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Abstract
In this paper we deal with asymptotic behaviour of renormalized solutions un to the nonlinear
parabolic problems whose model is

⎧
⎪⎨

⎪⎩

(un)t − div(an(t, x,∇un)) = μn in Q = (0, T ) × �,

un(t, x) = 0 on (0, T ) × ∂�,

un(0, x) = un
0 in �,

where � is a bounded open set of RN , N ≥ 1, T > 0 and un
0 ∈ C∞

0 (�) that approaches u0

in L1(�). Moreover (μn)n∈N is a sequence of Radon measures with bounded variation in Q
which converges to μ in the narrow topology of measures. The main result states that, under
the assumption of G-convergence of the operators An(v) = −div(an(t, x,∇vn)), defined
for vn ∈ L p(0, T ; W 1,p

0 (�)) for p > 1, to the operator A0(v) = −div(a0(t, x,∇v)) and up
to subsequences, (un) converges a.e. in Q to the renormalized solution u of the problem

⎧
⎪⎨

⎪⎩

ut − div(a0(t, x,∇u)) = μ in Q = (0, T ) × �,

u(t, x) = 0 on (0, T ) × ∂�,

u(0, x) = u0 in �.

The proposed renormalized formulation differs from the usual one by the fact that truncated
function Tk(un) (which depend on the solutions) are used in place of the solutions un . We
prove existence of such a limit-solution and we discuss its main properties in connection with
G-convergence, we finally show the relationship between the new approach and the previous
ones and we extend this result using capacitary estimates and auxiliary test functions.
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1 Introduction

We are interested in the asymptotic behaviour of the solutions un to the (homogeneous)
parabolic problems

⎧
⎪⎨

⎪⎩

(un)t − div(an(t, x,∇un)) = μn in (0, T ) × �,

un(t, x) = 0 on (0, T ) × ∂�,

un(0, x) = un
0 in �,

where � is a bounded open subset of R
N , N ≥ 2, (un

0)n∈N is a sequence of smooth
functions that approaches u0 in L1(�), (μn)n∈N is a sequence of Radon measures with
bounded total variation on Q = (0, T ) × � which converges to μ in the narrow topology
of measures, and (an(t, x, ζ ))n∈N are Carathéodory functions such that the correspond-
ing operators An : L p(0, T , W 1,p

0 (�)) �→ L p′
(0, T ; W −1,p′

(�)), defined by An(vn) =
−div (an(t, x,∇vn)), turn out to be monotone, continuous and coercive between the Sobolev
space L p(0, T ; W 1,p

0 (�)), p > 1, and its dual space L p′
(0, T , W −1,p′

(�)), 1
p + 1

p′ = 1.

Under these assumptions, for every Fn ∈ L p′
(Q) and u0 ∈ L2(�) there exists a unique

variational solution vn to the problem
{

(vn)t − div(an(t, x,∇vn)) = Fn in Q = (0, T ) × �,

vn(0, x) = un
0 in �, vn(t, x) = 0 on (0, T ) × ∂�,

that is a unique function vn ∈ W ∩ C(0, T ; L2(�)) in the weak sense
⎧
⎪⎨

⎪⎩

−
∫

�
un
0w(0)dx −

∫ T

0
〈wt , vn〉dt +

∫

Q
a(t, x, ∇vn) · ∇w dxdt =

∫ T

0
〈Fn, w〉, ∀w ∈ W

with w(T ) = 0, W = {u ∈ L p(0, T ; V ), ut ∈ L p′
(0, T ; V ′)} and V = W 1,p

0 (�) ∩ L2(�),

(1.1)
where 〈·, ·〉 denotes the usual duality pairing between the spaces W 1,p

0 (�) ∩ L2(�) and
(W −1,p′

(�) ∩ L2(�))′ (see [46] for the case p ≥ 2 and [44] for 1 < p < 2). Let emphasize
that variational solutions are solutions to problems with L p′

(Q)-data. This kind of problems
has been largely studied in different context, but here the obtained results are related to the
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Homogenization of a nonlinear parabolic problem… 3

theory of homogenization, which is the study of the asymptotic behaviour for solutions of
(1.1) corresponding to an(t, x, ζ ) = a(nt, nx, ζ ), n ∈ N, with suitable periodicity assump-
tions on a(·, ·, ζ ). If there exists A0(v) = −div(a0(t, x,∇v)) : L p(0, T ; W 1,p

0 (�)) �→
L p′

(0, T ; W −1,p′
(�)) such that for every F ∈ L p′

(Q), the solutions vn of (1.1) converge
weakly in L p(0, T ; W 1,p

0 (�)) to the variational solution v of the problem

{
vt − div(a0(t, x,∇v)) = F in Q = (0, T ) × �,

v(0, x) = u0 in �, v(t, x) = 0 on (0, T ) × ∂�,

and the momenta an(t, x,∇vn) converge to a0(t, x,∇v)weakly in (L p′
(Q))N , the sequence

An is said to be G-converging (or H -converging) to A0. Hence the sequence of operators
(An) G-converges to A0 if the asymptotic behaviour of solutions corresponding to An is
described by the problem corresponding to A0. In the case of the theory of Homogenization:
the operator A0 represents the macroscopic model associated to the microscopic structures
described, at different scale, by An . Recall that the notion of G-convergence was introduced
in Spagnolo [73] for parabolic operators (the name comes from the fact that G-convergence
is defined in terms of Green’s operators), the extension to the elliptic case is defined in
[72], especially to the second order symmetric linear elliptic operators in [71] (See also
[55,68,69] for problemswith lower order terms and [50,70,78] for non-symmetric case where
the last two authors use the name H -convergence, H stands for Homogenization). For the
case of elliptic operators with arbitrary order we refer to [54,79], for the parabolic case
we refer to Colombini and Spagnolo [19,20] and Spagnolo [74], while the arbitrary order
case is studied in [80] and for a class of non-divergence parabolic operators in [81]. The
properties of G-convergence for some classes of quasi-linear elliptic operators with linear
principal part are studied in [5,8,10,58] and also [40] for the study of conditions under
which the weak convergence of coefficients implies the G-convergence of the corresponding
operators. The case of quasi-linear monotone operators in divergence form was studied by
Tartar (unpublished notes, 1981), by Pankov [56], Del Vecchio [28], and Francu [32] under
some equi-continuity assumptions, by Chiado Piat et al. [18] and Defranceschi [27] without
any continuity conditions. The relationship between G-convergence of quasi-linear elliptic
monotone operators and�-convergence of the corresponding convex functionals is studied in
[26], the case of degenerate monotone operators in divergence form is considered in [25]. A
discrete notion of G-convergence for finite difference equations can be found in [41], we refer
to [39,42,43] for the case of quasi-linear parabolic operators and [21,75] for hyperbolic case
(see also [14,22,38,57] for more references). As a consequence of stability properties proved
in the context of Dirichlet problems with elliptic operators and measure data [23,48,49], we
drive such new results for parabolic problems with measures which depend on time and the
extension to more general spaces seems to be always possible. We consider, as starting point,
a sequence (An) of operators in divergence form G-converging to an operator A0 of the same
form. Hence A0 is a good model for the asymptotic behaviour of the variational solutions
of (1.1). The main point is to study the possibility to describe the asymptotic behaviour
of solutions corresponding to the operators An in the case where μ lies in the space of
measures, some partial results can be found in [67] when μ lies in L1(Q) and in [1,61] in the
case of “uniform” convergence of an(t, x, ζ ) (see for instance [62] for nonexistence results
(concentration phenomena) and [2] for blowing-up problems). In particular if 0 < α < β

and M(α, β) is the set of all matrices A(t, x) ∈ (L∞(Q))N×N such that

A(t, x) ζ · ζ ≥ α|ζ |2, A−1(t, x) ζ · ζ ≥ β−1|ζ |2 ∀ζ ∈ R
N ,
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4 M. Abdellaoui, E. Azroul

and if (An) ∈ M(α, β) G-converges to A0 ∈ M(α, β), then the above assumptions implies
that the adjoint matrices (An) G-converges to the adjoint A0 of A0. Letting μ be a fixed
measure with bounded variation in Q, we consider the solutions un of problems

{
(un)t − div(An(t, x)∇un) = μn in Q,

un(0, x) = un
0 in �, un(t, x) = 0 on (0, T ) × ∂�.

