SeMA Journal (2019) 76:309-341
https://doi.org/10.1007/s40324-018-0180-2

@ CrossMark

Cost optimization analysis for an MX /M/c vacation queueing
system with waiting servers and impatient customers

Amina Angelika Bouchentouf' - Abdelhak Guendouzi?

Received: 9 July 2018 / Accepted: 8 November 2018 / Published online: 13 November 2018
© Sociedad Espariola de Matematica Aplicada 2018

Abstract

This paper deals with the study of an MX /M /c Bernoulli feedback queueing system with
waiting servers and two different policies of synchronous vacations (single and multiple
vacation policies). During vacation period, the customers may leave the system (reneging),
and using certain customer retention mechanism, the reneged customers may be retained in
the system. The probability generating function (PGF) has been used to obtain the steady
state probabilities of the model. Various performances measures of the system are derived.
Then, a cost model is developed. Further, a cost optimization problem is considered using
quadratic fit search method. Finally, a variety of numerical illustrations are discussed for the
applicability of the model.

Keywords Multi-server queueing systems - Single vacation - Multiple vacation - Impatient
customers - Bernoulli feedback - Probability generating function - Optimization

Mathematics Subject Classification 60K25 - 68M20 - 90B22

1 Introduction

Performance of modeling vacation queueing systems has attracted many researchers owing
to their large applications in many real life congestion problems including computer and
communication systems, manufacturing and production systems along with other queueing
systems having industrial importance. A detailed surveys of the literature devoted to such
systems are found in Doshi [9], Takagi [20], Tian and Zhang [21] and references therein.
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Modeling vacation queueing models with impatient customers is very important in order
to obtain novel managerial insights. The lost revenues due to impatience in several indus-
tries may be enormous. Literature analysis has shown an extensive studies of these models.
Altman and Yechiali [1] dealt with customers’ impatience in queues with server vacation.
Zhang et al. [27] gave the analysis of an M /M /1/N queueing model with balking, reneg-
ing and server vacations. Later, Ammar [3] carried out the transient analysis of an M /M /1
queue with impatient behavior and multiple vacations. Panda and Goswami [16] studied the
equilibrium balking strategies for a GI /M /1 queue with Bernoulli-schedule vacation and
vacation interruption. Recently, in Ammar [4], the transient solution of an M /M /1 vacation
queue with a waiting server and impatient customers has been established. For more literature
on customer’s impatience in vacation queues, the authors can be referred to Yue et al. [25],
Padmavathy et al. [15], Misra and Goswami [13], Yue et al. [24], Sun et al. [19], Bouchentouf
and Yahiaoui [7], and references therein.

Queueing systems with batch arrival represent the case where arrivals enter the system in
batches rather than one by one. Few examples of arrivals in batches to a system are customers
in elevators, supermarkets, banks, etc. Considerable works on vacation models with batch
arrivals were conducted by many researchers. Lee et al. [12] analyzed the fixed bulk service
queueing system with single and multiple vacations. Later, Jau-Chuan Ke [10] dealt with a
MX /G /1 queueing model with balking and variant vacation policy, Wang et al. [22] presented
the maximum entropy analysis of the MX /M /1 queueing system with multiple vacations and
server breakdowns. Then, Baruah et al. [5] treated the balking and the re-service in a vacation
queueing model with batch arrival and two types of heterogeneous service. Baruah et al. [6]
dealt with a batch arrival queue with second optional service and reneging during vacation
periods. Recently, Sasikala et al. [18] presented the steady state behaviour of M*/G¥X /1
queueing model with control policy on request for re-service, N-policy, balking and multiple
vacations.

The study of multi-server vacation systems with impatient customers is far more complex
compared to impatience in single server vacation models, consequently, a limited literature is
available. The M /M /c/N queuing system with balking, reneging and synchronous vacations
of some partial servers together was presented by Yue et al. [23]. Altman and Yechiali [2]
treated the infinite-server queues with system’s additional tasks and impatient customers.
Then, a computational algorithm and parameter optimization for a multi-server queue with
unreliable server and impatient customers have been discussed by Chia and Jau-Chaun [8].
Later, Yue et al. [26] dealt with an M /M /c queueing system with impatient customers and
synchronous vacation, where impatience is due to the servers’ vacation. Recently, the analysis
of a M /M /c queueing model with single and multiple synchronous working vacations was
presented in Majid and Manoharan [14].

This paper deals with an infinite buffer multi-server vacation queueing system with batch
arrival, Bernoulli feedback and waiting servers wherein customers may renege during vaca-
tion period, and they can be retained in the system, via certain strategy (convinced to stay
in order to be serviced). The steady-state probabilities of the queueing system are obtained
through probability generating functions (PGFs). Useful performance measures of the queue-
ing system are derived. The cost profit analysis of the model is carried out. The optimization
of the model is performed using quadratic fit search method (QFSM) in order to minimize
the total expected cost of the system with respect to the service rate. A numerical study
is presented to illustrate the impact of various system parameters on different performance
measures and total expected profit of the system. The analysis carried out in this paper is very
important and useful to any insurance firm. Among the advantages of the obtained results is
to show the positive impact of waiting server and customer retention strategy.
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The rest of paper is arranged as follows. Section 2 provides a general description of the
model with multiple and single vacation policies. In Sect. 3, we develop the queueing model
under multiple vacation policy (MVP) and carry out the steady-state analysis of the system,
then we derive the explicit expressions of the various performance measures of the queueing
system. The model under single vacation policy (SVP) is analyzed in Sect. 4 following the
same methodology presented in the previous section. In Sect. 5, we develop a model for the
costs incurred and perform the appropriate optimization using a quadratic fit search method
(QFSM). Section 6 presents numerical examples in order to demonstrate the applicability of
the theoretical investigation, and finally we conclude the paper in Sect. 7.

