫
�

�n (un) · ∇φ
(
Tk (un) − Tk

(
v j
))

ψm (un) dx

=
∫

�

�n (un) · ∇Tk (un) φ′ (θ j
n

)
ψm (un) dx

−
∫

�

�n (un) · ∇Tk
(
v j
)
φ′ (θ j

n

)
ψm (un) dx
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Applying the divergence lemma we have,∫
�

�n (un) · ∇Tk (un) φ′ (θ j
n

)
ψm (un) dx = 0.

By (4.7) one obtain

�n (un) φ′ (θ j
n

)
ψm (un) → �(u)φ′ (θ j

)
ψm(u) a.e. in � as n → +∞

now, we can verify that∥∥∥�n (un) φ′ (θ j
n

)
ψm (un)

∥∥∥
ϕ,�

≤ ψ
(
x, cmφ′(2k)

) |�| + 1

with cm = max|t |≤m+1 �(t).
Thanks to [[33], Theorem 14.6], we have

lim
n→+∞

∫
�

�n (un) · ∇Tk
(
v j
)
φ′ (θ j

n

)
ψm (un) dx =

∫
�

�(u) · ∇Tk
(
v j
)
φ′ (θ j

)
ψm(u)dx

Using the modular convergence of the sequence
{
v j
}

j , it follows that

lim
j→+∞ lim

n→+∞

∫
�

�n (un) · ∇Tk
(
v j
)
φ′ (θ j

n

)
ψm (un) dx =

∫
�

�(u) · ∇Tk(u)ψm(u)dx

Then, thanks to Lemma 3.9 we obtain∫
�

�(u) · ∇Tk(u)ψm(u)dx = 0

Therefore,we denote∫
�

�n (un) · ∇φ
(
Tk (un) − Tk

(
v j
))

ψm (un) dx = ε1(n, j).

since gn (x, un,∇un) z j
nm ≥ 0 on the set {|un | > k} and ψm (un) = 1 on the set {|un | ≤ k} ,

by according to 4.13 we get∫
�

a (x, un,∇un) · ∇z j
nmdx +

∫
{|un |≤k|

gn (x, un,∇un) φ
(
θ

j
n

)
dx ≤ ε2(n, j) (4.14)

For the first term of the left-hand side of (4.14) we can write∫
�

a (x, un,∇un) · ∇z j
n,mdx =

∫
�

a (x, un,∇un) · (∇Tk (un)

−∇Tk
(
v j
))

φ′ (θ j
n

)
ψm (un) dx

+
∫

�

a (x, un,∇un) · ∇unφ
(
θ

j
n

)
ψ ′

m (un) dx

=
∫

�

a (x, Tk (un) ,∇Tk (un)) · (∇Tk (un) − ∇Tk
(
v j
))

φ′ (θ j
n

)
dx

−
∫

||un |>k|
a (x, un,∇un) · ∇Tk

(
v j
)
φ′ (θ j

n

)
ψm (un) dx

+
∫

�

a (x, un,∇un) · ∇unφ
(
θ

j
n

)
ψ ′

m (un) dx
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therefore∫
�

a (x, un,∇un) · ∇z j
nmdx

=
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
φ′ (θ j

n

)
dx

+
∫

�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ ′

j

)
φ′ (θ j

n

)
dx

−
∫

�\�∗
j

a (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
φ′ (θ j

n

)
dx

−
∫
[|uu |>k]

a (x, un,∇un) · ∇Tk
(
v j
)
φ′ (θ j

n

)
ψm (un) dx

+
∫

�

a (x, un,∇un) · ∇unφ
(
θ

j
n

)
ψ ′

m (un) dx (4.15)

let us define xs
j , s > 0, and the characteristic function of the subset

�s
j = {

x ∈ � : ∣∣∇Tk
(
v j
)∣∣ ≤ s

}
.

By fixing m and s, we will pass to the limit in n and in j in the second, third, fourth and
fifth term on the right hand side of (4.15) .