(1.2)

Regardless of the assumptions on An , compactness results on the solutions of problems (1.2)
plays a crucial role in the existence and uniqueness of solutions (un) (see [9,66,76]), un is
a solution of (1.2) if un ∈ Lq(0, T ; W 1,q

0 (�)) ∩ L∞(0, T ; L1(�)) for every q < p − N
N+1

and, for every fn ∈ L∞(Q), un satisfies
∫

�

un
0vn(0)dx +

∫

Q
un fndxdt =

∫

Q
vndμn, (1.3)

where vn is the variational solution to
{

(vn)t − div(An(t, x)∇vn) = fn in Q = (0, T ) × �,

vn(0, x) = un
0 in �, vn(t, x) = 0 on (0, T ) × ∂�.

On the other hand, solution un of (1.2) is unique and that there exists C > 0, depending
only on N , α and β, such that ‖un‖

Lq (0,T ;W 1,q
0 (�))

≤ C (see [60,66]). Precisely, we can

extract a subsequence (un) which converges weakly in Lq(0, T ; W 1,q
0 (�)) to a function u.

In particular, (un) converges to u strongly in L1(Q), and then

lim
n→+∞

∫

Q
un fndxdt =

∫

Q
u f dxdt, (1.4)

for every f ∈ L∞(Q). As a consequence of G-convergence hypothesis on the operators, the
solutions vn converge weakly in L2(0, T ; H1

0 (�)) to the solution v of problem
{

vt − div(A0(t, x)∇v) = f in Q = (0, T ) × �,

v(0, x) = u0 in �, v(t, x) = 0 on (0, T ) × ∂�.

As a consequence of classical regularity results, (vn) turns out to be a sequence of equi-Hölder
continuous functions and hence the sequence converges to v uniformly in Q. We then have

lim
n→∞

∫

Q
vndμn =

∫

Q
vdμ,

which, together with (1.3)–(1.4), implies that u is solution of problem
{

ut − div(A0(t, x)∇u) = f in Q = (0, T ) × �,

u(0, x) = u0 in �, u(t, x) = 0 on (0, T ) × ∂�,

and the whole sequence (un) converges to u. Losely speaking, the method of G-convergence
of linear operators with measures allows to describe a similar model valid for variational
solutions. It is worth noting that, in this paper, such a construction can be achieved (at least
with the same technique) as far as nonlinear parabolic operators are concerned. Note that
in this case we miss two important properties: first, the fact that the formulation in terms of
duality (1.3) translates the problem of the passage to the limit for solutions corresponding to
measure data in a problem of convergence of solutions corresponding to regular data (solved
by the assumption of G-convergence) (see [60,76]), Second, the property that in the linear
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Homogenization of a nonlinear parabolic problem… 5

case the solution corresponding to measure data is unique, while for nonlinear equations
the uniqueness of the solution for general measure data is still an open problem [61,63], we
would like to emphasize that due to the first difficulty we are led to choose to set our results in
the framework of the so-called renormalized solution given in [61] in the context of parabolic
problems {

(un)t − div(an(t, x,∇un)) = μn in Q = (0, T ) × �,

un(0, x) = un
0 in �, un(t, x) = 0 on (0, T ) × ∂�.

(1.5)

Let us recall that the main property of renormalized solutions un of (1.5) is that all truncations
Tk(un) are variational solutions of the boundary value problems (adapted to its truncations)
defined by

{
(Tk(un))t − div(an(t, x,∇Tk(un)) = μk,n in Q = (0, T ) × �,

Tk(un)(0, x) = Tk(u
n
0) in �, Tk(un)(t, x) = 0 on (0, T ) × ∂�,

(1.6)

where μk,n are suitable regular measures (more precisely μk,n does not charge sets of zero
parabolic p-capacity) which converges to μ as k goes to +∞. Our results are actually in the
same spirit as those in [48] which concern the elliptic equation

−div(an(x,∇un)) = μn, in �, un = 0 on ∂�.

The paper is planned in the following way, in Sect. 2 we will precise the notion of capacity
and some basic properties of measures and we will state the main result using assumptions
on Leray–Lions operators and the definitions of renormalized solutions, whose proof, which
is rather technical, is left to Sect. 3, where the strategy is to pass to the limit as n →
+∞ in (1.6) for every k > 0 fixed, instead of trying to pass to the limit in the original
problems. This approach has the advantage of attacking the problem from a variational point
of view. Nevertheless, the passage to the limit in (1.6) cannot be performed directly using
the hypothesis of G-convergence of the operators, due to the presence of varying right-hand
sides, that converge only in a very weak sense. First we prove some a priori estimates on
the elements un , Tk(un), an(t, x,∇un), an(t, x,∇Tk(un)) and μk,n in order to obtain a limit
equation where information about operators and data are lost (Sect. 4). As a consequence,
we reconstruct the datum in Sect. 5, and following the approach of Minty’s Lemma, we
reconstruct the operator in Sect. 6. Because of the lack of uniqueness result, we obtain that
for every fixed μ and for every choice of a sequence of renormalized solutions to problem
(1.5) it is possible to extract a subsequence (possibly depending on μ) which converges to a
renormalized solution of the problem corresponding to the G-limit A0 and with datum μ.

2 Preliminaries and general results

Let � ⊆ R
N be a bounded open set, N ≥ 2, and let p and p′ be two real numbers with

1 < p ≤ N and 1
p + 1

p′ = 1. Let us fix some notations. Henceforward, we will consider,

respectively, |ζ | and ζ · ζ ′ the Euclidean norm of a vector ζ ∈ R
N and the scalar product

between ζ and ζ ′ ∈ R
N . For formally, a certain property holds almost everywhere (or a.e.)

if it holds for all cases except for a certain subset which is very small. Frequently it will be
convenient to describe situations that hold except on sets of zero measure. So by convention,
a property is said to holdμ-almost everywhere (μ-a.e.) if the set of points on which it doesn’t
hold has μ-measure zero, similarly, this notations can be used in the case of convergence.
Moreover, in what follows, ω will indicate any quantity that vanishes as the parameters in its
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6 M. Abdellaoui, E. Azroul

argument go to their (obvious, if not explicitly stressed) limit point with the same order in
which they appear.

2.1 Capacity

For every Borel set B ⊆ Q, its p-capacity capp(B, Q) with respect to Q is defined by (see
[37,65])

capp(B, Q) = inf {‖u‖W },
where the infimum is taken over all the functionsu ∈ W such thatu ≥ 1 a.e. in a neighborhood
of B. We say that a property P(t, x) holds capp-quasi everywhere if P(t, x) holds for every
(t, x) outside a subset of Q of zero p-capacity. A function u defined on Q is said to be
capp-quasi continuous if for every ε > 0 there exists Bε ⊆ Q with capp(Bε, Q) < ε such
that the restriction of u to Q\B is continuous. It is well known that every function in W2

defined by

W2 =
{

u ∈ L2(0, T ; W 1,p
0 (�)) ∩ L∞(Q); ut ∈ L p′

(0, T ; W −1,p′
(�)) + L1(Q)

}
,

has a unique capp-quasi continuous representative ũ, whose values are defined (and finite)
capp-quasi everywhere in Q. In what follows we always identify a function u ∈ W2 with its
capp-quasi continuous representative ũ. A set E ⊆ Q is said to be capp-quasi open if for
every ε > 0 there exists an open set Uε such that E ⊆ Uε ⊆ Q and capp(U\E, Q) ≤ ε. It
can be easily seen that, if u is a capp-quasi continuous function, then for every k ∈ R the
sets {u > k} = {(t, x) ∈ Q : u(t, x) > k} and {u < k} = {(t, x) ∈ Q : u(t, x) < k} are
capp-quasi open. The characteristic function of a capp-quasi open set can be approximated
by a monotonic sequence of functions in the energy space W2, as stated in the following
lemma (see [31, Theorem 2.11, Lemma 2.20]).

Lemma 2.1 For every capp-quasi open set E ⊆ Q, there exists an increasing sequence (wn)

of nonnegative functions in W which converges to χE capp-quasi everywhere in Q.

2.2 Truncations

For every k > 0, we define the truncation function Tk : R �→ R (see Fig. 1) by Tk(s) :
max(−k,min(k, s)). Let us consider the space T 1,p

0 (Q) of all functions u : Q → R which

are measurable and finite a.e. in Q, and such that Tk(u) belongs to L p(0, T ; W 1,p
0 (�)) for

every k > 0. It is easy to see that every function u ∈ T 1,p
0 (Q) has a capp-quasi continuous

Fig. 1 The function Tk (s)
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Homogenization of a nonlinear parabolic problem… 7

representative, that will always be identified with u. Moreover, for every u ∈ T 1,p
0 (Q),

there exists a measurable function v : Q �→ R
N such that ∇Tk(u) = vχ{|u|≤k} a.e. in

Q, for every k > 0, and v is unique up to almost everywhere equivalence [4, Lemma
2.1]. Hence it is possible to define a generalized gradient ∇u of u ∈ T 1,p

0 (Q), setting
∇u = v. If u ∈ L1(0, T ; W 1,1(�)), the gradient coincides with the usual one, while for
u ∈ L1(0, T ; L1

loc(�)), it may differ from the distributional gradient of u.