2 Model description

We consider an MX /M /c Bernoulli feedback queueing system under single and multiple
vacations wherein customers may leave the system due to impatience during the absence
of the servers. Using certain retention customer mechanism, the reneged customers may be
retained in the system. The model considered in this work is based on following assumptions:

(i) Customers arrive in batches according to a Poisson process with rate A. The sizes of
successive arriving batches are i.i.d. random variables X1, X», . . .distributed with probability
mass function P(X =1)=b;; 1 =1,2,3,....

(i1) The customers are served on a First-Come First-Served (FCFS) queue discipline. The
service times are assumed to follow exponential distribution with mean 1/x.

(iii) When the busy period is finished the servers wait a random duration of time before
beginning on a vacation. This waiting duration is exponentially distributed with mean 1/7.

(iv) The queueing model consists of ¢ servers. In synchronous vacation policy, all the
servers leave for a vacation simultaneously, once the system becomes empty and they also
comeback to the system as one at the same time.
In multiple vacation policy (MVP), the servers continue to take vacations until they find the
system nonempty at a vacation completion instant. While, in single vacation policy (SVP),
when the vacation ends and servers find the system empty, they remains idle until the first
arrival occurs. Vacation periods are assumed to be exponentially distributed with mean 1/¢.

(v) Customers in batches are supposed to enter the queueing system, join the queue, if
the servers are unavailable due to vacation, a batch of customers activates an independent
impatience timer 7, with exponentially distributed duration, with mean 1/£. If T expires
while the servers are still on vacation, the customers may abandon the system. Further, using
certain mechanism, each impatient customer may abandon the system, with probability «,
and can be retained in the queue, with complementary probability (1 — «). Moreover, If the
service is uncomplete or unsatisfactory, the customers can either leave the system definitively,
with probability B, or rejoin the end of the queue of the system for another service, with
complementary probability (1 — ). Note that o = Afﬁ(ff) < 1 is the stability condition of
the system, where E(X) is the mean of a batch of arrivals.

(vi) We assume that the inter-arrival times, batch sizes, server waiting times, vacation
times, service times and impatience times are independent of each other.

Let {L(t); t > 0} be the number of customers in the system at time 7, and S(¢) be the state
of servers at time ¢, where S(¢) is defined as follows:

1, when the servers are in busy period at time ¢;
0, when the servers are in vacation period at time 7.

S(t) = {
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Fig. 1 State-transition-rate diagram of the model under MVP

Then, {(S(¢), L(t)); t > 0} defines a two-dimensional continuous Markov process with
state space

Q={(s,n):s=0,1, n=0,1,...}.
Let

Py, = lim P{S(t)=s,L(t)=n}, s=0,1,n=0,1,...,
n—o00

denote the system steady-state probabilities.

3 Analysis of the model under MVP

In this section, we study the model considered in Sect. 2 under multiple vacation policy, the
state-transition-rate diagram is presented in Fig. 1.

3.1 Steady state solution of the model

Using the Markov theory, the set of steady-state equations are written as follows

APy = a&Py 1+ 1P, (1)
(A+¢+at)Py =Ab1Pyo+20EPyn, n=1, (2)
n
A+ +naé)Pon =21 byuPonm+ 0+ DaEP us1, n>2, ©)
m=1
(A+n)Pro=BuP, 4
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A+ Bu)P11 = Ab1Pro+2BuPip2+ 9Py, n=1, Q)

n
()\ +n,3/'L)Pl,n =A Z meI,n—m + (I’l + 1)/3/’LPl,n+l +¢P0,n7

m=1
2<n<c-—1, (6)
n
A+ PP =1 Y buPinm+cBuPiosi+¢Pon, nzc. ()
m=1

And the normalizing condition is given as

o0 o0
S Poa+ Y Pia=1 ®)
=0 =0

The probability generating function (PGF) of P; , is defined as

o
Gsx) =) Pupz", s=0,1 ©)
n=0

The probability generating function (PGF) of the batch size X is as

oo o0
B(z)=) bz |zl <1, with B()=) b =1. (10)
=1 I=1
The steady-state probabilities of the queueing system are obtained by solving the Egs.
(1)—(7) using PGF.
By multiplying Egs. (1)—(3) by z", and summing over n, then re-arranging all the terms,
we get
(1 = 2agGy(2) + [M(B(2) — 1) = ¢1Go(2) = —[¢Po,o + 1P ol. an
In a similar manner, form Eqgs. (4)—(7), we have

c—1

[Az(B(z) — 1) +cBu(l —2)]IG1(2) + 26Go(z) = Bu(z — 1) Z(ﬂ — o) Py 7"
n=0
+z[nP1o+ ¢ Pool (12)

Then, by taking z = 1 in Eqgs. (11) or (12), we obtain
#Go(1) = nP1o+ ¢ Poo. (13)

We solve the differential Eq. (11) using the same method used in Altman and Yechiali [1].
Thus Eq. (11) can be written as

’ Ao ¢ _ ¢ U
Gy(z) + [EH (z) — m]GO(Z) = |:05$(1 e Poo + wE(1—2) P1,0:|, (14)
where
H() = /Z %d}c and H'(z) = M
0 —X 1—-1z

s ¢
Then, we multiply both sides of Eq. (14) by e 7@ (1 — z)a | we get
¢

d [ 9 S 4 _
S (e 791 =2 Go(2) ) = —| = Pog + —=Pro e O — = (15)
dz of ok
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Now, integrating Eq. (15) from 0 to z, we get

