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Abstract
The aim of this paper is to develop some tools in order to obtain the weak consistency of
(in other words, an analogue of the Lax–Wendroff theorem for) finite volume schemes for
balance laws in the multi-dimensional case and under minimal regularity assumptions for the
mesh. As in the seminal Lax–Wendroff paper, our approach relies on a discrete integration
by parts of the weak formulation of the scheme. Doing so, a discrete gradient of the test
function appears; the central argument for the scheme consistency is to remark that this
discrete gradient is convergent in L∞ weak �.
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1 Introduction

In the early sixties, Lax andWendroff established that, on uniform 1D grids, a flux-consistent
and conservative cell-centered finite-volume scheme for a conservation law is weakly con-
sistent, in the sense that the limit of any a.e. convergent sequence of L∞-bounded numerical
solutions, obtained with a sequence of grids with mesh and time steps tending to zero, is a
weak solution of the conservation law [11]; this result is known as the Lax–Wendroff the-
orem, and is reported in many textbooks with some variants: see e.g. [12, Section 12.10]
with a BV bound assumption on the scheme, and [7, Theorem 21.2] for a generalisation
to non-uniform meshes. However, convergence proofs on unstructured meshes which were

B R. Herbin
raphaele.herbin@univ-amu.fr

T. Gallouët
thierry.gallouet@univ-amu.fr

J.-C. Latché
jean-claude.latche@irsn.fr

1 Aix-Marseille Université, Institut de Mathématiques de Marseille, Marseille, France

2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SA2I, Cadarache,
Saint-Paul-lez-Durance 13115, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40324-019-00194-x&domain=pdf
http://orcid.org/0000-0003-0937-1900


582 T. Gallouët et al.

obtained for nonlinear scalar conservation laws in the 1990s do not use the Lax–Wendroff
theorem; indeed, finite volume schemes on unstructured meshes are known to be in general
not TVD (see e.g. an example in [4]), so that a compactness property in L1

loc is not easy to
obtain, although it does hold in fact but results from the proof of uniqueness of the so-called
entropy process solution, see e.g. [7, chapter VI] and references therein.

Nevertheless, from a practical point of view, the Lax–Wendroff theorem, even if weaker
than a full convergence proof, may be fundamental for the design of numerical schemes. In
particular, for many hyperbolic systems (especially in the multi-dimensional case), it repre-
sents the essential part of the theoretical foundations, since provable estimates on numerical
solutions are too weak to provide sufficient compactness to undertake any convergence study.

The seminal Lax–Wendroff paper has been the starting point for several research works,
aimed at relaxing the original assumptions: for instance, an extension to schemes which
do not admit a local conservative formulation may be found in [1–3,14]; the derivation of
analogue consistency results for non-conservative hyperbolic systems is presented in [8,
13]. In the multi-dimensional case and for standard finite volumes schemes, Lax–Wendroff
type results have been progressively extended to general (and, in particular, unstructured)
discretizations [10], in [9, Section 4.2.2] for two-dimensional simplicial meshes and in [5]
for multi-dimensional meshes.

The present paper follows the same route, in the sense that we still extend the application
range of the Lax–Wendroff theorem in terms on constraints on themesh, in particular relaxing
the quasi-uniformity assumption. However, compared to [5], the assumptions and the tech-
nique of proof are different; we consider general meshes with only a regularity assumption
linked to the definition of a discrete gradient, but require the flux function to be Lipschitz
continuous or at least “lip-diag”, while in [5] the space-time grid is assumed quasi-uniform
but the flux is only required to be continuous, and we return to a strategy close to the original
work: the scheme is multiplied by a test function and integrated over space and time, and a
discrete integration by parts of the convection term yields the integral of the product of the
numerical flux by a discrete gradient of the test function (this latter seems to appear first in
[6], where its convergence properties are shown for specific meshes and norms). Then the
passage to the limit of vanishing space and time steps in the scheme requires two ingredients:

• a convergence result for the discrete gradient; contrary to what happens in the 1D case
or for Cartesian grids, this convergence is only weak, namely in L∞ weak �, which is
however sufficient to conclude,

• the control of some residual terms, which basically consists in the difference between
the numerical solution and a space or time translate of this latter; the difficulty here
lies in the fact that the translation amplitude is (locally) mesh-dependent (for instance,
the function is translated from one cell to its neighbour), so that standard results for
converging sequences of functions in L1 may no longer be applied.