2.3 Measures

Let us denote withMb(Q) the set of all Radon measures on Q with bounded total variation
and Cb(Q) the space of all bounded, continuous functions on Q, so that

∫

Q ϕdμ is defined
for ϕ ∈ Cb(Q) and μ ∈ Mb(Q) where the positive, the negative and the total variation
parts of a measure μ in Mb(Q) are denoted by μ+, μ− and |μ|, respectively. We recall
that for a measure μ in Mb(Q) and a Borel set E ⊆ Q, the measure μ � E is defined by
(μ�E)(B) = μ(E ∩ B) for any Borel set B ⊆ Q. Analogous, we define M0(Q) as the set
of all measures μ in Mb(Q) with bounded variation over Q that does not charge the sets of
zero parabolic p-capacity that is if μ ∈ M0(Q) then μ(B) = 0 for every Borel set B ⊆ Q
such that capp(B, Q) = 0, while Ms(Q) will be the set of all measures μ in Mb(Q) for
which there exists a Borel set E ⊂ Q, with capp(E, Q) = 0, such that μ = μ�E .

Remark 2.2 A measure μ0 ∈ M0(Q) if and only if for every ε > 0, there exists δ > 0 such
that μ0(B) < ε for every Borel set B ⊆ Q with capp(B, Q) < δ.

Proposition 2.3 If μ0 ∈ M0(Q) and if v is a function in W2. Then v is measurable
with respect to μ0. If v further belongs to L∞(Q), then v belongs to L∞(Q, μ0) and
‖v‖L∞(Q,μ0) = ‖v‖L∞(Q).

Proof See [59, corollary 4.9]. ��
Thanks to this result and to the dominated convergence theorem, we derive the following

limit

Corollary 2.4 If μ0 ∈ M0(Q) and (vn) ∈ W2∩L∞(Q), bounded in L∞(Q), which converges
to a function v capp-quasi everywhere. Then (vn) converges to v μ0-almost everywhere, and

lim
n→0

∫

Q
vndμ0 =

∫

Q
vdμ0.

Remark 2.5 Let (ρn) be a sequence of L1(Q)-functions converging to ρ weakly in L1(Q).
Let (�n) be a sequence of functions belonging to L∞(Q), bounded in the same space, and
converging a.e. in Q to a function �. Then, according to the Egorov theorem, we have

lim
n→0

∫

Q
�nρndxdt =

∫

Q
�ρdxdt,

this result will be often used in what follows.

On the other hand, if (vn) is a sequence of functions in W2 which converges weakly to v, then
for every μ0 ∈ M0(Q) the sequence (vn) converges to v in μ0-measure (see [16]). Before
passing to the convergence results, let us state an interesting result about the decomposition
of measures in M0(Q).
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8 M. Abdellaoui, E. Azroul

Lemma 2.6 If μ0 ∈ M0(Q) then, there exist a decomposition ( f , G, g) of μ0 such that μ0 =
f − div(G) + gt where f ∈ L1(Q), G ∈ (L p′

(Q))N and g ∈ L p(0, T ; W 1,p
0 (�)) ∩ L2(�).

Moreover
∫

Q
vdμ0 =

∫

Q
v f dxdt +

∫ T

0
G · ∇v dxdt +

∫ T

0
〈vt , g〉dt

for every v ∈ W ∩ L∞(Q).

Proof See [31, Theorem 2.1]. ��
The standard argument of Lemma 2.6 plays a key role in the proof of the following conver-
gence result.

Lemma 2.7 If μ0 ∈ M0(Q) and (vn) is a sequence of functions in W2 ∩ L∞(Q) which
converges to a function v ∈ W2 ∩ L∞(Q) weakly in W2 . Assume that ‖vn‖L∞(Q) ≤ C for
every n ∈ N. Then (vn) converges to v strongly in L2(Q, μ0).

Let us state a general decomposition result of measures in μ ∈ Mb(Q) and used several
times in the next.

Theorem 2.8 Let μ ∈ Mb(Q), then there exists a unique decomposition (μ0, μs) such that
μ = μ0 + μs , μ0 ∈ M0(Q) and μs ∈ Ms(Q).

Proof See [33, Lemma 2.1]. ��
Recall that a sequence (μn) of measures in Mb(Q) converges to a measure μ in Mb(Q) in
the narrow topology of measures if

lim
n→+∞

∫

Q
ϕdμn =

∫

Q
ϕdμ (2.2)

for every ϕ ∈ Cb(Q). If (2.2) holds for all continuous functions ϕ with compact support in
Q (i.e. ϕ ∈ Cc(Q)), then it coincides with the usual weak-* convergence in Mb(Q).

Remark 2.9 Recall also that a sequence of nonnegative measures (μn) converges to μ in the
narrow topology if and only if it converges to μ in the weak-* topology, and the masses
(μn(Q)) converges to μ(Q). Then, for nonnegative measures, the narrow convergence is
equivalent to the convergence in (2.2) for every ϕ ∈ C∞(Q).

2.4 The operator

A function a : Q×R
N → R

N is said to be a Carathéodory function if a(·, ·, ζ ) is measurable
on Q for every ζ ∈ R

N and a(t, x, ·) is continuous onRN for almost every (t, x) in Q. Fixed
two constants c0, c1 > 0 and a nonnegative function b0 ∈ Ls(Q), s > N

p , we say that

a : Q × R
N → R

N satisfies hypothesis H(c0, c1, b0) if for almost every (t, x) ∈ Q the
following assumptions hold

a(t, x, ζ ) · ζ ≥ c0|ζ |p ∀ζ ∈ R
N , (2.3)

|a(t, x, ζ )| ≤ b0(t, x) + c1|ζ |p−1 ∀ζ ∈ R
N , (2.4)

(a(t, s, ζ ) − a(t, x, ζ ′)) · (ζ − ζ ′) > 0 ∀ζ, ζ ′ ∈ R
N , ζ �= ζ ′. (2.5)

Remark 2.10 We observe that if a(t, x, ζ ) is a Carathéodory function satisfying (2.3), then
a(t, x, 0) = 0 for a.e. (t, x) in Q.
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Thanks to the assumptions (2.3)–(2.5), the differential operator u �→ −div(a(t, x,∇u)) turns
out to be a coercive and monotone operator acting from the space L p(0, T ; W 1,p

0 (�)) into
its dual space L p′

(0, T ; W −1,p′
(�)). It is well known, by the standard theory of monotone

operators (see for instance [45,46]), if F ∈ L p′
(Q), then there exists a unique variational

solution v of the problem
{

vt − div(a(t, x,∇v)) = f in Q = (0, T ) × �,

v(0, x) = u0 in �, v(t, x) = 0 on (0, T ) × ∂�,
(2.6)

in the sense that v belongs to W ∩ C(0, T ; L2(�)) and

−
∫

�

u0ϕ(0)dx−
∫ T

0
〈ϕt , v〉dt+

∫

Q
a(t, x,∇v)·∇ϕdxdt =

∫ T

0
〈F, ϕ〉

W−1,p′
,W 1,p

0
dt, (2.7)

for all ϕ ∈ W such that ϕ(T ) = 0, 〈·, ·〉 denotes the duality pairing between W −1,p′
(�) and

W 1,p
0 (�).

Remark 2.11 Wealso recall that, since ∂� is smooth anda satisfies assumptions H(c0, c1, b0)
with b0 ∈ Ls(Q) with s > N

p , for every F = −div(G0), G0 ∈ (L∞(Q))N the solution v of
(2.6) is a Hölder continuous function. Moreover, there exists C > 0, depending only on p,
c0, c1, b0 and LN (Q), such that ‖v‖C0,α(Q) ≤ C‖G0‖(L∞(Q))N (see [35,36,45]).