A _ ¢ K
Go(e) = e # "D (1 — ) 3%{60<0>—a¥?[¢f’0,0+n1%,o“, (16)
where .
K(z)z/ eaeHO (| _ )& =1gy. (17)
0

Since Go(1) = Py,. = ZZOZO Py, > 0 and z = 1 is the root of the denominator of the
right hand side of Eq. (16), so z = 1 must be the root of the numerator of the right hand side

of Eq. (16).
Thus, we get
K(1)
Poo = Go(0) = o ¢Poo+nPio|, (18)
with
! 2 H(x) £ 1
K(1) =/ eat (1 —x) “dx. (19)
0
From Eq. (18), it yields
af —¢K (1)
Pl’() = 9(]P(),0, where 9() = (20)
nkK(l)
By substituting Eq. (20) into Eq. (16), we obtain
—LH(Z) _9 K(Z)
G =e * 1— gt ] — Po.o. 21
0(z) =e (1-2) { K | oo (21)

And by substituting Eq. (20) into Eq. (13), we find the probability that the servers are in
vacation period, (Go(1) = Py =Y ;2 Po.n),

Go(l) = Po.o. (22)

o

¢K (1)

It is clearly seen that Eq. (12) expresses G1(z) in terms of Py, P10, P1,, and Go(z).
From Eq. (21), we see that G (z) is expressed in terms of Py o, then in Eq. (20), Pj o is given
in terms of Py o. Thus, to define G(z) in terms of Py o, we need to express P , in terms of
Po,0. To this end, we firstly have to write P, in terms of Py .

From Eq. (1), using Eq. (20), we get

Po.1 = w1 Poo, (23)

where w; = %.
From Eq. (2), using Eq. (23), we find

Po2 = w2 Py, 24
where wy = Y1w; — ﬁblwo, v = }"Jgjas, and wg = 1.
Then, from Eq. (3), for n = 2, using Eqgs. (23) and (24), we obtain
Po3 = w3 Py,0, (25)
where w3 = Yowy — ﬁ(b](m + brwp), and ¥, = %.
Then, recursively, it yields
PO,n = Wy PO,Ov (26)
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where
1, ifn =0,
A—nby .
oy = aE ifn=1,
A n—1 .
Yn_1wp—1 — @ Zi:l biwp_1-;,if2<n<c—1,
with
At ¢+ (n—Da
1ﬁn—l = .
noé
Next, we need to write P , in terms of Py o. Via Eq. (4), using Eq. (20), we get
P11 =01 Poo, 27
where 6 = m@o.
From Egq. (5), using Egs. (20), (23) and (27), we obtain
P12 =62 P,0, (28)
where 6, = p16; — zgﬁwl — ﬁln@o, and p; = A;ﬁ“
Then, from Eq. (6), for n = 2, using Eqgs. (20), (24), (27) and (28), we find
P13 =03P0, (29)
where 03 = 0260, — %wz - ﬁ <b191 + b290>, and pp = ’\Jggﬁ”.
Then, recursively, we get
Pin =60, P 0, (30)
where
6o, ifn=0,
At e
O = 1§ Br . 8 N . iftn=1,
e
Pn—10n—1 — —— w1 — —— b6, if2<n<c-1,
npu nBu i=1
with
A+ (m—1)Bu
pp—1 = ————.
npu

Finally, using Egs. (12), (20), (21), and (30), Go(z) and G(z) are expressed in terms of
Pp 0. So, it remains to determine this quantity. From Eq. (14), applying L’Hopital rule, we

find

lim Gj(z) = Gy(1) AB'(D) Go(l)

i = = .

z—1 0t 0 ok + ¢ 0
Next, substituting Eq. (22) in Eq. (31), we obtain

aELB'(1)
Gy(1) = ——"—"__Py,.
0 (& + ¢)pK (1)

Then, substituting Eq. (13) in Eq. (12), we get

_ Bud —2R@) Poo — 2¢(Go(z) — Go(1))

G 22(B@) — ) + chu(l —2)

)

3D

(32)

(33)
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where
c—1
R(z) =Y (c—n)fu2".
n=0

From Egq. (33), applying L’Hopital rule, we obtain the probability that the servers are in
busy period, (G1(1) = P1. = Y320 Pr),

dGo(1) + BR(1) Py

lim G1(2) = G1(1) = BB (34)
with
c—1
R(1) = (c = n)b,.
n=0
Finally, by substituting Eqgs. (22), (32) and (34) in Eq. (8), we find
Bu ok ¢AB'(1) !
Poo = R(1 1 .
00 {Cﬁu @ 5k ((Cﬂu “IB()@E o) >}

3.2 Performance measures
Once the steady-state probabilities are obtained, one can evaluate different performance
measures of the considered model.

e The mean system size (E[L]). Let L denote the number of customers in the system. The
mean system size is given as

E[L] = E[Lo]l + E[L1].

* Let Lo be the system size when the servers are in vacation period. Then, the mean
system size when the servers are in vacation period (E[Lg]) is given as

E[Lo] = lim Gy(2) = Gy(D),
—>
which is a direct consequence of Eq. (32).

+ Let L be the system size when the servers are in busy period. Then, the mean system
size when the servers are in busy period (E[L1]) is given as

E[L1] = lim G} () = G/ (D).