The presentation is organized as follows: after a definition of the considered space discretiza-
tions (Sect. 2), we address successively the two above-mentioned issues (Sects. 3 and 4
respectively), carefully clarifying in these two sections the regularity requirements for the
mesh. Then we show in Sect. 5 how to use the obtained results to obtain a weak consistency
result for a standard finite volume discretization of a balance law; consistency requirements
for the numerical flux appear in this step.
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Fig. 1 Mesh and associated notations

2 Space discretization

Let � be an open bounded polyhedral set of Rd , d ≥ 1. A polyhedral partition M of �

is a finite partition of � such that each element K of this partition is measurable and has
a boundary ∂K that is composed of a finite union of part of hyperplanes (the faces of K )
denoted by σ , so that ∂K = ∪σ∈EK σ where EK is the set of the faces of K . Such a polyhedral
partition is called a “mesh”. We denote by E the set of all the faces, namely E = ∪K∈MEK .
If σ ∈ E is a face of this partition, then one denotes by |σ | the (d − 1)-Lebesgue measure of
σ . We denote by Eint the set of elements σ of E such that there exist K and L inM (K �= L)
such that σ ∈ EK ∩ EL ; such a face σ is denoted by σ = K |L . The set of faces located on
the boundary of �, i.e. E\Eint, is denoted by Eext. For K ∈ M we denote by hK the diameter
of K . The size of the mesh M is hM = max{hK , K ∈ M}. For K ∈ M and σ ∈ EK , we
denote by nK ,σ the normal vector of σ outward K .

We also introduce now a dual mesh, that is a new partition of � indexed by the elements
of E , namely � = ∪σ∈EDσ . For σ = K |L , the set Dσ is supposed to be a subset of K ∪ L
and we define DK ,σ = Dσ ∩ K , so Dσ = DK ,σ ∪ DL,σ (see Fig. 1).

If A is a measurable set of Rd , we denote by |A| the Lebesgue measure of A.

3 Aweakly convergent discrete gradient

Let ϕ ∈ C∞
c (�) and, for K ∈ M, let xK be a point of K and ϕK = ϕ(xK ). For σ ∈ E , let

(∇Eϕ)σ = |σ |
|Dσ | (ϕL − ϕK ) nK ,σ if σ ∈ Eint, σ = K |L,

(∇Eϕ)σ = 0 if σ ∈ Eext.
(3.1)

We characterize the regularity of the mesh by the following parameter:

θ∇
M = max

σ∈Eint, σ=K |L
|σ | |xL − xK |

|Dσ | . (3.2)
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584 T. Gallouët et al.

Note that for Cartesian meshes, θ∇
M = 1. With this definition, we get for σ ∈ E ,

|(∇Eϕ)σ | ≤ θ∇
M |∇ϕ|L∞(�)d , (3.3)

where ∇Eϕ is the piecewise constant function equal to (∇Eϕ)σ over Dσ , for σ ∈ E .

Lemma 3.1 Let (M(m))m∈N be a sequence of meshes such that the mesh step hM(m) tends
to zero when m tends to +∞. We suppose that the mesh parameters θ∇

M(m) defined by (3.2)
are uniformly bounded with respect to m, i.e.:

∃θ∇ ∈ R+ : ∀m ∈ Nθ∇
M(m) ≤ θ∇ . (3.4)

Let ϕ ∈ C∞
c (�) and, for m ∈ N, let ∇E(m)ϕ ∈ L∞(�)d be defined by (3.1). Then the

sequence (∇E(m)ϕ)m∈N is bounded in L∞(�)d uniformly with respect to m and converges to
∇ϕ in L∞(�)d weak �.

Proof The fact that the sequence (∇E(m)ϕ)m∈N is bounded in L∞(�)d is a straightforward
consequence of Inequality (3.3) and the assumption θ∇

M(m) ≤ θ∇ for m ∈ N. Let ψ ∈
C∞
c (�)d . For m ∈ N and σ ∈ E(m), let ψσ and ψ̄σ be defined by the mean value of ψ over

σ and Dσ respectively. Since ∇E(m)ϕ is piecewise constant over the dual cells Dσ , we have

I (m) :=
∫

�

∇E(m)ϕ(x) · ψ(x) dx =
∑

σ∈E(m)

|Dσ | (∇Enϕ)σ · ψ̄σ = Ĩ (m) + R(m),

with

Ĩ (m) =
∑

σ∈E(m)

|Dσ | (∇E(m)ϕ)σ · ψσ , R(m) =
∑

σ∈E(m)

|Dσ | (∇E(m)ϕ)σ · (ψ̄σ − ψσ ).

We first consider Ĩ (m). Since ψ has a compact support in �, the quantity ψσ vanishes for
any σ ∈ E(m)

ext . We thus get, using the definition (3.1) of the discrete gradient and reordering
the sums:

Ĩ (m) =
∑

σ∈E(m)
int , σ=K |L

|σ | (ϕL − ϕK ) nK ,σ · ψσ = −
∑

K∈M(m)

ϕK

∑
σ∈EK

|σ | ψσ · nK ,σ .

