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Abstract
This work is concerned with the initial boundary value problem for a nonlinear viscoelastic
Petrovsky equation

t
U + A2u — / gt — DA u(t)dt — Auy — Augr + uplug "' = ululP".
0
We prove that the solution energy has polynomial rate of decay, even if the kernel g decays
exponentially providedm > 1 while decay rates is exponentially in the case of weak damping.
The unbounded properties of solutions in two cases m = 1 and p > m > 1 have been also
investigated. For the first case, we prove the blow-up of solutions with different ranges of
initial energy. For the second case, we prove blow-up of solutions under some restrictions on
g when the initial energy is negative or non negative at less than potential well depth.
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1 Introduction

In this paper, we investigate the problem

t
U + A%y — / gt — T)AZM(T)dT — Auy
0

—Auy 4w " =P, x e Q1 >0, (1.1
u(x,t) = oyu(x,t) =0, x €0, t>0, (1.2)
u(x,0) =uo, u/(x,0)=u;, xe€g, (1.3)
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where 2 is a bounded domain in R”, n > 1, with a smooth boundary 02, m > 1, p > 1, v
is the unit outer normal on €2 and g is a non-negative function that represents the kernel of
memory term.

In [3], Cavalvcanti et al. studied the global existence result and the uniform exponential
decay of energy for the following equation:

t
|M[|pu[[ — Au — AM” +f g(t — T)Au(f)dr — )/Au, =0. (14)
0

In the case y = 0, Messaoudi and Tatar [15] showed that the solution goes to zero with
an exponential or polynomial rate. Using the potential well method, the same authors [16]
obtained global existence and an exponential decay result in the presence of a nonlinear
source term. Moreover, for sufficiently large values of the initial data and for a suitable
relation between p and the relaxation function, they proved an unboundedness result. In
[22], Wu proved the general decay of solutions for the nonlinear Eq. (1.4) in the presence
of nonlinear damping and source terms in the case y = 0. Recently in [23], the author
established same result when the nonlinear damping term is replaced by a weak damping
term. In this regard, without nonlinear source term, we may recall the work by Han and Wang
[5] in which the authors obtained a general decay of solutions. For more related studies in
connecting with the existence, finite time blow-up and asymptotic properties of solutions
for nonlinear wave equations we refer the reader to [6,13,14,17,18,24,26,28] and references
therein.
In [4], Guesmia considered the equation

wi + APu+h(u) = f(w), xeQ, >0, (1.5)

with boundary and initial conditions of Dirichlet type who established global existence,
uniqueness and decay results under suitable growth conditions on % by exploiting the semi-
group approach. Later, based on fixed point theorem, Messaoudi [12] studied (1.5) for
h(uy) = welu™ 2, f(u) = ulu/P~2 and proved an existence result when m > p with
an arbitrary initial data and an unboundedness result if m < p and the initial energy is
negative. Then, Wu and Tsai [25] showed that the solution decays algebraically without the
relation between m and p while it blows up in finite time if p > m and the initial energy
is nonnegative. In [2], Amroun and Benaissa obtained the global solvability of (1.5) subject
to the same boundary and initial conditions as (1.2), (1.3) where f(u) = bu|u|? 2 and h
satisfies

cilsl < h@®)| <calsl”, sl =1, ¢1,¢2 >0,

under some appropriate restrictions on p and r. In the presence of the strong damping, Li et
al. [9] considered the following Petrovsky equation:

U + A% — Auty + wplug """ = ufulPY, xe, t>0,

with the boundary and initial conditions (1.2) and (1.3). The authors obtained the global
existence and uniform decay of solutions if the initial data are in some stable set without
any interaction between the damping mechanism u;|u;|™ ! and the source term u|u|?~".
Moreover, they established the blow up properties of local solution in the case p > m where
the initial energy is less than the potential well depth.

In the study of plates, Rivera et al. [19] considered the following viscoelastic equation

t
Uy — vy Aug + A%y — / gt — 'E)A2u(t)dt =0.
0
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They proved that the first and second order energy, associated with the solutions, decay
exponentially provided the kernel of the memory also decays exponentially. On the other
hand, the authors in [20] considered the equation

uy + Au — (g * A%u)(t) =0,

where A is a positive self-adjoint operator with domain D(A) in a Hilbert space H. They
showed that the dissipation given by the memory effect is not strong enough to produce expo-
nential stability, when 0 < « < 1, while such dissipation is capable to produce polynomial
decay even if the kernel g decays exponentially. Recently, the authors in [11] considered
(1.1)—(1.3) and established some asymptotic behavior and blow up results for solutions with
positive initial energy. Very recently, Li and Gao [8] considered the Petrovsky equation

t
Upy + Azu - / g([ - S)Azu(t, S)dS + |M[|m_2u, = |M|p_2u’
0

and obtained blow up results in both nonlinear and linear damping cases. We may also recall
the recent related works in [21] and [27].

In the present work, our study will be devoted to the problem (1.1)—(1.3). We show that,
under suitable assumptions on the function g, the solution is global provided that the initial
data are small enough. We also show that the solution energy decays exponentially for the
linear damping case (m = 1). We prove that the energy also has polynomially rate of decay,
even if the kernel g decays exponentially, provided m > 1. To this end, we use the inequality
(Lemma 2.4) given by Komornik [7]. We investigate the unbounded properties of solutions
in two cases: m = 1 and p > m > 1. For the first case, we prove the blow-up of solutions
with different ranges of initial energy. Estimates of the lifespan of solutions are also given.
For the second case, we prove blow-up of solutions under some restrictions on g when the
initial energy is negative or nonnegative at less than potential well depth.

