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Abstract
This paper introduces and analyzes the idea of fuzzy knee in fuzzy multi-criteria optimization
problems. The fuzzy decision feasible region of the problem is constructed under a fuzzy
inequality relation that is defined with the help of same points in fuzzy geometry. Then, fuzzy
criteria feasible region is obtained through the image of the fuzzy decision feasible region
by the criteria-vector-valued mapping. For the constructed fuzzy criteria feasible region, we
define fuzzy knee and then propose a method to capture the fuzzy knee regions, along with
the complete fuzzy Pareto set. All the studied ideas and methodologies are supported with
suitable examples and pictorial illustrations. An engineering application of the presented
method is also given.
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1 Introduction

In the practical decision making problems, it is mostly observed that a set of conflicting mul-
tiple criteria are to be optimized simultaneously. Due to the conflicting nature of the criteria,
their optima are evidently attained at different points. Thus, towards the solution concept for
multiple-criteria optimization problems (MOPs), the idea of Pareto solution has been intro-
duced [20]. The study on MOPs eventually involves analyzing trade-off between the criteria
on a set of Pareto solutions or on a set of satisfiable solutions to the decision maker (DM).

Over the last few decades, many classical methods have been introduced to capture the
Pareto solution set of an MOP, such as, weighted sum, ε-constraint, normal boundary inter-
section, normal constraint, direct search domain, ideal cone, etc. All these classical methods
attempt to capture the complete Pareto set of MOPs. However, final selection of the problem
relies on DM’s subjective preference. This final solution is generally singleton. In order to
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guess which solution might be most preferable for a DM, a concept called knee of the Pareto
set, in the criterion space, has been studied by Das [7], Branke et al. [3], Rachmawati and
Srinivasan [21], and Deb and Gupta [9]. However, all these classical methods to solve MOPs
are not enough to handle all practical problems because often real-world situations cannot
be modeled precisely [17].

In order to deal with imprecise nature ofmultiple criteria decisionmaking problems, fuzzy
multi-criteria optimization problems (FMOPs) are extensively studied after the seminal work
by Bellman and Zadeh [2]. Several attempts have been made thereafter to obtain a compro-
mise solution of FMOPs; for instance, see the references [1,4,16,18,19,22,23,25,26], and the
references therein. In the literature on solving FMOPs, commonly, the DM ends up with a
conventional MOP to get a compromise solution or most preferable solution to the DM. A
detailed insightful survey and methodologies on fuzzy multiple-objective decision making
can be obtained in [17,27].

In this paper, an attempt is made to obtain fuzzy Pareto set of FMOPs. On solving FMOPs,
at first, the fuzzy decision feasible region is constructed under the concept of same points
[11] in fuzzy geometry [6,11,15]. Next, under the assumption of precise criteria with crisp
decision variables, decision feasible region is transferred to criterion space through vector
criteria mapping. As the decision feasible region is fuzzy, the criteria feasible region is
evidently turns out fuzzy. In the proposed methodology, the entire fuzzy Pareto set along
with the newly introduced fuzzy knees of FMOPs is obtained using α-cuts of the criteria
feasible region. Delineation of the presented work is as follows.

The required preliminaries on fuzzy set theory and onMOPs are given in the immediately
next section. A simple technique, the Ideal Cone method [12–14], to obtain the Pareto set of
MOPs is briefly sketched in Sect. 3. Section 4 demonstrates the construction procedure of
fuzzy decision and fuzzy criteria feasible regionswith the help of same points. The Sect. 4 also
proposes definitions of fuzzyPareto point, generalized fuzzyPareto point, fuzzyknee andgen-
eralized fuzzy knee for FMOPs. A method to obtain fuzzy Pareto set of FMOPs and its knees
are also given in Sect. 4. Two illustrative numerical examples and an application are presented
in the Sect. 5. Section 7 includes a brief conclusion and future work of the proposed study.

2 Preliminaries

In this section, the necessary definitions and terminologies which are used throughout this
paper, are given. The definitions regarding MOPs are taken from [10] and definitions con-
cerning fuzzy set theory are adopted from [11,23].

2.1 Fuzzy set

Definition 1 (Fuzzy set [23]) Let X be a classical set of elements which should be evaluated
with regard to a fuzzy statement. Then the set of order pairs

˜A = {(x, μ(x |˜A)) : x ∈ X}, where μ : X → [0, 1],

is called a fuzzy set in X . The evaluation function μ(x |˜A) called the membership function
of the fuzzy set ˜A.
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Definition 2 (α-cut of a fuzzy set [11]) For a fuzzy set ˜A of R
n , an α-cut of ˜A is denoted by

˜A(α) and is defined by

˜A(α) =
{

{x : μ(x |˜A) ≥ α} if 0 < α ≤ 1

closure{x : μ(x |˜A) > 0} if α = 0.

The sets {x : μ(x |˜A) > 0} and {x : μ(x |˜A) = 1} are called support and core, respectively,
of the fuzzy set ˜A.

In order to represent the construction ofmembership function of a fuzzy set ˜A, the notation
∨{x : x ∈ ˜A(0)} is frequently used, which means μ(x |˜A) = sup{α : x ∈ ˜A(α)}.

Definition 3 (Fuzzy numbers [28]) A fuzzy set ˜A of the real line R is called a fuzzy number
if:

(i) ˜A is convex, i.e., μ
(

λx1 + (1 − λ)x2
∣

∣ ˜A
) ≥ min{μ(x1|˜A), μ(x2|˜A)} for x1, x2 ∈ R

and for all λ ∈ [0, 1],
(ii) there is exactly one x0 ∈ R with μ(x0|˜A) = 1, and
(iii) μ(x |˜A) is piece-wise continuous.

Definition 4 (LR-type fuzzy number [28]) A function L : [0,+∞) → [0, 1] which is non-
increasing and satisfies either of the following two

(i) L(0) = 1 and L(1) = 0
(ii) L(x) > 0 for x in [0,+∞) and L(+∞) = 0

is called a reference function of a fuzzy number.
A fuzzy number ˜A is called an LR-type fuzzy number if there exist a pair of reference

functions L and R, and two positive numbers α and β such that μ(x |˜A) can be expressed by

μ(x |˜A) =
{

L(m−x
α

) if x ≤ m

R( x−m
β

) if x ≥ m.