Hence,

Ĩ (m) = −
∑

K∈M(m)

ϕ(xK )

∫
K
divψ(x) dx = −

∫
�

ϕ(x) divψ(x) dx + R̃(m),

with

R̃(m) =
∑

K∈M(m)

∫
K

(
ϕ(x) − ϕ(xK )

)
divψ(x) dx.

The remainder term R̃(m) may be bounded as follows

|R̃(m)| ≤ |∇ϕ|L∞(�)d |∇ψ |L∞(�)d×d |�| hM(m) , (3.5)

and thus

lim
m→+∞ Ĩ (m) = −

∫
�

ϕ(x) divψ(x) dx =
∫

�

∇ϕ(x) · ψ(x) dx.
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The term R(m) reads, once again thanks to the definition (3.1) of the discrete gradient:

R(m) =
∑

σ∈E(m)
int , σ=K |L

|Dσ | (∇E(m)ϕ)σ · (ψ̄σ − ψσ ).

Since ψ is regular, there exists xσ and xDσ such that ψσ = ψ(xσ ) and ψ̄σ = ψ(xDσ )

respectively. Hence, since |xσ − xDσ | ≤ max (hK , hL), we have thanks to (3.3):

|R(m)| ≤ |∇ϕ|L∞(�)d |∇ψ |L∞(�)d×d |�| θ∇
M(m) hM(m) , (3.6)

and thus

lim
m→+∞ |R(m)| = 0.

The conclusion of the proof is obtained by invoking the density of the functions of C∞
c (�)d

in L1(�)d . �
Remark 3.1 Estimates (3.5) and (3.6), show that the difference D(m) defined by

D(m) =
∫

�

∣∣(∇E(m)ϕ(x) − ∇ϕ(x)
) · ψ(x)

∣∣ dx
can be bounded by a parameter depending only on the sequence of meshes and on ϕ,
|∇ϕ|L∞(�)d and |∇ψ |L∞(�)d×d . This point is used hereafter to extend the present convergence
result to time depending functions.

Remark 3.2 (Choice of xK and Dσ ) Note that, apart from the need to ensure the regularity
of the sequence of meshes (i.e. θ∇

M(m) ≤ θ∇ for m ∈ N), there is almost no constraint on the
choice of xK in K and on Dσ , which is just a volume associated to the face σ which, for the
proof of Lemma 3.1, does not even need to contain σ itself.

Remark 3.3 (On themesh regularity assumption) Some regularity constraints for the sequence
ofmeshesmay be shown to be strong enough to control the parameter θ∇

M. First, let us suppose
that the cells are not allowed to be too flat, i.e. that there exists C > 0 such that

|K | ≥ C hdK , ∀K ∈ M(m), ∀m ∈ N. (3.7)

Then, let us denote by τM the parameter:

τM = max
K∈M, σ∈EK

|K |
|DK ,σ | .

Since the definition of Dσ is almost arbitrary, τM may be kept bounded away from zero
for any sequence of meshes, provided that the number of faces of the cells is bounded; for
instance, in Sect. 5, we choose Dσ is such a way that τM is equal to the inverse of the
maximum number of cell faces. We then have:

θ∇
M ≤ max

σ∈Eint, σ=K |L
(hK + hL) min (hd−1

K , hd−1
L )

τM max (|K |, |L|) ≤ 2
C

τM
.

The case of “flat cells” is more intricate. However, let us suppose that, for m ∈ N and
σ ∈ E(m)

int , σ = K |L ,
• xK and xL may be chosen such that K and L are star-shaped with respect to xK and xL

respectively,
• we choose for DK ,σ and DL,σ the cones of basis σ and vertex xK and xL respectively,
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Fig. 2 Choice of xK and xL for “flat cells”: a convenient choice, b quasi-orthogonality is lost when cells
become flatter and flatter

• there exists C > 0 such that |(xK − xL) · nK ,σ | ≥ C |xK − xL | (which may be referred
to as a “uniform orthogonality condition”).

Then |xK − xL | |σ | ≤ d |Dσ |/C (see Fig. 2).

The analysis of finite volume schemes for (systems of) conservation laws necessitates the
extension of Lemma 3.1 to time-dependent functions. Let T > 0 and a time discretization of
the interval (0, T ), i.e. a sequence T = (tn)0≤n≤N with 0 = t0 < t1 . . . < tn < tn+1 . . . <

tN = T , be given; we define δtn = tn+1 − tn and δtT = max {δtn, 0 ≤ n < N }. Let
ϕ ∈ C∞

c (� × [0, T ]); then the piecewise function ∇E,T ϕ is defined by:

∇E,T ϕ =
N−1∑
n=0

∑
σ∈E

(∇E,T ϕ)nσ 11Dσ (x) 11[tn ,tn+1[(t), with

(∇E,T ϕ)nσ =
⎧⎨
⎩

|σ |
|Dσ | (ϕn

L − ϕn
K ) nK ,σ if σ ∈ Eint, σ = K |L,

0 if σ ∈ Eext.
(3.8)

where, for K ∈ M and 0 ≤ n < N , ϕn
K = ϕ(xK , tn), and for a given set A, 11A is the

characteristic function of A, that is 11A(x) = 1 if x ∈ A and 11A(x) = 0 otherwise. Then the
following weak convergence result holds.