The plan of this paper is as follows. In Sect. 2, we introduce some notations, lemmas and
our main results. In Sect. 3, we present the global existence result, Lemma 3.2, and decay
rates of the energy, Theorem 2.8. Unboundedness results, Theorems 2.9 and 2.10 , are given
in Sect. 4.

2 Preliminaries and main results

To prove our main results, we shall give some lemmas, assumptions and notations.

Lemma 2.1 (Sobolev—Poincare inequality [1]) Let g be a number with 2 < q < 0o (n =
1,2,3,4)0r2 <q < nzT”4(n > 5), then foru € HOZ(Q) there is a constant C, = C(L2, q)
such that

lully < CillAullz.
For nonlinear terms and the relaxation function we assume that

(G1) m and p satisty

l<p<oo n=1,2,3,4) or 1<p5L4 n=5, (@
p—

n+4
l<m<oo n=1,2,3,4) or 1<m§74 (n >5). 2.2)
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(G2) g e C'RHUL'(RY) suchthatg > 0; ¢ <0and

1 —/ g(s)ds =1>0, g(0) > 0. (2.3)
0

(G3) The kernel g decays exponentially to zero, as ¢t — 0o, namely
g'(t) +kog(t) <0, Vte (0,400), forsome ko> 0.
Let us define C!-functionals I, J, E : RT - R by

10 = 1(0) = (1 - /0 g(r)dr) |Aull3 + (g 0 Aw) o) = llull} ], 2:4)

1 ! 2 1 1 p+1
Jul@®) = J (@) = 3 (1 _/o g(f)df> lAull; + E(g o Au)(t) — mllullpH,

(2.3)
E[u](t) = E(t) = %nutn% + %nwtn% + J[ul (), (2.6)
where u = u(x, t) is arbitrary solution of the problem (1.1)—(1.3) and
(g0 V(1) = /Otg(z - r)/g v(t) — v(o)Pdxdr.
Lemma 2.2 E(t) is a non-increasing function fort > 0 and
E'6) = 8@ Aul} — Vi3 + 52 0 Ay e) — sl 5] @7)

Proof Multiplying (1.1) by u,, integrating over 2 and using the boundary conditions, we get

d |1 2 2 2 1 +1
- {E(Hu,nz 1Vl + 1Aul3) - Pt e s

t
— /Q Au,m/() g(t — D) Au(t)drdx = | Vuell3 — llus 7]
For the last term in the left hand side of (2.8) we have

t
/Au,(z)/ gt —t)Au(r)drdx
Q 0

t

=/t (z—f)/ Au (t)(Au(T)—Au(t))dxdT—i-l/ (T)dri<||Au(t)||2)
0 & Q ¢ 2 0 & dt 2

d

=3 [ s =0 (1800 - 8ui) - Je1auo:
2 Jo § dt 2 2g 2

1d ! 2
+5$</0 g(r)drIIAu(l)llz)

14 A 1, A 1 A 2
= =5 780 A + 5(g 0 Au)(1) — Sl AuM);

+§E</o g()dr|| u(l)||2>,

which combining with (2.8) and using (2.6) we obtain (2.7). ]
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Define
d= inf sup J (Au).
ueHZ(Q\{0} 1>0
Lemma 2.3 We have

0<d <d <dy(u) =supJ(ru),
A>0

where
1 [ =
_ =
w= 2 (L)
2(p+1) C*

and

i 2 e

p—1 (= [ye@dD)|Aull3+ (g0 Au)()\*
dy(u) = 5 .
2(p+1) ||u||erl

Proof See Lemma 5 in [11]. ]

Lemma 2.4 (Komornik [7]) Let ¢ : Rt — R™T be a non-increasing function and assume
that there are two constants r > 0 and C > 0 such that

o0
/’w”%mmEC”wwwm, Vi >0,

t

then, we have for each t > 0,
o) <p0)exp(l —Cr), r=0,
¢®S¢@W%§g%,r>0
Lemma 2.5 (Li and Tsai [10]) Let § > 0 and B(r) € C2(0, 00) be a nonnegative function
satisfying
B"(t) — 406+ 1D)B'(t) +4(5 + 1)B(t) > 0. (2.9)
If
B'(0) > r,B(0) + Ko, (2.10)
withry = 2(8 + 1) — 2/(8 + 1)8, then B'(t) > Ko fort > 0, where Ky is a constant.

Lemma 2.6 (Li and Tsai [10]) If M (t) is a non-increasing function on [ty, 00), to > 0, and
satisfies the differential inequality

1
M) = a+ MO, 1>,
where a > 0, B € R, then there exists a finite time T* such that

lim M(t) =0,
t—>T*
and the upper bound of T* is estimated, respectively by the following cases
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(1) If B <O, then

- 1 v—o/p
<rft+ In .
V=B N—a/B— M)

T*

2) If B =0, then

M (to)
T* <t .
<1+ M (10)

3) If B > 0, then
~ M)
= e

where ¢ = (a/ﬂ)H%.