Symbolically, the notation (m − α/m/m + β)LR is used to represent an LR-type fuzzy
number.

In particular, if L(x) = R(x) = max{0, 1 − |x |}, then the fuzzy number ˜A is called a
triangular fuzzy number and it is denoted by (m − α/m/m + β).

Definition 5 (Same points [11]) Let x and y be two numbers belonging to the supports of
two continuous fuzzy numbers ã and ˜b, respectively. The numbers x and y are said to be
same points with respect to ã and˜b if

(i) μ(x |̃a) = μ(y|˜b) and
(ii) x ≤ a and y ≤ b, or x ≥ a and y ≥ b, where a and b are the cores of ã and ˜b,

respectively.

In the next, we give a brief idea on MOPs.

2.2 Conventional MOPs

In mathematical notions, MOPs are defined in the following way

min
x∈X f (x) = ( f1(x), f2(x), . . . , fk(x)

)T
, k ≥ 2, (2.1)
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where X = {x ∈ R
n : g(x) ≤ 0, h(x) = 0, a ≤ x ≤ b } is the feasible set; g : R

n → R
m

and h : R
n → R

s are vector-valued functions; the constant vectors a and b are lower and
upper bound, respectively, of the decision vector x = (x1, x2, . . . , xn)T .

We denote the image of the decision feasible set X under the criteria-vector-valued map-
ping f by Y := f (X ). Therefore, Y is the feasible set in the criterion space. If for each
individual i in {1, 2, . . . , k}, x∗

i is the point of global minima of the function fi , the point
y∗
i := f (x∗

i ), for each i = 1, 2, . . . , k, in the criterion space is said to be an anchor point.
The point f ∗ = ( f ∗

1 , f ∗
2 , . . . , f ∗

k )T , where fi (x∗
i ) = f ∗

i , is called the ideal point or utopia
point. Without loss of generality, let us redefine f (x) as f (x) − f ∗. Then,

(i) all criteria will be positive-valued with global minimum value zero,
(ii) the criteria feasible set Y must be a subset of R

k
� := {y ∈ R

k : y � 0},
(iii) the origin of R

k is the ideal point, and
(iv) the anchor points corresponding to i-th criterion must lie on the plane perpendicular to

the axis of fi .

As, in general, the ideal point f ∗ is not attainable by f , the notion of Pareto optimality being
introduced as follows. The definition of weak Pareto optimality is also given subsequently.

Definition of Pareto optimality depends on a dominance structure or componentwise order
in the space R

k . In order to represent dominance structure on R
k , the following subsets are

usually used. The non-negative orthant of R
k is represented by R

k
� := {y ∈ R

k : y � 0}.
The notation y � 0 implies yi ≥ 0 for each i = 1, 2, . . . , k. The set R

k≥ is defined by
{y ∈ R

k : y ≥ 0}where y ≥ 0means y � 0but y �= 0.ThenotationR
k
> := {y ∈ R

k : y > 0}
indicates the positive orthant of R

k . Here, y > 0 stands for yi > 0 for each i = 1, 2, . . . , k.
The relations ‘�’, ‘≤’ and ‘<’ are defined by: ‘y � 0 if and only if −y � 0’, ‘y ≤ 0 if and
only if −y ≤ 0’ and ‘y < 0 if and only if −y > 0’. For x̂, x̄ ∈ X , the vector f (x̂) is said to
dominate another vector f (x̄) if f (x̂) ≤ f (x̄).

Definition 6 (Pareto optimality [10]) A feasible solution x̂ ∈ X is called efficient or Pareto
optimal, if there is no other x ∈ X such that f (x) ≤ f (x̂). If x̂ is efficient, f (x̂) is called
non-dominated. The set of all efficient points is denoted by XE and the collection of all
non-dominated points by YN .

Definition 7 (Weak Pareto optimality [10]) A feasible solution x̂ ∈ X is called weakly Pareto
optimal if there is no x ∈ X such that f (x) < f (x̂). The point ŷ = f (x̂) is then called
weakly non-dominated and x̂ is called weakly Pareto optimal point.

In the following, a classical method [12–14] to obtain entire Pareto set, and its knees, of
the MOP (2.1) is presented.

3 Amethod to obtain Pareto set and its knees in conventional MOP

In this section, a technique is presented to obtain Pareto points of MOP (2.1). The technique
is confined under the following three noteworthy observations on Pareto optimality

• a point x̂ ∈ X is a Pareto optimal point if and only if

f (X ) ∩
(

f (x̂) − R
k
�
)

= { f (x̂)},
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Fig. 1 Illustration of CM(β̂) for a bi-objective problem

• a point x̂ ∈ X is a weakly Pareto optimal if and only if

f (X ) ∩
(

f (x̂) − R
k
>

)

= ∅ and

• sets of non-dominated andweakly non-dominated points must be subsets of the boundary
of the criterion feasible region, bd(Y).

The first observation geometrically signifies that—if the criterion feasible region and the
translated non-positive orthant −R

k
� whose vertex is being shifted from origin to the point

f (x̂) have intersection a single point f (x̂), then x̂ is a Pereto optimal solution. Thus, in
order to get a Pareto optimal solution, we may translate the cone of non-positive orthant of
the criterion space along a particular direction β̂ ∈ R

k
� until this cone touches the criterion

feasible region.
If the cone−R

k
� is translated along β̂ ∈ R

k
�, then it can touch the boundary of the criterion

feasible region Y in two possible ways: either the vertex of the cone touches first or one (or
several) boundary plane(s) of the cone touches first. If the first case, the point where the cone
touches the criterion feasible region is certainly a global non-dominated point. In the second
case, two possibilities may arise: either the touch portion is a single point or a set of points.
In the first subcase, the touch point is a Pareto optimal point. In the second subcase, all the
points except the extreme points of the touch portion are weakly Pareto optimal solutions
[13].

