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Abstract
This paper deals with the study of an MX/M/c Bernoulli feedback queueing system with
waiting servers and two different policies of synchronous vacations (single and multiple
vacation policies). During vacation period, the customers may leave the system (reneging),
and using certain customer retention mechanism, the reneged customers may be retained in
the system. The probability generating function (PGF) has been used to obtain the steady
state probabilities of the model. Various performances measures of the system are derived.
Then, a cost model is developed. Further, a cost optimization problem is considered using
quadratic fit search method. Finally, a variety of numerical illustrations are discussed for the
applicability of the model.

Keywords Multi-server queueing systems · Single vacation · Multiple vacation · Impatient
customers · Bernoulli feedback · Probability generating function · Optimization

Mathematics Subject Classification 60K25 · 68M20 · 90B22

1 Introduction

Performance of modeling vacation queueing systems has attracted many researchers owing
to their large applications in many real life congestion problems including computer and
communication systems, manufacturing and production systems along with other queueing
systems having industrial importance. A detailed surveys of the literature devoted to such
systems are found in Doshi [9], Takagi [20], Tian and Zhang [21] and references therein.
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Modeling vacation queueing models with impatient customers is very important in order
to obtain novel managerial insights. The lost revenues due to impatience in several indus-
tries may be enormous. Literature analysis has shown an extensive studies of these models.
Altman and Yechiali [1] dealt with customers’ impatience in queues with server vacation.
Zhang et al. [27] gave the analysis of an M/M/1/N queueing model with balking, reneg-
ing and server vacations. Later, Ammar [3] carried out the transient analysis of an M/M/1
queue with impatient behavior and multiple vacations. Panda and Goswami [16] studied the
equilibrium balking strategies for a GI/M/1 queue with Bernoulli-schedule vacation and
vacation interruption. Recently, in Ammar [4], the transient solution of an M/M/1 vacation
queuewith a waiting server and impatient customers has been established. Formore literature
on customer’s impatience in vacation queues, the authors can be referred to Yue et al. [25],
Padmavathy et al. [15], Misra and Goswami [13], Yue et al. [24], Sun et al. [19], Bouchentouf
and Yahiaoui [7], and references therein.

Queueing systems with batch arrival represent the case where arrivals enter the system in
batches rather than one by one. Few examples of arrivals in batches to a system are customers
in elevators, supermarkets, banks, etc. Considerable works on vacation models with batch
arrivals were conducted by many researchers. Lee et al. [12] analyzed the fixed bulk service
queueing system with single and multiple vacations. Later, Jau-Chuan Ke [10] dealt with a
MX/G/1 queueingmodelwith balking and variant vacation policy,Wang et al. [22] presented
themaximum entropy analysis of theMX/M/1 queueing systemwithmultiple vacations and
server breakdowns. Then, Baruah et al. [5] treated the balking and the re-service in a vacation
queueing model with batch arrival and two types of heterogeneous service. Baruah et al. [6]
dealt with a batch arrival queue with second optional service and reneging during vacation
periods. Recently, Sasikala et al. [18] presented the steady state behaviour of MX/GK /1
queueing model with control policy on request for re-service, N-policy, balking and multiple
vacations.

The study of multi-server vacation systems with impatient customers is far more complex
compared to impatience in single server vacation models, consequently, a limited literature is
available. TheM/M/c/N queuing systemwith balking, reneging and synchronous vacations
of some partial servers together was presented by Yue et al. [23]. Altman and Yechiali [2]
treated the infinite-server queues with system’s additional tasks and impatient customers.
Then, a computational algorithm and parameter optimization for a multi-server queue with
unreliable server and impatient customers have been discussed by Chia and Jau-Chaun [8].
Later, Yue et al. [26] dealt with an M/M/c queueing system with impatient customers and
synchronous vacation, where impatience is due to the servers’ vacation. Recently, the analysis
of a M/M/c queueing model with single and multiple synchronous working vacations was
presented in Majid and Manoharan [14].

This paper deals with an infinite buffer multi-server vacation queueing system with batch
arrival, Bernoulli feedback and waiting servers wherein customers may renege during vaca-
tion period, and they can be retained in the system, via certain strategy (convinced to stay
in order to be serviced). The steady-state probabilities of the queueing system are obtained
through probability generating functions (PGFs). Useful performancemeasures of the queue-
ing system are derived. The cost profit analysis of the model is carried out. The optimization
of the model is performed using quadratic fit search method (QFSM) in order to minimize
the total expected cost of the system with respect to the service rate. A numerical study
is presented to illustrate the impact of various system parameters on different performance
measures and total expected profit of the system. The analysis carried out in this paper is very
important and useful to any insurance firm. Among the advantages of the obtained results is
to show the positive impact of waiting server and customer retention strategy.
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The rest of paper is arranged as follows. Section 2 provides a general description of the
model with multiple and single vacation policies. In Sect. 3, we develop the queueing model
under multiple vacation policy (MVP) and carry out the steady-state analysis of the system,
then we derive the explicit expressions of the various performance measures of the queueing
system. The model under single vacation policy (SVP) is analyzed in Sect. 4 following the
same methodology presented in the previous section. In Sect. 5, we develop a model for the
costs incurred and perform the appropriate optimization using a quadratic fit search method
(QFSM). Section 6 presents numerical examples in order to demonstrate the applicability of
the theoretical investigation, and finally we conclude the paper in Sect. 7.

2 Model description

We consider an MX/M/c Bernoulli feedback queueing system under single and multiple
vacations wherein customers may leave the system due to impatience during the absence
of the servers. Using certain retention customer mechanism, the reneged customers may be
retained in the system. Themodel considered in this work is based on following assumptions:

(i) Customers arrive in batches according to a Poisson process with rate λ. The sizes of
successive arriving batches are i.i.d. random variables X1, X2, . . .distributedwith probability
mass function P(X = l) = bl; l = 1, 2, 3, . . ..

(ii) The customers are served on a First-Come First-Served (FCFS) queue discipline. The
service times are assumed to follow exponential distribution with mean 1/μ.

(iii) When the busy period is finished the servers wait a random duration of time before
beginning on a vacation. This waiting duration is exponentially distributed with mean 1/η.

(iv) The queueing model consists of c servers. In synchronous vacation policy, all the
servers leave for a vacation simultaneously, once the system becomes empty and they also
comeback to the system as one at the same time.
In multiple vacation policy (MVP), the servers continue to take vacations until they find the
system nonempty at a vacation completion instant. While, in single vacation policy (SVP),
when the vacation ends and servers find the system empty, they remains idle until the first
arrival occurs. Vacation periods are assumed to be exponentially distributed with mean 1/φ.