éc

T* or T% <10+ 2%V T2 [1— (14 eM () ™>].

We state a local existence theorem that can be established by combining the arguments of
[2,12,28].

Theorem 2.7 Suppose that (2.1), (2.2) hold and ug € Hg(Q), uy € HO1 (2). Then there exists
a unique weak solution u(t) such that

u e C ([0, T H3 () nC' ([0, T1; L2 (),
u, € L* ([0, T1; Hy () N L™ (2 x (0, T)),

for some positive constant T .
Now we are in a position to state our main results.

Theorem 2.8 Suppose that (G1) — (G3) hold. Let (uo,u1) € HZ(Q) x Hy(Q) be given
which satisfies

I(ug) > 0, E0) < d.

Then there exists a positive constant C such that the global solution of (1.1)—(1.3) satisfies,
vt >0,

E(t) < E(0)e! =, if m=1,
~2/Gm-1)
E(t) < E(0) (%;PC’) i ms 1

Theorem 2.9 Suppose that m = 1 and (2.1), (G2) hold and
oo
aa=p-D-(p—1+1/(p+ 1))/ g(t)dt > 0. (2.11)
0

Assume that (ug, u1) € Hoz(Q) X Ho1 () and that either one of the following conditions is
satisfied

(1) E©) <0,
(2) E(0) =0and [q(uou1 + Vuo.Vuy)dx > 0,

(3) 0 < E(0) < l(“plj’ll) and I(ug) < 0,
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@) 4Ly < E(0) < A such that

2
(fg(uoul + Vuo.Vul)dx)

A= 'n{ 5 o~
2(Th + 1)(||u0\|2 + ||VM0||2)

+3|1 [p—1
%—i—l |:2 (1+ Z+3> (/Q(Moul +Vuo.Vu1)dx) —(||u0||%+ ||Vu0||%)j|},

then the solution u(t) blows up at finite time T* in the sense of
lim || Au(r)|3 = +oo.
t /T
Theorem 2.10 Suppose that (G1), (G2) hold and p > m > 1. Assume that (ug, u1) €
HE(Q) x H}(Q) satisfy I(ug) < O.

(1) If E(0) < Bdy (B < 1) and g satisfies

/oo ¢(r)dt < (p=Dd =F) , (2.12)
0 (p—DA =B +1/l(p+1)—(p—1B]

then the solution of (1.1)—(1.3) blows up in finite time.
(ii) Suppose that there exists 2 < 6 < p + 1 such that

=(0/2—1)—(0/2—1+1/(20)) /oo g(t)dr > 0, (2.13)
0

and E(0) < (p2a2 )dl (one can verify thaz 2 < 1). Then the solution of (1.1)—(1.3)
blows up in finite time.

3 Global existence and energy decay

Lemma 3.1 Suppose that (2.1) and (G2) hold. Assume that (ug, u1) € Hg(Q) X Ho1 Q). If
I(ug) > 0and E(0) < dy then I(u(t)) > 0 forallt > 0.

Proof Since I(ug) > 0, then by continuity, there exists T, < T such that I (u(r)) > 0 for all
t € [0, T]. From (2.4), (2.6), (2.7) and the fact that 1 — f(; g(t)dt > 1 — fooo g(t)dr, for
all r € [0, T, ] we have

_p-1 _/t ) 24 (go } -
10 = 3P {(1 [ ear ) 1au + o a0 + 10
p—1 ! 2
= st | (1 ] e 1 + o s o
I(p—1) 2
Z 20 +1)||Au||2.

Using (2.6), (3.1) and lemma 2.2 we obtain

2p+ D 2p+ D 2p+ D
lAau)3 < (o= 1) J(r) = o= 1) E(r) < o= 1) — E0), (3.2)
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for all t € [0, T]. Then, by lemma 2.1 and (3.2) we have

—1

)4
2+ 1) 5
lul?i) < Ayt < et [l(p 5 E(O)} 1Aul

t
<Iaud < (1 —/O g(r)dr) | Aul2,

whichimplies I (u(z)) > Oforallt € [0, T]. By repeating this procedure, T can be extended
toT. O

Lemma 3.2 Suppose that (G1) and (2.3) hold. Under the assumptions of Lemma 3.1 the
solution of (1.1)—(1.3) is global and bounded in time.

Proof We use (2.4)—(2.6) and lemma 2.2 to get
1 ) 1 2
E©) 2 E@) = 5 llugl + S 1Vurl3 + ()

1
1V 3 + Pl

1
= —lucll3 + = 5

2

p—1 , .
L) gmdr) I8t + ¢ 0 80 .