Let us illustrate how the above said touch portion of zβ̂ − R
k
� and bd(Y), for a particular

direction β̂ ∈ R
k
�, can be found. To demonstrate, let us take a graphical perspective of a

bi-objective optimization problem. Figure 1 portrays the criterion feasible region, the dotted
region, Y = f (X ) for a bi-objective problem and the cone zβ̂ − R

k
� for a specific value of

z = OA. Let us now consider the set
{

y : zβ̂ � f (x), y = f (x), x ∈ X}, z ∈ R. For
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each specific value of z ∈ R, this set represents the intersecting region of (zβ̂ − R
k
�) and

f (X ). For generic z ∈ R let us try to reduce the intersecting region between (zβ̂ − R
k
�)

and f (X ) by translating the cone (zβ̂ − R
k
�) along β̂ in such a way that the cone does not

leave f (X ). In the optimum situation if the intersection (zβ̂ − R
k
�)
⋂

f (X ) contains only

one point, then that single point is indeed a non-dominated point. We note that minimization
of the intersecting region (zβ̂ − R

k
�)
⋂

f (X ) eventually involve minimization of the value

of z with the constraints zβ̂ � f (x), x ∈ X . It is worthy to note that the above discussion
does not depend on the number of criteria. Therefore, to get a non-dominated solution of the
MOP (2.1) we solve the following minimization problem:

CM(β̂)

⎧

⎨

⎩

min z
subject to zβ̂ � f (x),

x ∈ X .

(3.1)

By solving the problem (3.1) for various β̂ in R
k
� ∩ S

k−1, the entire non-dominated set,

eventually the weakly non-dominated set, of the considered MOP can be generated; S
k−1

represents the k-dimensional unit sphere. It is to observe that any non-dominated point is
attainable by the above constructed minimization problem (3.1) (see [13]). For instance, if
y0 ∈ YN then solution of CM(β̂) corresponding to β̂ = y0

‖y0‖ is x0 for which y0 = f (x0).

In the Fig. 1 we note that the solution of CM(β̂) corresponding to β̂ = −→
OA

‖OA‖ ∈ R
2
� ∩ S

1 is

the point A which is a Pareto optimal solution of the considered problem. Varying β̂ for all
possible values on R

2
� ∩ S

1, all the points in the darken portions of bd(Y) can be obtained.

Collection of all these points is the complete Pareto set/non-dominated set of the problem.
Once the set of non-dominated points, i.e, YN , is obtained, DM has to perform another

decision making job to finally pick a solution from the entire Pareto optimal alternatives YN .
At this point, an often used process is the method of compromise programming or method
of global criteria. In this method, DM has to fix a reference point and a distance metric. The
reference point usually signifies the point thatDMwishes to ideally obtain.However this ideal
solution may not be feasible in the criterion space. Thus, DM may be trying to get a solution
as much closer as possible to this ideal solution. Getting closer to reference point/ideal
solution eventually imply the distance/deviation minimization of the set of alternatives from
the reference point. Obviously this minimum deviation point is essentially member of the
maximum bulge portion of the boundary of the criteria feasible region towards the ideal point.
This maximum bulge is referred as knee of the Pareto curve [7]. If we choose reference point
as the ideal point ‘O’, the origin of R

k space, and the distance metric, d(x, y), as simply the
Euclidean distance metric then knee points for MOP (2.1) can be obtained by solving the
following minimization problem:

min
y∈YN

d(O, y). (3.2)

Local solutions of this minimization problem are called local knee points and global solution
as global knee.

It can be easily perceived that local or global solution of theminimization problem (3.2) are
local and globalminimumof ‘z’ values of the subproblemsCM(β̂) in (3.1). Thus, collectively
CM(β̂) for all β̂ ∈ R

k ∩ S
k−1 not only finds the entire YN but also generates all the knee

points. In the Fig. 1, we observe that K1 is the global knee and K2 and K3 are local knees of
the considered problem.
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In the next section, a study on FMOPs and finding its fuzzy Pareto set and fuzzy knee
points is given.

4 Solving FMOPs

A general model of a fuzzy multi-criteria optimization problem is described in the following
way:

min f (x; c̃1, c̃2, . . . , c̃k) =
(

f1(x; c̃1), f2(x; c̃2), . . . , fk(x; c̃k)
)T

, k ≥ 2

subject to ˜Ci : gi (x; ãi ) ˜≤ ˜bi , i = 1, 2, . . . ,m

x = (x1, x2, . . . , xn) ∈ R
n
�,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.1)
where c̃ j = (c̃ j1, c̃ j2, . . . , c̃ jq j

)

, j = 1, 2, . . . , k and ãi = (ãi1, ãi2, . . . , ãi pi
)

, i =
1, 2, . . . ,m. Here, each of ãil and c̃ jr is a fuzzy set. This paper investigates the FMOPs
where all ãil and˜bi fuzzy sets are fuzzy numbers and c̃i ’s are crisp numbers. We also assume
that f j and gi functions are continuous when their fuzzy coefficients c̃ j and ãi are assigned
to be crisp numbers. Under these assumptions, all the criteria are then continuous crisp func-
tions and gi (x; ãi ) are fuzzy numbers for each x ∈ R

n
�. Thus, the fuzzy inequality ˜≤ in each

˜Ci eventually depends on ordering two fuzzy numbers corresponding to each x ∈ R
n
�.

In this article, we take a new definition of fuzzy inequality ˜≤ with the help of the concept
of same points as follows:

˜Ci : gi (x; ãi ) ˜≤ ˜bi ⇐⇒
∨

α∈[0,1]

{

x : gi (x; aiα) ≤ biα
}

, (4.2)

where aiα = (ai1α, ai2α, . . . , aipiα
)

, biα are same points with respect to the fuzzy numbers
ãi = (ãi1, ãi2, . . . , ãi pi

)

and ˜bi . Therefore, the complete fuzzy constraint set, ˜X say, can
be represented by the collection of crisp points x ∈ R

n
� with varied membership values as

follows:

˜X =
m
⋂

i=1

∨

α∈[0,1]

{

x ∈ R
n
� : gi (x; aiα) ≤ biα

}

.