Lemma 3.2 Let (M(m))m∈N be a sequence of meshes such that the mesh step hM(m) tends to
zero when m tends to +∞ and satisfies the assumption (3.4). For m ∈ N, we suppose given
a time discretization T (m), and suppose that δtT (m) also tends to zero when m tends to +∞.

Let ϕ ∈ C∞
c (�×[0, T ]) and, for m ∈ N, ∇E(m),T (m) ϕ ∈ L∞(�×[0, T ])d be defined by

(3.8). Then the sequence (∇E(m),T (m) ϕ)m∈N is bounded in L∞(� × [0, T ])d uniformly with
respect to m and converges to ∇ϕ in L∞(� × [0, T ])d weak �.

Proof Let ψ ∈ C∞
c (� × [0, T ])d , and let us define, for m ∈ N, the following functions of

time:

I (t) =
∫

�

∇ϕ(x, t) · ψ(x, t) dx, I (m)(t) =
∫

�

∇E(m),T (m) ϕ(x, t) · ψ(x, t) dx.

Thanks to remark 3.1 and the regularity of ϕ andψ , I (m)(t) converges to I (t) uniformly with
respect to t , with I ∈ C∞

c (0, T ). The integral

∫ T

0

∫
�

(∇E(m),T (m) ϕ(x, t) · ψ(x, t) dx dt =
N (m)−1∑
n=0

(tn+1 − tn) I
(m)(tn) + R(m),

where R(m) is a remainder term tending to zero as δtT (m) thanks to the regularity of ψ . We
have
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N (m)−1∑
n=0

(tn+1 − tn) I
(m)(tn) =

N (m)−1∑
n=0

(tn+1 − tn) I (tn)

+
N (m)−1∑
n=0

(tn+1 − tn)
(
I (m)(tn) − I (tn)

)

The second term tends to zero when m tends to +∞ thanks to the uniform convergence of
I (m) to I . By the regularity of I , the first one converges to

∫ T

0
I (t) dt =

∫ T

0

∫
�

∇ϕ(x, t) · ψ(x, t) dx dt .

The conclusion follows by density of C∞
c (� × [0, T ])d in L1(� × [0, T ])d . �

4 Convergence of “discrete translations” of functions of L1

The proof of the original Lax–Wendroff theorem (extended to non uniform meshes in [7,
Theorem 21.2]) relies on the mean continuity of integrable functions, which is used to prove
that for a sequence (u p)p∈N of converging functions in L1(�),

∫
�

|u p(· + h) − u p| dx → 0 as h → 0 uniformly w.r.t. p. (4.1)

This proof may be extended to Cartesian meshes; however, on an unstructured mesh, the
notion of translation is no longer clear and the problem must be reformulated as follows. For
u ∈ L1(�) and K ∈ M, we denote by uK the mean value of u and we set for σ ∈ Eint,
σ = K |L , [u]σ = |uK − uL |. We now introduce the quantity

TMu =
∑

σ∈Eint,σ=K |L
|Dσ |[u]σ . (4.2)

The objective of this section is to prove that, for a sequence (u p)p∈N of functions of L1(�)

and a sequence of increasingly refined meshes (M(m))m∈N, supposed to be regular in a sense
to be defined, the quantity TM(m)u p tends to zero as m → +∞ uniformly with respect to
p. Note that in the case of a uniform 1D mesh such that |Dσ | = h for any σ ∈ E , this is
equivalent to showing (4.1).

The proof of this result is split in two steps; we first consider a fixed function u ∈ L1(�)

and prove a generalisation of the mean continuity in Lemma 4.1; we then address the case of
a converging sequence in L1(�) in Lemma 4.3. The technique used here is reminiscent of
underlying arguments invoked in [9, Section 4.2.2] for two-dimensional triangular meshes;
we consider here general meshes, paying a special attention to mesh regularity requirements.

To formulate the regularity assumption of the sequence of meshes considered in this
section, we introduce the following parameter:

θM = max
K∈M max

σ∈EK

|Dσ |
|K | . (4.3)

By definition, we thus have |Dσ | ≤ θM |K |, for σ ∈ EK , K ∈ M.