By the 3.1, I(¢) > 0. Using the assumption (G 1) we deduce

lur (D13 + IVur (D113 + 1 Au(@) 13 + (g 0 Au)(t) < KE(t) < KE(0), Vi >0,

(3.3)
where K = 2((l;+1])) This shows that [|u;]|3 + | Vu, |13 + [|Au| is uniformly bounded and
independent of 7. Therefore the solution of (1.1)—(1.3) is bounded and global. ]
Proof of Theorem 2.8 Multiplying by E” (t)u(t), with r = "1
integrating over 2 x [#1, t2] we obtain

123 n
O:/ Er(t)f uu,,dxdt—i—/ Er(t)/ Vu(t).Vuy (t)dxdt
1 Q 1 Q
n t
—/ Er(t)/ Au(t)/ gt — t)Au(r)drdxdt
11 Q 0
12 tz (3.4)
+/ Er(t)||Au(t)||%dt+/ Er(t)/ Vu(t).Vu(t)dxdt
4l 141 Q
t 5] 1
+/ Er(t)/ ity lu | dxdt —/ E"(0)|lu()||h ] dt.
11 Q 1
For the first term in the right hand side of (3.4) we have
n
/ E’(t)/ uugdxdt = / E(t) uu,dx / / E@) YE'(tyuu,dxdt
. ¢ (3.5)

5]
- / E’(z)||ut(r)||%dt-

n
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Similarly, for the second term we obtain

/ “Er o / Vu(t). Vg ()dxdt = / E" (V) Vu, (t)dx|
1 Q Q !

n " (3.6)
— r/ / E"Y O E () Vu(t). Vu, (t)dxdt — f E’(t)lqu,(t)II%dt
131 Q

13|
Using (3.5), (3.6) and relation
n

2 1
= | ET®)|u|P T ar
ot o

o) 5] t
= [" o+ 1vui)a+ 5o (1 [ e ) 1auoiar
t t

1 1

1 15
+ / ’ E"(1)(g o Au)(t)dt — 2/ ’ E™\(t)dt,
1

n

Eq. (3.4) can be written in the form

15) -1 2
p H
2[ Er+1(t)dt_<7>/ E"@)u@)|b7 dt
1 p+1/)Jy !

5]
—— [ £ (e Vv )| +2 [ B0 (101 + 1900013

n
+r/ /E’—l(r)E’(t)(uu,+w.w,)dxdz
1 Q
t " 3.7
—/ Er(t)/ Vu(t).Vu,(t)dxdt—/ Er(t)/ wuy|ug " Ydxdt
15 Q fH Q

t t t
+/2Er(t)/ Au(z)/ g(t—T)Au(‘c)d‘L'dxdz—/ZE’(Z)HAM(I)H%dt
Q 0
tltz t 15 "
+/ E’(t)(l—/ g(r)dr)||Au(t)||§dz+/ E"(t)(g 0 Au)(1)d1.
1 0

1

We now estimate the terms in the right hand side of (3.7). For the first term, we use Young’s
inequality, lemma 2.1, (3.3) and lemma 2.2 to obtain

2
i=1

pHIN/CE+1 .
x| ()]

' —/ E" (t)uu,dx ?
Q n

E’(r)(—nAu(r)n2 ||u,<z)||%)

t=t;

) (3.8)
Similarly, by the same way and using the Poincaré inequality we get
‘ /E’()Vthz‘ XZ:
— H)Vu.Vu x’ <
Q ' gl

i=1

(e

n < 2(”1)(@)12’“(;1).

1
0 (S 18013 + 51V 013)

=t

(e

t=t;

@ Springer



190 A. Peyravi, F. Tahamtani

where p denotes the Poincaré constant. For the second term, in the right hand side of (3.7),
for any ¢ > 0, we have

n [5) 5]
2/ /E’(t)|u,(t)|2dxa’t§28|52|/ Er+1(t)dt+2c(a)f g ()15 1)t
n JQ f !
(3.10)
By (2.7) we get
g 20r+1) ° +1 2o
[ rw@nihar= ot < - [ Ewa <. G
f 1 1

Using (3.10) and (3.11) we obtain
%) n
2/ / E"(t)|u,(t)|2dxdt < 28|Q|/ E™ N (t)dt + 2¢(e)E(1y). (3.12)
1 Q n

We use again (2.7) to find

15 15 2

2/ / Er(t)|Vut(t)|2dxdt < —2[ E'(OE (ndt < ——E™ (). (3.13)
1 Q 1 r+1

For the third term in the right hand side of (3.7) we use Young’s inequality, Poincaré inequality,
lemma 2.1 and (3.3) to find

5]
r/ /E’_l(t)E’(z)<uu,+Vu.Vu,>dxdl
1 Q

no C? 1 ) 1
< —r[ E" 1(r)E’(r)(j“||Au<r>||% + 5””1([)”% + EnAu(z)n% + EHV“z(Z)”%)df
1

t
< —%(cﬁ +p+2) / CETU O E (O E®W)dr < (CZ+p+2)EH (1).

rkK
" 200+ 1)
(3.14)

By (2.7) and (3.3) we estimate the fourth term in the form

t:
‘—/ZE’(t)/ Vu(t).Vu, ()dxdt
1 Q

2 &p 1
< | EO(=Nau®l+ —IIVu, (1))13)dr
/tl ( 2 27 e ! 2)

K,O %) 1 n
| E’“tdt——/ E"()E'(t)dt
‘8(2>/z1 (hdi = 5. | ETOE®
Kp\ [ 41 1 r1
58(7)/” E (t)dt—l—mE ().

