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Abstract Inf-sup stable FEM applied to time-dependent incompressible Navier–Stokes
flows are considered. The focus lies on robust estimates for the kinetic and dissipation ener-
gies in a twofold sense. Firstly, pressure–robustness ensures the fulfilment of a fundamental
invariance principle and velocity error estimates are not corrupted by the pressure approx-
imability. Secondly, Re-semi-robustness means that constants appearing on the right-hand
side of kinetic and dissipation energy error estimates (including Gronwall constants) do not
explicitly depend on the Reynolds number. Such estimates rely on the essential regularity
assumption∇u ∈ L1(0, T ; L∞(Ω))which is discussed in detail. In the sense of best practice,
we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-
free H1-conforming FEM (like Scott–Vogelius pairs or certain isogeometric based FEM) and
pointwise divergence-free H (div)-conforming discontinuousGalerkin FEM. For convection-
dominated problems, the latter naturally includes an upwind stabilisation for the velocity
which is not gradient-based.
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630 P. W. Schroeder et al.

1 Introduction

We consider the time-dependent incompressible Navier–Stokes equations [27,61,66]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − νΔu + (u ·∇)u + ∇ p = f in (0, T ] × Ω,

∇ · u = 0 in (0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(1a)

(1b)

(1c)

(1d)

For the space dimension d ∈ {2, 3}, Ω ⊂ R
d denotes a connected bounded Lipschitz

domain. Moreover, u : (0, T ]×Ω → R
d indicates the velocity field, p : (0, T ]×Ω → R is

the (zero-mean) kinematic pressure, f : (0, T ] × Ω → R
d represents external body forces

and u0 : Ω → R
d stands for a suitable initial condition for the velocity. The underlying fluid

is assumed to be Newtonian with constant (dimensionless) kinematic viscosity 0 < ν � 1.
There are references regarding the historical development of finite elementmethods (FEM)

for the Navier–Stokes problem (1) until 2016; cf., for example, the monograph [39]. A sum-
mary of very recent results for H1-conforming FEM, together with several open problems,
can be found in the review paper [40].

A relatively new aspect in the FE analysis applied to incompressible flows is ‘pressure–
robustness’ [41]. In its most general form, pressure–robustness of a numerical method is
defined by its ability to fulfil the following requirement: if the exact solution u of (1) belongs
to the approximation space V h , i.e. if u ∈ V h , then the discrete solution uh coincides with the
exact one, that is, uh = u. In certain physical regimes of the incompressible Navier–Stokes
equations—i.e., in certain benchmarks—pressure–robustness allows to use less expensive
discretisation schemes without losing accuracy [1,49]. As a consequence, the following
fundamental invariance principle transfers from the continuous level to the discretised case:
Replacing the source term f by f + ∇ψ changes the solution (u, p) to (u, p + ψ). For
example, in a potential flow, (u ·∇)u can be very large but it is a gradient and therefore
balanced by the pressure gradient and thus does not have any impact on the velocity field.Only
recently it has been shown that high Reynolds number potential flows are really challenging
for the numerical solution with standard low-order Galerkin-FEM [41,50].

A well-known important consequence for methods which are not pressure–robust is that
already for the steady incompressible Stokes problem the velocity error estimates for kinetic
and dissipation energies are corrupted by the pressure approximability multiplied by ν−1/2

[41,49]. Note that the mechanism responsible for the excitation of this kind of numeri-
cal error is a completely linear phenomenon. Exactly divergence-free FEM are naturally
pressure–robust, but classical inf-sup stable velocity–pressure pairs like Taylor–Hood FEM
are usually not pressure–robust. In fact, such classical, inf-sup stable mixed finite elements
that relax the divergence constraint are usually prone to the locking phenomenon of poormass
conservation [1,49]. Fortunately, recent research allows to slightly modify such methods in
order to make them pressure–robust by so-called velocity reconstructions; for example for
the Stokes problem, we refer to [41,43,47,48].