Lemma 4.1 Let θ > 0 and (M(m))m∈N be a sequence of meshes such that θM(m) ≤ θ for all
m ∈ N and limm→+∞ hM(m) = 0. We suppose that the number of faces of a cell K ∈ M(m)
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is bounded by NE , for any m ∈ N. Let u ∈ L1(�), let uK denote the mean value of u on a
cell K , and let TM(m)u be defined by (4.2). Then,

lim
m→+∞ TM(m)u = 0. (4.4)

Proof We first note that for u ∈ L1(�) and a mesh M,

TM(u) ≤
∑

σ∈Eint,σ=K |L
|Dσ | ([uK | + |uL |) ≤ θ

∑
σ∈Eint,σ=K |L

(|K | |uK | + |L| |uL |)

≤ NE θ ||u||L1(�).

Then, for any ϕ ∈ C∞
c (Rd ,R),

TM(m)u ≤ TM(m) (u − ϕ) + TM(m)ϕ ≤ NE θ ||u − ϕ||L1(�) + TM(m)ϕ. (4.5)

Let ε > 0. Since C∞
c (�) is dense in L1(�), there exists ϕ ∈ C∞

c (�) such that NE θ ||u −
ϕ||L1(�) ≤ ε. Then, with this choice of ϕ,

TM(m)u ≤ ε + TM(m)ϕ. (4.6)

We now use only the fact that ϕ is Lipschitz continuous. There exists Mϕ > 0 such that
|ϕ(x) − ϕ( y)| ≤ Mϕ |x − y| for all x, y ∈ �. Then, for any σ = K |L ∈ Eint, using
K̄ ∩ L̄ �= ∅,

|K ||L|[ϕ]σ = |K | |L| |ϕK − ϕL | =
∣∣∣
∫
K

∫
L

ϕ(x) − ϕ( y) d y dx
∣∣

≤ Mϕ

∫
K

∫
L

|x − y| dx d y ≤ Mϕ |K | |L| (hK + hL).

This yields

TM(m)ϕ =
∑

σ∈Eint,σ=K |L
|Dσ |[ϕ]σ ≤ 2Mϕ hM(m)

∑
σ∈Eint,σ=K |L

|Dσ | ≤ 2Mϕ hM(m) |�|.

Since limm→+∞ hM(m) = 0, there exists m0 such that 2Mϕ hM(m) |�| ≤ ε for m ≥ m0 and
then, with (4.6),

TM(m)u ≤ 2ε for m ≥ m0.

�
The convergence result which constitutes the aim of this section is stated in the following

lemma.

Lemma 4.2 Let θ > 0 and (M(m))m∈N be a sequence of meshes such that θM(m) ≤ θ for all
m ∈ N and limm→+∞ hM(m) = 0. We suppose that the number of faces of a cell K ∈ M(m)

is bounded by NE , for any m ∈ N. Let u ∈ L1(�) and (u p)p∈N be a sequence of functions
of L1(�) such that u p → u in L1(�) as p → +∞. Let TM(m)u p be defined by (4.2).

Then TM(m)u p tends to zero when m tends to +∞ uniformly with respect to p ∈ N.

Proof Using (4.5) with u = u p and ϕ = u, we obtain

TM(m)u p ≤ TM(m) (u p − u) + TM(m)u ≤ NE θ ||u − u p||L1(�) + TM(m)u.
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Let ε > 0. Since u p → u in L1(�), as p → +∞, there exists p0 such that for p ≥ p0,
NE θ ||u − u p||L1(�) ≤ ε and then

TM(m)u p ≤ ε + TM(m)u.

We use now Lemma 4.1. There exists m0 such that TM(m)u ≤ ε for m ≥ m0 and then, for
m ≥ m0 and p ≥ p0,

TM(m)u p ≤ 2ε.

Using again Lemma 4.1 for p ∈ {0, . . . , p0 − 1} gives m1 such for m ≥ m1 and p ∈ N,

TM(m)u p ≤ 2ε.

�
Remark 4.1 The underlying ideas of the proofs of this section may be summed up as follows.
Let (T (m))m∈N be a sequence of semi-norms acting on a Banach space B to R

+ satisfying
two properties:

• uniform boundedness: there exists C > 0 such that T (m)u ≤ C ||u||B for any u ∈ B and
m ∈ N,

• convergence to zero on a dense subspace: there exists D ⊂ B and dense in B such that,
for any ū ∈ D, limm→+∞ T (m)ū = 0.

Then, for any converging sequence (u p)p∈N in B, T (m)u p tends to zero uniformly with
respect to p.

