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Abstract
The Laplace transform and Laguerre polynomials are applied to the solution of the Bagley–
Torvik equation. We first convert the fractional differential equation into the algebraic
equation by Laplace transform. Then, we find the numerical inversion of Laplace trans-
form by Laguerre polynomials. The fractional derivative is described in the Caputo sense.
Numerical examples are provided to demonstrate the accuracy and efficiency of the method.
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1 Introduction

In modeling the motion of a rigid plate immersed in Newtonian fluid, Torvik and Begley [23]
considered the fractional differential equation

Ay′′(t) + BD
3
2 y(t) + Cy(t) = f (t), (1)

subject to

y(0) = a0, y′(0) = a1. (2)

Here, y(t) represents the displacement of the plate of mass M and surface area S. The
constants A, B, and C are given by

A = M, B = 2S
√

μρ,
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where μ and ρ are the viscosity and density, respectively, of the fluid in which the plate is
immersed, and

C = k

where k is the stiffness of the spring to which the plate is attached. Finally, f (t) represents the
loading force. The operator Dα is the Caputo fractional derivative. The equation of existence
and uniqueness of the solution to this initial value problem have been discussed in [12,20].

Fractional differential equations have been found to bemore realistic inmodeling a variety
of physical phenomena, engineering processes, biological systems, and financial products
such as signal identification and image processing, optical systems, thermal system mate-
rials, control systems, etc. [13,26]. A considerable amount of work has been invested in
determining numerical solutions of the Bagley–Torvik equation. Podlubny [16] has investi-
gated the solution of this problem and proposed a numerical method in his book. Ray and
Bera [19] applied the Adomian decomposition method to solve the Bagley–Torvik equation
and obtained the same solution as that of Podlubny by Green’s function. Diethelm and Ford
[6] solved the problem with Adams predictor and corrector method. Cenesiz et al. [3,10]
proposed a new generalization of the Taylor collocation method for the numerical solution
of a class of fractional-order differential equations. Li and Ray [11,18] derived the Haar
wavelet operational matrix of the fractional-order integration and applied the method to the
Bagley–Torvik equation. Sakar et al. [21] presented a new reproducing kernel Hilbert space
method for boundary value problem of fractional Bagley–Torvik equation. In [2,7,14,15],
Chebyshev polynomial and hybrid functions were considered to find an approximate solu-
tion for the problem. Most recently, Balaji and Hariharan, Srivastava et al. [1,22] introduced
wavelet methods to solve fractional-order differential equations including the Bagley–Torvik
equation.

2 Basic definitions

In this section, we give some definitions and properties of the fractional calculus and Laplace
transform.

Definition 1 A real function f (t), t > 0, is said to be in the space Cμ,μ ∈ R, if there exists
a real number p > μ, such that f (t) = t ph1(t), where f1(t) ∈ C(0,∞), and it is said to be
in space Cn

μ if and only if f (n) ∈ Cμ, n ∈ N .

Definition 2 The fractional derivative Dα of f (t) in the Caputo’s sense is defined as

Dα f (t) = 1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 f (n)(τ )d(τ ), (3)

for n − 1 < α ≤ n, n ∈ N , t > 0, f (t) ∈ Cn−1.

Definition 3 The Laplace transform of a function f (t), t > 0 is defined as

L[ f (t)] = F(s) =
∫ +∞

0
e−st f (t)dt, Re(s) > σ0, (4)

where σ0 is the abscissa of convergence.

It has following properties:

L[a f (t) + bg(t)] = aL[ f (t)] + bL[g(t)], (5)
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where a, b are constants.

Theorem 1 The Laplace transform L[ f (t)] of the Caputo derivative is defined as [16]

L[Dα f (t)] = sαF(s) −
n−1∑
k=0

sα−k−1 f (k)(0), (6)

for n − 1 < α ≤ n.