Let us define a M0-version of Minty’s Lemma (an elliptic version of this Lemma can be
found in [11, Lemma 7] and different type of Minty’s Lemma are established in [13] for
parabolic problems with p-growth). Our Minty type Lemma can be proved as the elliptic
case and reads as follows

Lemma 2.12 Let a be Carathéodory function satisfying H(c0, c1, b0), let γ0 be measure in
M0(Q) and v be a function in T 1,p

0 (Q). Then v is such that

−
∫ T

0
〈Tk(v)t , Tk(v) − w〉

W−1,p′
(�),W 1,p

0 (�)
dt +

∫

Q
a(t, x,∇Tk(v)) · ∇(Tk(v) − w)dxdt

=
∫

Q
(Tk(v) − w)dγ0 (2.8)

for every w ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) ∩ C(0, T ; L1(�)) if and only if v satisfies

−
∫ T

0
〈wt , Tk (v)−w〉

W−1,p′
(�),W1,p

0 (�)
dt+

∫

Q
a(t, x, w)·∇(Tk (v)−w)dxdt ≤

∫

Q
(Tk (v)−w)dγ0 (2.9)

for every w ∈ L p(0, T ; W 1,p
0 (�))∩ L∞(Q)∩ C(0, T ; L1(�)) with wt ∈ L p′

(0, T ; W −1,p′

(�)).

In order to better specify the definition of G-convergence (also called Homogenization,
Fig. 2), recall that the present ideas of this paper differs from the several papers cited above.
In fact, in other works, especially parabolic problems, the G-convergence is related to finite
energy solutions. But here, this concept fitswith the renormalized framework, it dealswith the
homogenization of the renormalized formulation in the case where the sequence of momenta
(an) considered, bounded, in (L p′

(Q))N and satisfies (2.3)–(2.5) for some fixed α, β > 0.
It consists in proving that if un

0 ∈ L1(�), (an) G-converges to a0 (see the definition of this
convergence in Definition 2.13 bellow) and that the sequence of measures (μn)n∈N tightly
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10 M. Abdellaoui, E. Azroul

Fig. 2 Homogenization theory

converges to μ (i.e., in the narrow topology of measures), a subsequence of the sequence
of the solutions of the renormalized equation relative to an converges to a solution of the
renormalized equation relative to a0, this is in order to see that the notion of renormalized
solution is thus robust in the sense that it is stable under the G-convergence of the momenta,
which is the “weakest possible” convergence for the corresponding operators. It is also worth
noticing that the proof that we will present in Sect. 6 to prove this homogenization result
of renormalized solutions is closed to the proof used in [48] (see also [52]) to obtain the
asymptotic behaviour of renormalized solutions and to illustrate the robustness of the method
in elliptic case. The robustness of both the notion of renormalized solution and of the method
of proof (using truncate functions) is emphasized by the stability result of renormalized
solutions with respect to variations of the right-hand side which given in the following
classical result: Consider a sequence of weak solutions un relative to some operators (an)

and to a sequence of right-hand sides Fn which converges weakly in L p′
(0, T ; W −1,p′

(�))

to F (see 2.10) and under a special assumptions of equi-integrability of Fn , a subsequence
of the sequences un is proved to converge weakly in L p(0, T ; W 1,p

0 (�)) to a solution of
the weak equation relative to the right-hand side F . The above main result was generalized
by Malusa and Orsina [48] under Leray–Lions and G-convergence assumptions in the case
of singular measures, this argument, however, quite simply extends to measures converging
weak-* was observed in [47] in order to prove the asymptotic behavior of Stampacchia
solutions and under weak-* convergence of the data (fixedmeasures) in the theory of “cheap”
control. Moreover, the asymptotic behaviour (G-convergence, H−convergence, numerical
approximation) of the solutions ofDirichlet problems in L1(�) can be found in [6,7,12,17,24,
53],All these homogenization elliptic problems are consideredDirichlet setting, forwhich the
solutions is zero in the boundary. In a different setting, let usmention [15]where renormalized
solutions and homogenization are mixed and the more recent work [34] where the authors
study, with the help of renormalized solutions, the homogenization of a linear elliptic problem
with L1-data, Neumann boundary conditions and highly oscillating boundary. In addition,
Ben Cheikh Ali in [3] studied the homogenization of a renormalized solution in perforated
domains with a Neumann boundary condition on the boundary of the holes and the authors in
[30] considered the homogenization of a class of quasilinear elliptic problems in a periodically
perforated domainwith L1-data and nonlinear Robin conditions on the boundary of the holes.
Observe that variational solutions corresponding to the data f ∈ L p′

(Q) are renormalized
solutions corresponding to the measure dμ = f dxdt and the narrowly convergence implies
the ∗-weak convergence, that is, if μn converges in the narrow topology of measures to μ

then μn converges to μ*-weakly in Mb(Q) and μn(Q) converges to μ(Q). We now recall
the definition of G-convergence related to parabolic operators.

Definition 2.13 Let (an)n∈N and a0 be Carathéodory functions satisfying H(c0, c1, b0), and
let An(u) = −div(an(t, x,∇u)), n ∈ N, and A0(u) = −div(a0(t, x,∇u)) be the cor-
responding operators between the spaces L p(0, T ; W 1,p

0 (�)) and L p′
(0, T ; W −1,p′

(�)).
We say that An G-converges to A0 if for every F ∈ L p′

(0, T ; W −1,p′
(�)) and for every

z ∈ L p(0, T ; W 1,p(�)) the (variational) solutions vn of problems
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{
(vn)t − div(an(t, x,∇vn)) = Fn in Q = (0, T ) × �,

vn(0, x) = un
0 in �, vn(t, x) = z on (0, T ) × ∂�,

(2.10)

satisfy
{

vn⇀v weakly in L p(0, T ; W 1,p(�));
an(t, x,∇vn)⇀a0(t, x,∇v) weakly in (L p′

(Q))N ;
where v is the (variational) solution of problem

{
vt − div(a0(t, x,∇v)) = F in Q = (0, T ) × �,

v(0, x) = u0 in �, v(t, x) = z on (0, T ) × ∂�.
(2.11)

2.5 Renormalized solutions

The main idea of renormalized solutions consists on multiplying the pointwise equation by a
test function in dependence of u (any smooth function with compact support). Let W 2,∞(R)

is the set of all Lipschitz continuous functions h : R → R whose derivative h′ has compact
support, i.e., every function h ∈ W 2,∞(R) is constant outside the support of its derivative,
so that we can define h(0) = 0, ug = u − g where gt is the time derivative part of μ0 and
μ̃0 = μ − gt − μs = f − div(G).

Definition 2.14 Let a be Carathéodory function satisfying H(c0, c1, b0), and let μ be a
measure inMb(Q), decomposed as μ = μ0 + μs , μ0 ∈ M0(Q), μs ∈ Ms(Q). A function
u is a renormalized solution of problem

{
ut − div(a(t, x,∇u)) = μ in Q = (0, T ) × �,

u(0, x) = u0 in �, u(t, x) = 0 on (0, T ) × ∂�,
(2.12)

if the following conditions hold

(a) u ∈ T 1,p
0 (Q);

(b) |∇u|p−1 belongs to Lq(Q) for every q < p − N
N+1 ;

(c) For every h ∈ W 2,∞(R) one has
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∫

�

h(u0)ϕ(0)dx −
∫ T

0
〈ϕt , h(ug)〉dt +

∫

Q
h′(ug)a(t, x,∇u) · ∇ϕdxdt

+
∫

Q
h′′(ug)a(t, x,∇u) · ∇ugϕdxdt =

∫

Q
h′(ug)ϕdμ̃0,

(2.13)

for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q), ϕt ∈ L p′

(0, T ; W −1,p′
(�)), with

ϕ(T , x) = 0, such that h′(ug)ϕ ∈ L p(0, T ; W 1,p
0 (�)). Moreover, for every ψ ∈ C(Q)

we have
⎧
⎪⎪⎨

⎪⎪⎩

lim
n→+∞

1

n

∫

{n≤v<2n}
a(t, x,∇u) · ∇ugψdxdt =

∫

Q
ψdμ+

s ,

lim
n→+∞

1

n

∫

{−2n<v≤n}
a(t, x,∇u) · ∇ugψdxdt =

∫

Q
ψdμ−

s ,

where μ+
s and μ−

s are respectively the positive and the negative parts of the singular part
μs .
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12 M. Abdellaoui, E. Azroul

Let us point out that the existence of a renormalized solution of (2.12) is proved in [61] (see
also [63] for another proof), the uniqueness of the solution for datum μ = μ0 ∈ M0(Q) is
proved in [31, Sect 3] (see also [61,67]), while the uniqueness of the renormalized solution
for general μ ∈ Mb(Q) and initial u0 ∈ L1(�) is still open. The following equivalence is
proved in [63, Sect 4] (using an analogous definition).