This result extends to time depending functions as follows. Let T > 0 and T be a time
discretization of the interval (0, T ), as defined in the previous section. Foru ∈ L1(�×(0, T )),
K ∈ M and 0 ≤ n < N , let un+1

K be the mean value of u over K × (tn, tn+1). For σ ∈ Eint,
σ = K |L and for 0 < n ≤ N , let [un]σ = |unK − unL |; for K ∈ M and 0 < n < N , we set
[uK ]n = |un+1

K − unK |. We define the following quantity:

TM,T u =
N−1∑
n=0

(tn+1 − tn)
∑

σ∈Eint,σ=K |L
|Dσ |[un+1]σ +

N−1∑
n=1

(tn+1 − tn)
∑
K∈M

|K |[uK ]n .(4.7)

Then the following lemma results from easy extensions (in fact, reasoning in R
d+1 instead

of Rd ) of the previous proofs of this section.

Lemma 4.3 Let θ > 0 and (M(m))m∈N be a sequence of meshes such that θM(m) ≤ θ for all
m ∈ N and limm→+∞ hM(m) = 0. We suppose that the number of faces of a cell K ∈ M(m)

is bounded by NE , for any m ∈ N. For m ∈ N, we suppose given a time discretization T (m),
and suppose that δtT (m) also tends to zero when m tends to+∞. Let u ∈ L1(�× (0, T )) and
(u p)p∈N be a sequence of functions of L1(� × (0, T )) such that u p → u in L1(� × (0, T ))

as p → +∞.
Then TM(m),T (m)u p tends to zero when m tends to +∞ uniformly with respect to p ∈ N.

Note that the results of this section allow to show the weak consistency of conservative finite
volume schemes without the BV boundedness assumptions that are found in e.g. [12, chapter
12], [14]; indeed, the limit on the translates (4.1) is shown directly from the L1 convergence
assumption thanks to the above lemmas. In fact, finite volume schemes are known to be
non TVD on non-structured meshes, so that these boundedness assumptions are difficult
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to satisfy in this case. The two above lemmas are used in Theorem 5.1 below to show the
weak consistency of finite volume schemes, so that the sequences of functions which are
considered are piecewise constant. But in fact, these lemmas could also be used for other
types of functions for instance in the case of higher order schemes.

5 Weak consistency of conservative finite volumes discretizations of
conservation laws

Let us consider the following conservation law posed over � × (0, T ):

∂t (u) + div(F(u)) = 0, (5.1)

where F : R → R
d is a regular flux function. This equation is complemented with the

initial condition u(x, 0) = u0(x) for a.e. x ∈ �, where u0 is a given function of L1(�), and
convenient boundary conditions on the boundary ∂�, see Remark 5.1. For a given mesh M
and time discretization T , a finite volume approximation of Eq. (5.1) reads

|K |
tn+1 − tn

(un+1
K − unK ) +

∑
σ∈E(K )

|σ | Fn
σ · nK ,σ = 0, for K ∈ M and 0 ≤ n < N ,(5.2)

where Fn
σ is the numerical flux. Equation (5.2) is complemented by the initial condition:

u0K = 1

|K |
∫
K
u0(x) dx, for K ∈ M, (5.3)

and convenient boundary fluxes. The discrete unknowns (unK )K∈M,0≤n≤N are associated to
a function of L∞(�) as follows:

u(x, t) =
N−1∑
n=0

∑
K∈M

unK XK X(tn ,tn+1], (5.4)

where XK and X(tn ,tn+1] stand for the characteristic function of K and the interval (tn, tn+1]
respectively.

We now suppose given a sequence of meshes (M(m))m∈N and time discretizations
(T (m))m∈N, with hM(m) and δtT (m) tending to zero as m tends to +∞, and, for m ∈ N,
denote by u(m) the function obtained withM(m) and T (m). Let us suppose that the sequence
(u(m))m∈N converges in L1(�×(0, T )) to a function ū. The aim of this section is to determine
sufficient conditions for ū to satisfy the weak formulation of Eq. (5.1), i.e.

−
∫ T

0

∫
�

(
ū ∂tϕ + F(ū) · ∇ϕ

)
dx dt =

∫
�

u0(x)ϕ(x, 0) dx,

for any ϕ ∈ C∞
c (� × [0, T )). (5.5)

This is obtained by letting the space and time step tend to zero and passing to the limit in the
scheme, and this issue is referred to as a weak consistency property of the scheme.

Remark 5.1 (Weak formulation and boundary conditions) Note that the weak formulation
(5.5) is incomplete, in the sense that it does not imply anything on boundary conditions, since
test functions are supposed to have a support compact in�×[0, T ); in fact, weak formulation
of boundary conditions is a difficult problem for hyperbolic problems, still essentially open
for systems, and out of scope of the present paper.
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Theorem 5.1 (An extension of the Lax–Wendroff theorem) Let (M(m))m∈N and time dis-
cretizations (T (m))m∈N, with hM(m) and δtT (m) tending to zero as m tends to +∞, and, for
m ∈ N, denote by u(m) the function obtained withM(m) and T (m). Assume that the sequence
(u(m))m∈N converges to in ū L1(� × (0, T )) to a function ū. Assume furthermore that

(i) the sequence (F(u(m)))m∈N converges in L1(� × (0, T )) to F(ū),
(ii) the sequence of meshes satisfies the regularity assumptions of Lemma 3.2
(iii) there exists a real number CF depending only on F, such that

|Fn
σ − F(unK )| ≤ CF |unK − unL |, |Fn

σ − F(unL)| ≤ CF |unK − unL |, (5.6)

(iv) the regularity assumptions for the mesh of Lemma 4.3 are satisfied.