For the second term, we have∫
�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
φ′ (θ j

n

)
dx

→
∫

�

(a
(

x, Tk(u),∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk(u) − ∇Tk

(
v j
)
χ s

j

)
φ′ (θ j

)
)dx as n → +∞

thinks to 3.8, one has

a
(

x, Tk (un) ,∇Tk
(
v j
)

xs
j

)
φ′ (θ j

n

)
→

a
(

x, Tk(u),∇Tk
(
v j
)
χ s

j

)
φ′ (θ j

)
strongly in

(
Eϕ(�)

)N as n → ∞
and by (4.4)

∇Tk (un)⇀∇Tk(u) weakly in
(
Lϕ(�)

)N

Let us define χ s the characteristic function of the subset

�s = {x ∈ � : |∇Tk(u)| ≤ s}
As ∇Tk

(
v j
)
χ s

j → ∇Tk(u)χ s strongly in
(
Eϕ(�)

)N as j → ∞, we get

∫
�

a
(

x, Tk(u),∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk(u) − ∇Tk

(
v j
)
χ s

j

)
φ′ (θ j

)
dx → 0 as j → ∞

thus,∫
�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
φ′ (θ j

n

)
)dx = ε3(n, j)

(4.16)
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For third term estimation of (4.15) . It’s it is clear that by (1.5) one can verify that
a(x, s, 0) = 0 for almost every x ∈ � and for all s ∈ R.

Thus, from (4.10) we have that

(a (x, Tk (un) ,∇Tk (un)))n is bounded in
(
Lϕ(�)

)N for all k ≥ 0.

Therefore, there exist a subsequence still indexed by n and a function lk in
(
Lϕ(�)

)N

such that

a (x, Tk (un) ,∇Tk (un)) ⇀lk weakly in
(
Lϕ(�)

)N for σ
(
Lψ,Eϕ

)
.

Then, by using the fact that ∇Tk
(
v j
)
χ�\�s

j
∈ (

Eϕ(�)
)N

, we get

∫
�|�s

j

a (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
φ′ (θ j

n

)
dx

→
∫

�\�s
j

lk · ∇Tk
(
v j
)
φ′ (θ j

)
dx as n → ∞.

The modular convergence of
{
v j
}
give

−
∫

�\� j

lk · ∇Tk
(
v j
)
φ′ (θ j

)
dx → −

∫
�|�s

lk · ∇Tk(u)dx as j → ∞

Consequently

−
∫

�\�∗=s
j

a (x, Tk (un) ,∇Tk (un))·∇Tk
(
v j
)
φ′ (θ j

n

)
dx = −

∫
�\�s

lk ·∇Tk(u)dx+ε4(n, j)

(4.17)
For the fourth term, we remark that ψm (un) = 0 on the subset {|un | ≥ m + 1} , then we
obtain

−
∫

{|un |>k}
a (x, un,∇un) · ∇Tk

(
v j
)
φ′ (θ j

n

)
ψm (un) dx

= −
∫

{|un |>k}
a (x, Tm+1 (un) ,∇Tm+1 (un)) · ∇Tk

(
v j
)
φ′ (θ j

n

)
ψm (un) dx

By using the same procedure as above we have

−
∫

{|un |>k}
a (x, Tm+1 (un) ,∇Tm+1 (un)) · ∇Tk

(
v j
)
φ′ (θ j

n

)
ψm (un) dx

= −
∫

{|u|>k}
lm+1 · ∇Tk(u)ψm(u)dx + ε5(n, j)

By observing that ∇Tk(u) = 0 on the subset {|u| > k}, we can write

−
∫

{|un |>k}
a (x, un,∇un) · ∇Tk

(
v j
)
φ′ (θ j

n

)
ψm (un) dx = ε5(n, j) (4.18)
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For the last term of (4.15) we obtain
∣∣∣∣
∫