(v) Customers in batches are supposed to enter the queueing system, join the queue, if
the servers are unavailable due to vacation, a batch of customers activates an independent
impatience timer T , with exponentially distributed duration, with mean 1/ξ. If T expires
while the servers are still on vacation, the customers may abandon the system. Further, using
certain mechanism, each impatient customer may abandon the system, with probability α,

and can be retained in the queue, with complementary probability (1 − α). Moreover, If the
service is uncomplete or unsatisfactory, the customers can either leave the system definitively,
with probability β, or rejoin the end of the queue of the system for another service, with
complementary probability (1 − β). Note that � = λE(X)

cβμ
< 1 is the stability condition of

the system, where E(X) is the mean of a batch of arrivals.
(vi) We assume that the inter-arrival times, batch sizes, server waiting times, vacation

times, service times and impatience times are independent of each other.
Let {L(t); t ≥ 0} be the number of customers in the system at time t, and S(t) be the state

of servers at time t, where S(t) is defined as follows:

S(t) =
{
1, when the servers are in busy period at time t;
0, when the servers are in vacation period at time t .
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Fig. 1 State-transition-rate diagram of the model under MVP

Then, {(S(t), L(t)); t ≥ 0} defines a two-dimensional continuous Markov process with
state space

	 = {(s, n) : s = 0, 1, n = 0, 1, . . .}.
Let

Ps,n = lim
n→∞ P{S(t) = s, L(t) = n}, s = 0, 1, n = 0, 1, . . . ,

denote the system steady-state probabilities.

3 Analysis of themodel under MVP

In this section, we study the model considered in Sect. 2 under multiple vacation policy, the
state-transition-rate diagram is presented in Fig. 1.

3.1 Steady state solution of themodel

Using the Markov theory, the set of steady-state equations are written as follows

λP0,0 = αξ P0,1 + ηP1,0, (1)

(λ + φ + αξ)P0,1 = λb1P0,0 + 2αξ P0,2, n = 1, (2)

(λ + φ + nαξ)P0,n = λ

n∑
m=1

bm P0,n−m + (n + 1)αξ P0,n+1, n ≥ 2, (3)

(λ + η)P1,0 = βμP1,1, (4)
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(λ + βμ)P1,1 = λb1P1,0 + 2βμP1,2 + φP0,1, n = 1, (5)

(λ + nβμ)P1,n = λ

n∑
m=1

bm P1,n−m + (n + 1)βμP1,n+1 + φP0,n,

2 ≤ n ≤ c − 1, (6)

(λ + cβμ)P1,n = λ

n∑
m=1

bm P1,n−m + cβμP1,n+1 + φP0,n, n ≥ c. (7)

And the normalizing condition is given as

∞∑
n=0

P0,n +
∞∑
n=0

P1,n = 1. (8)

The probability generating function (PGF) of Ps,n is defined as

Gs(z) =
∞∑
n=0

Ps,nz
n, s = 0, 1. (9)

The probability generating function (PGF) of the batch size X is as

B(z) =
∞∑
l=1

bl z
l , |z| ≤ 1, with B(1) =

∞∑
l=1

bl = 1. (10)

The steady-state probabilities of the queueing system are obtained by solving the Eqs.
(1)–(7) using PGF.

By multiplying Eqs. (1)–(3) by zn, and summing over n, then re-arranging all the terms,
we get

(1 − z)αξG ′
0(z) + [λ(B(z) − 1) − φ]G0(z) = −[φP0,0 + ηP1,0]. (11)

In a similar manner, form Eqs. (4)–(7), we have

[λz(B(z) − 1) + cβμ(1 − z)]G1(z) + zφG0(z) = βμ(z − 1)
c−1∑
n=0

(n − c)P1,nz
n

+ z[ηP1,0 + φP0,0]. (12)

Then, by taking z = 1 in Eqs. (11) or (12), we obtain

φG0(1) = ηP1,0 + φP0,0. (13)

We solve the differential Eq. (11) using the same method used in Altman and Yechiali [1].
Thus Eq. (11) can be written as

G ′
0(z) +

[
λ

αξ
H ′(z) − φ

αξ(1 − z)

]
G0(z) = −

[
φ

αξ(1 − z)
P0,0 + η

αξ(1 − z)
P1,0

]
, (14)

where

H(z) =
∫ z

0

B(x) − 1

1 − x
dx and H ′(z) = B(z) − 1

1 − z
.

Then, we multiply both sides of Eq. (14) by e
λ
αξ

H(z)
(1 − z)

φ
αξ , we get

d

dz

(
e

λ
αξ

H(z)
(1 − z)

φ
αξ G0(z)

)
= −

[
φ

αξ
P0,0 + η

αξ
P1,0

]
e

λ
αξ

H(z)
(1 − z)

φ
αξ

−1
. (15)
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Now, integrating Eq. (15) from 0 to z, we get

G0(z) = e− λ
αξ

H(z)
(1 − z)−

φ
αξ

{
G0(0) − K (z)

αξ

[
φP0,0 + ηP1,0

]}
, (16)

where

K (z) =
∫ z

0
e

λ
αξ

H(x)
(1 − x)

φ
αξ

−1dx . (17)

Since G0(1) = P0,. = ∑∞
n=0 P0,n > 0 and z = 1 is the root of the denominator of the

right hand side of Eq. (16), so z = 1 must be the root of the numerator of the right hand side
of Eq. (16).

Thus, we get

P0,0 = G0(0) = K (1)

αξ

[
φP0,0 + ηP1,0

]
, (18)

with

K (1) =
∫ 1

0
e

λ
αξ

H(x)
(1 − x)

φ
αξ

−1dx . (19)

From Eq. (18), it yields

P1,0 = θ0P0,0, where θ0 = αξ − φK (1)

ηK (1)
. (20)

By substituting Eq. (20) into Eq. (16), we obtain

G0(z) = e− λ
αξ

H(z)
(1 − z)−

φ
αξ

{
1 − K (z)

K (1)

}
P0,0. (21)

And by substituting Eq. (20) into Eq. (13), we find the probability that the servers are in
vacation period, (G0(1) = P0,. = ∑∞

n=0 P0,n),

G0(1) = αξ

φK (1)
P0,0. (22)

It is clearly seen that Eq. (12) expresses G1(z) in terms of P0,0, P1,0, P1,n and G0(z).
From Eq. (21), we see that G0(z) is expressed in terms of P0,0, then in Eq. (20), P1,0 is given
in terms of P0,0. Thus, to define G1(z) in terms of P0,0, we need to express P1,n in terms of
P0,0. To this end, we firstly have to write P0,n in terms of P0,0.