Theorem 2.15 Let u be a function satisfying (a)−(b) of Definition 2.14. Then u is a renor-
malized solution of problem (2.12) if and only if for every k > 0 there exist a sequence of
non-negative measures (λk) ∈ Mb(Q) such that

(i) λk
−−−−→
k → ∞ μs in the narrow topology of measures;

(ii) the truncations Tk(u) satisfy

−
∫

Q
Tk(u)vtdxdt+

∫

Q
a(t, x, ∇Tk(u))·∇vdxdt =

∫

Q
ṽdμ0+

∫

Q
ṽdλk+

∫

�
Tk(u0)v(0)dx

(2.14)
for every v ∈ W ∩ L∞(Q) such that v(T ) = 0 (with ṽ being the unique capp-quasi
continuous representative of v).

3 Statements of themain results

Let (an)n∈N and a0 be Carathéodory functions satisfying H(c0, c1, b0), and let An(u) =
−div (an(t, x,∇un)), A0(u) = div(a0(t, x,∇u)) be the corresponding operators between
L p(0, T ; W 1,p

0 (�)) and L p′
(0, T ; W −1,p′

(�)).

Theorem 3.1 Let un
0 ∈ L1(�) and assume that the sequence of operators (An)n∈N G-

converge to A0 and that the sequence of measures (μn)n∈N converges to μ in the sense
of (2.2). If un is a sequence of renormlized solutions of problem

{
(un)t − div(an(t, x,∇un)) = μn in Q = (0, T ) × �,

un(0, x) = un
0 in �, un(t, x) = 0 on (0, T ) × ∂�.

(3.1)

Then, up to subsequences, (un) converges a.e. in Q to a function u ∈ T 1,p
0 (Q) renormalized

solution of the problem
{

ut − div(a0(t, x,∇u)) = μ in Q = (0, T ) × �,

u(0, x) = u0 in �, u(t, x) = 0 on (0, T ) × ∂�.
(3.2)

Moreover, we have, for every k > 0, the truncation functions Tk(un) satisfy

Tk(un)⇀Tk(u) weakly in L p(0, T ; W 1,p
0 (�)); (3.3)

an(t, x,∇Tk(un))⇀a0(t, x,∇Tk(u)) weakly in (L p′
(Q))N . (3.4)

It suffices to use the definition of renormalized solution of un to get

−
∫

�

h(un
0)ϕ(0)dx −

∫ T

0
〈ϕt , h(ug,n)〉dt +

∫

Q
h(ug,n)a(t, x,∇un) · ∇ϕdxdt

+
∫

Q
h′′(ug,n)a(t, x,∇un) · ∇ug,nϕdxdt =

∫

Q
h′(ug,n)ϕdμ̃n

0 (3.5)

for every h ∈ W 2,∞(R) and for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q), ϕt ∈

L p′
(0, T ; W −1,p′

(�))with ϕ(T , x) = 0 such that h′(ug,n)ϕ ∈ L p(0, T ; W 1,p
0 (�)). In addi-
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tion, using Theorem 2.15, for every n ∈ N and k > 0 there exist a sequence of nonnegative
measures (λn,k) ∈ Mb(Q) satisfying

(i) λn,k −→
n→+∞
k→+∞

μs in the narrow topology of measures;

(ii) the truncations Tk(un) satisfy

−
∫

Q
Tk (un)vtdxdt +

∫

Q
an(t, x, ∇Tk (un)) · ∇vdxdt =

∫

Q
ṽdμn

0 +
∫

Q
ṽdλn,k +

∫

�
Tk (un

0)v(0)dx

(3.6)
for every v ∈ W ∩ L∞(Q) such that v(T ) = 0 (with ṽ being the unique capp-quasi
continuous representative of v).

Remark 3.2 If we prove that (un) converges to u a.e. in Q and that u is a renormalized
solution to (3.2). Then using Theorem 2.15 and for every k > 0, the truncation functions are
variational solutions of problems

{
− (Tk(un)t − div(an(t, x,∇Tk(un))) = μn,k in Q = (0, T ) × �,

Tk(un)(0, x) = Tk(u
n
0) in �, Tk(un)(t, x) = 0 on (0, T ) × ∂�,

and
{

− (Tk(u)t − div(a0(t, x,∇Tk(u))) = μk in Q = (0, T ) × �,

Tk(u)(0, x) = Tk(u0) in �, Tk(u)(t, x) = 0 on (0, T ) × ∂�,

for suitable measures μn,k , μk ∈ M0(Q). Let us finally remark that Eqs. (3.3)–(3.4) are not
consequences of the G-convergence of the operators because of the varying right-hand sides
μn,k converging in the weak topology to μk .

4 Some a priori estimates and convergence results

Let us choose h(un) = Tk(un) with ϕ ≡ 1 in (3.5). Then for every n ∈ N, we have
∫

�

�k(un)(t)dx +
∫

Q
a(t, x,∇Tk(un)) · ∇Tk(un)dxdt =

∫

Q
Tk(un)dμn

0 +
∫

�

�k(u
n
0)dx

≤ k|μn |(Q) + ‖un
0‖L1(�), (4.1)

so that using assumption (2.3) and [1, Prop. 5.2], we get

‖un‖L∞(0,T ;L1(�)) ≤ C and
∫

Q
|∇Tk(un)|pdxdt ≤ C−1

0 |μn |(Q)k + C . (4.2)

Now, by using [29, Proposition 3.1] and the estimate (4.2), there exists C > 0, independent
of k and n, such that

L({|un | > k}) ≤ Ck−(p− N−p
N ), L({|∇un | > k}) ≤ Ck−(p− N

N+1 ), (4.3)

where LN denotes the N -dimensional Lebesgue measure. Thanks to the second inequality
of (4.3) ∫

Q
|∇un |q(p−1)dxdt ≤ C, ∀q <

N p − N + p

(N + 1)(p − 1)
(4.4)

where C > 0 depends on q and not on n (see [59, Sect. 2.2]).
As a consequence of the above estimates we obtain the following theorem.

Theorem 4.1 Let un be a sequence of renormalized solutions of problem (3.1). Then there
exist a measurable function u : Q → R finite a.e. in Q such that (up to subsequences)
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14 M. Abdellaoui, E. Azroul

(i) un converges to u a.e. in Q, u ∈ T 1,p
0 (Q) and |∇u|p−1 ∈ Lq(Q) for every 1 ≤ q <

p − N
N−1 ;

(ii) Tk(un) converges to Tk(u) weakly in L p(0, T ; W 1,p
0 (�)) and there exists C = C(q) > 0

such that ∫

Q
|∇u|q(p−1)dxdt ≤ C, ∀q <

N p − N + p

(N + 1)(p − 1)
; (4.5)

(iii) Tk(un) converges to Tk(u) strongly in L2(Q, μ0) and μ0-a.e. in Q;
(iv) ∃σ ∈ (Lq(Q))N for every q < p − N

N+1 , such that σk = σχ{|u|<k} ∈ (L p′
(Q))N

for a.e. k > 0, and (an(t, x,∇un))n∈N converges to σ weakly in (Lq(Q))N for every
q < p − N

N+1 , while (an(t, x,∇Tk(un)))n∈N converges to σn weakly in (L p′
(Q))N .

Proof The convergence results (i)–(ii) are obtained through similar arguments of [1,61] under
the same assumptions but for fixed operators. To see that (iii) is true, it is enough to use (ii) and
Lemma 2.7. Now, by setting (un) and u be such that (i)–(iii) hold, from (2.4) and (4.4)we have
an(t, x,∇un) is bounded in (Lq(Q))N for every q < p − N

N+1 . Then (up to subsequences)

there exist a function σ ∈ (Lq(Q))N such that (an(t, x,∇un)) converges to σ weakly in
(Lq(Q))N . Note that (2.4) and (4.2) ensure that there exist a subsequence (an(t, x,∇Tk(un)))

(depending on k) and a function σk such that (an(t, x,∇Tk(un)) converges to σk weakly in
(L p′

(Q))N . Thus, since an(t, x, 0) = 0 for every n ∈ N, we have an(t, x,∇Tk(un)) =
an(t, x,∇un)χ{|un |<k}, and, by (i), for almost every k > 0 the functions χ{|un |<k} converges
to χ{|u|<k} a.e. in Q. It is easy to see that σk = σχ{|u|<k} by Remark 2.5. Finally, the sequence
of subsequences (an(t, x,∇Tk(un))) converges to σk weakly in (L p′

(Q))N for every
k > 0. ��
Remark 4.2 Observe that the function Tk (un)

k ∈ L p(0, T ; W 1,p
0 (�)) and satisfies Tk (un)

k = 1
a.e. in {|un | > k}, then by using the result of [64, Theorem 1.2] and the estimate (4.2) we get

capp({|un | > k}, Q) ≤ ‖ Tk(un)

k
‖W

≤ C max

{
(
k

(‖μ‖M(Q) + ‖u0‖L1(Q)

))− 1
p ,

(
k

(‖μ‖M(Q) + ‖u0‖L1(�)

))− 1
p′

}

≤ C
(‖μ‖M(Q), ‖u0‖L1(Q), p

)
max

{
1

k
1
p

,
1

k
1
p′

}

.