Following numerical example illustrates further detail.

Example 1 Let us consider the following fuzzy bi-criteria optimization problem:

min

(

˜2x1x2 −˜3x22
˜1x21 +˜4 sin x2

)

subject to ˜C1 :˜2x1 +˜4x2 ˜≤˜7,
x1 ≥ 0, x2 ≥ 0,

where˜1 = (0.5/1/3),˜2 = (1/2/3),˜3 = (2/3/5),˜4 = (3/4/5) and˜7 = (5/7/8).

The number of criteria in this problem is k = 2;
f1(x; c̃1) =˜2x1x2 −˜3x22 , c̃1 = (˜2,−˜3);
f2(x; c̃2) =˜1x21 +˜4 sin x2, c̃2 = (˜1,˜4).
The problem has only one fuzzy constraint, i.e., m = 1;
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Fig. 2 Fuzzy constraint set of Example 1

p1 = 2, g1(x; ã1) =˜2x1 +˜4x2, ã1 = (˜2,˜4) and˜b =˜7.
For each α ∈ [0, 1], same points with membership value α with respect to the fuzzy

numbers˜2,˜4 and˜7 are 1 + α, 3 + α and 5 + 2α or 3 − α, 5 − α and 8 − α, respectively.
Thus, the fuzzy set of the fuzzy inequality in the constraint set is determined by:

˜2x1 +˜4x2 ˜≤˜7 ⇐⇒
∨

α∈[0,1]

[

{

x : (1 + α)x1 + (3 + α)x2≤(5 + 2α)
} ∪ {x : (3 − α)x1 + (5 − α)x2≤(8 − α)

}

]

.

Therefore, the constraint set of the considered problem is:

˜X =
∨

α∈[0,1]

[ {

x ∈ R
2
� : (1 + α)x1 + (3 + α)x2 ≤ (5 + 2α)

}

∪
{

x ∈ R
2
� : (3 − α)x1 + (5 − α)x2 ≤ (8 − α)

} ]

.

The fuzzy set ˜X is depicted in the Fig. 2. Deeper dark shading portrays higher membership
value. The core of ˜X is the black triangular region �OAB and support of ˜X is the interior
and boundary of the region OACPBO . The co-ordinates of the specific points are given in
the figure.

It is to note that ˜X is the intersecting region of R
2
� and union of all the half-planes,

that contains origin, of the lines x1
5+2α
1+α

+ x2
5+2α
3+α

= 1 and x1
8−α
3−α

+ x2
8−α
5−α

= 1. From the above

mathematical expression of ˜X , we observe that all the points which lie on
{

x ∈ R
2
� :

x1
5+2α
1+α

+ x2
5+2α
3+α

≤ 1
}

or
{

x ∈ R
2
� : x1

8−α
3−α

+ x2
8−α
5−α

≤ 1
}

must have membership value greater than

or equal to α on ˜X . Therefore, x1 and x2-intercepts of the fuzzy linear inequality ˜C1 may
be determined by

∨

α∈[0,1]
{ 5+2α

1+α
, 8−α
3−α

}

and
∨

α∈[0,1]
{ 5+2α

3+α
, 8−α
5−α

}

, respectively. These two

intercepts determine two fuzzy numbers with support sets as [ 83 , 5] and [ 85 , 7
4 ], respectively.

The core of these fuzzy numbers are 7
2 and 7

4 , respectively.
From the figure of ˜X , we observe that on x2-axis there is no imprecise part of ˜X . However,

on x1-axis there is an imprecise part, namely AC , of ˜X . Question may arise about why this
has happened. Answer can be obtained from the simple observation that the core point

123



On identifying fuzzy knees in fuzzy multi-criteria optimization problems 351

of the fuzzy intercept of the fuzzy inequality on the x2-axis is 7
4 and all the points on

⋃

α∈[0,1]
{ 5+2α

3+α

} = [ 53 , 7
4 ] and

⋃

α∈[0,1]
{ 8−α
5−α

} = [ 85 , 7
4 ] are less than or equals to 7

4 . Thus,

while taking union of all numbers 5+2α
3+α

and 8−α
5−α

with membership value α, no point greater

than 7
4 can be found with positive membership value. Yet question may be kept about the

restriction for which some fuzzy part can be obtained towards both the axes. Answer to this
question are obtained from the next theorem and its immediate corollary.

Theorem 1 Let ˜C be a fuzzy inequality of the form ã1 f1(x) + ã2 f2(x) + · · · + ãp f p(x) ˜≤˜b,
x ∈ R

n, where ãi = (ai − γi/ai/ai + δi )LR, i = 1, 2, . . . , p and˜b = (b − γ /b/b + δ)LR.
If for each i1, 2, . . . , p,

(i) b−γ
ai−γi

< b
ai

< b+δ
ai+δi

or b−γ
ai−γi

> b
ai

> b+δ
ai+δi

and

(ii) 0 /∈ ãi (0) and ˜b(0),

then

(i) for each i , the set
∨

α∈[0,1]
{

bα

aiα

}

, where aiα and bα are same points on the fuzzy

numbers ãi and˜b, respectively, constitutes a fuzzy number, and

(ii) the α-cut of ˜C
⋂

R
n
�, for each α ∈ [0, 1], is the set

{

x ∈ R
n
� : f1(x)

bα
a1α

+ f2(x)
bα
a2α

+ · · · +
f p(x)
bα
apα

≤ 1
}

.

Proof (i) Let us consider any i in {1, 2, . . . , p}.
The membership functions of ãi and˜b are, respectively,

μ(t |̃ai ) =
{

L
( ai−t

γi

)

if ai − γi ≤ t ≤ ai ,

R
( t−ai

δi

)

if ai ≤ t ≤ ai + δi

and

μ(t |˜b) =
{

L
( b−t

γ

)

if b − γ ≤ t ≤ b,

R
( t−b

δ

)

if b ≤ t ≤ b + δ.