However, in this article, we focus on a different important aspect in the continuous-in-
time numerical analysis; namely, the worst case behaviour of the velocity error due to the
nonlinearity of the convection term in the time-dependent setting. This is reflected in the
numerical error analysis by Gronwall constants depending at least exponentially on time.
Indeed, in case of 0 < ν � 1, in many estimates available in the literature the constant C in
the exponential growth exp (Ct) in fact depends on the Reynolds number Re (respectively,
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Computable incompressible flows and robust estimates... 631

on ν−1) or even powers of Re; see Sect. 4.1. Obviously, such error estimates can describe
a sensible error behaviour only for ultra short time intervals. The value of these estimates
is that they predict correctly the convergence behaviour of the velocity errors with respect
to space discretisation; although they involve huge constants in the estimates. In view of
this situation, numerical analysts frequently argue that these error estimates might not be
sharp. Following the original proposal by [60] for scalar diffusion-advection problems, error
estimateswhere the constants appearingon the right-hand side (includingGronwall constants)
do not explicitly depend on the Reynolds number are called ‘Re-semi-robust’.

Partially, the problems in the numerical analysis come from very weak assumptions on
the exact solution u and the data. It turns out that error estimates can be improved consider-
ably under the essential regularity condition ∇u ∈ L1

(
0, T ; L∞(Ω)

)
. We summarise some

physical implications of this stronger regularity condition in Sect. 2.2. On the other hand, the
numerical analysis will show that for this class of flows the right-hand side of error estimates
grows relatively mildly with exp (Ct), where C is not explicitly dependent on the Reynolds
number. Therefore, in this article, this class of flows is called ‘computable’.

The stronger regularity condition has been used frequently in the literature, even in the
limit case of incompressible Euler flow ν = 0; cf., for example, the monograph [52] or
the review [5]. In order to obtain Re-semi-robust error estimates for problem (1), [13] is
presumably the first work which takes advantage of this regularity assumption in the analysis
of a CIP-stabilised FEM with equal-order approximation of velocity and pressure. For an
equal-ordermethodwith local projection stabilisation (LPS), we refer to the recent work [32].
However, using non-inf-sup stable methods excludes the possibility of obtaining pressure–
robustness in [13,32]. Note that the concept of pressure–robustness goes beyond the question
of optimal h-convergence rates, which are indeed proved in [13,32], since it is a robustness
property of the velocity error. Concerning the debate on the optimality of classical mixed
methods versus pressure–robust mixed methods, the reader is referred to [1, Section 4]. For
H1-conforming inf-sup stable FEM, in [3] the combination with grad-div stabilisation in
some different energy norm led to Re-semi-robust error estimates which were sharpened in
[25]. The work in [33] deepens the results; in particular for optimal pressure estimates.

The main purpose of the present paper is to review the state-of-the-art concerning error
estimates for exactly divergence-free FEM for problem (1). In particular, we concentrate on
Re-semi-robustness and pressure–robustness for the velocity estimates. Due to the inherent
pressure–robustness, it is possible to separate velocity and pressure completely in the error
analysis. Therefore, we focus exclusively on velocity estimates. In such a setting, this paper
offers a unified approach to continuous-in-time error estimates for exactly divergence-free
H1-conforming and only H(div)-conforming FEM. In particular, the extension to H(div)-
conforming FEM for problem (1) with 0 < ν � 1 is original. Results for such FEM in the
case of the incompressible Euler equations with ν = 0 can be found in [35,53].

In our opinion, using exactly divergence-free methods has the following main advantages:
They are inherently pressure–robust. As shown in Sect. 5, one can obtain Re-semi-robust
estimates without any additional stabilisation or skew-symmetrisation, thereby facilitating
the numerical analysis. Furthermore, the fact that less stabilisation is required allows to
achieve discretisations where the amount of necessary numerical dissipation is minimised. In
addition, the conservation properties of the exact solution to (1) (as for example conservation
ofmass, energy andmomentum) are naturally transferred to the discrete solution. In particular,
divergence-free methods have a healthy and clean energy balance a priori.

Concerning numerical experiments we show exemplarily that for a planar standing vortex
problem (or periodic lattice flow), the exponential growth of the Re-semi-robust Gronwall-
based error estimates can be observed at least qualitatively also in practice. Furthermore, for
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632 P. W. Schroeder et al.

a time-dependent potential flow, we show that divergence-free methods are clearly superior
to classical mixed FEM.

Organisation of the article: In Sect. 2 the continuous Navier–Stokes problem is briefly
recalled and the meaningfulness of our essential regularity assumption is discussed. After-
wards, Sect. 3 lays the foundation for a unified treatment of FEM for the time-dependent
Navier–Stokes problem. For classical H1-conforming methods, a brief treatise and recol-
lection of Galerkin-FEM and grad-div stabilisation is provided in Sect. 4. Then, moving to
exactly divergence-free FEM, Sect. 5 treats pressure- and Re-semi-robust error estimates for
both H1- and H(div)-conforming methods in a unified setting. Some numerical experiments
are also conducted. After a brief survey about some open problems in Sect. 6, the main part
of this work is concluded in Sect. 7. Computational aspects of H(div)-conforming methods
are addressed in the Appendix.