(3.15)

For the fifth term we have

5]
‘—/ E’(t)/ uug|u |V dxdt
1 Q

[5)
< / E7 ) (el 12+ ) g ) 124 )
131

I 15
<eCcmt! / ’ E 0 Au) )y dr — c(s)/2 E"(1)E'(t)dt (3.16)
1 n
m-1 m=-1 2 r+1 C(S) r+1
< e(CrTK(KEO) >/n T @i+ B ().
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By the use of Young’s inequality, for the sixth term in the right hand side of (3.7), we have

t t
/2 Er(t)/. Au(z)/ g(t — t)Au(t)drdxdt
1 Q 0

r: t
S/ZEr(t)/ (/ g(t—'l:)|Au('L’)—Au(t)||Au(t)|dr)dxd[
1 Q 0

H ) (3.17)
+ [T E@ [ s@drisuaiia
11 0
n t 2 1 15
<@+ 1)/ E’(t)/ g@dr||Aut)|3dt + B/ E"(t)(g o Au)(t)dt.
n 0 131
Using the estimates (3.8), (3.9) and (3.12)—(3.17), from the Eq. (3.7), we obtain
23 —1 [5)
2| Et dt—(p—) / E" ) lu®)||2 dt
/tl (1) pi1) ONu@)y4
n
<2c(e)E(t) + M{E™ (1)) + 8M2/ E™ (t)dt (3.18)
n

15}

I t
+8/2Er(t)/ g(r)drllAu(r)ll%dt—i—(%—i—l)/ E"(1)(g o Au)(t)dt,
| 0

t f

where

B (2(17 +1) rkK

N -D T2+

Kp m+1 %

M, =2|Q| + -+ CI'"'K(KE0) 7.

For the last two terms in the right hand side of (3.18) we use (G3), (2.7) and (3.3) to get

t

15 - t 5 1
B/tl E (r)fo g(r)dr|\Au<z>\|zc«!t+(EJrl)ft1
1

200 (1=1) [ gt g, (14 L) [ e
55( - >< 1 )/t E (1)1 (45k0+k0) | E"(1)(g o Aw)(t)d1

1

2+ D\ (L=1\ [? i1 o2y 1
55( p—1><T>/,IE O+ (55 + 1) B . (3.19)

)€+ p+2)+ rlﬁ(2+ %-i—c(e)),

’ E"(t)(g o Au)(t)dt

On the other hand, by the use of lemma 2.1 and (3.3), we have

-1
1\ [" 2 2p+1 B e
<5—J/ Emwmwﬂms—d“(QiJE®> /'H“mn
pri)l, =74 o) \

which implies

15 - 1 2
2/ Er+l(t)dt_<L>/ ET (0 u()|| 7 dr
1 r+1/)Jy o

p—1
EO0)\ Z | [~
dl n

(3.20)

Since E(0) < di, then

EO)\ =
1_<Tl) > 0.
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By (3.19) and (3.20) and choosing ¢ and é small enough such that

p—1
E0)\ 2 1 1-1 M
1— L) ) prINAI=EN e 2 o 0,
d p—1 [ 2
the estimate (3.18) takes the form

I
/2 E ™ (tydr < y_l<2c(e)E_r(O) 4 A711)E’(0)E(tl) < CUET(0)E(r), (321
1

r+1
of lemma 2.4 completes the proof. m}

where y and C are some positive constants and M 1 =M+ (ﬁ + %) L An application

4 Blow up

In this section, we investigate unboundedness results for the solutions of (1.1)-(1.3). First,
we give the following lemma which will be used frequently throughout this section.

Lemma 4.1 Suppose that (G1), (G2) hold and (ug, u1) € Hg(Q) X HO1 (R2). Assume further
that E(0) < dy and I1(0) < 0. Then

I(t) <0, Vtrel0,T), 4.1)

and

—1 ' —1
di < 5- [(1— / g(r)dr)uAumu%+<goAu>(t>]<p—||u<z>||£i},

o £
2(p+1) 2(p+1)
4.2)
forallt € [0, T).
Proof See Lemma 6 in [11]. |
Remark 4.2 Under the assumptions of lemma 4.1 and using lemma 2.1 it is easy to see
p+1 2d,
lAul3 > =— ) = ).
p—1 [
4.1 Blow-up with different ranges of initial energy: the casem = 1
Let us to define
t
at) = / (u* + |Vul*)dx + / (luli3 + 1Vull3)dtz. (4.3)
Q 0
Lemma 4.3 Suppose that (2.1), (G2) and (2.11) hold. Then
a”(t) = (p +3)(lurI3 + IVu113)
4.4

t
> _2(p+ DE©) +2(p + 1)/0 (e 13 + 1 Vaeg 13)dr.
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Proof From (4.3) we have
adt) = 2/ (wuy + Vu.Vuy)dx + |ul)3 + IVul3,
Q

and

t

a0 =2(uil3 + 1 Vu 13) = 2(1 - /0 g(0)dr) | Aul}

. (4.5)
- 2/ Au(t)/ gt — ) (Au(r) — Au(r))drdx + 2||u||§i}.
Q 0

By using Young’s inequality, for n > 0, we obtain

t t
/ Au(t)/ gt — ) (Au(r) — Au(r))drdx < n||Au||§/ g(v)dt + L(g o Au)(1).
Q 0 0 4n

(4.6)
Then by (2.8), (4.5) and (4.6) we have
a"(t) = (p+ 3)(lull3 + 1 Vs 13) = —2(p + DE(0)
! 1
#2040 [l + 19w B)ar (1= ) go a0 s
t
+ [(p -D—(p—1+ 2n)/ g(t)dr} Il Aulf3.
0
Letting n = m and using (2.11) we obtain (4.4). ]
We now consider different cases on the sign of the initial energy:
(1) If E(0) < O then from (4.4), we have
a(t) =d 0)—=2(p+ DE©O), t=0.
Thus, we get a’(¢) > ||u0||% + ||Vu0||% fort > t* where
/ 0 _ 2 + v 2
o max{a (©0)—(lluoll3 + I uollz)’o} @.8)
2(p+ DHE)

(2) If E(0) = 0, then a”(¢t) > 0 for t > 0. Furthermore, if a’(0) > ||u0||% + ||Vu0||%, then
a'(t) > lluoll3 + I Vug|3 fort > 0.