Via Eq. (33), using L’Hopital rule, we obtain
¢ ¢Q2cpu+1B"(1))
2(cppu — AB'(1)) 2(cpp — 2B'(1))?
A2B'(1) + B"(1
(ﬁu (2B'(1) + B"(1)) Bu R/(l)>P0!0, (35)

E[L ] =G,(1) = Gy + Go(1)

R(1 _
2(cBu — AB'(1))? -+ cBu —AB'(1)
where G’O’ (1) is obtained by differentiating twice Go(z) at z = 1. Thus, using Eq. (11), we
find

20B'(1)

20 + ¢

AB"(1)

GEJ/(I) = m

Go(1) + Go(1). (36)
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Further
c—1

R'(1) = Zn(c —n)6,.

n=1

Then, substituting Eq. (36) in Eq. (35), we get

2 AB"(1 LB’ (1
L] <¢( cBu+ : ()2) ¢>/ (1 )E[Lo]
2(cBu —AB'(1)2 " (cBu — AB'(1)2aé + )
Bur(2B'(1) + B"(1)) Bu ,
( 2cpu 1B m2 VT " (1)) Foo
n ApB” (1) Go(l)
2cBu — 1B (1)(2aE +¢)
e The mean number of customers in the queue (E[L,]).
E[Lg) =) nPon+ ) (n—c)Pi,=E[L]—c(1—P)+ R(1)Pyo.
n=0 n=c+1

e The probability that the servers are in vacation period (P,). From Eq. (22), we obtain

of

P, =Go(l) = ——=Po .
v o(D SK(1) 00
e The probability that the servers are idle during busy period (P,). From Eq. (20), we get
af —¢pK(1) P
e = ——— —~—10,0-
nk(1)

e The probability that the servers are working (serving customers) during busy period (Pp).
Py=1—P,— P,

e The mean number of customers served per unit time (Ny).

c—1 00
Ny =By nPro+cpuy  Pra=Bu(c(Py— Pe)+ R(1)Poo).
n=0 n=c

e The average rate of abandonment of customers due to impatience (R,).

oo
Rq =o€ ) nPoy = atElLol.
n=0

e The average retention rate of impatient customers (R,).

Re=(1—m&Y nPy, = (1 —a)EE[Lol.

n=0

4 Analysis of the model under SVP

This section is devoted to the study of the system under single vacation policy. The transition-
rate diagram depicting the state of the system is shown in Fig. 2.
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Pu 2fp 3pn  (c1)Br cPu Bu Pu pu cPu

Fig.2 State-transition-rate diagram of the model under SVP

4.1 Steady state solution of the model
Via the Markov theory, the set of steady-state equations are as follows

A+ @) Poo = aéPo,1 + 1P,
A+ +at)Py = Ab1Poo+20EPy2, n=1,

n
A+ ¢ +na&)Poy =1 Y buPonm+ 0+ DaEPoupr, n=2,
m=1

A+nPro=¢Po+ BuPii,
A+ Buw)P11 =Ab1Pro+2B8uPi2+¢Po1, n=1,

n
A +nBWPLL =AY buPLym+ 1+ DBUPLu1 + Pon.

m=1
2<n<c-1,

n
A+cBuW)Pry = A Z mel,rL—m + C:B/'LPI,n+1 +¢Pyy, n=>c,

m=1

The normalizing condition is given in Eq. (8).

1,n
L=
Pu

(37
(38)

(39

(40)
(41)

(42)

(43)

The PGF of P , is given in Eq. (9), and that of the batch size X has already been done in

(10).

The state probabilities are obtained by solving the Eqgs. (37)—(43) using PGF.

Now, multiplying Eqs. (37)—(39) by z", and summing n, then re-arranging all the terms,

we have
(1 —2)aéGy(2) + [A(B(z) — 1) — ¢1Go(z) = —nPyo.
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In a similar manner, form Eqgs. (40)—(43), it yields

c—1

[Az(B(2)— D) +cpu(1-2)1G1(2)+29Go(z) = Bu(z—1) Z(n_C)Pl,nZ”+nZP1,0~ (45)
n=0

By taking z = 1 in Egs. (44) or (45), we obtain
$Go(1) = nPrp. (46)

We solve Eq. (44) by following the method presented in Altman and Yechiali [1].
Using Eq. (40), we get

K opy. (47)

Pro=
A+

Po,o +
n

Equation (44) can be written as

G’()+[1H’()—L}G()——[ AN P] (48)
T e T ae (1= |70 T Tag =0 M T e =)

where

_ "¢ 52:ﬂ
r+n’ At+n

The solution of the Eq. (44) is computed as before and given as follows

Go(x) = e @O (1 — p)~ie {GO(O) - %Z)[&Po,o +82P1,1“. (49)

81

Since Go(1) = Py, = Zf,o:o Py, > 0 and z = 1 is the root of the denominator of the
right hand side of Eq. (49), thus z = 1 must be the root of the numerator of the right hand
side of Eq. (49).