2 Continuous Navier–Stokes problem

Notation: In what follows, for K ⊆ Ω we use the standard Sobolev spaces Wm,p(K ) for
scalar-valued functions with associated norms ‖·‖Wm,p(K ) and seminorms |·|Wm,p(K ) form �
0 and p � 1. Spaces and norms for vector- and tensor-valued functions are indicatedwith bold
letters. We obtain the Lebesgue spaceW 0,p(K ) = L p(K ) and the Hilbert spaceWm,2(K ) =
Hm(K ). Additionally, the closed subspaces H1

0 (K ) consisting of H1(K )-functions with
vanishing trace on ∂K and the set L2

0(K ) of L2(K )-functions with zero mean in K play an
important role. The L2(K )-inner product is denoted by (·, ·)K and, if K = Ω , we usually
omit the domain completely when no confusion can arise. Furthermore, with regard to time-
dependent problems, given a Banach space X and a time instance t , the Bochner space
L p(0, t; X) for p ∈ [1,∞] is used. In the case t = T , we frequently use the abbreviation
L p(X) = L p(0, T ; X). The dual space of X is denoted by X∗.

2.1 Continuous problem

With V = H1
0(Ω) and Q = L2

0(Ω), we introduce the space

V div = {v ∈ V : (q,∇ · v) = 0, ∀ q ∈ Q} (2)

of weakly divergence-free velocities. If v ∈ V div, then ∇ · v = 0 almost everywhere in Ω .
The largest space in which one can work comfortably with the divergence is

H(div;Ω) = {
v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)

}
. (3)

We remark that the statement ∇ · v ∈ L2(Ω) in this definition means that the distributional
divergence of v lies in L2. For the importance of the notion of the distributional divergence
with respect to understanding the significance of pressure–robustness, we refer to [41]. Anal-
ogously to V div, we define

Hdiv = {
v ∈ H(div;Ω) : ∇ · v = 0, v · n∣∣

∂Ω
= 0

}
, (4)

where n denotes the outer unit normal vector to ∂Ω . For the following error analysis, velocity
and pressure solutions are assumed to belong to the spaces

V T = {
v ∈ L2(0, T ; V ) : ∂tv ∈ L2(0, T ; L2(Ω)

)}
and QT = L2(0, T ; Q). (5)
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Computable incompressible flows and robust estimates... 633

Recently it has been shown for the solution us of the evolutionary Stokes problem with
inhomogeneous Dirichlet data and f = 0 that ∂tus ∈ L2

(
L2
)
indeed holds [16]. Thus,

provided f ∈ L2
(
L2
)
, the following problem on the continuous level is obtained:

{
Find (u, p) ∈ V T × QT with u(0) = u0 ∈ Hdiv s.t., ∀ (v, q) ∈ V × Q,

(∂tu, v) + νa(u, v) + c(u; u, v) + b(v, p) − b(u, q) = ( f , v).

(6a)

(6b)

Here, the multilinear forms are given by

a(w, v) =
∫

Ω

∇w :∇v dx, c(β;w, v) =
∫

Ω

(β ·∇)w · v dx, (7a)

b(w, q) = −
∫

Ω

q(∇ ·w) dx. (7b)

Remark 2.1 Concerning the regularity of the forcing term, on the continuous level, the prob-
lem could be posed using the less restrictive assumption f ∈ L2

(
V ∗). However, in Sect. 5

we also deal with discretisations which are not H1-conforming. In such a situation, rough
right-hand sides lead to technical difficulties which we omit by assuming f ∈ L2

(
L2
)
;

cf. [26, Remark 4.9]. Another problem with rough forcing terms, even for H1-conforming
methods, is that energy estimates can generally not be expected to be independent of ν−1;
cf. [65, Remark 3.2].

Remark 2.2 The theory concerning existence and regularity ofNavier–Stokes solutions gives
the following result; cf. [6,10,39]. To (6b), there exists a weak solution

u ∈ L2(0, T ; V div) ∩ L∞(0, T ; Hdiv). (8)

Its time derivative, however, can generally only be shown to fulfil

∂tu ∈ L4/d
(
0, T ; (V div)∗). (9)

Therefore, (5) represents an assumption for the regularity of ∂tu both in time (only for d = 3)
and space. The reasons for this simplification are analogous to Remark 2.1.