�

a (x, un,∇un) · ∇unφ
(
θ

j
n

)
ψ ′

m (un) dx

∣∣∣∣
=
∣∣∣∣
∫

{m≤|uk |≤m+1}
a (x, un,∇un) · ∇unφ

(
θ

j
n

)
ψ ′

m (un) dx

∣∣∣∣
≤ φ(2k)

∫
{m≤|uk |≤m+1}

a (x, un,∇un) · ∇undx

By taking T1 (un − Tm (un)) ∈ W 1
0 Lϕ(�) as test in (Pn) one has

∫
{m≤|uk |≤m+1}

a (x, un,∇un) · ∇undx +
∫

{m≤|un |≤m+1}
�n (un) · ∇undx

+
∫

{|ux |≥m}
gn (x, un,∇un) T1 (un − Tm (un)) dx = 〈 f , T1 (un − Tm (un))〉 .

by according to Lemma 3.9, we get
∫

{m≤|uk |≤m+1}
�n (un) · ∇undx = 0

Since gn (x, un,∇un) T1 (un − Tm (un)) ≥ 0 on the subset {|un | ≥ m} , we have
∫

{m≤|uk |≤m+1}
a (x, un,∇un) · ∇undx ≤ 〈 f , T1 (un − Tm (un))〉

By observing f as f = − div F, where F ∈ (
Eϕ(�)

)N
, and applying Young’s inequality,

we get

∫
{m≤|uk |≤m+1}

a (x, un,∇un) · ∇undx ≤ α

∫
{m≤|un |≤m+1}

ψ

(
x,

2

α
|F |

)
dx

which implies that
∣∣∣∣
∫

�

a (x, un,∇un) · ∇unφ
(
θ

j
n

)
ψ ′

m (un) dx

∣∣∣∣ ≤ αφ(2k)

∫
{m≤|uk |≤m+1}

ψ

(
x,

2

α
|F |

)
dx

(4.19)
thinks to (4.15), (4.17), (4.18) and 4.19 we get

∫
�

a (x, un,∇un) · ∇z j
n,mdx

≥
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)

xs
j

))
(∇Tk (un)

−∇Tk
(
v j
)

xs
j

)
φ′ (θ j

n

)
dx (4.20)

−αφ(2k)

∫
{m≤|uk |≤m+1}

ψ

(
x,

2

α
|F |

)
dx

−
∫

�\�s
lk · ∇Tk(u)dx + e6(n, j) (4.21)
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Now, we turn to the second term on the left-hand side of (4.15) and by using the hypothesis
(1.6) one has∣∣∣∣

∫
{|un |≤k}

gn (x, un,∇un) φ
(
θ

j
n

)
dx

∣∣∣∣
=
∣∣∣∣
∫

{|ux |≤k}
gn (x, Tk (un) ,∇Tk (un)) φ

(
θ

j
n

)
dx

∣∣∣∣
≤ b(k)

∫
�

ϕ (x, |∇Tk (un)|)
∣∣∣φ (

θ
j

n

)∣∣∣ dx + b(k)

∫
�

c(x)

∣∣∣φ (
θ

j
n

)∣∣∣ dx

≤ b(k)

α

∫
�

an (x, Tk (un) ,∇Tk (un)) · ∇Tk (un)

∣∣∣φ (
θ

j
n

)∣∣∣ dx + ε7(n, j)

Therefore,∣∣∣∣
∫

|uk |≤k}
gn (x, un,∇un) φ

(
θ

j
n

)
dx

∣∣∣∣
≤ b(k)

α

∫
�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(∇Tk (un)

−∇Tk
(
v j
)
χ s

j

) ∣∣∣φ (
θ

j
n

)∣∣∣ dx

+b(k)

α

∫
�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

) ∣∣∣φ (
θ

j
n

)∣∣∣ dx

+b(k)

α

∫
�

an (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
χ s

j

∣∣∣φ (
θ

j
n

)∣∣∣ dx + ε7(n, j) (4.22)