From Eq. (1), using Eq. (20), we get

P0,1 = ω1P0,0, (23)

where ω1 = λ−ηθ0
αξ

.

From Eq. (2), using Eq. (23), we find

P0,2 = ω2P0,0, (24)

where ω2 = ψ1ω1 − λ
2αξ

b1ω0, ψ1 = λ+φ+αξ
2αξ

, and ω0 = 1.
Then, from Eq. (3), for n = 2, using Eqs. (23) and (24), we obtain

P0,3 = ω3P0,0, (25)

where ω3 = ψ2ω2 − λ
3αξ

(b1ω1 + b2ω0), and ψ2 = λ+φ+2αξ
3αξ

.

Then, recursively, it yields
P0,n = ωn P0,0, (26)
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where

ωn =

⎧⎪⎪⎨
⎪⎪⎩

1, if n = 0,
λ−ηθ0

αξ
, if n = 1,

ψn−1ωn−1 − λ

nαξ

∑n−1

i=1
biωn−1−i , if 2 ≤ n ≤ c − 1,

with

ψn−1 = λ + φ + (n − 1)αξ

nαξ
.

Next, we need to write P1,n in terms of P0,0. Via Eq. (4), using Eq. (20), we get

P1,1 = θ1P0,0, (27)

where θ1 = λ+η
βμ

θ0.

From Eq. (5), using Eqs. (20), (23) and (27), we obtain

P1,2 = θ2P0,0, (28)

where θ2 = ρ1θ1 − φ
2βμ

ω1 − λ
2βμ

b1θ0, and ρ1 = λ+βμ
2βμ

.

Then, from Eq. (6), for n = 2, using Eqs. (20), (24), (27) and (28), we find

P1,3 = θ3P0,0, (29)

where θ3 = ρ2θ2 − φ
3βμ

ω2 − λ
3βμ

(
b1θ1 + b2θ0

)
, and ρ2 = λ+2βμ

3βμ
.

Then, recursively, we get
P1,n = θn P0,0, (30)

where

θn =

⎧⎪⎪⎨
⎪⎪⎩

θ0, if n = 0,
λ+η
βμ

θ0, if n = 1,

ρn−1θn−1 − φ

nβμ
ωn−1 − λ

nβμ

∑n−1

i=1
biθn−1−i , if 2 ≤ n ≤ c − 1,

with

ρn−1 = λ + (n − 1)βμ

nβμ
.

Finally, using Eqs. (12), (20), (21), and (30), G0(z) and G1(z) are expressed in terms of
P0,0. So, it remains to determine this quantity. From Eq. (14), applying L’Hopital rule, we
find

lim
z→1

G ′
0(z) = G ′

0(1) = λB ′(1)
αξ + φ

G0(1). (31)

Next, substituting Eq. (22) in Eq. (31), we obtain

G ′
0(1) = αξλB ′(1)

(αξ + φ)φK (1)
P0,0. (32)

Then, substituting Eq. (13) in Eq. (12), we get

G1(z) = βμ(1 − z)R(z)P0,0 − zφ(G0(z) − G0(1))

λz(B(z) − 1) + cβμ(1 − z)
, (33)
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where

R(z) =
c−1∑
n=0

(c − n)θnz
n .

From Eq. (33), applying L’Hopital rule, we obtain the probability that the servers are in
busy period, (G1(1) = P1,. = ∑∞

n=0 P1,n),

lim
z→1

G1(z) = G1(1) = φG ′
0(1) + βμR(1)P0,0
cβμ − λB ′(1)

, (34)

with

R(1) =
c−1∑
n=0

(c − n)θn .

Finally, by substituting Eqs. (22), (32) and (34) in Eq. (8), we find

P0,0 =
{

βμ

cβμ − λB ′(1)
R(1) + αξ

φK (1)

(
φλB ′(1)

(cβμ − λB ′(1))(αξ + φ)
+ 1

)}−1

.

3.2 Performancemeasures

Once the steady-state probabilities are obtained, one can evaluate different performance
measures of the considered model.

• The mean system size (E[L]). Let L denote the number of customers in the system. The
mean system size is given as

E[L] = E[L0] + E[L1].
∗ Let L0 be the system size when the servers are in vacation period. Then, the mean
system size when the servers are in vacation period (E[L0]) is given as

E[L0] = lim
z→1

G ′
0(z) = G ′

0(1),

which is a direct consequence of Eq. (32).
∗ Let L1 be the system size when the servers are in busy period. Then, the mean system
size when the servers are in busy period (E[L1]) is given as

E[L1] = lim
z→1

G ′
1(z) = G ′

1(1).

Via Eq. (33), using L’Hopital rule, we obtain

E[L1] = G ′
1(1) = φ

2(cβμ − λB ′(1))
G ′′

0(1) + φ(2cβμ + λB ′′(1))
2(cβμ − λB ′(1))2

G ′
0(1)

+
(

βμλ(2B ′(1) + B ′′(1))
2(cβμ − λB ′(1))2

R(1) + βμ

cβμ − λB ′(1)
R′(1)

)
P0,0, (35)

where G ′′
0(1) is obtained by differentiating twice G0(z) at z = 1. Thus, using Eq. (11), we

find

G ′′
0(1) = 2λB ′(1)

2αξ + φ
G ′

0(1) + λB ′′(1)
2αξ + φ

G0(1). (36)
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Further

R′(1) =
c−1∑
n=1

n(c − n)θn .

Then, substituting Eq. (36) in Eq. (35), we get

E[L1] =
(

φ(2cβμ + λB ′′(1))
2(cβμ − λB ′(1))2

+ λφB ′(1)
(cβμ − λB ′(1))(2αξ + φ)

)
E[L0]

+
(

βμλ(2B ′(1) + B ′′(1))
2(cβμ − λB ′(1))2

R(1) + βμ

cβμ − λB ′(1)
R′(1)

)
P0,0

+ λφB ′′(1)
2(cβμ − λB ′(1))(2αξ + φ)

G0(1).

• The mean number of customers in the queue (E[Lq ]).

E[Lq ] =
∞∑
n=0

nP0,n +
∞∑

n=c+1

(n − c)P1,n = E[L] − c(1 − Pv) + R(1)P0,0.

• The probability that the servers are in vacation period (Pv). From Eq. (22), we obtain

Pv = G0(1) = αξ

φK (1)
P0,0.