2.2 Essential regularity assumption for computable flows

In addition to the above introduced regularity assumptions which have a direct impact on
the weak formulation of the Navier–Stokes problem, it is very common to assume that the
solution u to (6) fulfils

∇u ∈ L1(0, T ; L∞(Ω)
)
. (10)

This short section is aimed at highlighting that incompressible flows which have the essential
regularity (10) are relevant both from a theoretical and a practical viewpoint. Let us give a
few arguments underlining this statement. At first, (10) guarantees unique solvability of the
Navier–Stokes problem; cf. [65, Lemma 2.2]. In fact, (10) ensures that the velocity field u is
uniformly Lipschitz continuous on [0, T ]. As a consequence, the characteristic curves of the
dynamical system d

dt x(t) = u(t, x(t)) remain smooth and never intersect within [0, T ]; cf.
[5]. From a physical point of view, these characteristic curves are the pathlines of the flow; cf.
[27, Section 4.3.1]. Lastly, the symmetric part of the velocity gradient ∇u encodes relevant
information about the local structure of a flow; cf. [15, Section 2.5]. In particular, at least in
a periodic box and for f = 0, the smallest scales of an incompressible Navier–Stokes flow
behave like

√
ν/ ‖∇u‖L∞ ; cf. [36].
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634 P. W. Schroeder et al.

3 Abstract discrete setting and FEM

In this chapter, we attempt to define an abstract discrete setting in which all of the FE
methods under consideration can be embedded. To this end, the discrete space-time velocity
and pressure spaces are

V T
h = {

vh ∈ L2(0, T ; V h) : ∂tvh ∈ L2(0, T ; V h)
}

and QT
h = L2(0, T ; Qh). (11)

Contrary to the continuous setting in Sect. 2, we will not explicitly define the discrete spaces
V h and Qh at this point. Instead, only general assumptions for the FE pair V h/Qh are
introduced. Before we begin with the minimal global regularity requirements for the spaces,
the following standard decomposition of the domain is introduced.

Let Th be a shape-regular FE partition of Ω without hanging nodes and mesh size
h = maxK∈Th hK , where hK denotes the diameter of the particular element K ∈ Th .
The skeleton Fh denotes the set of all facets with FK = {F ∈ Fh : F ⊂ ∂K } and N∂ =
maxK∈Th card(FK ). Moreover, Fh = F i

h ∪ F∂
h where F i

h is the subset of interior facets and
F∂
h collects all boundary facets F ⊂ ∂Ω . To any F ∈ Fh we assign a unit normal vector nF

where, for F ∈ F∂
h , this is the outer unit normal vector n. If F ∈ F i

h , there are two adjacent

elements K+ and K− sharing the facet F = ∂K+ ∩ ∂K− and nF points in an arbitrary but
fixed direction. Let φ be any piecewise smooth (scalar-, vector- or tensor-valued) function
with traces from within the interior of K± denoted by φ±, respectively. Then, we define the
jump �·�F and average

{{ · }}F operator across interior facets F ∈ F i
h by

�φ�F = φ+ − φ− and
{{
φ
}}

F = 1

2

(
φ+ + φ−). (12)

For boundary facets F ∈ F∂
h we set �φ�F = {{

φ
}}

F = φ. These operators act component-
wise for vector- and tensor-valued functions. Frequently, the subscript indicating the facet is
omitted.

Assumption A
V h ⊂ H(div;Ω), Qh ⊂ L2

0(Ω) = Q. (13)

Thus, as V ⊂ H(div;Ω), our considerations include both H1-conforming and H(div)-
conforming methods. Fully discontinuous DG-FEM, however, are excluded since L2(Ω) �⊂
H(div;Ω) and at least continuity in normal direction is needed. In Fig. 1 a sketch of how
the normal and tangential velocity components behave in different methods can be seen.