Same points, with membership value α, with respect to ˜b and ãi are bα =
b − γ L−1(α), aiα = ai − γi L−1(α) and bα = b + δR−1(α), aiα =
ai + δi R−1(α), respectively. Therefore, the fuzzy set

∨

α∈[0,1]{ bα

aiα
} becomes

∨

α∈[0,1]
{

b−γ L−1(α)

ai−γi L−1(α)
,

b+δR−1(α)

ai+δi R−1(α)

}

.

We show that under the given conditions of the theorem, this fuzzy set is a fuzzy
number.

We note that the quantities b−γ L−1(α)

ai−γi L−1(α)
and b+δR−1(α)

ai+δi R−1(α)
are well defined, since

0 /∈ ãi (0),˜b(0).

Let α, β ∈ [0, 1] with β ≥ α. We first consider the left spreads of ãi and˜b. We note
that the inequality

b − γ L−1(α)

ai − γi L−1(α)
≤ b − γ L−1(β)

ai − γi L−1(β)
≤ bi

a
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holds true. Since b−γ L−1(α)

ai−γi L−1(α)
>

b−γ L−1(β)

ai−γi L−1(β)
implies that bγi − aiγ > 0, which is

contradictory to the assumption that b−γ
ai−γi

< b
ai
.

Similarly considering right spreads of ãi and˜b, we obtain

bi
a

≤ b + δR−1(β)

ai + δi R−1(β)
≤ b + δR−1(α)

ai + δi R−1(α)
.

Thus,

b − γ L−1(α)

ai − γi L−1(α)
≤ b − γ L−1(β)

ai − γi L−1(β)
≤ bi

a
≤ b + δR−1(β)

ai + δi R−1(β)
≤ b + δR−1(α)

ai + δi R−1(α)
.

Hence,
{

[ b−γ L−1(α)

ai−γi L−1(α)
,

b+δR−1(α)

ai+δi R−1(α)

]: α ∈ [0, 1]
}

determines a class of nested inter-

vals. Therefore, byRepresentation Theorem of FuzzyNumbers [24, p. 129], the fuzzy
set
∨

α∈[0,1]{ bα

aiα
} is a fuzzy number for each i = 1, 2, . . . , p.

(ii) This part is directly followed from part (i).
��

Corollary 1 Let ˜C : ã1x1 + ã2x2 + · · · + ãnxn ˜≤ ˜b be a fuzzy linear inequality, where
ãi = (ai − γi/ai/ai + δi )LR, i = 1, 2, . . . , n and ˜b = (b − γ /b/b + δ)LR. If for each i ,
b−γ
ai−γi

< b
ai

< b+δ
ai+δi

or b−γ
ai−γi

> b
ai

> b+δ
ai+δi

and 0 /∈ ãi (0),˜b(0), then

(i) xi -intercept of the fuzzy linear inequality is a fuzzy number, i = 1, 2, . . . , n, and
(ii) for each α ∈ [0, 1], the α-cut of the fuzzy set representing the part of the fuzzy linear

inequality ˜C on R
n
� can be obtained by

{

x ∈ R
n
� : x1

bα

a1α

+ x2
bα

a2α

+ · · · + xn
bα

anα

≤ 1

}

,

where aiα and bα are same points on the fuzzy numbers ãi and˜b, respectively.

After the construction of fuzzy decision feasible region ˜X , we construct the fuzzy criteria
feasible region of the FMOP (4.1). We note that ˜X is a collection of crisp points x ∈ X (0)
with varied membership values and the criteria are considered as crisp functions. Thus, if
x is a decision feasible point with membership value α on ˜X , then f (x) must be a criteria
feasible point and, by the sup-min composition of fuzzy set, the membership value of f (x)
on the fuzzy criteria feasible region ˜Y = f (˜X ) must be at least α. Here the sup composition
is taken since ˜Y is the collection, the union, of all the points y = f (x) where x ∈ X . Thus,

˜Y =
∨

α∈[0,1]
{ f (x) : x ∈ ˜X (α)}.

The membership function of the fuzzy criteria feasible region is given by μ(y|˜Y) = sup{α :
y = f (x), μ(x |˜X ) = α}.

Under the continuity assumption on the functions f j and gi , we note that (see [24, p. 118
and p. 130])

f (˜X (α)) = f (˜X )(α) = ˜Y(α).

Thus, corresponding to each α ∈ [0, 1], defining a crisp MOP, FMOPα say, as follows

FMOPα

{

min
(

f1(x; c1), f2(x; c2), . . . , fk(x; ck)
)T

, k ≥ 2

subject to x ∈ ˜X (α),
(4.3)
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Fig. 3 Explaining fuzzy Pareto point and fuzzy knee point

we obtain the fuzzy decision/criteria feasible region of FMOP (4.1) identical to the union of
all decision/criteria feasible region of FMOPα’s.

In the Fig. 3, the fuzzy criteria feasible region of an FMOP is shown. Varied darkness
represents varied membership values; more deep dark represents higher membership value.
The totally black region is the core of the fuzzy criteria feasible region. Corresponding to
seven different values of α ∈ [0, 1], the set f (˜X )(α) depicted in Fig. 3.

A question naturally arises which points/parts of Fig. 3 represent non-dominated points. In
the next, we define a concept of fuzzy non-dominated points or fuzzy Pareto optimal points.

Definition 8 (Fuzzy Pareto optimal point) A fuzzy subset ˜P of ˜Y(0) is said to be a fuzzy
Pareto optimal point of FMOP (4.1) if

(i) ˜P is a normal fuzzy set, i.e., there exists p0 ∈ ˜P such that μ(p0|˜P) = 1,
(ii) μ(p|˜P) is upper semi-continuous1, and
(iii) for any p ∈ ˜P , there exists α ∈ [0, 1] such that p is a Pareto optimal point of FMOPα .

Note 1 Core of a fuzzy Pareto optimal point is a Pareto optimal point of FMOPα with α = 1.

In the Fig. 3, the fuzzy arc
�

AB, in the rectangle #1, is a fuzzy Pareto optimal point.