• The probability that the servers are idle during busy period (Pe). From Eq. (20), we get

Pe = αξ − φK (1)

ηK (1)
P0,0.

• The probability that the servers areworking (serving customers) during busy period (Pb).

Pb = 1 − Pv − Pe.

• The mean number of customers served per unit time (Ns).

Ns = βμ

c−1∑
n=0

nP1,n + cβμ

∞∑
n=c

P1,n = βμ
(
c(Pb − Pe) + R(1)P0,0

)
.

• The average rate of abandonment of customers due to impatience (Ra).

Ra = αξ

∞∑
n=0

nP0,n = αξE[L0].

• The average retention rate of impatient customers (Re).

Re = (1 − α)ξ

∞∑
n=0

nP0,n = (1 − α)ξE[L0].

4 Analysis of themodel under SVP

This section is devoted to the study of the system under single vacation policy. The transition-
rate diagram depicting the state of the system is shown in Fig. 2.

123



318 A. A. Bouchentouf, A. Guendouzi

Fig. 2 State-transition-rate diagram of the model under SVP

4.1 Steady state solution of themodel

Via the Markov theory, the set of steady-state equations are as follows

(λ + φ)P0,0 = αξ P0,1 + ηP1,0, (37)

(λ + φ + αξ)P0,1 = λb1P0,0 + 2αξ P0,2, n = 1, (38)

(λ + φ + nαξ)P0,n = λ

n∑
m=1

bm P0,n−m + (n + 1)αξ P0,n+1, n ≥ 2, (39)

(λ + η)P1,0 = φP0,0 + βμP1,1, (40)

(λ + βμ)P1,1 = λb1P1,0 + 2βμP1,2 + φP0,1, n = 1, (41)

(λ + nβμ)P1,n = λ

n∑
m=1

bm P1,n−m + (n + 1)βμP1,n+1 + φP0,n,

2 ≤ n ≤ c − 1, (42)

(λ + cβμ)P1,n = λ

n∑
m=1

bm P1,n−m + cβμP1,n+1 + φP0,n, n ≥ c, (43)

The normalizing condition is given in Eq. (8).
The PGF of Ps,n is given in Eq. (9), and that of the batch size X has already been done in

(10).
The state probabilities are obtained by solving the Eqs. (37)–(43) using PGF.
Now, multiplying Eqs. (37)–(39) by zn, and summing n, then re-arranging all the terms,

we have
(1 − z)αξG ′

0(z) + [λ(B(z) − 1) − φ]G0(z) = −ηP1,0. (44)
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In a similar manner, form Eqs. (40)–(43), it yields

[λz(B(z)−1)+cβμ(1−z)]G1(z)+zφG0(z) = βμ(z−1)
c−1∑
n=0

(n−c)P1,nz
n+ηzP1,0. (45)

By taking z = 1 in Eqs. (44) or (45), we obtain

φG0(1) = ηP1,0. (46)

We solve Eq. (44) by following the method presented in Altman and Yechiali [1].
Using Eq. (40), we get

P1,0 = φ

λ + η
P0,0 + βμ

λ + η
P1,1. (47)

Equation (44) can be written as

G ′
0(z) +

[
λ

αξ
H ′(z) − φ

αξ(1 − z)

]
G0(z) = −

[
δ1

αξ(1 − z)
P0,0 + δ2

αξ(1 − z)
P1,1

]
, (48)

where

δ1 = ηφ

λ + η
, δ2 = ηβμ

λ + η
.

The solution of the Eq. (44) is computed as before and given as follows

G0(z) = e− λ
αξ

H(z)
(1 − z)−

φ
αξ

{
G0(0) − K (z)

αξ

[
δ1P0,0 + δ2P1,1

]}
. (49)

Since G0(1) = P0,. = ∑∞
n=0 P0,n > 0 and z = 1 is the root of the denominator of the

right hand side of Eq. (49), thus z = 1 must be the root of the numerator of the right hand
side of Eq. (49).

Consequently,

P0,0 = G0(0) = δ1P0,0 + δ2P1,1
αξ

K (1). (50)

This implies

P1,1 = M1P0,0, where M1 = αξ(λ + η)

ηβμK (1)
− φ

βμ
. (51)

Consequently,

G0(z) = e− λ
αξ

H(z)
(1 − z)−

φ
αξ

{
1 − K (z)

K (1)

}
P0,0. (52)

Next, substituting Eqs. (51) into (40), and Eq. (53) into (46), we get respectively

P1,0 = M0P0,0, where M0 = αξ

ηK (1)
, (53)

and

G0(1) = αξ

φK (1)
P0,0. (54)

Now, Eq. (52) shows that G0(z) can be expressed in terms of P0,0 and Eq. (53) expresses
P1,0 in terms of P0,0. So, to get P1,n in terms of P0,0 for n = 0, . . . , c − 1, at first we have
to express P0,n in terms of P0,0 for n = 0, . . . , c − 1.
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Using Eqs. (37)–(39), recursively, we get

P0,n = γn P0,0, (55)

with

γn =

⎧⎪⎪⎨
⎪⎪⎩

1, if n = 0,
λ+φ−ηM0

αξ
, if n = 1,

ψn−1γn−1 − λ

nαξ

∑n−1

i=1
biγn−1−i , if 2 ≤ n ≤ c − 1.

Next, via Eqs. (40)–(42), using recursive method, we obtain

P1,n = MnP0,0, (56)

where

Mn =

⎧⎪⎪⎨
⎪⎪⎩

M0, if n = 0,
M1, if n = 1,

ρn−1Mn−1 − φ

nβμ
γn−1 − λ

nβμ

∑n−1

i=1
bi Mn−1−i , if 2 ≤ n ≤ c − 1.

Thus, G0(z) and G1(z) can be easily deduced in terms of P0,0.
From Eq. (44), using Eq. (46), and applying L’Hopital rule, we have

lim
z→1

G ′
0(z) = G ′

0(1) = λB ′(1)
αξ + φ

G0(1). (57)

Substituting Eq. (54) into Eq. (57), we obtain

G ′
0(1) = αξλB ′(1)

φK (1)(αξ + φ)
P0,0. (58)

Next, substituting Eq. (46) into Eq. (45), we have

G1(z) = βμ(1 − z)Q(z)P0,0 − zφ(G0(z) − G0(1))

λz(B(z) − 1) + cβμ(1 − z)
, (59)

where

Q(z) =
c−1∑
n=0

(c − n)Mnz
n .

From Eq. (59), applying L’Hopital rule, it yields

G1(1) = φG ′
0(1) + βμQ(1)P0,0
cβμ − λB ′(1)

, (60)

with

Q(1) =
c−1∑
n=0

(c − n)Mn .