3 Solution of the Bagley–Torvik equation

In this section, we solve the Bagley–Torvik equation (1) and (2) using Laplace transform and
Laguerre polynomial. First, we apply the Laplace transform to both sides of (1)

L[Ay′′(t)] + L
[
BD

3
2 y(t)

]
+ L[Cy(t)] = L[ f (t)]. (7)

Using the (5), (6), and initial conditions given in (2), we get

L[y(t)] = L[ f (t)] + Asa0 + Aa1 + Bs
1
2 a0 + Bs− 1

2 a1

As2 + Bs
3
2 + C

. (8)

The solution is followed by numerical inversion of Laplace transform. In [8,9,24,25], an
algorithm for numerical inversion of Laplace transform is given. The method is based on the
Laguerre expansion of y(t).

y(t) = eσ t
∞∑
k=0

cke
−bt Lk(2bt), (9)

where Lk(2bt) is the Laguerre polynomial of degree k, while σ > σ0 and b > 0 are
parameters of the series, and the coefficients ck are the Taylor coefficients of

Φ(z) = 2b

1 − z
F

(
σ + 2b

1 − z
− b

)
=

+∞∑
n=0

cnz
n, |z| < R, (10)

where R is the radius of convergence of the series on the right side in (10). Theoretical
estimates for the optimal parameters σ and b were derived in [25], and a subroutine for
computing them may be found in [9]. Numerically, the ck can be computed using the equally
accurate mid-point rule which avoids the singular point. The ck is given by

ck = e−ikh/2

2N

N−1∑
j=−N

Φ(eiθ j+1/2)eikθ j , k = 0, 1, 2, . . . , N − 1,

where θ j = jh, h = π/N . This can be computed as a FFT of length 2N . The corresponding
approximation to y(t) given by (9) is

yN (t) = eσ t
N∑

k=0

cke
−bt Lk(2bt). (11)

Naturally, besides the choices for σ and b, the success or failure of such an algorithm depends
on the accuracy of the approximations ck and on how many N of these are calculated.
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4 Error analysis

In this section, we analyze the error of the method described in Sect. 3. In [25] the author
identified three sources of error associated with the Laguerre expansion. First, there is the
truncation error arising from truncating the series to N terms. Second, the expansion coeffi-
cients ci are computed numerically and not analytically. This particular error is referred to
as the discretization error. Third, the inversion of the Laplace transform is well known to be
an ill-conditioned problem. Thus, the actual expression employed in estimating y(t) is

ỹN (t) = eσ t
N∑

k=0

c̃k(1 + εk)e
−bt Lk(2bt),

where εk denotes the relative error in the floating point representation of computed coeffi-
cients. We define the absolute error e(x) as the difference between the function y(t) and its
computed solution. Considering the fact that |e−bx Lk(2bx)| ≤ 1, we get

e(t) =| y(t) − ỹN (t) |≤ eσ t (T + D + C),

where

T =
∞∑

k=N

|ck |, D =
N−1∑
k=0

|ck − c̃k |,C = ε

N−1∑
k=0

|̃ck |,

are the truncation, discretization, and conditioning error bounds, respectively. ε is themachine
round-off unit so that for each k, |εk | ≤ ε. From [5,25], the discretization error can be
neglected when compared with the truncation and conditioning errors. Therefore, we mainly
refer to the truncation error T and conditioning error C . In [4,25], the upper bound of T and
C were given

T ≤ k(r)

r N (r − 1)
, C ≤ ε

rk(r)

r − 1
,

which is valid for each r ∈ (1, R). Therefore, we can get the following error bounds

e(x) ≤ k(r)

r N (r − 1)
+ ε

rk(r)

r − 1
.

5 Numerical examples

In this section, we demonstrate the effectiveness and simplicity of the proposed method with
three examples.