3) If0 < EQ0) < [(alfll), and I (ug) < 0, we have

d"t) — (p+ 3 (lu + Vs 13) = —2(p + DE(0)

! ) ) 5 4.9)
200+ 1) [ (lunlB+ 19 B)de + ) du
0
By (4.9) and remark 4.2 we have
” 2 ard;
a (t)>-2(p+DEQO) +a||Aul; = 2(p + 1) -1 —E©) ) >0.
(4.10)
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Then we obtain a’(t) > |lugll5 + [ Vuo|l5 for t > t* where

luoll3 + IIVuoll3 — a’(0)
ayd;
2p+1) (z(,H) - E(O))

=

0. @.11)

(4) For the case that E£(0) > [(‘;—f‘”, we first note that

t
@113 — lluol3 =2 /0 / w(t)u; (t)dxdt, (4.12)
Q
and
t
IVu(®)|15 — I Vuoll3 :2/ /Vu(t)‘Vut(t)dxdt‘ (4.13)
0 JQ
By using Holder’s inequality and Young’s inequality, we have from (4.12) and (4.13)
2 2 ! 2 ! 2
lu@®)lly < |IM0||2+/0 ||u(l)||2dt+/0 llu () II5dt, (4.14)
t t
IVu@1} < 1Vl + [ 1ve@ide s [IveoBa. @
0 0

By Holder’s inequality and Young’s inequality, from (4.14) and (4.15), we get

a'(t) < a(t) + |uoll3 + IVuol3

. (4.16)
[ vuPya e+ [ (i + 1ve3) e
Q 0

Hence by (4.4) and (4.16) we obtain
a’(t) = (p+3)a'(t) + (p+3)a(t) +a =0,
where
a = (p+3)(luoll3 + IVuol3) +2(p + HE(0).

Let

B(t) = a(t) + —2 t>0

=a _, > 0.
p+3

Then B (t) satisfies (2.9) with § = pT_l. Condition (2.10) with Ko = ||uo||§ + ||VMO||% is
equivalent to

+3 p—1 a
Joy= P22 (- [P <a0+7)+u 2 1| Vuoll3,
0 > ( p+3> 0) b3 lluollz + IVuolls

which means

301 -1
E(0) < r+5 L (1 + P) (/Q(uoul + Vuo.Vul)dx> —(lluoll3 + ||Vu0||%):| .

p+1 p+3

Then by lemma 2.5 we find a’(r) > |lugll3 + [ Vuoll3.

Consequently, we have proved the following lemma:
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Lemma 4.4 Under the assumptions of Theorem 2.9, we have
d'(t) = luoll3 + [Vuol3, for > 1o,

where ty = t* is given by (4.8) and (4.11) in cases (1) and (3) and t* = 0 in cases (2) and
4).

Proof of Theorem 2.9 Let
M) = [a) + (T = ) (luol3 + [ Vuol})] " for 1 €0, Ti], (4.17)
where § = (p — 1)/4 and T7 > 0 is a certain constant which will be specified later. We have
M) = =5 [a(t) + (T1 = D (luol3 + 1VuolD] " [’ —(luoll3 + IVuol3)]
—sM"*5 (1) [’ ()~ (lluol3 + [ Vuol13)]
and
M'(t) = —sM™F5 OV (1), (4.18)
where
V(t) =a"() [a(t) + (T = D (lluol3 + [ Vuoll3)]
— 3+ D [aO—(luol3 + IVuol3)] -

For simplicity of calculation, we denote

Pu—/uzdx, Qu—/ ular, Ro= [ wids, s, —/ s 3,
/|Vu|2dx 0 /||Vu||2dt R = /|Vut|dx S;:/ [V, ||3dt.
0

By (4.12), (4.13) and Holder’s inequality we have

(4.19)

'
a(t) = 2/ (uut + Vu.Vu,)dx + 2[ / (uu, + Vu.Vut)dxdt + ||u0||% + ||Vuo||%
Q Q

<2 (\/R,, Py ++/QuSu+ /R,P, + \/Qg,s;) + lluol3 + IVuoll3. (4.20)
If case (1) or (2) holds, It follows from (4.4) that
d'(t) = (=88 —HE©0) + 4@+ 1) (Ru + Su + R, + S}, . (4.21)
Then, using (4.19)—(4.21), we get
V() > [(—85 — HE(0) + 45 + D)(Ry + Su + R, + S| M3 (1)
46+ ) (VR P+ OuS+ VR P+ 5;)

By (4.17) we find

V() > (—85 —4)EO)M ™3 (1)
+ 40 + 1)[(Ru + S, + R, + S)(T — f)(||u0||% + ||VMO||%) + K(t)],
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where

K()=(Ry+Su+R,+S)(Py+ Qu+P,+ Q)
2
— (VR +VQuSu + VR B[ +/O5])