Using the same procedure as above we get

b(k)

α

∫
�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

) ∣∣∣φ (
θ

j
n

)∣∣∣ dx = ε8(n, j)

and

b(k)

α

∫
�

an (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
χ s

j

∣∣∣φ (
θ

j
n

)∣∣∣ dx = ε9(n, j).

thus, we obtain∣∣∣∣
∫

{|un |≤k}
gn (x, un,∇un) φ

(
θ

j
n

)
dx

∣∣∣∣ ≤ b(k)

α

∫
(a (x, Tk (un) ,∇Tk (un))

−a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

))

×
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

) ∣∣∣φ (
θ

j
n

)∣∣∣ dx + ε10(n, j)

(4.23)

By combining (4.14),(4.20) and (4.23) we have∫
�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

)) (
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)

×
(

φ′ (θ j
n

)
− b(k)

α

∣∣∣φ (
θ

j
n

)∣∣∣
)

dx

≤
∫

�\�s
lk · ∇Tk(u)dx + αφ(2k)ψ

(
x,

2

α
|F |

)
dx + ε11(n, j)
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thinks to (4.12), we get

∫
�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
ρ(x)dx

≤ 2
∫

�\�s
lk · ∇Tk(u)dx + 2αφ(2k)

∫
{m≤|un |≤m+1}

ψ

(
x,

2

α
|F |

)
dx + ε11(n, j) (4.24)

On the other hand, we have

∫
�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk(u)χ s)) (∇Tk (un) − ∇Tk(u)χ s) dx

=
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx

+
∫

�

a (x, Tk (un) ,∇Tk (un)) ·
(
∇Tk

(
v j
)
χ s

j − ∇Tk(u)χ s
)

dx

−
∫

�

a
(
x, Tk (un) ,∇Tk(u)χ s) · (∇Tk (un) − ∇Tk(u)χ s) dx

+
∫

�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx

We will passe to the limit in n and then in j in the last three terms of the right-hand side of
the above equality.

using the same procedure as is done in (4.15) and (4.22), we get

∫
�

a (x, Tk (un) ,∇Tk (un)) ·
(
∇Tk

(
v j
)
χ s

j − ∇Tk(u)χ s
)

dx = ε12(n, j)
∫

�

a
(
x, Tk (un) ,∇Tk(u)χ s) · (∇Tk (un) − ∇Tk(u)χ s) dx = ε13(n, j)

∫
�

a
(

x, Tk (un) ,∇Tk
(
v j
)
χ s

j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx = ε14(n, j)

(4.25)

Therefore,

∫
�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk(u)χ s)) (∇Tk (un) − ∇Tk(u)χ s) dx

=
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx + ε15(n, j) (4.26)
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Let r ≤ s. Thinks to (1.4) , (4.24) and (4.26) we have

0 ≤
∫

�r
(a (x, Tk (un) ,∇Tk (un)) − a (x, Tk (un) ,∇Tk(u))) (∇Tk (un) − ∇Tk(u)) dx

≤
∫

�s
(a (x, Tk (un) ,∇Tk (un)) − a (x, Tk (un) ,∇Tk(u))) (∇Tk (un) − ∇Tk(u)) dx

=
∫

�s

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk(u)χ s)) (∇Tk (un) − ∇Tk(u)χ s) dx

≤
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk(u)χ s)) (∇Tk (un) − ∇Tk(u)χ s) dx

=
∫

�

(
a (x, Tk (un) ,∇Tk (un)) − a

(
x, Tk (un) ,∇Tk

(
v j
)
χ s

j

))
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx + ε15(n, j)

by passing to the limit in n and then in j one has,

0 ≤ lim sup
n→∞

∫
(a (x, Tk (un) ,∇Tk (un)) − a (x, Tk (un) ,∇Tk(u))) (∇Tk (un) − ∇Tk(u)) dx

≤ 2
∫

�\�s
lk · ∇Tk(u)dx + 2αφ(2k)

∫
{m≤|u|≤m+1}

ψ

(
x,

2

α
|F |

)
dx .