Next, substituting Eq. (58) into Eq. (60), we get

G1(1) =
{

αξλB ′(1)
K (1)(αξ + φ)(cβμ − λB ′(1))

+ βμ

cβμ − λB ′(1)
Q(1)

}
P0,0. (61)
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Finally, by substituting Eqs. (54) and (61) into Eq. (8), we get

P0,0 =
{

αξ

φK (1)

(
1 + φλB ′(1)

(cβμ − λB ′(1))(αξ + φ)

)
+ βμ

cβμ − λB ′(1)
Q(1)

}−1

.

4.2 Performancemeasures

• The mean system size (E[L]). L is the number of customers in the system.

E[L] = E[L0] + E[L1].
∗ Let L0 be the system size when the servers are in vacation period, the mean system
size when the servers are on vacation (E[L0]) has been already given in Eq. (58).
∗ Let L1 be the system size when the servers are in busy period, (E[L1]) be the mean
system size when the servers are on busy period. From Eq. (59), taking z = 1 and using
L’Hopital rule, we obtain

E[L1] = G ′
1(1) = φ

2(cβμ − λB ′(1))
G ′′

0(1) + φ(2cβμ + λB ′′(1))
2(cβμ − λB ′(1))2

G ′
0(1)

+
(

βμλ(2B ′(1) + B ′′(1))
2(cβμ − λB ′(1))2

Q(1) + βμ

cβμ − λB ′(1)
Q′(1)

)
P0,0, (62)

where G ′′
0(1) is obtained by differentiating twice G0(z) at z = 1, therefore, using Eq. (44),

we get

G ′′
0(1) = 2λB ′(1)

2αξ + φ
G ′

0(1) + λB ′′(1)
2αξ + φ

G0(1), (63)

and

Q′(1) =
c−1∑
n=1

n(c − n)Mn .

Now, substituting Eqs. (63) into (62), we get

E[L1] =
(

φ(2cβμ + λB ′′(1))
2(cβμ − λB ′(1))2

+ λφB ′(1)
(cβμ − λB ′(1))(2αξ + φ)

)
E[L0]

+
(

βμλ(2B ′(1) + B ′′(1))
2(cβμ − λB ′(1))2

Q(1) + βμ

cβμ − λB ′(1)
Q′(1)

)
P0,0

+ λφB ′′(1)
2(cβμ − λB ′(1))(2αξ + φ)

G0(1).

• The mean number of customers in the queue (E[Lq ]).

E[Lq ] =
∞∑
n=0

nP0,n +
∞∑

n=c+1

(n − c)P1,n = E[L] − c(1 − Pv) + Q(1)P0,0.

• The probability that the servers are in vacation period (Pv). From Eq. (54), we obtain

Pv = G0(1) = αξ

φK (1)
P0,0.
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• The probability that the servers are idle during busy period (Pe). From Eq. (53), we get

Pe = αξ

ηK (1)
P0,0.

• The probability that the servers areworking (serving customers) during busy period (Pb).

Pb = 1 − Pv − Pe.

• The mean number of customers served per unit time (Ns).

Ns = βμ

c−1∑
n=0

nP1,n + cβμ

∞∑
n=c

P1,n = βμ
(
c(Pb − Pe) + Q(1)P0,0

)
.

• The average rate of abandonment of customers due to impatience (Ra).

Ra = αξ

∞∑
n=0

nP0,n = αξE[L0].

• The average retention rate of impatient customers (Re).

Re = (1 − α)ξ

∞∑
n=0

nP0,n = (1 − α)ξE[L0].

5 Cost model

Practically, queueing managers are interested in minimizing operating cost of unit time. In
this part of paper, we first formulate a steady-state expected cost function per unit time, where
the service rate μ is the decision variable. Our main goal is to determine the optimum value
of μ in order to minimize the expected cost function. To this end, we have to define the
following cost elements:

– C1 : Cost per unit time when the servers are working during busy period.
– C2 : Cost per unit time when the servers are idle during busy period.
– C3 : Cost per unit time when the servers are in vacation period.
– C4 : Cost per unit time when customers join the queue and wait for service.
– C5 : Cost per service per unit time.
– C6 : Cost per unit time of serving a feedback customer.
– C7 : Cost per unit time when a customer reneges.
– C8 : Cost per unit time when a customer is retained in the system.
– C9 : Fixed server purchase cost per unit.
– R : The revenue earned by providing service to a customer. Let
– Tc be the total expected cost per unit time of the system:

Tc = C1Pb + C2Pe + C3Pv + C4E[Lq ] + cμ(C5 + β ′C6) + C7Ra + C8Re + cC9.

– Tr be the total expected revenue per unit time of the system:

Tr = R × Ns

– Tp be the total expected profit per unit time of the system:

Tp = Tr − Tc.
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5.1 Quadratic fit searchmethod

This part considers the cost optimization problem under a given cost structure via quadratic
fit search method (QFSM), this technique utilizes a 3-point pattern for fitting a quadratic
function that has a unique optimum, see Rardin [17]. So, we focus on the optimization of the
service rateμ in different cases in order to minimize the expected cost function Tc denoted in
this part by F . Assume that all system parameters have fixed values, and the only controlled
parameter is the service rate μ.

Thus, the optimization problem can be illustrated mathematically as:

Minimize : F(μ) = C1Pb + C2Pe + C3Pv + C4E[Lq ] + cμ(C5 + β ′C6) + C7Ra + C8Re + cC9.

As it has been mentioned in Laxmi et al. [11], given a 3-point pattern, we may fit a
quadratic function via corresponding functional values that has a unique minimum, xq , for
the given objective function F(x). Quadratic fit utilizes this approximation to improve the
current 3-point pattern by replacing one of its points with optimum xq . The unique optimum
xq of the quadratic function agreeing with F(x) at 3-point operation (xl , xm, xu) is given as

xq ∼= 1

2

[
F(xl)((xm)2 − (xu)2) + F(xm)((xu)2 − (xl)2) + F(xu)((xl)2 − (xm)2)

F(xl)(xm − xu) + F(xm)(xu − xl) + F(xu)(xl − xm)

]
.

6 Numerical results

In this section, we illustrate the obtained resulting formulas numerically, we first carry out the
optimization of the queueing system, using quadratic fit search method (QFSM) to minimize
the expected cost function F with respect to the service rate, then we discuss the influence of
different system parameters on the various performance measures of the queueing system as
well as on total expected cost, total expected revenue and total expected profit. We assume
that the batch size X follows a geometric distribution with parameter p, that is,

bl = P(X = l) = (1 − p)l−1 p, 0 < p < 1 (l = 1, 2, . . .).