Then ū satisfies (5.5) i.e. it is a weak solution of Eq. (5.1).

Proof To this purpose, let ϕ ∈ C∞
c (� × [0, T )); then ϕ(x, t) = 0 if the distance dist(x, ∂�)

from x to the boundary ∂� is such that dist(x, ∂�) ≤ dist( supp ϕ, ∂Q), and similarly
ϕ(x, t) = 0 if |T − t | ≤ dist( supp ϕ, ∂Q), where Q = �× (0, T ). For a given meshM(m)

whose size h(m) is such that h(m) ≤ dist( supp ϕ, ∂Q) and time discretisation (tn)0≤n≤N (m)

such that t N
(m) − t N

(m) ≤ dist( supp ϕ, ∂Q), let us define ϕn
K by

ϕn
K = ϕ(xK , tn), for K ∈ M(m) and 0 ≤ n ≤ N (m),

where xK stands for a point of K . Let us multiply Eq. (5.2) by (tn+1 − tn) ϕn
K and sum over

the cells and time steps, to obtain T (m)
1 + T (m)

2 = 0, with

T (m)
1 =

N (m)−1∑
n=0

∑
K∈M(m)

|K | (un+1
K − unK ) ϕn

K ,

T (m)
2 =

N (m)−1∑
n=0

(tn+1 − tn)
∑

K∈M(m)

ϕn
K

∑
σ=K |L

|σ | Fn
σ · nK ,σ ,

where the notation
∑

σ=K |L means that the summation is performed over the internal faces
of the cell K , each internal face separating K from an adjacent cell denoted by L . Reordering
the sums (this may be seen as a discrete integration by parts with respect to time), the term
T (m)
1 may be recast as T (m)

1 = T̃ (m)
1,1 + T̃ (m)

1,2 + R(m)
1 , with

T̃ (m)
1,1 = −

N (m)−1∑
n=0

∑
K∈M(m)

(tn+1 − tn) |K | ϕn+1
K − ϕn

K

tn+1 − tn
unK ,

T̃ (m)
1,2 = −

∑
K∈M(m)

|K | u0K ϕ0
K ,

R(m)
1 = −

N (m)−1∑
n=0

∑
K∈M(m)

(tn+1 − tn) |K | ϕn+1
K − ϕn

K

tn+1 − tn
(un+1

K − unK ).

Let us denote by ð
(m)
t ϕ the following time discrete derivative of ϕ:

ð
(m)
t ϕ =

N (m)−1∑
n=0

∑
K∈M(m)

ϕn+1
K − ϕn

K

tn+1 − tn
XK X(tn ,tn+1].
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Thanks to the regularity of ϕ, ð(m)
t ϕ tends to ∂tϕ when m tends to +∞ in L∞(� × (0, T )).

Since

T̃ (m)
1,1 = −

∫ T

0

∫
�

u(m)
ð

(m)
t ϕ dx dt,

we thus get

lim
m→+∞ T̃ (m)

1,1 = −
∫ T

0

∫
�

ū ∂tϕ dx dt .

Thanks to Eq. (5.3) and the regularity of ϕ, we also get

lim
m→+∞ T̃ (m)

1,2 = −
∫

�

u0(x) ϕ(x, 0) dx.

Finally,

|R(m)
1 | ≤ Cϕ

N (m)−1∑
n=0

(tn+1 − tn)
∑

K∈M(m)

|K | [un+1
K − unK ]

with Cϕ the Lipschitz-continuity constant of ϕ, and R(m)
1 tends to zero thanks to Lemma 4.3.

Let us now turn to term T (m)
2 . Reordering the sums (which, now, may be seen as a discrete

integration by part with respect to space), we get:

T (m)
2 = −

N (m)−1∑
n=0

(tn+1 − tn)
∑

σ∈E(m)
int , σ=K |L

|σ | Fn
σ · nK ,σ (ϕn

L − ϕn
K ).