Let s → +∞ and m → +∞, using the fact that lk · ∇Tk(u) ∈ L1(�), |F | ∈(
Eϕ(�)

)N
, |�\�s | → 0 and |{m ≤ |u| ≤ m + 1}| → 0, we obtain

∫
�r

(a (x, Tk (un) ,∇Tk (un)) − a (x, Tk (un) ,∇Tk(u)))

· (∇Tk (un) − ∇Tk(u)) dx → 0 as n → ∞

Thinks to [31] there exists a subsequence of {un} still indexed by n such that

∇un → ∇u a.e.in � (4.27)

Thus, by taking account that (4.7),(4.9) and (4.10) we can apply [[33], Theorem 14.6] to
obtain a(x, u,∇u) ∈ (

Lϕ(�)
)N and

a (x, un,∇un) ⇀a(x, u,∇u) weakly in
(
Lϕ(�)

)N for σ
(
Lϕ(�),Eψ(�)

)
. (4.28)

4.1.5

Now,we shall prove that

for every k > 0, Tk (un) → Tk(u) in W 1
0 Lϕ(�) for the modular convegence

.
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From inequality (4.24), we obtain∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx ≤
∫

�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
χ s

j dx

+
∫

�

a
(

x, Tk (un) ,∇Tk
(
v j
)

xs
j

)
·
(
∇Tk (un) − ∇Tk

(
v j
)
χ s

j

)
dx

+2αφ(2k)

∫
{m≤|uk |≤m+1}

ψ

(
x,

2

α
|F |

)
dx

+2
∫

�|�s
a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx + ε11(n, j).

thinks to (4.25), we obtain∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk
(
v j
)
χ s

j dx + 2αφ(2k)

∫
{m≤|un |≤m+1}

ψ

(
x,

2

α
|F |

)
dx

+2
∫

�|�s
a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx + ε17(n, j).

the passage to the limitto the limit in n on both sides of this inequality and using (4.28)
implies that

lim sup
n→∞

∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

�

a (x, Tk(u),∇Tk(u)) · ∇Tk
(
v j
)
χ s

j dx + 2αφ(2k)

∫
{m≤|u|≤m+1}

ψ

(
x,

2

α
|F |

)
dx

+2
∫

�\�s
a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx .

and by passing to the limit in j we obtain

lim sup
n→∞

∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

�

a (x, Tk(u),∇Tk(u)) · ∇Tk(u)χ sdx + 2αφ(2k)

∫
{m≤|u|≤m+1}

ψ

(
x,

2

α
|F |

)
dx

+2
∫

�\�s
a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx .

Let s and m → ∞, we get

lim sup
n→∞

∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx ≤
∫

�

a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx
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Now, thinks to (1.5),(4.4),(4.27) and applying Fatou’s lemma, we get∫
�

a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx ≤ lim inf
n→∞

∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

thus,

lim
n→∞

∫
�

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx =
∫

�

a (x, Tk(u),∇Tk(u)) · ∇Tk(u)dx

In view of Lemma 3.5, we deduce that for every k > 0

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) → a (x, Tk(u),∇Tk(u)) · ∇Tk(u) strongly in L1(�)

(4.29)
by vertu of hypothesis (1.5) and using the convexity of ϕ we get

ϕ

(
x,

|∇Tk (un) − ∇Tk(u)|
2

)

≤ 1

2α
a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) + 1

2α
a (x, Tk(u),∇Tk(u)) · ∇Tk(u)

By applying Vitali’s theorem we obtain

lim|ε|→0
sup

n

∫
E

ϕ

(
x,

|∇Tk (un) − ∇Tk(u)|
2

)
dx = 0

Consequently, for every k > 0

Tk (un) → Tk(u) in W 1
0 Lϕ(�).

for the modular convegence.