Membership value of any point on the fuzzy arc
�

AB is identical to that on the fuzzy set
f (˜X ). Similarly the fuzzy arc in the rectangle #3 is a Pareto optimal point. However, we

1 A real-valued function μ on a metric space M is called upper semi-continuous if for each real α, the set
{x ∈ M : μ(x) ≥ α} is closed in M (see [5, p. 67]).
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observe that the fuzzy arc
�

EF , though meets the conditions (ii) and (iii) of the Definition 8,

it does not meet the normality condition (i). Hence, fuzzy arc
�

EF is not a fuzzy Pareto point.
We can say this type of fuzzy arc as a generalized fuzzy Pareto optimal point.Mathematically,
generalized fuzzy Pareto point is defined as follows.

Definition 9 (Generalized fuzzy Pareto optimal point) A fuzzy subset G̃ P of ˜Y(0) is said to
be a generalized fuzzy Pareto optimal point of FMOP (4.1) if

(i) μ(p|̃GP) is upper semi-continuous, and
(ii) for any p ∈ G̃ P , there exists α ∈ [0, 1] such that p is a Pareto optimal point of FMOPα .

Note 2 The term generalized is analogous to the concept of fuzzy number and general-
ized fuzzy number. Generalized fuzzy number differs from fuzzy number in the condition
of normality—a normal generalized fuzzy number is a fuzzy number. Likewise, a normal
generalized fuzzy Pareto optimal point is a fuzzy Pareto optimal point.

In order to capture the complete fuzzy Pareto set or non-dominated set in an FMOP, it is
natural to take union of its all possible fuzzyPareto points and generalized fuzzyPareto points.
However it can be easily perceived that if ˜YN is the set of all the Pareto points and ˜YGN is the
set of all generalized fuzzy Pareto points then ˜YGN ⊆ ˜YN .2 Obviously, ˜XGE = f −1(˜YGN )

⊆ f −1(˜YN ) = ˜XE . Thus, to find the complete non-dominated points in an FMOP, we only
have to obtain ˜XE .

Again if XEα is the set of Pareto points of FMOPα , then according to the mathematical
formulation of FMOPα , following result holds true

˜XE =
∨

α∈[0,1]
XEα. (4.4)

Therefore, to obtain the entire ˜XE , we need to evaluate each XEα for all α in [0, 1]. The
XEα’s can be obtained by solving FMOPα with the help of the classical method in the Sect. 3.
Then, the relation (4.4) will be applied.

Once the fuzzy Pareto set ˜XE is being evaluated, the next step will be the final selection of
the solution from fuzzy Pareto optimal set of the problem. As explained by different authors
[3,7–9,21] knee regions in classical MOP are most interesting or preferable to DM. In FMOP
also, the concept of fuzzy knee seems to be promising. Let us now mathematically define
fuzzy knee for FMOP (4.1).

Definition 10 (Fuzzy knee) A fuzzy set ˜K of ˜Y(0) is said to be a fuzzy knee in FMOP (4.1)
if:

(i) ˜K is a normal fuzzy set, i.e., there exists y0 ∈ ˜Y such that μ(y0|˜K ) = 1,
(ii) μ(y|˜K ) is upper semi-continuous, and
(iii) for any y ∈ ˜K , there exists α ∈ [0, 1] such that y is a knee of FMOPα .

Note 3 The core of a fuzzy knee is a knee of FMOP1.

In the Fig. 3, the fuzzy arc
�

AB, (rectangle #1) is a fuzzy knee. Membership value of any

point on the fuzzy arc
�

AB is same as on the fuzzy set f (˜X ). Similarly, the fuzzy arc in the

rectangle #3 is a fuzzy knee. However, the fuzzy arc
�

EF in the rectangle #2, though meets

2 For two fuzzy sets ˜A and ˜B in X , the relation ˜A ⊆ ˜B holds when μ(x |˜A) ≤ μ(x |˜B) ∀x ∈ X .
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(ii) and (iii) conditions of the Definition 10, but it does not satisfy the condition of normality.

Hence, fuzzy arc
�

EF is not a fuzzy knee. We may call this type of fuzzy arc as generalized
fuzzy knee. Mathematically, generalized fuzzy knee is defined as follows.

Definition 11 (Generalized fuzzy knee) A fuzzy set G̃K of ˜Y(0) is said to be a generalized
fuzzy knee of the FMOP (4.1) if

(i) μ(y |̃GK ) is upper semi-continuous and
(ii) for any y ∈ G̃ P , there exists α ∈ [0, 1] such that y is a knee of FMOPα .

In order to obtain the fuzzy knees in FMOP, it is natural to consider the union of its all
possible fuzzy knees and generalized fuzzy knees. It is easy to see here that if ˜YK and ˜YGK

are the set of fuzzy knees and the set of generalized fuzzy knees, respectively, then according
to the mathematical formulation of FMOPα , the following result holds true

˜YK

⋃

˜YGK =
∨

α∈[0,1]

{

yKα : yKα is a local solution of min
y∈YNα

d(O, y)
}

, (4.5)

where YNα is the non-dominated set of FMOPα . Once ˜YK
⋃

˜YGK is generated, the final
decision making becomes easier since final solution is likely to be appeared in ˜YK

⋃

˜YGK .
Hence, DMmay like to choose a point from ˜YK

⋃

˜YGK as the final solution, instead of from
the set ˜YN .

In order to illustrate the proposed method, in the next section two numerical examples are
given.

5 Numerical illustrations

Example 2 We consider the following fuzzy bi-criteria optimization problem

min

⎛

⎜

⎝

(x1 − 2)2 + (x2 − 2)2

(x1−4)2

2 + x22
4

⎞

⎟

⎠

subject to ˜C1 : (0.5/1/1.5)x1 + (1/3/4)x2 ˜≤ (1/3/6),

˜C2 : (2/2.5/3)x1 + (0.5/1/2)x2 ˜≤ (2/2.5/6),

x1 ≥ 0, x2 ≥ 0.

At first, we determine the fuzzy decision set ˜X = ˜C1
⋂

˜C2
⋂

R
2
�.