Consequently,
81Po,0 + 82 P11
Poo=Go(0) = ailf(l). (50)
This implies
A
Pii=MiPoo, where My =50 tm _ ¢ 51)
npurk ()  Bu
Consequently,
—LH(Z) _9 K(Z)
G =e % 1 — g ] — Po.o. 52
0(z) =e (1-2) { K | oo (52)

Next, substituting Egs. (51) into (40), and Eq. (53) into (46), we get respectively
of

PLO = M()P(),o, where Mo = ——0, (53)
' nK(1)
and .
o
Go(1) = ———Po.o0. (54)
PK (1)

Now, Eq. (52) shows that Go(z) can be expressed in terms of Py o and Eq. (53) expresses
P o in terms of Py . So, to get Py, in terms of Py forn =0, ..., ¢ — 1, at first we have

to express Py, in terms of Py forn =0,...,c — 1.
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Using Egs. (37)—(39), recursively, we get

Po.n = ¥n P00,
with
1, ifn=0,
)\+¢—7]M0 . _
va=1 @ ifn=1,
A n—1 .
Vn—1Vn—1— o Zi=1 biyp—1-i, if2<n=<c—1

Next, via Egs. (40)—(42), using recursive method, we obtain

Pin = M, Py,
where
My, ifn=0,
_ Ml, ifn = 1,
My = ¢ PR ,
Pn—1My—1 — myn—l - @ Zi:l biMy_1_;,if2<n<c—1

Thus, Go(z) and G1(z) can be easily deduced in terms of Py g.
From Eq. (44), using Eq. (46), and applying L’Hopital rule, we have

lim G(z) = Gy(1) = rEM Go(l
lim 0(2) = G( )—a$+¢ o(D).
Substituting Eq. (54) into Eq. (57), we obtain
aéLB'(1)
dK (D) (eé + ¢)
Next, substituting Eq. (46) into Eq. (45), we have
Bu(l —2)0(z)Poo — 2¢(Go(z) — Go(1))
r(B(@) = 1) +cBu(l —2)

Gé)(l) = Poo.

Gi(2) =

3

where
c—1
0() =) (c—mM,Z".
=0

From Eq. (59), applying L’Hopital rule, it yields

$Go(1) + B Poo
cfu—AB'(1)

Gl(l) =

)

with
c—1

Q) =) (c—n)M,.

n=0
Next, substituting Eq. (58) into Eq. (60), we get

aéAB'(1) i B
K(1)(a§ +¢)(cpu —AB'(1)) ~ cBu — AB'(1)

Gl(l):{
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Finally, by substituting Egs. (54) and (61) into Eq. (8), we get

Poo— l af (1 dAB'(1) ) Bu
’ HK (1) (cBu — AB' (1)) (aé + @) cBu—AB'(1)

-1
Q(l)} .

4.2 Performance measures

e The mean system size (E[L]). L is the number of customers in the system.
E[L] = E[Lol + E[L1].

* Let Lo be the system size when the servers are in vacation period, the mean system
size when the servers are on vacation (E[Lg]) has been already given in Eq. (58).

* Let L1 be the system size when the servers are in busy period, (E[L1]) be the mean
system size when the servers are on busy period. From Eq. (59), taking z = 1 and using
L’Hopital rule, we obtain

¢ ¢ Q2cBu + AB" (1))
2(cBu — AB'(1)) 2(cBu — AB'(1))?

Bur(2B'(1) + B"(1)) B ,
( 2(cBu — AB'(1))2 o)+ Fu B0 0 (1)>P0,0, (62)

E[L]=G,(1) = Gy + Go(1)

where Gg (1) is obtained by differentiating twice Go(z) at z = 1, therefore, using Eq. (44),
we get
20B'(1)

208 + ¢

AB"(1)

Goh) = 206 + ¢

Go(D) + Go(1), (63)

and

c—1

Q'(1) =) n(c—n)M,.

n=1
Now, substituting Egs. (63) into (62), we get
¢ (2cpu +AB" (1) ApB'(1)
2(cpp— 1B (1))? ~ (cPr — 1B'(1)2aé + )
A2B'(1) + B"(1
<ﬂu 2B'(1) + B"(1)) Bu Q,(1)>P0’0

2cpu - 2V T i)
2B (1)

Go(1).
T e —rB et + o) 0

e The mean number of customers in the queue (E[L,]).

E[L|] = ( >E[Lo]

E[Lgl=) nPo,+ Y (n—c)Pi,=E[L]—c(1—P)+ Q)P
n=0 n=c+1

e The probability that the servers are in vacation period (P,). From Eq. (54), we obtain

Py = Go(l) = Po,o-

_9
K (1)
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The probability that the servers are idle during busy period (P, ). From Eq. (53), we get

ag
e = Poo.
nK(1)

The probability that the servers are working (serving customers) during busy period (Pp).

Py=1—P,— P..

The mean number of customers served per unit time (Ny).

c—1 oo
Ny =BuY nPioy+cBu)  Pry=pBu(c(P,— P)+ Q(1)Pyo).
n=0 n=c

The average rate of abandonment of customers due to impatience (R,).

R, =a& Y nPy, = a&E[Lo).
n=0

The average retention rate of impatient customers (R,).

Re=(1—a Y nPy,=(1—aEE[L].

n=0

5 Cost model

Practically, queueing managers are interested in minimizing operating cost of unit time. In
this part of paper, we first formulate a steady-state expected cost function per unit time, where
the service rate p is the decision variable. Our main goal is to determine the optimum value
of w in order to minimize the expected cost function. To this end, we have to define the
following cost elements:

Cy
C

Cs
Cy

: Cost per unit time when the servers are working during busy period.
: Cost per unit time when the servers are idle during busy period.
Cy:
Cy -
Cs:
Cq :
C7:
: Cost per unit time when a customer is retained in the system.
: Fixed server purchase cost per unit.

Cost per unit time when the servers are in vacation period.

Cost per unit time when customers join the queue and wait for service.
Cost per service per unit time.

Cost per unit time of serving a feedback customer.

Cost per unit time when a customer reneges.