4.1.6

We shall show that
gn (x, un,∇un) → g(x, u,∇u) in L1(�) (4.30)

From (4.9) and (4.27) we have

gn (x, un,∇un) → g(x, u,∇u) a.e. in � (4.31)

Let E be a measurable subset of � and let m > 0. by taking account of (1.5) and (1.6) we
obtain ∫

E
|gn (x, un,∇un)| dx =

∫
E∩[|uk |≤m}

|gn (x, un,∇un)| dx

+
∫

E∩{|un |>m}
|gn (x, un,∇un)| dx

≤ b(m)

∫
E

c(x)dx + b(m)

∫
E

a (x, Tm (un) ,∇Tm (un)) · ∇Tm (un) dx

+ 1

m

∫
�

gn (x, un,∇un) undx

By (1.7) and (4.6) it follows that

lim
m→∞

1

m

∫
�

gn (x, un,∇un) undx = 0
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By using (4.29) the sequence

{a (x, Tm (un) ,∇Tm (un)) · ∇Tm (un)}n is equi-integrable ,

Consequently

lim|E |→0
sup

n

∫
E

a (x, Tm (un) ,∇Tm (un)) · ∇Tm (un) dx = 0

This proves that gn (x, un,∇un) is equi-integrable.
Therefore, Vitali’s theorem allows us to get

g(x, u,∇u) ∈ L1(�),

and
gn (x, un,∇un) → g(x, u,∇u) strongly in L1(�). (4.32)

4.1.7

In this subsubsection we prove that

lim
m→∞

∫
{m≤|u|≤m+1}

a(x, u,∇u) · ∇udx = 0 (4.33)

for any m ≥ 0 we have∫
{m≤|un |≤m+1}

a (x, un,∇un) · ∇undx =
∫

�

a (x, un,∇un) · (∇Tm+1 (un) − ∇Tm (un)) dx

=
∫

�

a (x, Tm+1 (un) ,∇Tm+1 (un)) · ∇Tm+1 (un) dx

−
∫

�

a (x, Tm (un) ,∇Tm (un)) · ∇Tm (un) dx

Thinks to (4.29) and passing to the limit as n → +∞ for fixed m ≥ 0

lim
n→∞

∫
{m≤|un |≤m+1}

a (x, un,∇un) · ∇undx

=
∫

�

a (x, Tm+1(u),∇Tm+1(u)) · ∇Tm+1(u)dx −
∫

�

a (x, Tm(u),∇Tm(u)) ∇Tm(u)dx

=
∫

�

a(x, u,∇u) · (∇Tm+1(u) − ∇Tm(u)) dx

=
∫

{m≤|u|≤m+1}
a(x, u,∇u) · ∇udx .

according to (4.11), we can pass to the limit as m → +∞ in order to have (4.33).

4.1.8

Finally, in this step thanks to (4.29) and Lemma 3.5, one has

a (x, un,∇un) · ∇un → a(x, u,∇u) · ∇u strongly in L1(�) (4.34)
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Let h ∈ C
1
c(R) and � ∈ D(�). we choose h (un) � as a test function in (Pn) we obtain∫

�

a (x, un,∇un) · ∇unh′ (un) �dx +
∫

�

ρ(x)a (x, un,∇un) · ∇�h (un) dx

+
∫

�

�n (un) · ∇ (h (un) �) dx +
∫

�

gn (x, un,∇un) h (un) �dx = 〈 f , h (un) �〉(4.35)

Now, we can pass to the limit as n → +∞ in each term of equality (4.35). since h and h′
have a compact support on R, there exists a real number v > 0, such that supp h ⊂ [−v, v]
and supp h′ ⊂ [−v, v]. For n > v, we can have

�n(t)h(t) = �(Tv(t)) h(t) and �n(t)h′(t) = �(Tv(t)) h′(t)

Moreover,

the functions �h and �h′ belong to
(
C0(R) ∩ L∞(R)

)N
.