Example 1 First, we consider the following Bagley–Torvik equation

y′′(t) + y
3
2 (t) + y(t) = 2t1/2

Γ (3/2)
+ t2 − t,

with the initial conditions

y(0) = 0, y′(0) = 1,

where the exact solution is y(t) = t2 − t . We apply the method described in Sect. 3 with
N = 4, 8, 16 and different values of σ , b to solve the problem. The results are listed in
Tables 1 and 2.
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Table 1 The absolute errors
between the exact and
approximate solutions with
σ = 1, b = 1

t N = 4 N = 8 N = 16

0 1.5047e−014 9.5353e−015 4.1144e−015

1 1.7582e−014 1.3515e−014 7.6940e−015

2 8.9032e−014 8.9111e−014 2.8003e−015

3 9.7053e−014 1.3887e−014 1.4567e−014

4 9.1094e−014 2.4611e−014 1.8228e−013

5 3.8962e−013 4.0562e−014 3.6369e−013

6 4.3076e−013 3.6224e−013 1.0689e−012

7 1.4612e−012 2.1358e−012 1.4272e−012

8 2.1779e−012 7.1096e−012 5.0218e−012

9 2.8972e−012 1.8478e−011 2.4307e−011

10 5.7253e−012 3.9791e−011 5.5756e−011

Table 2 The absolute errors
between the exact and
approximate solutions with the
optimal σ and b

t N = 4 N = 8 N = 16

0 3.6760e−015 7.9907e−015 3.2231e−015

1 1.3514e−014 8.5321e−015 4.7367e−015

2 2.2263e−014 9.0564e−015 2.8003e−015

3 3.5530e−014 1.9213e−014 8.7634e−015

4 6.1038e−014 1.8368e−014 2.8763e−014

5 8.0283e−014 3.5527e−014 6.6076e−014

6 2.8657e−013 3.6224e−013 7.1067e−013

7 1.9417e−012 7.1283e−013 7.9034e−013

8 2.5082e−012 7.1067e−013 1.4244e−013

9 2.8677e−012 5.6987e−012 3.6879e−012

10 4.2300e−012 5.9096e−012 5.6844e−012

Example 2 In this example, we consider the following equation

y′′(t) + 1

2
D

3
2 y(t) + 1

2
y(t) = g(t)

subject to the initial condition y(0) = 0, y′(0) = 0, where

g(t) =
{
8, 0 ≤ t ≤ 1;
0, t > 1.

The problem was considered in [3,14,17,18]. We applied the present method to solve the
problem with N = 8, 16, 32. The numerical solutions obtained by the present method and
other numerical methods such as the wavelet method [18] and hybrid functions method
[14] are given in Tables 3, 4. Clearly, the numerical results show that the present method is
effective and its accuracy is comparable with existing methods. The numerical results with
N = 8, 16, 32 and the exact solution are plotted in Fig. 1. The approximate solutions using
the present method show excellent agreement with the exact solutions.
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Table 3 Comparison of the numerical results of the wavelet and present method for Example 2

t Wavelet method [18] Our method N = 32 Exact solutions

1 3.53856 2.952334322 2.952583880

2 7.53718 6.759933619 6.760110396

3 8.28540 7.666180255 7.666141755

4 6.26126 6.077059097 6.077249465

5 2.53055 2.944185916 2.943935566

6 −1.49195 −0.524995338 −0.525171420

7 −4.50898 −3.246190169 −30246304280

8 −5.72074 −4.550474253 −4.550290680

9 −5.00085 −4.302806466 −4.302864780

10 −2.84029 −2.848368531 −2.848380860

Table 4 Comparison of the numerical results of the hybrid function and present method for Example 2

t Method in [14]
M = 3, N = 8

Our method N =
8

Our method N =
16

Exact solutions

0.1 0.0364875 0.0364873 0.0364875 0.0364875

0.2 0.1406398 0.1406371 0.1406397 0.1406396

0.3 0.3074848 0.3074913 0.3074847 0.3074846

0.4 0.5332842 0.5332766 0.5332836 0.5332841

0.5 0.8147568 0.8147147 0.8147582 0.8147569

0.6 1.1488372 1.1489004 1.1488483 1.1488374

0.7 105325655 1.5328108 1.5325378 1.5325654

0.8 1.9630293 1.9638100 1.9630138 1.9630292

0.9 2.4373338 2.4368698 2.4378968 2.4373339

0 5 10 15 20
−6

−4

−2

0

2

4

6

8

 

 
exact solution
N=8
N=16
N=32

Fig. 1 Exact solution and numerical solution for N = 8, 16, 32
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Table 5 Comparison of the maximum absolute errors for different values of α for Example 3