According to Eq. (4.2), the fuzzy constraint sets ˜C1 is determined by

˜C1 ≡
∨

α∈[0,1]

{

x ∈ R
2 : 0.5(1 + α)x1 + (1 + 2α)x2 ≤ (1 + 2α)

or 0.5(3 − α)x1 + (4 − α)x2 ≤ 3(2 − α)
}

.
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Fig. 4 Fuzzy set ˜C1
⋂

R
2
� of Example 2

Fig. 5 Fuzzy set ˜C2
⋂

R
2
� of Example 2

The supports of x1- and x2-intercepts of ˜C1 are

⋃

α∈[0,1]

{

1 + 2α

0.5(1 + α)
,

3(2 − α)

0.5(3 − α)

}

= [2, 4] and
⋃

α∈[0,1]

{

1,
3(2 − α)

4 − α

}

= [1, 1.5],

respectively.
The fuzzy set ˜C1

⋂

R
2
� is depicted in Fig. 4. The core of ˜C1

⋂

R
2
� is depicted by the

deep dark region and its imprecise part is shown by grey shading.
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Fig. 6 Fuzzy set ˜X of Example 2

Similarly, according to Eq. (4.2), the fuzzy constraint sets ˜C2 is determined by

˜C2 ≡
∨

α∈[0,1]

{

x ∈ R
2 : (2 + 0.5α)x1 + 0.5(1 + α)x2 ≤ (2 + 0.5α)

or (3 − 0.5α)x1 + (2 − α)x2 ≤ (6 − 3.5α)
}

.

The supports of x1 and x2-intercept of ˜C2 are

⋃

α∈[0,1]

{

1,
6 − 3.5α

3 − 0.5α

}

= [1, 2] and
⋃

α∈[0,1]

{ 2 + 0.5α

0.5(1 + α)
,
6 − 3.5α

2 − α

}

= [2.5, 3],

respectively. The fuzzy set ˜C2
⋂

R
2
� is depicted in the Fig. 5. Core of ˜C2

⋂

R
2
� is depicted

by the deep dark region and its imprecise part is shown by grey shading.
Entire decision feasible region ˜X = ˜C1

⋂

˜C2
⋂

R
2
� is portrayed in Fig. 6. For each

α ∈ [0, 1], the α-cut of the decision constraint set, i.e., ˜X (α) is the set
{

x ∈ R
2
� : (1.5 − 0.5α)x1 + (4 − α)x2 ≤ 6 − 3α

}

⋂
{

x ∈ R
2
� : (2 + 0.5α)x1 + 0.5(1 + α)x2 ≤ 2 + 0.5α

}

.

Therefore, according to the formulation of FMOPα (4.3), we get

FMOPα

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min

(

(x1 − 2)2 + (x2 − 2)2

(x1−4)2

2 + x22
4

)

subject to (1.5 − 0.5α)x1 + (4 − α)x2 ≤ 6 − 3α,

(2 + 0.5α)x1 + 0.5(1 + α)x2 ≤ 2 + 0.5α,

x1 ≥ 0, x2 ≥ 0.

With the help of the classical method presented in the Sect. 3, Pareto set, XEα of the problem
FMOPα will be obtained. By taking union, through sup-min composition, of all the Pareto
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Fig. 7 Fuzzy criteria feasible region ˜Y of Example 2

Table 1 Fuzzy knee arc ˜YK =
QPD for Example 2

f1 f2 μ(( f1, f2)|˜YK )

2.221 2.885 0.0

2.344 3.045 0.1

2.490 3.219 0.2

2.628 3.414 0.3

2.782 3.602 0.4

2.918 3.864 0.5

3.101 4.051 0.6

3.237 4.345 0.7

3.392 4.582 0.8

3.524 4.859 0.9

3.667 5.152 1.0

sets XEα’s, we obtain the fuzzy Pareto set ˜XE . Image of the set ˜XE by the vector map f is
the fuzzy non-dominated set ˜YN .

The fuzzy criteria feasible region ˜Y and the fuzzy non-dominated set ˜YN are shown in the
Fig. 7. The non-dominated set ˜YN is the interior and boundary of the fuzzy region bounded
by ABCDEFGQA on the Fig. 7. Its core is the arc CDE . Coordinates of the points C , D
and E are (3.467, 5.377), (3.667, 5.152) and (5, 4.5), respectively.

For the considered problem, the fuzzy arc QPD in the Fig. 7 is obtained as global knee.
A discrete approximation of the fuzzy arcs ABC and QPD are displayed in the Table 1 and
Table 2, respectively.

In the next, another example is provided. Without any detail, we straightaway explore
fuzzy knees for the next problem.
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Table 2 Fuzzy arc ABC on
criteria feasible region ˜Y of
Example 2

f1 f2 μ(( f1, f2)|˜YN )

1.449 3.814 0.0

1.615 3.957 0.1

1.775 4.076 0.2

1.943 4.198 0.3

2.123 4.324 0.4

2.319 4.515 0.5

2.513 4.648 0.6

2.737 4.815 0.7

2.971 4.986 0.8

3.212 5.197 0.9

3.467 5.377 1.0

Example 3 We consider the following fuzzy bi-criteria optimization problem:

min

⎛

⎝

46 − 21
√
x1 + x2 + 2

8 − sin(9x1 + 8x2) − (x1 − x2)3

⎞

⎠

subject to ˜C : (2/2.5/3)x1 + (0.5/1/2)x2 ˜≤ (2/2.5/6),

x1 ≥ 0, x2 ≥ 0.

In this problem, for each α ∈ [0, 1], the α-cut of the decision constraint set, i.e., ˜X (α) is the
set (Fig. 5)

{

x ∈ R
2
� : (3 − 0.5α)x1 + (2 − α)x2 ≤ (6 − 3.5α)

}

.

Thus for each α ∈ [0, 1], FMOPα is the problem:

FMOPα

⎧

⎪

⎨

⎪

⎩

min

(

46 − 21
√
x1 + x2 + 2

8 − sin(9x1 + 8x2) − (x1 − x2)3

)

subject to x ∈ ˜X (α).

The criteria feasible region ˜Y is shown in the Fig. 8. Each of the FMOPα has two knees. Two
knees of each FMOPα for twenty one different values of α ∈ [0, 1] are given in the Table 3.