R : The revenue earned by providing service to a customer. Let
7. be the total expected cost per unit time of the system:

7

=C1Py+ CrPe + C3Py + C4E[Ly] + cu(Cs + B'C¢) + C7R, + CgR, + cCo.

7, be the total expected revenue per unit time of the system:

7 = R x Ny

7, be the total expected profit per unit time of the system:

T, =T - T.
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5.1 Quadratic fit search method

This part considers the cost optimization problem under a given cost structure via quadratic
fit search method (QFSM), this technique utilizes a 3-point pattern for fitting a quadratic
function that has a unique optimum, see Rardin [17]. So, we focus on the optimization of the
service rate u in different cases in order to minimize the expected cost function 7, denoted in
this part by F. Assume that all system parameters have fixed values, and the only controlled
parameter is the service rate .

Thus, the optimization problem can be illustrated mathematically as:

Minimize : F(u) = C1 Py + CoPe + C3Py + C4E[Ly] + cin(Cs + B'C¢) + C7R, + CgR, + cCy.

As it has been mentioned in Laxmi et al. [11], given a 3-point pattern, we may fit a
quadratic function via corresponding functional values that has a unique minimum, x4, for
the given objective function F'(x). Quadratic fit utilizes this approximation to improve the
current 3-point pattern by replacing one of its points with optimum x?. The unique optimum
x4 of the quadratic function agreeing with F (x) at 3-point operation (x!, x, x*) is given as

s 1|:F(Xl)((xm)2 — (")) + F™)((x")? — (x)?) + F(x")((x)? - (Xm)z)]
2 F(xDm — x) 4+ F(xm) (x4 — x1) + F(x*)(x! — x™) '

6 Numerical results

In this section, we illustrate the obtained resulting formulas numerically, we first carry out the
optimization of the queueing system, using quadratic fit search method (QFSM) to minimize
the expected cost function F' with respect to the service rate, then we discuss the influence of
different system parameters on the various performance measures of the queueing system as
well as on total expected cost, total expected revenue and total expected profit. We assume
that the batch size X follows a geometric distribution with parameter p, that is,

b=PX=D=0—-p'p,0<p<1(=12..).
Then, it is easy to observe that

4 1 2(1 —
Pt EX)=B()=—, and E(X?) = B"(l)= (72”).
1-(0-p):z p P
For the whole analysis in this numerical part, we fixe C1 = 40, C, = 25, C3 = 20, C4 = 30,
Cs =50, C¢ = 20, C7 =20, Cg = 30, and C9 = 10.

B(z) =

6.1 Optimization analysis

In order to carry out the numerical analysis on the parameter optimisation for the queueing
system under consideration, we consider the values for default parameters as ¢ = 2, p =
0.70, A = 1.00, B = 0.80, n = 3.00, ¢ = 2.20, a = 0.60, and & = 0.20, and the tolerance
of QFSM is € = 107°.

From Figs. 3, 4, we clearly see the convexity of the curves, which shows that there
exists a certain value of the service rate p that minimizes the total expected cost function
for the chosen set of model parameters. By adopting QFSM and choosing the initial 3-
point pattern as (ul, w™, uty = (1.05,2.75,3.5), in multiple vacation, and (uh, p™, pty =
(1.05,2.75, 3.5), in single vacation, and after finite iterations, we observe that the minimum
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Fig.3 The optimum service rate e 8
w* under multiple vacation policy 2 °
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expected operating cost per unit time converges to the solution F = 262.045100 at u* =
1.443674, under multiple vacation and converges to F = 260.584500 at u* = 1.446983,
under single vacation.

Further, from Tables 1, 2, and Figs. 3, 4, we observe that the optimum service rate u* of
multiple vacation model is smaller than that of single vacation model, while the minimum
expected cost F(u*) of multiple vacation model is bigger than that of single vacation model.

Using QFS technique, the optimal values of u and the minimum expected cost F'(u*)
are shown in Tables 3, 4 and 5 for various values of A, ¢ and 7, respectively. We observe
from Table 3 that for both single and multiple vacations, as the arrival rate A increases, both
the optimal service rate and the minimum expected cost increase, the increase in the optimal
service rate with A is as expected in view of the stability of the system. Moreover, it is quite
clear from Figs. 5 and 6 that for both MVP and SVP, the total expected cost increases with
A and u, as intuitively expected. Then, from Table 4, we observe that for both single and
multiple vacation policies, the optimal service rate increases with ¢, while the minimum
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Table 3 The optimal values u*

and F(u*) for different values - MVP SVP

of A w* F(u*) W F(u*)
0.70 1.080571 210.4515 1.084180 209.6032
0.80 1.203464 228.0262 1.206953 226.9668
0.90 1.324392 245.2030 1.327779 243.9394
1.00 1.443674 262.0450 1.446983 260.5845
1.10 1.561503 278.5999 1.564713 276.9498

Table 4 The optimal values pu*

MVP VP

and F(u*) for different values ¢ S

of ¢ uw* F(p*) w* F(u*)
0.80 1.425489 279.9405 1.427247 277.9489
1.20 1.434895 270.6155 1.437281 268.6739
1.60 1.439685 265.8825 1.442519 264.1108
2.00 1.442593 263.0613 1.445755 261.4950
2.40 1.444537 261.2039 1.447950 259.8484

Table 5 The optimal values u*

and F(u*) for different values K MVP SVP

of n w* F(u*) w* F(1*)
1.00 1.446642 260.7151 1.451625 258.7063
1.50 1.445304 261.2975 1.449833 259.4021
2.00 1.444523 261.6465 1.448581 259.9053
2.50 1.444013 261.8790 1.447658 260.2862
3.00 1.443674 262.0450 1.446949 260.5845