5 Some a priori estimates for measures

Aswehave seen,we provide a different, and in some sensemore natural approach, to dealwith
nonlinear parabolic problems with measures using G-convergence theory. Before passing to
the proof of our main result, let us state some interesting a priori estimates for the measures
λn,k using the convergence results of Theorem 4.1.

Lemma 5.1 For every ϕ ∈ C1(Q) and for every n ∈ N, there exists ω = ω(n, k) satisfying
∣
∣
∣
∣

∫

Q
ϕdλn,k −

∫

Q
ϕdμs

∣
∣
∣
∣ ≤ ω. (5.1)

Proof Let k > δ > 0, and let Sδ,k, hδ,k : R → R be two Lipschitz functions defined by (see
Fig. 3)
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Fig. 3 The functions Sδ,k (s) and hδ,k (s)

Sδ,k(s) =

⎧
⎪⎨

⎪⎩

1 if s ≤ k − δ,
1
δ
(k − s) if k − δ < s ≤ k,

0 if s > k,

hδ,k(s) = 1 − Sδ,k(s) =

⎧
⎪⎨

⎪⎩

0 if s ≤ k − δ,
1
δ
(s − k + δ) if k − δ < s ≤ k,

1 if s > k.

(5.2)

Since hδ,k(un)ϕ is an admissible test function both in (3.5) and (3.6) for every ϕ ∈ C1(Q)

with μ0 = f − div(G) + gt , so that using (3.5) we get

−
∫

�

Hδ,k(un)ϕtdxdt + 1

δ

∫

{k−δ<un<k}
a(t, x,∇un) · ∇unϕdxdt

+
∫

Q
an(t, x,∇un) · ∇ϕhδ,k(un)dxdt

=
∫

Q
hδ,k(un)ϕdμn

0 +
∫

Q
ϕdμn

s +
∫

�

Hδ,k(u
n
0)ϕ(0)dx

(5.3)

where Hδ,k(s) = ∫ s
0 hδ,k(r)dr . On the other hand (3.6) implies

−
∫

Q
Hδ,k(Tk(un))ϕtdxdt + 1

δ

∫

{k−δ<un<k}
a(t, x,∇Tk(un)) · ∇unϕdxdt

+
∫

{|un |<k}
an(t, x,∇Tk(un)) · ∇ϕhδ,k(un)dxdt =

∫

{|un |<k}
hδ,k(un)ϕdμn

0 +
∫

Q
ϕdλn,k

+
∫

�

Hδ,k(Tk(u
n
0))ϕ(0)dx . (5.4)

It is easy to prove that the first and last terms are in fact equivalent to ω(n, k) if we use the
convergence in L1(Q) of un , |an(t, x,∇un)|, |an(t, x,∇Tk(un))| and the properties of ϕ

∫

Q
Hδ,k(un(t, x))ϕtdxdt = ω(n, k),

∫

Q
Hδ,k(Tk(un)(t, x))ϕtdxdt = ω(n, k).

Which yields
∫

Q
ϕdλn,k −

∫

Q
ϕdμs =

∫

{un≥k}
hδ,k(un)ϕdμn

0 −
∫

{un≥k}
an(t, x,∇un) · ∇ϕhδ,k(un)dxdt,

(5.5)
and hence, for q < p − N

N+1 ,
∣
∣
∣
∣

∫

Q
ϕdλn,k −

∫

Q
ϕdμs

∣
∣
∣
∣ ≤ ‖ϕ‖L∞(Q)|μ0|({un ≥ k})

+‖an(t, x,∇un)‖(Lq (Q))N ‖∇ϕ‖
(Lq′

({un≥k}))N , (5.6)
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16 M. Abdellaoui, E. Azroul

for every ϕ ∈ C1(Q). Similarly we get
∣
∣
∣
∣

∫

Q
ϕdλn,k −

∫

Q
ϕdμs

∣
∣
∣
∣ ≤ ‖ϕ‖L∞(Q)|μ0|({un ≤ −k})

+‖an(t, x,∇un)‖(Lq (Q))N ‖∇ϕ‖
(Lq′

({un≤−k}))N . (5.7)

which is a consequence of (4.3), the absolute continuity of the Lebesguemeasure (concerning
the term ‖∇ϕ‖

(Lq′
({|un |≥k))N ) and Remarks 2.2 and 4.2 (for the term |μ0|({|un | ≥ k})). Thus

if we consider test functions Tk(un) in (3.6), we have from (4.1)

kλn,k(Q) =
∫

�

[Tk(un)(T )]2
2

dx −
∫

�

[Tk(un
0)]2

2
dx +

∫

Q
an(t, x,∇Tk(un)) · ∇Tk(un)dxdt

−
∫

{|un |<k}
Tk(un)dμ0 ≤ k

[
‖μ‖Mb(Q) + ‖μ0‖M0(Q) + ‖u0‖L1(�)

]
.

(5.8)
Then there exist a sequence of nonnegative measures λk ∈ Mb(Q) such that (up to a
subsequence) the sequences (λn,k) converges to λk in the weak-* topology of Mb(Q) as n
goes to +∞. Moreover, a passage to the limit on n in (5.1) gives

∣
∣
∣
∣

∫

Q
ϕdλk −

∫

Q
ϕdμs

∣
∣
∣
∣ ≤ ω(k) (5.9)

for every ϕ ∈ C∞
c (Q), that is the sequence (λk) converges to μs in the weak-* topology of

Mb(Q) as k goes to +∞. ��

The reconstruction property of the sequence (λk) is essentially played by a technical
Lemma.

Lemma 5.2 Let u and σ be the functions introduced in Theorem 4.1, and let λk ∈ Mb(Q)

be the measures introduced above. The λk belongs to M0(Q), and

−
∫

Q
Tk(u)vtdxdt +

∫

{|u|<k}
σ · ∇vdxdt =

∫

{|u|<k}
vdμ0 +

∫

Q
vdλk +

∫

�

Tk(u0)v(0)dx

(5.10)
for every v ∈ W ∩ L∞(Q) such that v(T ) = 0 and for a.e. k > 0. Moreover there exists
a nonnegative measure γ ∈ Mb(Q) independent of k such that λk − γ belong to M0(Q),
and

−
∫

Q
Tk(u)vtdxdt +

∫

{|u|<k}
σ ·∇vdxdt =

∫

{|u|<k}
vdμ0+

∫

Q
vd(|λk −γ |)+

∫

�
Tk(u0)v(0)dx

(5.11)
for every v ∈ W ∩ L∞(Q) such that v(T ) = 0 and for a.e. k > 0.

Proof For every k > 0, by Theorem 4.1, (an(t, x,∇Tk(un))) converges to σχ{|u|<k} weakly
in (L p′

(Q))N , (χ{|un |<k}) converges to χ{|u|<k} μ0-a.e. in Q, and by the fact that λk is the
weak-* limit of λn,k , by passing to the limit in (3.6) as n → +∞ for every test function
ϕ ∈ C∞

c (Q), we get

−
∫

Q
Tk(u)vtdxdt +

∫

{|u|<k}
σ · ∇vdxdt =

∫

{|u|<k}
vdμ0 +

∫

Q
vdλk +

∫

�

Tk(u0)v(0)dx .

(5.12)
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Homogenization of a nonlinear parabolic problem… 17

Fig. 4 The function hδ(s)

Using the fact that σχ{|u|<k} belongs to (L p′
(Q))N , the measure λk belongs to M0(Q)

and (5.12) can be extended to every test function ϕ ∈ W ∩ L∞(Q) such that ϕ(T ) = 0
by using a standard density argument. Now suppose that the Lebesgue measure of the set
{u(t, x) = 0} is zero (if it’s not, we can replace u = 0 with u = a (a is a nonnegative value)
where LN ({u = a})), so that for δ > 0 and for the Lipschitz function hδ(s) : R → R defined
by (see Fig. 4).