Then, it is easy to observe that

B(z) = pz

1 − (1 − p)z
, E(X) = B ′(1) = 1

p
, and E(X2) = B ′′(1) = 2(1 − p)

p2
.

For the whole analysis in this numerical part, we fixeC1 = 40,C2 = 25,C3 = 20,C4 = 30,
C5 = 50, C6 = 20, C7 = 20, C8 = 30, and C9 = 10.

6.1 Optimization analysis

In order to carry out the numerical analysis on the parameter optimisation for the queueing
system under consideration, we consider the values for default parameters as c = 2, p =
0.70, λ = 1.00, β = 0.80, η = 3.00, φ = 2.20, α = 0.60, and ξ = 0.20, and the tolerance
of QFSM is ε = 10−6.

From Figs. 3, 4, we clearly see the convexity of the curves, which shows that there
exists a certain value of the service rate μ that minimizes the total expected cost function
for the chosen set of model parameters. By adopting QFSM and choosing the initial 3-
point pattern as (μl , μm, μu) = (1.05, 2.75, 3.5), in multiple vacation, and (μl , μm, μu) =
(1.05, 2.75, 3.5), in single vacation, and after finite iterations, we observe that the minimum
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Fig. 3 The optimum service rate
μ∗ under multiple vacation policy
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With multiple vacation

Fig. 4 The optimum service rate
μ∗ under single vacation policy
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With single vacation

expected operating cost per unit time converges to the solution F = 262.045100 at μ∗ =
1.443674, under multiple vacation and converges to F = 260.584500 at μ∗ = 1.446983,
under single vacation.

Further, from Tables 1, 2, and Figs. 3, 4, we observe that the optimum service rate μ∗ of
multiple vacation model is smaller than that of single vacation model, while the minimum
expected cost F(μ∗) of multiple vacation model is bigger than that of single vacation model.

Using QFS technique, the optimal values of μ and the minimum expected cost F(μ∗)
are shown in Tables 3, 4 and 5 for various values of λ, φ and η, respectively. We observe
from Table 3 that for both single and multiple vacations, as the arrival rate λ increases, both
the optimal service rate and the minimum expected cost increase, the increase in the optimal
service rate with λ is as expected in view of the stability of the system. Moreover, it is quite
clear from Figs. 5 and 6 that for both MVP and SVP, the total expected cost increases with
λ and μ, as intuitively expected. Then, from Table 4, we observe that for both single and
multiple vacation policies, the optimal service rate increases with φ, while the minimum
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Table 3 The optimal values μ∗
and F(μ∗) for different values
of λ

λ MVP SVP

μ∗ F(μ∗) μ∗ F(μ∗)

0.70 1.080571 210.4515 1.084180 209.6032

0.80 1.203464 228.0262 1.206953 226.9668

0.90 1.324392 245.2030 1.327779 243.9394

1.00 1.443674 262.0450 1.446983 260.5845

1.10 1.561503 278.5999 1.564713 276.9498

Table 4 The optimal values μ∗
and F(μ∗) for different values
of φ

φ MVP SVP

μ∗ F(μ∗) μ∗ F(μ∗)

0.80 1.425489 279.9405 1.427247 277.9489

1.20 1.434895 270.6155 1.437281 268.6739

1.60 1.439685 265.8825 1.442519 264.1108

2.00 1.442593 263.0613 1.445755 261.4950

2.40 1.444537 261.2039 1.447950 259.8484

Table 5 The optimal values μ∗
and F(μ∗) for different values
of η

η MVP SVP

μ∗ F(μ∗) μ∗ F(μ∗)

1.00 1.446642 260.7151 1.451625 258.7063

1.50 1.445304 261.2975 1.449833 259.4021

2.00 1.444523 261.6465 1.448581 259.9053

2.50 1.444013 261.8790 1.447658 260.2862

3.00 1.443674 262.0450 1.446949 260.5845

Fig. 5 Tc versus λ and μ in MVP
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Fig. 6 Tc versus λ and μ in SVP

Fig. 7 Tc versus φ and μ in MVP

expected cost decreases as φ increases. On the other hand, Figs. 7 and 8 show that for both
MVP and SVP, the total expected cost decreases with φ, which agrees with our intuition,
while it is not monotone with the parameter μ; it first decreases if the service rate μ is
less than some threshold parameter, then it increases when μ is above this threshold value.
Further, fromTable 5, it is clearly seen that the optimal service rate decreaseswith η,whereas,
the minimum expected cost increases as η increases, this is quite obvious. Moreover, Figs. 9
and 10 point out that for bothMVP and SVP, the total expected cost increases with η,whereas
it is notmonotonewithμ; it first decreaseswhen the service rateμ is below a certain threshold
value, then it increases when μ is greater than this threshold value. The non-monotonicity of

123



Cost optimization analysis for anMX /M/c vacation queueing system... 329

Fig. 8 Tc versus φ and μ in SVP

Fig. 9 Tc versus η and μ in MVP

the total expected cost with μ, displayed in Figs. 7, 8, 9 and 10, can be due to the choice of
the system parameters.

6.2 Performance and cost-profit analysis

In this subsection, we perform a sensitivity analysis to understand how different performance
measures, total expected cost, total expected revenue, and total expected profit vary with
different system parameters.

123



330 A. A. Bouchentouf, A. Guendouzi

Fig. 10 Tc versus η and μ in SVP

6.2.1 Impact of arrival rate (�) and batch size (p)

Let the values for default parameters be fixed as c = 2, β = 0.90, η = 3.00, φ = 1.50,
α = 0.60, ξ = 3.50, and μ = 1.50.

From Table 6, we observe that for both single and multiple vacation policies, for fixed p,
with the increases of λ, the mean system size E[L] increases, which results in the increasing
of themean number of customers served Ns .Further, along the increasing ofλ, the probability
that the servers are idle during busy period Pe decreases in the model with SVP, while it is
not monotone in the model with MVP; it increases, then decreases, when p = 0.65, and
increases in the casewhere p = 0.75, 0.85. This is due to the choice of the system parameters.
In addition, Tc, Tr , and Tp all increase with λ. This is quite reasonable, the bigger the arrival
rate, the larger the number of customers served and the greater the total expected cost, the
total expected revenue and the total expected profit.
On the other hand, for both policies, for fixed λ, with the increasing of p, the probability
that the servers are idle Pe increases, while E[L] and Ns decrease with the parameter p, this
leads to a decrease in Tc, Tr , and Tp, as intuitively expected.