Now we can see that the sequence {h (un) �}n is bounded in W 1
0 Lϕ(�).

Indeed, let c
′
> 0 be a positive constant such that ‖h (un) ∇�‖∞ ≤ c

′
and

∥∥h′ (un) �
∥∥∞ ≤ c

′
.

Thinks to (3.2) we obtain

∫
�

ϕ

(
x,

|∇ (h (un) �)|
2c′

)
dx ≤

∫
�

ϕ

(
x,

|h (un)∇�| + ∣∣h′ (un) �‖∇un
∣∣

2c′

)
dx

≤ 1

2

∫
�

ϕ(x, 1)dx + 1

2

∫
�

ϕ (x, |∇TM (un)|) dx

≤ c

Which jointly with (4.9) it follows that

h (un) � → h(u)� weakly in W 1
0 Lϕ(�) for for σ

(
Lϕ,Eψ

)
. (4.36)

Which give

〈 f , h (un) ϕ〉 → 〈 f , h(u)ϕ〉.
Let E be a measurable subset of�.we pose cv = max|t |≤v �(t).And denoting by ‖v|ϕ,�

the Orlicz norm of a function v ∈ Lϕ(�).We thinking to the strengthened Hölder inequality
with both Orlicz and Luxemburg norms, we have

‖�(Tv (un)) χE‖ψ,� = sup
‖v‖ϕ,�≤1

∣∣∣∣
∫

E
�(Tv (un)) vdx

∣∣∣∣
≤ cv sup

‖v‖ϕ,�≤1
‖χE‖ψ,� ‖v‖ϕ,�

≤ cv|E |ϕ−1
(

x,
1

|E |
)

Consequently,

lim|E |→0
sup

n
‖�(Tv (un)) χE‖(ψ,�) = 0

Then, in view of (4.9) and by applying [[33], Lemma 11.2], we get

�(Tv (un)) → �(Tv(u)) strongly in
(
Eψ(�)

)N
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which together with (4.36) allow us to pass to the limit in the third term of (4.35) to obtain∫
�

� (Tv (un)) · ∇ (h (un) �) dx →
∫

�

� (Tv(u)) · ∇(h(u)�)dx

Observing that
∣∣a (x, un,∇un) · ∇unh′ (un) �

∣∣ ≤ c
′
a (x, un,∇un) · ∇un

Therefore, thinks to (4.34) and applying Vitali’s theorem, we get∫
�

a (x, un,∇un) · ∇unh′ (un) �dx →
∫

�

a(x, u,∇u) · ∇uh′(u)�dx

Concerning the second term of (4.35) using the same procedure as above we obtain

h (un)∇� → h(u)∇� strongly in
(
Eϕ(�)

)N

which jointly with (4.28) implies that∫
�

a (x, un,∇un) · ∇�h (un) dx →
∫

�

a(x, u,∇u) · ∇�h(u)dx

Remark that h (un) � → h(u)� weakly in L∞(�) for σ ∗ (L∞, L1
)
with (4.30) we can

pass to the limit in the Fourth term of (4.35) in order to have∫
�

gn (x, un,∇un) h (un) �dx →
∫

�

g(x, u,∇u)h(u)�dx

Finally, we can pass to the limit in each term of (4.35) so as to obtain∫
�

a(x, u,∇u) · [∇ϕh(u) + h′(u)�∇u
]

dx +
∫

�(u)h′(u)� · ∇udx

+
∫

�

�(u)h(u) · ∇�dx +
∫

�

g(x, u,∇u)h(u)�dx = 〈 f , h(u)�〉

for all h ∈ C1c (R) and for all � ∈ D(�). Thus, as well (1.7),(4.6) and (4.31) we apply
Fatou’s lemma to get g(x, u,∇u)u ∈ L1(�).

Consequently, thinks to (4.9),(4.28),(4.32),(4.33), the function u is a renormalized solution
of problem (P) .

Acknowledgements We think the referee for their suggestions and their relevant remarks.
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