If we choose hδ(un)ϕ, with ϕ ∈ C∞
c (Q), as test function in (3.6) for k > δ, we have

∫

Q
Hδ(Tk(un)(t, x))ϕtdxdt −

∫

�

Hδ(Tk(u
n
0(x))ϕ(0)dx

+1

δ

∫

{−δ<un<0}
an(t, x,∇Tk(un)) · ∇Tk(un)ϕdxdt

+
∫

{|un |<k}
an(t, x,∇Tk(un)) · ∇ϕhδ(un)dxdt

=
∫

{|un |<k}
hδ(un)ϕdμn

0 +
∫

Q
ϕdλn,k . (5.14)

Using also (2.3) and (4.1), for every δ > 0 and for every n ∈ N

0 ≤ 1

δ

∫

{−δ<un<0}
an(t, x,∇Tk(un)) · ∇Tk(un)dxdt

= 1

δ

∫

{−δ<un<0}
an(t, x,∇Tδ(un)) · ∇Tδ(un)dx ≤ ‖μn‖Mb(Q) + ‖un

0‖L1(�),

then there exists a sequence δh
−−−−→
h → ∞ 0, and a nonnegative measure γn ∈ Mb(Q) such

that

0 ≤ lim
h→∞

1

δh

∫

{−δh<un<0}
an(t, x,∇Tk(un)) · ∇Tk(un)ϕdxdt =

∫

Q
ϕdγn

for every ϕ ∈ C∞
c (Q). Moreover 0 ≤ γn(Q) ≤ |μn |(Q) + |un

0 |(�), so that, up to subse-
quences, γn converges to a nonnegative γ in the weak-* topology of Mb(Q) allows to pass
to the limit in (5.14) as δ → 0 to obtain

∫

{0<un<k}
an(t, x,∇Tk(un)) · ∇ϕdxdt =

∫

{0<un<k}
ϕdμn

0 +
∫

Q
ϕd(|λn,k − γn |).

Due to the passage to the limit as n tends to +∞, we conclude
∫

{0<u<k}
σ · ∇ϕdxdt =

∫

{0<u<k}
ϕdμ0 +

∫

Q
ϕd(|λk − γ |) (5.15)

for every ϕ ∈ C∞
c (Q). Recall that, since σχ{0<u<k} belongs to (L p′

(Q))N , the measure
λk − δ belongs to M0(Q) and (5.15) holds for every test function in W ∩ L∞(Q). ��
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18 M. Abdellaoui, E. Azroul

6 Proof of Theorem 3.1

Thanks to the above estimates we are able to prove Theorem 3.1. For the sake of simplicity,
in what follows, the convergences are all understood to be taken up to a suitable subsequence
extraction, even if no explicitly claimed. As usual, un and u will be respectively the sequence
of renormalized solutions of the associated problems such that all the results in Sects. 4 and
5 hold.

Step .1 The limit equation. Let w ∈ W ∩ L∞(Q) be fixed, we take v = Tk(un) − w as
test function in (3.6) to obtain

−
∫ T

0
〈Tk(un)t , Tk(un) − w〉

W−1,p′
(�),W 1,p

0 (�)
dt +

∫

Q
an(t, x,∇Tk(un)) · ∇(Tk(un) − w)dxdt

=
∫

{|un |<k}
(Tk(un) − w)dμn

0 +
∫

Q
(k − w)dλn,k . (6.1)

Using Lemma 1.4, we can replace Tk(un)t with wt , we get

−
∫ T

0
〈wt , Tk(un) − w〉

W−1,p′
(�),W 1,p

0 (�)
dt +

∫

Q
an(t, x,∇w) · ∇(Tk(un) − w)dxdt

≤
∫

{|un |<k}
(Tk(un) − w)dμn

0 +
∫

Q
(k − w)dλn,k . (6.2)

Setting ϕ ∈ C∞
c (Q) and using wn as variational solutions to

{
(wn)t − div(an(t, x,∇wn)) = ϕt − div(a0(t, x,∇ϕ)) in Q = (0, T ) × �,

wn(0, x) = un
0 in �, w(t, x) = 0 on (0, T ) × ∂�.

(6.3)

The hypothesis on G-convergence of the operators implies that wn converges weakly in
L p(0, T ; W 1,p

0 (�)) to the unique solution w0 of

{
(w0)t − div(a0(t, x,∇w0)) = ϕt − div(a0(t, x,∇ϕ)) in Q = (0, T ) × �,

w0(0, x) = u0 in �, w0(t, x) = 0 on (0, T ) × ∂�,
(6.4)

that iswn converges toϕweakly in L p(0, T ; W 1,p
0 (�)).Moreover, sincea0(t, x,∇ϕ)belongs

to (L∞(Q))N , the regularity results of Remark 2.11 imply that (wn) is equi-Hölder contin-
uous, and hence converges uniformly to ϕ in Q . Now we choose w = wn in (6.2) in order
to get

−
∫ T

0
〈(wn)t , Tk(un) − wn〉

W−1,p′
(�),W 1,p

0 (�)
dt +

∫

Q
an(t, x,∇wn) · ∇(Tk(un) − wn)dxdt

=
∫

{|un |<k}
(Tk(un) − wn)dμn

0 +
∫

Q
(k − wn)dλn,k . (6.5)

Using the equation solved by wn and (6.5), we have

−
∫ T

0
〈(wn)t , Tk(un) − wn〉

W−1,p′
(�),w

1,p
0 (�)

dt +
∫

Q
a0(t, x,∇ϕ) · ∇(Tk(un) − wn)dxdt

≤
∫

{|un |<k}
(Tk(un) − wn)dμn

0 +
∫

Q
(k − wn)dλn,k, (6.6)
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which allows to pass to the limit in (6.6) as n goes to +∞ to obtain

−
∫ T

0
〈Tk(u)t , Tk(u) − ϕ〉

W−1,p′
(�),W 1,p

0 (�)
dxdt +

∫

Q
a0(t, x,∇ϕ) · ∇(Tk(u) − ϕ)dxdt

≤
∫

{|u|<k}
(Tk(u) − ϕ)dμ0 +

∫

Q
(k − ϕ)dλk . (6.7)

Recall that in the last two terms we use the lower semi-continuity of the masses of weakly-*
converging measures, so that we have from (6.7)

−
∫ T

0
〈ϕt , Tk(u) − ϕ〉dt +

∫

Q
a0(t, x,∇ϕ) · ∇(Tk(u) − ϕ)dxdt

≤
∫

{|u|<k}
(Tk(u) − ϕ)dμ0 +

∫

Q
(Tk(u) − ϕ)dλk, (6.8)

which yields, by Lemma 2.12

−
∫ T

0
〈Tk(u)t , Tk(u) − ϕ〉dt +

∫

Q
a0(t, x,∇Tk(u)) · ∇(Tk(u) − ϕ)dxdt

=
∫

{|u|<k}
(Tk(u) − ϕ)dμ0 +

∫

Q
(Tk(u) − ϕ)dλk (6.9)

for every ϕ ∈ C∞
c (Q). By density arguments and since λk ∈ M0(Q), (6.9) is valid for test

function in W ∩ L∞(Q). In particular, for ϕ = Tk(u) − v, v ∈ W ∩ L∞(Q), we obtain

−
∫ T

0
〈Tk(u)t , v〉dt +

∫

Q
a0(t, x,∇Tk(u)) · ∇vdxdt =

∫

{|u|<k}
dμ0 +

∫

Q
vdλk . (6.10)

Then by the characterization of Theorem 2.15, u is a renormalized solution of (3.2) where
λk converge to μs in the narrow topology of measures (see Step. 3). So that, by choosing
v = h(u)ϕ, u ∈ W 1,∞(R) and ϕ ∈ C∞

c (Q) in (6.10), an easy passage to the limit as k → ∞
leads to

∫

Q
H(Tk(u))ϕtdxdt +

∫

Q
a(t, x,∇u) · ∇(h(u)ϕ)dxdt

=
∫

Q
h(u)ϕdμ0 +

∫

Q
ϕdμs +

∫

�

H(Tk(u0))ϕ(0)dx . (6.11)

Step 2. Convergence of the momenta. Hereafter, we study the limit of the sequence
an(t, x,∇vn), this is done by having vn as variational solution of

{
(vn)t − div(an(t, x,∇vn)) = ((t, x) · η)t − div(a0(t, x, η)) in Q = (0, T ) × �,

vn(0, x) = un
0 in �, vn(t, x) = (t, x) · η on (0, T ) × ∂�,

where η is a fixed element of RN , we take advantage of G-convergence properties to get

vn⇀(t, x) · η weakly in L p(0, T ; W 1,p),

an(t, x,∇vn)⇀a0(t, x, η) weakly in (L p′
(Q))N .
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20 M. Abdellaoui, E. Azroul

In addition, by Remark 2.11, (vn) is equi-Hölder continuous, we can assume that

vn → (t, x) · η uniformly in Q. (6.12)