Figures 11, 12 show the effect of the arrival rate λ on the expected number of customers
in the queue E[Lq ] and on the size of the system when the servers are on vacation E[L0],
for different values of batch size p, under multiple and single vacation policies. It can be
observed that for fixed p, with the increase of λ, E[Lq ] increases monotonically as it should
be. While E[L0] first increases, then decreases in the case where λ > 0.80 and p = 0.60,
λ > 1.00 and p = 0.70, and λ > 1.10 and p = 0.80. Obviously, E[Lq ] increases with
1/p, while E[L0] decreases with the parameter 1/p, which is coherent with the fact that
increasing the arrival rates increase the queue length during the busy period and decreases
the system size when the servers are in vacation.

Further, one may also observe that for higher values of p, E[Lq ] of multiple vacation
model is smaller than that of single vacation model, while E[L0] of multiple vacation model
is higher than that of single vacation model. This is due to the fact that in single vacation
policy, whenever the busy period ended, the servers switch to the busy period and stay there
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Fig. 11 Impact of λ on E[Lq ] in
MVP and SVP
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Fig. 12 Impact of λ on E[L0] in
MVP and SVP
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until the first arriving customer enters the system, consequently the queue length E[Lq ]
increases and E[L0] decreases. Contrariwise, in multiple vacation policy, once the vacation
period is finished, the servers switch to the busy period, if at that moment no customer is
observed in the queue, they immediately comeback to the vacation period, which results in
the increasing of the size of the system during this period E[L0].

6.2.2 Impact of waiting rate of the severs (�) and vacation rate (�)

In this subpart, we fixed the parameters as c = 2, p = 0.70, λ = 0.90, β = 0.80, η = 3.00,
φ = 0.50, α = 0.60, ξ = 3.20, and μ = 2.20.

The impact of waiting rate of the servers η and vacation rate φ in single and multiple
vacations are shown in Tables 7, 8, 9 and 10. It is clearly seen that for both multiple and
single vacation policies, Pv, E[L0], Ra and Re all increase with η and decrease with φ.While
Pb, E[L1], and Ns decrease with η and increase with φ. Therefore, for both policies, Tc, Tr ,

123



Cost optimization analysis for anMX /M/c vacation queueing system... 333

Ta
bl
e
7

Sy
st
em

pe
rf
or
m
an
ce

m
ea
su
re
s
vs
.η

η
P v

P b
E

[L
0
]

E
[L

1
]

R
a

R
e

N
s

W
ith

m
ul
tip

le
va
ca
tio

n
1.
00

0.
43

09
30

0.
48

89
66

0.
25

43
86

2.
33

49
17

0.
48

84
21

0.
32

56
14

1.
09

39
50

1.
50

0.
47

02
51

0.
47

14
74

0.
27

75
98

2.
21

73
80

0.
53

29
88

0.
35

53
25

1.
06

57
48

2.
00

0.
49

27
31

0.
46

14
73

0.
29

08
68

2.
15

01
84

0.
55

84
67

0.
37

23
11

1.
04

96
24

2.
50

0.
50

72
81

0.
45

50
00

0.
29

94
58

2.
10

66
92

0.
57

49
59

0.
38

33
06

1.
03

91
88

3.
00

0.
51

74
68

0.
45

04
68

0.
30

54
71

2.
07

62
41

0.
58

65
05

0.
39

10
03

1.
03

18
82

W
ith

si
ng

le
va
ca
tio

n
1.
00

0.
30

26
42

0.
54

60
37

0.
17

86
55

2.
71

83
88

0.
34

30
18

0.
22

86
79

1.
18

59
62

1.
50

0.
35

94
14

0.
52

07
81

0.
21

21
69

2.
54

86
88

0.
40

73
64

0.
27

15
76

1.
14

52
43

2.
00

0.
39

66
14

0.
50

42
32

0.
23

41
29

2.
43

74
91

0.
44

95
27

0.
29

96
85

1.
11

85
62

2.
50

0.
42

28
75

0.
49

25
50

0.
24

96
31

2.
35

89
92

0.
47

92
92

0.
31

95
28

1.
09

97
27

3.
00

0.
44

24
04

0.
48

38
62

0.
26

11
59

2.
30

06
18

0.
50

14
26

0.
33

42
84

1.
08

57
20

123



334 A. A. Bouchentouf, A. Guendouzi

Ta
bl
e
8

Sy
st
em

pe
rf
or
m
an
ce

m
ea
su
re
s
vs
.φ

φ
P v

P b
E

[L
0
]

E
[L

1
]