Assumption B The global spaces V h and Qh form a discretely inf-sup stable FE pair. That
is, there exists β∗ > 0, independent of the mesh size h, such that

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

|||vh |||e ‖qh‖L2
� β∗. (14)

H1-FEM H(div)-FEM DG-FEM

Fig. 1 Continuity/discontinuity of normal (red) and tangential (blue) components in different methods
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Computable incompressible flows and robust estimates... 635

Here, |||·|||e denotes a suitable energy norm.Due to the H(div)-conformity ofV h , the pressure-
velocity coupling b(·, ·) remains the same in the discrete setting. Note that (14) ensures that
the space of discretely divergence-free velocities, V div

h , is non-trivial, that is

V div
h = {vh ∈ V h : b(vh, qh) = 0, ∀ qh ∈ Qh} �= {0}. (15)

Assumption C The global spaces V h and Qh are divergence-conforming, that is

∇ · V h ⊆ Qh . (16)

If Assumption C holds, the velocity approximation will be exactly divergence-free; cf. [41].

Remark 3.1 There are several FE pairs which fit into the above introduced framework. The
probablymost frequently used elements fulfilAssumptionsAwithV h ⊂ H1 andAssumption
B. For example, the Taylor–Hood element of order k or the MINI element are well-known;
cf. [39] also for different pairs. If Assumption C has to be fulfilled additionally, the Scott–
Vogelius element (with certain restrictions onmesh andorder) is known. Someother examples
are mentioned in [65]. In the context of isogeometric analysis, several H1-conforming and
divergence-free FE spaces have been constructed using splines on tensor-product meshes
[11,30,31].

Leaving the H1-conforming sector, several classical examples of inf-sup stable H(div)-
conforming spaces which also fulfil Assumption C can be found in [9,23]. The corresponding
methods are discontinuous Galerkin (DG) methods since the tangential components are in
general discontinuous across interior facets. Let us specificallymention the family ofRaviart–
Thomas (RT) elements on simplicial meshes which, for example, have been used in [64].
In this work, however, the family of Brezzi–Douglas–Marini (BDM) elements (applicable
on either simplicial or tensor-product meshes) is used in Sect. 5.3. Let us mention that the
computational efficiency of H(div)-conforming methods can be improved drastically by
hybridisation; cf., for example, [46]. Some computational aspects of H(div)-conforming
FEM are discussed in the Appendix.

3.1 Finite element method

The space-semidiscrete (or continuous-in-time) weak formulation of (6) reads as follows:
{
Find (uh, ph) ∈ V T

h × QT
h with uh(0) = u0h s.t., ∀ (vh, qh) ∈ V h × Qh,

(∂tuh, vh) + νah(uh, vh) + ch(uh; uh, vh) + b(vh, ph) − b(uh, qh) = ( f , vh).

(17a)

(17b)

Note that since the approximation uh ∈ V T
h to (17) does not necessarily have to be H1-

conforming, we introduce the broken Sobolev space

Hm(Th) = {
w ∈ L2(Ω) : w

∣
∣
K ∈ Hm(K ), ∀ K ∈ Th

}
. (18)

Define the broken gradient ∇h : H1(Th) → L2(Ω) by (∇hw)
∣
∣
K = ∇(w∣∣K

)
. To be math-

ematically more precise, the appearance of traces of velocity facet values and normal

derivatives thereof dictates that the velocities, at least, belong to H
3
2+ε(Th) for some ε > 0;

cf. [59, Section 2.1.3].
For the discretisation of the diffusion term, we employ the standard symmetric interior

penalty (SIP) form [26,59] (jump penalisation parameter σ > 0) with an additional grad-div
term (parameter δ � 0):

ah(w, vh) =
∫

Ω

∇hw :∇hvh dx + δ

ν

∫

Ω

(∇ ·w)(∇ · vh) dx (19a)
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636 P. W. Schroeder et al.

−
∑

F∈Fh

∮

F

[
{{∇w

}}
nF · �vh� + �w� · {{∇vh

}}
nF − σ

hF
�w� · �vh�

]

ds (19b)

For H1-FEM (globally continuous), the summation over all facets terms F ∈ Fh disappears
since in this case all jumps vanish. Also, the broken gradient in the first volume term is
simply the usual gradient. Whenever the considered FE pair fulfils (16), the discrete velocity
is pointwise divergence-free and the grad-div term vanishes. In conjunction with the viscous
term ah , the following norms are used:

|||w|||2e = ‖∇hw‖2
L2 +

∑

F∈Fh

σ

hF
‖�w�‖2

L2(F)
(20a)

|||w|||2e,� = |||w|||2e +
∑

K∈Th

hK ‖∇w · nK ‖2
L2(∂K )

(20b)

Here, |||·|||e denotes the discrete energy norm and the index � indicates a stronger norm.
Furthermore, we define the following physically relevant quantities.