For σ ∈ Eint, σ = K |L , we must now define a volume Dσ , and this choice may be to some
extent tuned according to the mesh at hand (see Remark 3.2). Let us for instance suppose
here that Dσ = DK ,σ ∪ DL,σ , with DK ,σ = K ∩ Dσ (respectively DL,σ = L ∩ Dσ ) and
|DK ,σ | = |K |/NK , where NK stands for the number of edges of K (it is easy to check that
such a partition exists, noting that DK ,σ needs not be a polyhedron). With this definition, we
may write T (m)

2 = T̃ (m)
2 + R(m) with

T̃ (m)
2 = −

N (m)−1∑
n=0

(tn+1 − tn)

∑
σ∈E(m)

int , σ=K |L

(
|DK ,σ | F(unK ) + |DL,σ | F(unL)

)
·
( |σ |

|Dσ | (ϕn
L − ϕn

K ) nK ,σ

)
.

We identify

T̃ (m)
2 =

∫ T

0

∫
�

F(u(m)) · ∇E(m),T (m)ϕ dx dt,

with the definition (3.8) of ∇E,T ϕ. Thanks to the assumptions (i) and (i i) of the theorem,
we get that

lim
m→+∞ T (m)

1 = −
∫ T

0

∫
�

F(ū) · ∇ϕ dx dt .
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Thanks to the assumption (i i i) and owing to the regularity of ϕ which implies that ∇E,T ϕ

is bounded in L∞(� × (0, T ))d under the mesh regularity assumptions of Lemma 3.2, we
obtain that

|R(m)| ≤ CF Cϕ

N (m)−1∑
n=0

(tn+1 − tn)
∑

σ∈E(m)
int , σ=K |L

|Dσ | [u(m)]σ ,

where Cϕ ∈ R+ depends only on ϕ, and thus, thanks to the assumption (iv), R(m) tends to
zero as M tends to +∞. �

Let us now comment on the assumptions used in the theorem

• Assumptions (i i) and (iv) are regularity assumptions for the sequence ofmeshes.Hypoth-
esis (iv) amounts to suppose that the number of cell faces is bounded and, with the
definition of the volumes Dσ chosen in this section, that the ratio |K |/|L|, for any pair
(K , L) of neighbouring cells, is bounded. The constraints associated to Assumption (i i)
are discussed in Remark 3.3 (for instance, we may assume that the cells do not becomes
too flat, in the sense of Inequality (3.7)).

• Assumption (i) states the convergence of the sequence (F(u(m)))m∈N to F(ū) in L1(�×
(0, T )). It is just a consequence of the convergence of (u(m))m∈N to ū in L1(� × (0, T ))

if the function F is bounded (thanks to the Lebesgue dominated convergence theorem);
in the other cases, it demands stronger convergence assumptions (for instance, with
F(u) = u2, convergence in L2(� × (0, T )) is required).

• Assumption (i i i) (i.e. Inequalities (5.6)) is a constraint over the numerical flux. For
instance,with a two-point flux Fσ = Fσ (uK , uL), it is implied by the usual assumptions:

Fσ (u, u) = F(u) ∀u ∈ R, Fσ Lipschitz continuous w.r.t. its arguments.

Remark 5.2 (On the Lipschitz assumption on the flux) The Lipschitz continuity assumption
on the flux may in fact be replaced by the following weaker “Lip-diag” condition:

|F(a, b) − F(a, a)| ≤ CF |a − b| (5.7)

|F(b, a) − F(a, a)| ≤ CF |a − b|. (5.8)

In the case of a MUSCL scheme for the convection equation by a regular velocity b, the
discretization of the flux on σ = K |L is given by uσ b · nK ,σ with uσ depending on uK

and uL but also on another upwind cell; however, if the flux is assumed to be Lip-diag with
respect to the value uK , uσ is always a convex combination of uK and uL and Assumption
(i i i) holds.

It seems impossible to relax this assumption to the case of a merely continuous flux
without additional conditions: indeed in [5], a counterexample is given for non space-time
quasi-uniform grids; in this counter-example, the space mesh is quasi-uniform, so that the
assumptions of Theorem 5.1 are clearly satisfied apart from the Lipschitz assumption on the
flux.

Moreover, the Lip-diag framework seems interesting for a number of schemes; for instance
when replacing the Roe flux by the Rusanov flux when an entropy correction is needed, the
continuity of the flux is lost but not the Lip-diag property.

Finally, let us conclude by mentioning a possible generalization of (i i i) for multiple point
fluxes. For instance, if, on σ = K |L , Fσ = Fσ (uK , uL , uM ) with M a neighbour of L , we
may replace the first inequality of (5.6) by
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|Fn
σ − F(unK )| ≤ CF

(
|unK − unL | + |unK − unM |),

and then use |unK − unM | ≤ |unK − unL | + |unL − unM |. We obtain that R(m) still reads as a
summation of jumps across the faces; however, the weight of [u]σ is now more complex, and
its control by |Dσ | needs a stronger regularity assumption on the mesh. Such a situation is
faced, for instance,whenusing a secondorderRunge–Kutta scheme for the timediscretization
instead of the Euler scheme.
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