N Method in [7] α = 1 Our method α = 1 Method in [7] α = 4π Our method α = 4π

8 4.3e−07 7.6e−07 4.7e−01 8.9e−01

16 1.8e−08 4.7e−14 3.5e−05 1.4e−02

32 7.1e−10 3.9e−14 1.4e−06 4.5e−09

48 9.9e−11 1.1e−14 1.9e−07 5.2e−12

64 2.4e−11 5.6e−15 4.8e−08 1.0e−13

Table 6 Comparison of the
absolute errors with α = 1 for
different values of N for
Example 3

t N = 8 N = 16 N = 32 N = 64

0.1 9.8393e−13 1.0765e−16 3.7943e−17 1.3887e−15

0.2 6.6863e−12 2.7759e−15 2.7756e−15 2.7810e−15

0.3 1.3441e−10 5.5514e−15 2.7641e−16 5.5512e−15

0.4 3.5890e−10 4.5770e−16 5.5515e−15 1.1102e−14

0.5 9.6181e−10 5.5512e−15 6.6969e−16 1.1105e−14

0.6 7.9045e−09 1.0169e−15 1.1112e−14 3.9343e−16

0.7 2.8201e−08 2.2891e−16 1.7059e−16 2.4006e−17

0.8 7.8103e−08 9.1333e−16 1.1102e−14 4.1448e−16

0.9 1.4961e−07 1.1145e−14 1.1104e−14 3.0629e−16

1.0 7.6015e−07 4.7293e−14 1.1103e−14 1.1105e−14

Table 7 Comparison of the
absolute errors with α = 4π for
different values of N for
Example 3

t N = 32 N = 64 N = 128 N = 512

0.1 1.7582e−11 1.3515e−13 7.6940e−14 1.7548e−15

0.2 8.9031e−10 2.7759e−13 2.8001e−14 8.1793e−15

0.3 9.7052e−09 8.9110e−13 1.4566e−13 8.9034e−14

0.4 9.1093e−09 1.3887e−12 1.8227e−13 3.3962e−14

0.5 3.8962e−09 2.4610e−12 3.6368e−13 9.1911e−14

0.6 4.3076e−08 4.0562e−12 1.0688e−13 4.2082e−14

0.7 1.4611e−08 3.6223e−11 1.4271e−12 3.5566e−14

0.8 2.1779e−07 2.1358e−11 5.0218e−12 1.5624e−13

0.9 2.8971e−06 7.1095e−11 2.4306e−11 2.4375e−13

1.0 5.7252e−06 1.8477e−10 5.5756e−11 6.6290e−12

Example 3 Consider the following Bagley–Torvik equation

y′′(t) + y
3
2 (t) + y(t) = f (t),

with the initial conditions

y(0) = 0, y′(0) = α,

where the exact solution is y(t) = sin(αt). This problem has been considered in [7]. We
applied the present method to solve the problem with various choices of α and N . In Table 5,
we compared the maximum absolute errors of the approximate solutions obtained by the
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Fig. 2 Exact solution and numerical solution for N = 16, α = 1

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y(
t)

N=32,α=4π

 

 
Exact solution
Numerical solution

Fig. 3 Exact solution and numerical solution for N = 32, α = 4π

present method and the Chebyshev collocation method in [7]. Tables 6, 7 also show that the
approximate solutions using the present method are consistent with the exact solutions for
α = 1, and 4π . In Figs. 2, 3, we plot the approximate solutions by the proposed method for
different values of α and the exact solution.
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6 Conclusion

In this work, we used a method based on Laplace transform and Laguerre polynomials
to solve the Bagley–Torvik equation. The numerical solution obtained using the proposed
method shows that this method can solve the problem effectively. The results prove that
the proposed method is a very powerful, efficient, and simple mathematical tool for solving
fractional differential equations in the field of Newtonian fluids.
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