Definition 3.2 (Kinetic and dissipation energies) The kinetic energy and the kinetic energy
dissipation rate of a flow, represented by the velocity w, at almost every t ∈ (0, T ) is given,
respectively, by

1

2
‖w(t)‖2

L2 and ν|||w(t)|||2e . (21)

For the inertia term, we choose the following convection term [26] for β ∈ L∞ ∩ H(div;Ω)

with β · n∣∣
∂Ω

= 0:

ch(β;w, vh) =
∫

Ω

(β ·∇h)w · vh dx + 1

2

∫

Ω

(∇ ·β)(w · vh) dx (22a)

−
∑

F∈F i
h

∮

F
(β · nF )�w� · {{vh

}}
ds +

∑

F∈F i
h

∮

F

1

2
|β · nF |�w� · �vh� ds (22b)

For H1-conforming FEM the second volume term represents a skew-symmetrisation (other
choices are possible; cf. [39]) which vanishes for ∇ ·β = 0. In the general case, the first
three terms together are skew-symmetric. H(div)-FEM, due to discontinuity in tangential
direction, provide the opportunity of including a natural upwind mechanism for stabilising
high Reynolds number flows [23]. The corresponding terms are the facet integrals in (22)
where the last part is symmetric positive semidefinite. Again, in the globally continuous case,
all facet terms vanish. In order to highlight the impact of the upwind term, we introduce the
jump seminorm

|w|2β,upw =
∑

F∈F i
h

∮

F

1

2
|β · nF ||�w�|2 ds. (23)

Remark 3.3 As can be seen from (19) and (22), an exactly divergence-free and H1-
conforming method leads to a scheme which, in terms of multilinear forms, is identical
to the continuous one in (6b). In this sense, divergence-free H1-FEM represent, at least from
a theoretical point of view, the most simplified available FE methods. Hence, the numerical
analysis for this class of methods is also the most concise and compact.
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3.2 Energy estimate and well-posedness

Let us summarise the most important discrete coercivity properties; cf. [26,59].

Lemma 3.4 (Discrete coercivity of ah and ch) Assume that σ > 0 is sufficiently large. Then,
the bilinear form ah is coercive on V h w.r.t. the energy norm |||·|||e. Moreover, the grad-
div term allows for an additional control over the divergence of the discrete velocity. The
convective form ch is coercive on V h w.r.t. the upwind seminorm |·|upw. That is, there exists
Cσ > 0, independent of h, such that, for all vh ∈ V h,

ah(vh, vh) � Cσ |||vh |||2e + δ

ν
‖∇ · vh‖2L2 and ch(β; vh, vh) = |vh |2β,upw. (24)

As a consequence, and after applying standard arguments, we obtain the following corollary.

Corollary 3.5 (Well-posedness and velocity energy estimate) Let f ∈ L1
(
L2
)
and u0h ∈

L2. Then, there exists a solution uh ∈ V T
h to (17) with

1

2
‖uh(T )‖2

L2 +
∫ T

0

[
νCσ |||uh |||2e + δ ‖∇ · uh‖2L2 + |uh |2uh ,upw

]
dτ (25a)

� ‖u0h‖2L2 + 3

2
‖ f ‖2

L1
(
L2) . (25b)

Provided f is even Lipschitz in time, the solution uh is unique.

4 Classical inf-sup stable H1-conforming FEM

In this section we briefly want to discuss non-divergence-free H1-conforming methods.

4.1 Classical H1-conforming mixed FEM are not Re-semi-robust

The application of the Gronwall lemma to continuous-in-time estimates of both kinetic and
dissipation energies for the Galerkin-FEM leads to an exponential factor on the right-hand
side which may depend in an unfavourable way on the length of the time interval (0, T ),
norms of the solution, and on inverse powers of the viscosity.