By Schwarz inequality and K (7) being nonnegative, we have

V(t) > (—85 — 4)E(0)M7%(t), Vi tg<t<T. (4.22)
Therefore, by (4.18) and (4.22), we get
M"(t) < §(88 +4)E(O)M1+%(t), Vi:tg<t<Ty. (4.23)

Note that by lemma 4.4, M'(t) < 0 for t > fo. Multiplying (4.23) by M’(¢) and integrating
it from f#( to ¢, we have

M®)?>a+ M7 V@) Vi<t <T, (4.24)
where
p—1 2 26 2 =1
a=——) M»rT (19 / (uouy + Vug.Vuy)dx | —2EO)Mr-1(t9) | > 0,
2 @ (4.25)

1
B=5p-1EQ).
In the case (3), from (4.4) and (4.10) we obtain
a"(t) = (88 +4)c; +4B+ 1) (Ry+ Su + R, + S}) .

where ¢ = l(‘;‘f‘l) — E(0). Following similar procedure in case (1), we find
M'(t) < =885 +4)er — MF3 (1) Viit<1<T,
M) >a+ M@y Vi<t <T,
where
p f— 1 2 2p+6 2 —4
o = (7) M =T (1) (/ (uouy + Vuo.Vbn)dx) +2ciMr-T(t9) | > 0,
2 @ (4.26)
c1 2
=——(p— D"~
B 5 (P )

For the case (4), by the steps of case (1), we obtain (4.24) with , 8 > 0 in (4.25) if

(fq(uour + Vuo.Vul)dx)2

2(T1 + D (lluoll3 + IVuoll3)

Then by lemma 2.6, there exists a finite time 7™ such that lim; »7+~ M(¢) = 0 . This means
thatlim, »7+ (||lu]|5 + | Vul|3) = +oo. Using lemma 2.1 and Poincaré inequality we obtain
||Au(t)||% — +o0ast — T*. This completes the proof.

E0) <

Remark 4.5 By lemma 2.6, the upper bounds of 7* can be estimated respectively according
to the sign of E(0). In the case (1)

1< MW
- M'(19)
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Furthermore, if M (to) < min{1, /=a/B}, we have

I, v/
V=B V=a/B— M)’
where « and § are defined in (4.25). In case (2),

T" <ty+

M (19)
T <t ,
<t + Ja
where « is defined in (4.25). In cases (3) and (4),
M (10) it a2\ P (p— 1) 2
T < = o T* <t 4270 - [1—1 Mt ‘Fl].
=/ or <+ <,32> iVa (14 cM 1))

Moreover, in case (3), o and § are defined in (4.26) and in case (4), o and B are defined in
(4.25).

Remark 4.6 We note that T is feasible provided that 77 > T*. However, the choice of
T1 in (4.17) is possible under some conditions. When E(0) < 0, from (4.23) it is clear

that M”(t) < 0. Therefore, % I:ljt‘/l/l'((tz))] =1- [M(I)M”(t)/(M’(t))z] > 1 and so llltl/l’((tt)) is
increasing. Since, by lemma 4.4 M’(0) < 0, in the case fQ(uoul + Vug.Vu)dx > 0 we

take 77 > — [g,((%)) which means

T > luoll3 + I Vuoll3
I= Joour + Vug.Vuy)dx

H i MO
M((tl)):l over (0, T*) gives us T* < _M’((o)y

Then we get T* < Tj. For the case fQ(uoul + Vup.Vup)dx < 0 by (4.8) we have
_ dO=(lluol3+1Vuol3) M) _

t* = 2(p+l§E(O) 2. and we choose T} > t* — W If E(0) = 0, then the con-

dition a’(0) > ||u0||% + ||Vu0||% implies that fQ(ugul + Vug.Vuy)dx > 0 and so we can

choose again 71 > —%—((00)). If 0 < E(0) < min{ky, ko} where

On the other hand, an integrating of %[

6+ 1
1= 31D [a'(0) = 2r2a(0) = (luoll3 + I Vuoli3)].
N (fgz(’/lOul + Vuo.Vul)dx)z

2 - 9
2(Ty + 1) (luoll3 + IVuoll3)

then we choose T such that 121 <T < 122 where
(fQ(ugul + Vuo.Vul)dx)2
2ki (luoll3 + 1Vuoll3)

A (IQ(MOMI + Vuo.Vul)dx)z
2E(0) (lluoli3 + IIVuoll3)

f=

)

4.2 Blow-up with initial energy less than potential well depth: the casep > m > 1

In this section we prove an unboundedness result, Theorem 2.10, for certain solutions of
(1.1)—(1.3) with non-positive initial energy as well as positive initial energy.
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Proof of Theorem 2.10 (i) See Theorem 4 in [11].
(i) On the contrary, under the conditions in Theorem 2.10, suppose that the existence time
of solution u(¢) can be extended to the whole interval [0, 00). Let

¢ = [u@®I3 + IIVu®|3. 4.27)
Twice differentiating of (4.27), it follows from (1.1) that

1 ! 1
3@ =t} + 1V (1 = [ ear)iau = [ Vs + i)