The monotonicity assumption (2.5) implies

∫

Q
(an(t, x,∇Tk(un)) − an(t, x,∇vn)) · (∇Tk(un) − ∇vn)ϕdxdt ≥ 0 (6.13)

for every ϕ ∈ C∞
c (Q) with ϕ ≥ 0. In order to pass to the limit in (6.13), we use the limit

integral

lim
n→+∞

∫

Q
an(t, x,∇vn) · (∇Tk(un) − ∇vn)ϕdxdt

=
∫

Q
a0(t, x, η) · (∇Tk(u) − η)ϕdxdt,

(6.14)

by compensated compactness (see [51,77]). To complete the passage to the limit in (6.13)
we establish the same result for the term

∫

Q
a(t, x,∇Tk(un)) · (∇Tk(un) − ∇vn)ϕdxdt,

where the sequence div (an(t, x,∇Tk(un))) converges in a weak sense, and we get

∫

Q
a(t, x,∇Tk(un)) · (∇Tk(un) − ∇vn)ϕdxdt

= 〈Tk(un)t − div(an(t, x,∇Tk(un))), (Tk(un) − vn)ϕ〉
−

∫

Q
(Tk(un) − vn)an(t, x,∇Tk(un)) · ∇ϕdxdt (6.15)

using the formulation (3.6), we obtain

〈Tk(un)t − div (an(t, x,∇Tk(un))) , (Tk(un) − vn)ϕ〉
=

∫

{|un |<k}
(Tk(un) − vn)ϕdμn

0 +
∫

Q
(k − vn)ϕdλk,η. (6.16)

Therefore, as n → +∞ and using the dominated convergence Theorem for the first integral,
the fact that vn converges uniformly in Q and that the measures λk,η converge weak-* in
Mb(Q) in other integrals, we obtain

lim
n→+∞〈Tk(un)t − div(an(t, x,∇Tk(un))), (Tk(un) − vn)ϕ〉

=
∫

{|u|<k}
(Tk(u) − (t, x) · η)ϕdμ0 +

∫

Q
(k − (t, x) · η)ϕdλk

= 〈ut − div(σk), (Tk(u) − (t, x) · η)ϕ〉 (6.17)

where σk is given in Theorem 4.1 (iv).
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Now, since Tk(un)−vn converges strongly to Tk(u)−(t, x)·η in L p(Q), an(t, x,∇Tk(un))

converges weakly in (L p′
(Q))N to σk and using (6.15) and (6.17), we have

lim
n→+∞

∫

Q
an(t, x,∇Tk(un)) · (∇Tk(un) − ∇vn)ϕdxdt

= 〈ut − div(σ ), (Tk(u) − (t, x) · η)ϕ〉 −
∫

Q
(Tk(u) − (t, x) · η)σk · ∇ϕdxdt

=
∫

Q
σk · (∇Tk(u) − η)ϕdxdt,

(6.18)

that, together with (6.14) and using also the limit equation of (6.13):
∫

Q
ϕ(σk − a0(t, x, η)) · (∇Tk(u) − η)dxdt ≥ 0

for every ϕ ∈ C∞
c (Q) with ϕ ≥ 0. Hence, for every η ∈ R

N there exists a set E(η) ⊆ Q
with Lebesgue measure zero such that

(σk(t, x) − a0(t, x, η)) · (∇Tk(u)(t, x) − ηm) ≥ 0, ∀(t, x) ∈ Q\E(η).

Now, consider E = ∪m E(ηm) where (ηm) is a countable dense set of RN , we have

(σk(t, x) − a0(t, x, ηm)) · (∇Tk(u)(t, x) − ηm) ≥ 0, ∀m, ∀(t, x) ∈ Q\E

in view of the continuity of a0(t, x, ·), we obtain
(σk(t, x) − a0(t, x, η)) · (∇Tk(u)(t, x) − η) ≥ 0, ∀x ∈ Q\E . (6.19)

Note that a0(t, x, ·) is continuous and monotone in R
N with the fact that (6.19), we

have σk(t, x) = a0(t, x,∇Tk(u)) a.e. in Q. Using Theorem 4.1 (iv), we deduce that
(an(t, x,∇Tk(un))) converges to a0(t, x,∇Tk(u)) weakly in (L p′

(Q))N and this concludes
the proof of Step 2.

Step 3. End of the proof. Let us prove that λk converges to μs in the narrow topology
of measures. Using estimate (5.9), it is easy to prove that λk converge to μs in the weak-*
topology of measures. As a consequence of Remark 2.9, the narrow convergence follows
from the convergence of the measures. Then it’s enough to check, since we have μs(Q) ≤
lim inf
k→+∞ λk(Q) because of the weak-* convergence,

lim sup
k→+∞

λk(Q) ≤ μs(Q). (6.20)

Let us define the Lipschitz function hk(s) : R → R, k > 0, by (see Fig. 5).

Fig. 5 The function hk (s)
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This step consists in taking hk(u) as test function in (6.10) corresponding to 2k

−
∫ T

0
〈Tk(u)t , hk(u)〉dt+ 1

k

∫

{k<u<2k}
a0(t, x, ∇u)·∇u dxdt =

∫

{k<u<2k}
hk(u)dμ0+λ2k(Q).

(6.22)
Since hk(u) tend to zero μ0-a.e. in Q and by dominated convergence Theorem, this leads to

lim sup
k→+∞

1

k

∫

{k<u<2k}
a0(t, x,∇u) · ∇u dxdt = lim sup

k→+∞
λ2k(Q). (6.23)

Due to the definition of hk (i.e. hk(0) = 0), we can take hk(un) as test function in (3.5), we
have

1

k

∫

{k<un<2k}
an(t, x,∇un) · ∇un dxdt =

∫

{k<un<2k}
hk(un)dμn

0 + μn
s (Q), (6.24)

letting n → ∞ then yields

lim
n→+∞

1

k

∫

{k<un<2k}
an(t, x,∇un) · ∇un dxdt =

∫

{k<u<2k}
hk(u)dμ0 + μs(Q). (6.25)

Now we prove that

lim
n→+∞

1

k

∫

{k<un<2k}
an(t, x,∇un) · ∇unϕ dxdt = 1

k

∫

{k<u<2k}
a0(t, x,∇u) · ∇uϕ dxdt,

(6.26)
for every ϕ ∈ C∞

c (Q). It’s enough to take hk(un)ϕ as test function in (3.5) and hk(u)ϕ as
test function in (6.11). Subtracting the two equations we obtain

1

k

∫

{k<u<2k}
an(t, x,∇un) · ∇unϕdxdt − 1

k

∫

{k<u<2k}
a0(t, x,∇u) · ∇uϕdxdt

= −
∫

Q
an(t, x,∇un) · ∇ϕhk(un)dxdt +

∫

Q
hk(un)ϕdμn

0

+
∫

Q
a0(t, x,∇u) · ∇ϕhk(u)dxdt −

∫

Q
hk(u)ϕdμ0. (6.27)

Comparing (6.10) with (5.10) we deduce that a0(t, x,∇Tk(u)) = σχ{|u|<k} for a.e. k > 0;
then, by Theorem 4.1 (iv), the sequence (an(t, x,∇un)) converges to a0(t, x,∇u) weakly
in (Lq(Q))N for q < p − N

N+1 . By definition of hk(s), hk(un) converges to hk(u) both a.e.
and μ0-a.e. in Q, we can pass to the limit as n → ∞ to get (6.26), which implies the weak-*
convergence of the sequence of non-negative measures ( 1k an(t, x,∇un)) · ∇unχ{k<un<2k})
to the nonnegative measure 1

k a0(t, x,∇u) · ∇uχ{k<u<2k}. By means of the semi-continuity
of the masses, we get

1

k

∫

{k<u<2k}
a0(t, x,∇u) · ∇udxdt ≤ lim inf

n→+∞ an(t, x,∇un) · ∇undxdt,

which yields, from (6.23) and (6.25)

lim sup
k→+∞

λ2k(Q) = lim sup
k→+∞

1

k

∫

{k<un<2k}
a0(t, x,∇u) · ∇udxdt

≤ lim sup
k→+∞

(

lim inf
n→+∞

1

k

∫

{k<un<2k}
an(t, x,∇un) · ∇undxdt

)

= lim sup
k→+∞

∫

{k<u<2k}
hk(u)dμ0 + μs(Q) = μs(Q), (6.28)
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this proves the assertion (i) of the narrow convergence, and the fact that u is a renormalized
solution then follows straightforwardly, so that the proof of Theorem 3.1 is complete.
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