Fig.5 7. versus A and  in MVP
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Fig.6 7. versus % and p in SVP
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expected cost decreases as ¢ increases. On the other hand, Figs. 7 and 8 show that for both
MVP and SVP, the total expected cost decreases with ¢, which agrees with our intuition,
while it is not monotone with the parameter p; it first decreases if the service rate pu is
less than some threshold parameter, then it increases when p is above this threshold value.
Further, from Table 5, it is clearly seen that the optimal service rate decreases with 77, whereas,
the minimum expected cost increases as 7 increases, this is quite obvious. Moreover, Figs. 9
and 10 point out that for both MVP and SVP, the total expected cost increases with 1, whereas
itis not monotone with p; it first decreases when the service rate u is below a certain threshold
value, then it increases when p is greater than this threshold value. The non-monotonicity of
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Fig.8 7. versus ¢ and p in SVP
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the total expected cost with p, displayed in Figs. 7, 8, 9 and 10, can be due to the choice of
the system parameters.

6.2 Performance and cost-profit analysis

In this subsection, we perform a sensitivity analysis to understand how different performance

measures, total expected cost, total expected revenue, and total expected profit vary with
different system parameters.
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Fig. 10 7. versus n and p in SVP

6.2.1 Impact of arrival rate (1) and batch size (p)

Let the values for default parameters be fixed as ¢ = 2, 8 = 0.90, n = 3.00, ¢ = 1.50,
a =0.60, & =3.50, and pu = 1.50.

From Table 6, we observe that for both single and multiple vacation policies, for fixed p,
with the increases of A, the mean system size E[L] increases, which results in the increasing
of the mean number of customers served N;. Further, along the increasing of A, the probability
that the servers are idle during busy period P, decreases in the model with SVP, while it is
not monotone in the model with MVP; it increases, then decreases, when p = 0.65, and
increases in the case where p = 0.75, 0.85. This is due to the choice of the system parameters.
In addition, 7., 7,, and 7, all increase with A. This is quite reasonable, the bigger the arrival
rate, the larger the number of customers served and the greater the total expected cost, the
total expected revenue and the total expected profit.

On the other hand, for both policies, for fixed A, with the increasing of p, the probability
that the servers are idle P, increases, while E[L] and Ny decrease with the parameter p, this
leads to a decrease in 7., 7, and 7),, as intuitively expected.

Figures 11, 12 show the effect of the arrival rate A on the expected number of customers
in the queue E[L,] and on the size of the system when the servers are on vacation E[L],
for different values of batch size p, under multiple and single vacation policies. It can be
observed that for fixed p, with the increase of A, E[L] increases monotonically as it should
be. While E[Lg] first increases, then decreases in the case where A > 0.80 and p = 0.60,
A > 1.00 and p = 0.70, and A > 1.10 and p = 0.80. Obviously, E[L,] increases with
1/p, while E[L¢] decreases with the parameter 1/p, which is coherent with the fact that
increasing the arrival rates increase the queue length during the busy period and decreases
the system size when the servers are in vacation.

Further, one may also observe that for higher values of p, E[L,] of multiple vacation
model is smaller than that of single vacation model, while E[Lg] of multiple vacation model
is higher than that of single vacation model. This is due to the fact that in single vacation
policy, whenever the busy period ended, the servers switch to the busy period and stay there
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Fig. 11 Impactof A on E[L4] in
MVP and SVP
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until the first arriving customer enters the system, consequently the queue length E[L,]
increases and E[L¢] decreases. Contrariwise, in multiple vacation policy, once the vacation
period is finished, the servers switch to the busy period, if at that moment no customer is
observed in the queue, they immediately comeback to the vacation period, which results in
the increasing of the size of the system during this period E[Lo].

6.2.2 Impact of waiting rate of the severs (1) and vacation rate (¢)

In this subpart, we fixed the parameters as ¢ = 2, p = 0.70, . = 0.90, g = 0.80, n = 3.00,
¢ =0.50, a = 0.60, & = 3.20, and u = 2.20.

The impact of waiting rate of the servers n and vacation rate ¢ in single and multiple
vacations are shown in Tables 7, 8, 9 and 10. It is clearly seen that for both multiple and
single vacation policies, Py, E[Lo], R, and R, all increase with  and decrease with ¢. While
Py, E[L1], and Ny decrease with n and increase with ¢. Therefore, for both policies, 7., 7,
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Table9 7., 7, and 7. vs. n

MVP SVP
n T T 7, T T 7,
1.00 171.0821 328.1849 157.1029 172.1893 355.7885 183.5992
1.50 170.7427 319.7243 148.9816 171.6993 343.5729 171.8736
2.00 170.5486 314.8873 144.3386 171.3782 335.5686 164.1903
2.50 170.4231 311.7565 141.3335 171.1516 329.9180 158.7664
3.00 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330

Table 10 7¢, 7, and 7¢ vs. ¢

¢ MVP SVP

T 7 7 . 7 o
0.50 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330
0.80 171.3911 366.5250 195.1338 172.0484 377.0059 204.9575
1.10 171.9970 400.0286 228.0316 172.6472 404.8691 232.2219
1.40 172.3860 422.1114 249.7253 173.0279 421.7915 248.7635
1.70 172.6546 437.7740 265.1194 173.2900 432.7819 259.4919

Fig. 13 Impact of n on E[Lg] in
MVP and SVP
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and 7, decrease with n and increase with ¢. These results are consistent with our intuition;
the probability of busy period increases with ¢ (resp. decreases with 1), thus the mean number
of customers served increases with ¢ (resp. decreases with 1), therefore, the total expected
profit increases with ¢ (resp. decreases with 7). On the other hand, the probability of vacation
period decreases with the parameter ¢ (resp. increases with the parameter 7). Consequently,
the average rate of reneging decreases with ¢ (resp. increases with n). Consequently, the total
expected profit increases with increasing values of ¢ and decreases along the increasing of
n.