13
—/ Au(t)/ gt —t)(Au(t) — Au(r))dtdx—/ uu,lut|m_1dx.
Q 0 Q
By the Young’s inequality, for n > 0, we have
t 1 t
‘/ Au(t)/ gt — 7)(Au(r) — Au(t))drdx’ < n(g o Au)(1) + ﬂ/ g()dt || Aull2.
Q 0 0

(4.28)
Using (4.28) and (2.4), for n > 0, we have

1 Vi 2 2 1 ! 2
¢ (1) = |luells + \Vuells = — | g@dr |Aulls — | Vu.Vu,dx
2 4n Jo Q (4.29)

+ (I =n)(g o Au)) — / wuglu " dx — I(u(t)).
Q
For the sixth term in the right hand side of (4.29) we use the Holder’s inequality to obtain

‘/ uugug " dx

Taking 2 < m 4+ 1 < p + 1 into account and using the standard interpolation inequality we
have

< M@l e )11y 1- (4.30)

lu(llm+1 = IIM(t)Ilzllu(t)II,,H, (4.31)
where % 5+ p+1 = n%&-l which gives k = #7(;21) > (. Using lemma 4.1 we know that
1
| Au@ 3 < enllu@)123] (4.32)

for some oy > 0. Then, by (4.32) and lemma 2.1, we deduce

lu@l5 < Olzllu(t)IIPH, (4.33)

where o is a positive constant. Therefore, from (4.30),(4.31), (4.33) and Young’s inequality,
we have, for all § > 0,

/ wuglug " Ndx
Q

1- k (p+1)/(m+1)— (p+1)/</2|| (t)||(p+1)/(m+l)

= asllu®)|,_ Pl lleee () 11741

st (4.34)
1 +1
<3 {(m " 1) )05 + s 18 (et >/’”||u,(t)||:’;+1} :
for some a3 > 0. Hence, by the inequality (4.34), for any ¢ > 0, we can write
m—1 r+ m+1
‘/ uitg|ug " dx | < ellu)|, 4y +C(8)|Iut(t)||m+1, (4.35)
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and by the use of Young’s inequality, we get

/ Vu.Vu;dx
Q

By lemma 4.1 we know that

< &||Vull3 + c(&)|| Vi |13 (4.36)

I(u(t) < I1u()) +0(E©) — E(1))
< =@/ (luell3 + 1 Varll3) + (1 =6/2) (g o Att)(t) 437)
+(6/(p+ D) = Dlullp T+ (1 —0/2(1 - /0 g(0d) [ Aul +0E©).
Thus, by (4.29), and (4.35)-(4.37), we arrive at
1
50”0 +c@(IVul3 + il )

2] 6
> (1 - 5)(nufn% + 1V ll3) + (5 - n) (g 0 Au)(1)

GG 4) [ swar] 1o -
= = =l — T)dt
2 2 ) ® h
0 p+1 2 2029
+ (1 - s) a1 = el Vuli=(-25 )
Letting n = 6/2, in (4.38) and using (2.13) we have
1 0 1
58" +c@ (I1Vur 1} + il ) = axtl dul3 + (1 i s) el o
2 2a,0 (4.39)
— el Vul3—(=25 ).
p—1

In (4.39), foru € HOZ(Q), we know that ||u|| 2 () < 0o which implies that ||Vu||% < g is
bounded. Recalling remark 4.2, for sufficiently small e, from (4.39) we obtain

1
5070 + @ (IVu 1 + il 1)

0 ptl 2a> 2a-60
> (1 - —e) lullpi + (=7 ) (v D —coe— (=2 )i

P
(4.40)
0 2a) 2a,0
11— —— —¢ )| Aul? Dd — coe— d
>( P 8) I M||z+<p_1)(17+)1 co€ (p_])l
0 —1 2 1
> {1—7—<1+ colp )>e} PHD Ao
p+1 2(p + Ddy p—1
By integrating (4.40) from O to ¢, we get
1 / ! 2 m+1 1 /
0 +ee | (1B + @11 )de > A+ 59'0). @4
From (2.7), we know that
t
/ (nwz(r)u% + ||u,<r)||zi})dr <E0)—-E@) <d,, Vi=0. (4.42)
0
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Then, (4.41) gives us

1 1

Ed)’(t) > At + Ed)’(O) —c(e)dy, VYt =0. (4.43)
Integrating (4.43) over (0, 1), we have

¢ (1) > ArP+(¢'(0) — 2c(e)dy )t + $(0), Vi > 0. (4.44)

On the other hand, we estimate ¢ (¢) in the following form. By the Holder’s inequality we
have

2
u@® =

t
ug—}—/ u;(t)dt
0

t
< 2|u0|2+2tf (o) P,
0

Therefore, by Poincaré inequality, we get
2 2 ' 2
lu@®llz < 2lluollz +2f/ llus (1)112d1
0

t
< 2lluol + 201 / IVar (012t < 2luol3 + 2pdy, (4.45)
0
where p denotes the Poincaré constant. Similarly,
t
V()3 < 2[Vuoll3 + 2r/ Vi, (1) |13dt < 2| Vuo |3 + 2d;t. (4.46)
0

By (4.45) and (4.46) we obtain
o) <2¢0) + (1 + p)2dt. 4.47)

The inequality (4.44) says that the function ¢ grows at least as a quadratic function while
the inequality (4.47) shows that ¢ is a function at most of linear form. This is a contradiction
and so the proof of Theorem 2.10 is completed. O
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