More precisely, for the skew-symmetric form (22) of the convective term and only assum-
ing ∇u ∈ L4

(
L2
)
, the argument of the exponential on the right-hand side is of the form

Cν−3 ‖∇u‖4
L4
(
L2); cf. [39, Theorem 7.35]. Following [39, Remark 7.39], under the assump-

tions ∇u ∈ L1
(
L∞) and u ∈ L2

(
L∞), one can improve the argument of the exponential

to

1

2
‖∇u‖L1(L∞) + 4

ν
‖u‖2L2(L∞)

. (26)

Nevertheless, estimates with such strong exponential growth are useless in practice. Please
note that even a rough error estimate using the triangle inequality together with the stability
estimates for both discrete and continuous solution, see Corollary 3.5, provides asymptot-
ically much better Re-semi-robust bounds as opposed to exponential growth depending on
ν−1.We refer to Sect. 5.3where it can be observed that the error from a classical Taylor–Hood
Galerkin computation actually shows such an unfavourable exponential growth.
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4.2 Improvements with grad-div stabilisation

To the best of our knowledge, it has been observed first in [51] that for inf-sup stable FE
pairs, the combination of the Galerkin-FEMwith grad-div stabilisation can avoid entirely the
explicit dependence of the Gronwall factor on ν−1. For H1-conforming inf-sup stable FEM,
this provides Re-semi-robust estimates; see the results [3] which were improved in [25]. In
particular, the dependence of the argument of the Gronwall factor (26) can be replaced by

T + C1 ‖∇u‖L1(L∞) + C2
h2

δ
‖u‖2

L1
(
W1,∞) , (27)

where δ is the grad-div parameter. The work [33] deepens the results; in particular for optimal
pressure estimates. For the argument of the Gronwall factor, they obtain a Gronwall argument
similar to (27) where the third summand is replaced by 1

2δ ‖u‖2
L1
(
H2).

Our numerical experience shows that grad-div stabilisation can improve the results for
classical inf-sup stable H1-conforming Galerkin-FEM. For example, for the numerical sim-
ulation of a problem with standing vortices in Sect. 5.3, we show that sometimes grad-div
stabilisation dramatically improves the behaviour of the Gronwall factor. However, recent
research has clarified that these effects are not really a stabilisation issue, but are related to
some kind of consistency error, whenever the fundamental invariance property (replacing
the source term f by f + ∇ψ changes the solution (u, p) to (u, p + ψ)) is violated on the
discrete level. Therefore, grad-div stabilisation simply reduces the divergence error of dis-
crete velocity solutions, which involves the potential danger of the classical Poisson locking
phenomenon [38]. Also, further aspects of the numerical analysis of grad-div stabilisation
of such FEM can be found in the work [14]. These considerations made us choose inf-sup
stable, exactly divergence-free mixed FEM for this article; see Sect. 5.

5 Divergence-free H1- and H(div)-FEM

Under Assumption C, the following Galerkin orthogonality property in V div
h can be stated

without any contributions from the pressure. Themost important ingredient is the consistency
of both SIP formulation of the viscous term and upwind formulation of the convective term
[26,59].

Corollary 5.1 (Galerkin orthogonality) Let uh ∈ V T
h solve (17). Assume that the solution

u ∈ V T of (6) satisfies the regularity condition u ∈ L2
(
H

3
2+ε(Th)

)
for ε > 0. Then, for

a.e. t ∈ (0, T ) and for all vh ∈ V div
h ,

(∂t [u − uh], vh) + νah(u − uh, vh) + ch(u; u, vh) − ch(uh; uh, vh) = 0. (28)

5.1 Stationary Stokes projection

In this section we want to consider the coupling of pressure and viscous effects only. With
a sufficiently smooth forcing term g, the well-known continuous weak formulation of the
stationary Stokes problem reads

{
Find (us, ps) ∈ V × Q s.t., ∀ (v, q) ∈ V × Q,

νa(us, v) + b(v, ps) − b(us, q) = (g, v).

(29a)

(29b)
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In order to obtain optimal L2-estimates for the velocity, we make the following assumption
which is called ‘elliptic regularity’, ‘Cattabriga’s regularity’ or ‘smoothing property’.

Assumption D Assume that Ω is either a convex polygon for d = 2 or of class C1,1 for
d ∈ {2, 3}. Then, for all g ∈ L2, the solution (us, ps) ∈ V × Q of (29) additionally fulfils
the regularity property (us, ps) ∈ H2×H1 and the energy estimate

√
ν ‖us‖H2 +‖ps‖H1 �

C ‖g‖L2 ; cf. [10, Theorem IV.5.8].

Note that the following definition is stated directly in V div
h because this suffices for our

considerations.

Definition 5.2 (Stationary Stokes projection) Let w ∈ H
3
2+ε(Th) for ε > 0 fulfil ∇ ·w = 0

pointwise. Then, we define the stationary Stokes projectionπ sw ∈ V div
h ofw to be the unique

FE solution to the problem

ah(π sw, vh) = ah(w, vh), ∀ vh ∈ V div
h . (30)

As a consequence, the approximation properties of the projection operator π s can be derived
from error estimates for the stationary Stokes problem. The following theorem holds true;
cf. [64,65].