R
a

R
e

N
s

W
ith

m
ul
tip

le
va
ca
tio

n
0.
50

0.
51

74
68

0.
45

04
68

0.
30

54
71

2.
07

62
41

0.
58

65
05

0.
39

10
03

1.
03

18
82

0.
80

0.
42

87
37

0.
53

31
69

0.
22

51
77

2.
45

47
30

0.
43

23
40

0.
28

82
27

1.
22

17
50

1.
10

0.
37

65
71

0.
58

17
28

0.
17

81
32

2.
67

57
44

0.
34

20
14

0.
22

80
09

1.
33

34
29

1.
40

0.
34

22
05

0.
61

36
76

0.
14

72
48

2.
82

03
24

0.
28

27
17

0.
18

84
78

1.
40

70
38

1.
70

0.
31

78
42

0.
63

62
96

0.
12

54
31

2.
92

20
99

0.
24

08
28

0.
16

05
52

1.
45

92
47

W
ith

si
ng

le
va
ca
tio

n
0.
50

0.
44

24
04

0.
48

38
62

0.
26

11
59

2.
30

06
18

0.
50

14
26

0.
33

42
84

1.
08

57
20

0.
80

0.
34

61
08

0.
56

15
96

0.
18

17
79

2.
67

98
92

0.
34

90
17

0.
23

26
78

1.
25

66
86

1.
10

0.
28

92
68

0.
60

46
67

0.
13

68
35

2.
89

53
58

0.
26

27
22

0.
17

51
48

1.
34

95
64

1.
40

0.
25

12
63

0.
63

14
80

0.
10

81
17

3.
03

36
45

0.
20

75
84

0.
13

83
89

1.
40

59
72

1.
70

0.
22

37
68

0.
64

94
30

0.
08

83
06

3.
12

95
58

0.
16

95
48

0.
11

30
32

1.
44

26
06

123



Cost optimization analysis for anMX /M/c vacation queueing system... 335

Table 9 Tc, Tr , and Tc vs. η

MVP SVP
η Tc Tr Tp Tc Tr Tp

1.00 171.0821 328.1849 157.1029 172.1893 355.7885 183.5992

1.50 170.7427 319.7243 148.9816 171.6993 343.5729 171.8736

2.00 170.5486 314.8873 144.3386 171.3782 335.5686 164.1903

2.50 170.4231 311.7565 141.3335 171.1516 329.9180 158.7664

3.00 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330

Table 10 Tc, Tr , and Tc vs. φ

φ MVP SVP
Tc Tr Tp Tc Tr Tp

0.50 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330

0.80 171.3911 366.5250 195.1338 172.0484 377.0059 204.9575

1.10 171.9970 400.0286 228.0316 172.6472 404.8691 232.2219

1.40 172.3860 422.1114 249.7253 173.0279 421.7915 248.7635

1.70 172.6546 437.7740 265.1194 173.2900 432.7819 259.4919

Fig. 13 Impact of η on E[L0] in
MVP and SVP
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and Tp decrease with η and increase with φ. These results are consistent with our intuition;
the probability of busy period increaseswithφ (resp. decreaseswith η), thus themean number
of customers served increases with φ (resp. decreases with η), therefore, the total expected
profit increases with φ (resp. decreases with η). On the other hand, the probability of vacation
period decreases with the parameter φ (resp. increases with the parameter η). Consequently,
the average rate of reneging decreases with φ (resp. increases with η). Consequently, the total
expected profit increases with increasing values of φ and decreases along the increasing of
η.

From Figs. 13, 14 we see that for both single and multiple vacations, E[L0] increases with
η and decreases with λ and φ, as it should be expected. Then, evidently for lower values of
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Fig. 14 Impact of λ on E[L0] in
MVP and SVP
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φ, E[L0] of multiple vacation model is higher than that of single vacation model. On the
other hand, for higher values of η, E[L0] of multiple vacation model is greater than that of
single vacation model. Consequently, we can conclude that the model with waiting servers
outperforms the model without this policy.

6.2.3 Impact of impatience rate (�) and non-retention probability (˛)

In this subpart, we choose the default parameters as c = 2, p = 0.70, λ = 0.90, β = 0.80,
η = 2.00, φ = 1.50, μ = 2.20.

Table 11 illustrates the impact of ξ and α, for both single and multiple vacation policies.
As expected, for both MVP and SVP, increases in ξ and α implies a decrease in E[L] and
Ns . This is because the size of the system decreases with the increasing of ξ and α. Thus,
the mean number of customers served decreases as the two parameters ξ and α increase.
Further, Ra increases with ξ and α, whereas, Re increases with ξ and decreases with α, as
it should be. Therefore, Tc, Tr , and Tp monotonically decrease with α, Tc is not monotone
with ξ,while Tr and Tp decrease significantly with the increasing values of ξ, this is because
of the significant number of lost customers. From this, it is clearly obvious that the retention
probability has a positive impact on the economy of the system, this probability is very useful
for any firm operating in the field of finance, supply chain, manufacturing, and so on.

Figures 15, 16 depict the effect of ξ for different values of α in both single and multiple
vacation policies. From the figures, it can be seen that as the impatience rate ξ increases, the
mean system size when the servers are on vacation period E[L0] monotonically decreases
for any α, as intuitively expected. Moreover, from both figures, we observe that E[L0] is
high when the non-retention probability α is small. Further, as it should be expected, E[L0]
of multiple vacation model is greater than that of single vacation model.

6.2.4 Impact of non-feedback probability (ˇ) and number of the severs (c).

In this part, we take p = 0.70, λ = 0.90, η = 2.00, φ = 1.50, α = 0.60, ξ = 1.00, and
μ = 2.20.
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Fig. 15 Impact of ξ on E[L0] in
MVP
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Fig. 16 Impact of ξ on E[L0] in
SVP
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Table 12 Impact of c and β

c MVP SVP
β Tc Tr Tp Tc Tr Tp

2 0.70 214.1259 429.2409 215.1150 211.5811 350.1083 138.5272

0.80 207.1737 416.6931 209.5195 204.2018 306.9425 102.7406

0.90 201.1740 400.7218 199.5478 197.8585 258.1941 60.33554

3 0.70 281.6618 837.3160 555.6542 293.5541 810.1472 516.5932

0.80 288.7010 838.0231 549.3221 285.9941 797.1694 511.1753

0.90 295.9462 830.8510 534.9048 278.6898 773.2725 494.5827
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Fig. 17 Impact of μ on Ns in
MVP
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Fig. 18 Impact of μ on Ns in
SVP
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From Table 12 and Figs. 17, 18, we see that for both single and multiple vacations, Ns

increases withμ, c, and β, respectively. Further, for bothMVP and SVP, for fixed β, the total
expected cost, the total expected revenue, and the total expected profit increase significantly
with the increasing of c. This is quite reasonable, the greater the number of servers in the
system, the larger the number of customers served and the higher the total expected profit.
In addition, in both MVP and SVP, for fixed c, the total expected revenue and the total
expected profit decrease when β increases. While in the model with SVP, Tc decreases with
the parameter β, and in the model with MVP, it decreases with β, when c = 2, and increases
along the increasing of β, when c = 3. Thus, we can say that a feedback probability has a
nice effect on the economy of the system. Moreover, as intuitively expected, Ns of single
vacation model is higher than that of multiple vacation model.
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7 Conclusion and future scope

In this paper, we carried out a study of a infinite-buffer multi-server Bernoulli feedback
queueing system with batch arrivals, waiting servers, impatient customers and retention of
reneged customer, under single and multiple vacation policies. We obtained the closed-form
expressions for the steady-state probabilities of the queueing model, using the probability
generating function (PGF). Various performance measures of the system are evaluated. We
also performed a cost model and considered a cost optimization problem using quadratic fit
search method (QFSM) in order to obtain the optimum values of the service rate for different
values of arrival rate, waiting rate of the servers and vacation rate. Important numerical results
have been illustrated, which may be useful to explore the impact of system parameters on
different performance measures and total expected cost, total expected revenue and total
expected profit, respectively. The obtained results have potential applications in modeling
computer and telecommunication systems, computer networks, manufacturing, and so on.
For further works, it will be interesting to apply the technique used in this paper in order to
studymore complexmodels such asGeoX/Geo/c andMX/M/cwith breakdowns, impatient
customers and asynchronous multiple and single vacations. Furthermore, the model under
investigation can be analyzed under the provision of time dependent arrival and service rates
which leads the system to more realistic environment.
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