Fuzzy knees of this problem are the fuzzy arcs ABC and DEF. The fuzzy arc ABC is
a local knee and the fuzzy arc DEF is a global fuzzy knee. The coordinates of different
points are: A ≡ (1.9, 7.001), B ≡ (4.49, 7.7999), C ≡ (5.77, 7.211), D ≡ (4, 0.751),
E ≡ (7.564, 5.944) and F ≡ (9.627, 6.588).

6 Application

In this section, we apply the proposed technique on an engineering design problem—three-
bar truss problem [12]. To demonstrate the problem, we refer to Fig. 9. In the problem, the
total volume of the truss and a linear combination of the horizontal and vertical displacements
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Fig. 8 Fuzzy criteria feasible region ˜Y of Example 3

Table 3 Fuzzy knees in
Example 3

α Knee 1 Knee 2
∈ arc ABC ∈ arc DEF

0.00 (1.900, 7.001) (4.000, 0.751)

0.05 (1.950, 7.019) (4.263, 1.549)

0.10 (2.000, 7.093) (4.528, 2.125)

0.15 (2.050, 7.231) (4.795, 2.477)

0.20 (2.201, 7.415) (5.063, 2.640)

0.25 (2.251, 7.670) (5.334, 2.683)

0.30 (2.352, 7.968) (5.606, 2.690)

0.35 (2.504, 8.274) (5.880, 2.751)

0.40 (2.860, 8.914) (5.916, 2.832)

0.45 (3.014, 8.931) (6.155, 2.938)

0.50 (4.490, 7.799) (6.433, 3.294)

0.55 (5.010, 7.564) (6.713, 3.821)

0.60 (5.171, 7.359) (6.994, 4.486)

0.65 (5.660, 7.038) (7.278, 5.222)

0.70 (5.725, 7.001) (7.564, 5.944)

0.75 (5.739, 6.997) (7.852, 6.565)

0.80 (5.748, 7.006) (8.434, 7.253)

0.85 (5.753, 7.001) (8.729, 7.278)

0.90 (5.761, 7.047) (9.026, 7.127)

0.95 (5.767, 7.115) (9.325, 6.686)

1.00 (5.770, 7.211) (9.627, 6.588)
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Fig. 9 Three-bar truss under a static loading

(δ1 and δ2, respectively) of the node N for a small deformation of the truss are to beminimized
simultaneously.Weuse the subscripts 1, 2 and3 to refer left,middle and right bar, respectively.
The decision variables for this problem are the cross section of the bars: x1, x2 and x3. These
three variables are bounded by 0.1 cm2 and 2 cm2. Different numerical data of the problem
are as follows:

(i) F = 5 kN , L = 1 m,
(ii) Young modulus of the bars E = 200 GPa and
(iii) the accepted stress in each bar is the triangular fuzzy number σ̃ = (50/200/400) MPa.

The FMOP of this problem is described by

min

(

f1(x1, x2, x3)
f2(x1, x2, x3)

)

subject to
|Ti |
ai

≤ σ̃

0.1 × 10−4 ≤ xi ≤ 2 × 10−4

i = 1, 2, 3,

where Ti ’s are tension of the bars which can be calculated as

T1 = a1E

2L
(δ1 − δ2),

T2 = a2E

L
δ2 and

T3 = a3E

4L
(δ1 + √

3δ2)

and the objective functions are

f1(x1, x2, x3) = L(
√
2a1 + a2 + 2a3) and

f2(x1, x2, x3) = 3
10 δ2 − 1

10 δ1.

The displacements δ1 and δ2 can be determined from the expression of Ti ’s and the force
balance equations
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Table 4 Fuzzy knee in the
three-bar truss problem

α Knee

0.01 (2.541, 0.527) × 10−4

0.20 (2.241, 1.151) × 10−4

0.40 (2.241, 1.151) × 10−4

0.60 (3.041, 0.599) × 10−4

0.80 (2.541, 1.151) × 10−4

1.00 (3.041, 1.000) × 10−4

Fig. 10 Fuzzy criteria feasible region of the three-bar truss problem

(i) horizontal: F =
√
3T3
2 − T1√

2
and

(ii) vertical: F = T2 + T1√
2

+ T3
2 .

The criteria feasible region ˜Y is shown in the Fig. 10. Each of the FMOPα has only one knee.
This knee for six different values of α ∈ [0, 1] are given in the Table 4. From the table we
note that if the decision maker wants at least 20% satisfaction level (α) of the design, then the
cross section of the bars must be chosen so that ( f1, f2) = (2.241, 1.151)×10−4. Similarly,
for at least 60%, ( f1, f2) = (3.041, 0.599) × 10−4 must be satisfied and so on.

7 Conclusion

In this paper, two new concepts—fuzzy Pareto optimality and fuzzy knee— for FMOPs have
been introduced. Subsequently, a technique has been proposed to obtain fuzzy knees of the
fuzzy Pareto set of an FMOP. The presented technique essentially used a classical method
to capture Pareto set of MOPs by considering Pareto solutions of each FMOPα , i.e., the set
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˜XEα . Then, taking union, by the supremum composition, of all the ˜XEα sets, the method has
obtained complete fuzzy Pareto set of FMOPs. Similarly, ˜YK

⋃

˜YGK is also captured.
As number of points in the fuzzy Pareto set is substantially larger, it is difficult for the

DM to select best solution(s). The selection would become more difficult for large number of
fuzzy criteria. A proper mathematical construction of DM’s preferences while dealing with
large number of imprecise criteria and a huge set of imprecise alternatives seems to be really
complex. In this situation, the fuzzy knees of the fuzzy Pareto optimal set are likely to be the
more relevant to the DM. Thus identification of fuzzy knees may reduce the final selection
procedure on a smaller number of potentially more relevant solutions from fuzzy Pareto set.

In this introductory work on our methodology to solve FMOPs, the proposed study has
been made on the FMOPs where decision variables and criteria are crisp. Investigation on
more generalized FMOPs may be obtained in our future research.
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