From Figs. 13, 14 we see that for both single and multiple vacations, E[Lg] increases with
n and decreases with A and ¢, as it should be expected. Then, evidently for lower values of
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Fig. 14 Impact of A on E[Lg] in
MVP and SVP
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¢, E[Lo] of multiple vacation model is higher than that of single vacation model. On the
other hand, for higher values of 1, E[Lo] of multiple vacation model is greater than that of
single vacation model. Consequently, we can conclude that the model with waiting servers
outperforms the model without this policy.

6.2.3 Impact of impatience rate (¢) and non-retention probability ()

In this subpart, we choose the default parameters as ¢ = 2, p = 0.70, A = 0.90, 8 = 0.80,
n =2.00, ¢ = 1.50, u = 2.20.

Table 11 illustrates the impact of & and «, for both single and multiple vacation policies.
As expected, for both MVP and SVP, increases in & and « implies a decrease in E[L] and
N;. This is because the size of the system decreases with the increasing of & and «. Thus,
the mean number of customers served decreases as the two parameters £ and « increase.
Further, R, increases with & and «, whereas, R, increases with & and decreases with «, as
it should be. Therefore, 7, 7, and 7, monotonically decrease with «, 7. is not monotone
with &, while 7, and 7, decrease significantly with the increasing values of &, this is because
of the significant number of lost customers. From this, it is clearly obvious that the retention
probability has a positive impact on the economy of the system, this probability is very useful
for any firm operating in the field of finance, supply chain, manufacturing, and so on.

Figures 15, 16 depict the effect of & for different values of « in both single and multiple
vacation policies. From the figures, it can be seen that as the impatience rate £ increases, the
mean system size when the servers are on vacation period E[Lo] monotonically decreases
for any «, as intuitively expected. Moreover, from both figures, we observe that E[Lg] is
high when the non-retention probability « is small. Further, as it should be expected, E[Lg]
of multiple vacation model is greater than that of single vacation model.

6.2.4 Impact of non-feedback probability () and number of the severs (¢).

In this part, we take p = 0.70, A = 0.90, n = 2.00, ¢ = 1.50, « = 0.60, & = 1.00, and
u = 2.20.
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Fig. 15 Impactof £ on E[Lg] in &
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Table 12 Impact of ¢ and 8
c MVP SVp
p % 7 7) 7 T 7,
2 0.70 214.1259 429.2409 215.1150 211.5811 350.1083 138.5272
0.80 207.1737 416.6931 209.5195 204.2018 306.9425 102.7406
0.90 201.1740 400.7218 199.5478 197.8585 258.1941 60.33554
3 0.70 281.6618 837.3160 555.6542 293.5541 810.1472 516.5932
0.80 288.7010 838.0231 549.3221 285.9941 797.1694 511.1753
0.90 295.9462 830.8510 534.9048 278.6898 773.2725 494.5827
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Fig. 17 Impact of i on Ny in
MVP

The mean number of customers served per unit time

Fig. 18 Impact of x on Ny in
SVP

The mean number of customers served per unit time

From Table 12 and Figs. 17, 18, we see that for both single and multiple vacations, Ny
increases with ., ¢, and B, respectively. Further, for both MVP and SVP, for fixed 8, the total
expected cost, the total expected revenue, and the total expected profit increase significantly
with the increasing of c¢. This is quite reasonable, the greater the number of servers in the
system, the larger the number of customers served and the higher the total expected profit.
In addition, in both MVP and SVP, for fixed c, the total expected revenue and the total
expected profit decrease when g increases. While in the model with SVP, 7. decreases with
the parameter §, and in the model with M VP, it decreases with 8, when ¢ = 2, and increases
along the increasing of 8, when ¢ = 3. Thus, we can say that a feedback probability has a
nice effect on the economy of the system. Moreover, as intuitively expected, N of single
vacation model is higher than that of multiple vacation model.

@ Springer



340 A. A. Bouchentouf, A. Guendouzi

7 Conclusion and future scope

In this paper, we carried out a study of a infinite-buffer multi-server Bernoulli feedback
queueing system with batch arrivals, waiting servers, impatient customers and retention of
reneged customer, under single and multiple vacation policies. We obtained the closed-form
expressions for the steady-state probabilities of the queueing model, using the probability
generating function (PGF). Various performance measures of the system are evaluated. We
also performed a cost model and considered a cost optimization problem using quadratic fit
search method (QFSM) in order to obtain the optimum values of the service rate for different
values of arrival rate, waiting rate of the servers and vacation rate. Important numerical results
have been illustrated, which may be useful to explore the impact of system parameters on
different performance measures and total expected cost, total expected revenue and total
expected profit, respectively. The obtained results have potential applications in modeling
computer and telecommunication systems, computer networks, manufacturing, and so on.
For further works, it will be interesting to apply the technique used in this paper in order to
study more complex models such as GeoX /Geo/c and MX /M /¢ with breakdowns, impatient
customers and asynchronous multiple and single vacations. Furthermore, the model under
investigation can be analyzed under the provision of time dependent arrival and service rates
which leads the system to more realistic environment.
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