Theorem 5.3 (Stokes projection error estimate) Let π sw be the Stokes projection of w with
∇ ·w = 0 and Assumption D be fulfilled. Then, provided w ∈ Hr (Ω) with r > 3/2 and
ru = min {r, k + 1},

‖w − π sw‖L2 + h|||w − π sw|||e,� � Ch inf
vh∈V div

h

|||w − vh |||e,� � Chru |w|Hru . (31)

Assumption E In the setting of Theorem 5.3, depending on which method is used, we
assume that

H1 : ‖∇hπ sw‖L∞ � C ‖∇hw‖L∞ , (32a)

H(div) : ‖w − π sw‖L∞ + h ‖∇hπ sw‖L∞ � Ch ‖∇hw‖L∞ . (32b)

Remark 5.4 In the H1-conforming context, an analogue to (32a) has been shown in [34] in
the context of non-divergence-free methods which involves also the pressure. The analysis
in [34] simplifies for divergence-free H1-conforming methods, thereby leading to (32a).
The validity of (32b) is an open problem although, in principle, similar techniques as in [34]
seem to be applicable.We are not aware of any literature where L∞ estimates for the H(div)-
conforming Stokes projection have been discussed. Note that in [35] the assumption (32b)
is circumvented by assuming a similar estimate for an H(div)-conforming interpolation.

5.2 Pressure- and Re-semi-robust error estimates

In this section, additionally to pressure and viscous effects, the dynamics of the Navier–
Stokes problem are investigated; this means the evolutionary and inertia term. We use the
Stokes projection to introduce the error splitting

u − uh = [u − π su] − [uh − π su] = η − eh . (33)

For the H(div)-conforming methods we additionally need to be able to bound facet norms
by volume norms:
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Assumption F Thevelocity spaceV h satisfies thediscrete trace inequality [26,Remark1.47]

∀ vh ∈ V h : ‖vh‖L2(∂K ) � Ctrh
−1/2
K ‖vh‖L2(K ) , ∀ K ∈ Th . (34)

Lemma 5.5 (Difference of convective terms) Assume that u ∈ L1
(
W1,∞). Then, for all

finite εi > 0, i ∈ {1, 2, 3, 4}, we obtain
ch(u; u, eh) − ch(uh; uh, eh) � −|eh |2uh ,upw (35a)

+ ε−1
1 ‖u‖L∞ ‖∇hη‖2

L2 +
[
ε−1
2 + C

(
ε−1
3 + ε−1

4

)
h−1

]
‖∇u‖L∞ ‖η‖2

L2 (35b)

+ [
ε1 ‖u‖L∞ + (

C + ε2 + C(ε3 + ε4)h
−1) ‖∇u‖L∞

] ‖eh‖2L2 . (35c)

Proof We basically follow the ideas from [35]. At first, insert the definition of ch , use �u�F =
0 for all facets F ∈ F i

h and reorder:

ch(u; u, eh) − ch(uh; uh, eh) =
∫

Ω

[
(u ·∇h)u · eh − (uh ·∇h)uh · eh

]
dx (36a)

−
∑

F∈F i
h

∮

F
(uh · nF )�u − uh� ·

{{
eh
}}
ds +

∑

F∈F i
h

∮

F

1

2
|uh · nF |�u − uh� · �eh� ds (36b)

= T1 + T2 + T3 (36c)

Note that in the H1-conforming case, T2 = T3 = 0. For the volume term T1, we subtract
and add (u ·∇hπ su, eh)Ω , replace uh = π su + eh and use triangle, Hölder’s and Young’s
(ε1, ε2 > 0) inequality:

T1 + (uh ·∇heh, eh)Ω = (u ·∇hη, eh)Ω + ([u − uh] ·∇hπ su, eh)Ω (37a)

� ‖u‖L∞ ‖∇hη‖L2 ‖eh‖L2 + ‖η − eh‖L2 ‖∇hπ su‖L∞ ‖eh‖L2

(37b)

� ε−1
1 ‖u‖L∞ ‖∇hη‖2

L2 + ε−1
2 ‖∇hπ su‖L∞ ‖η‖2

L2 (37c)

+ [
ε1 ‖u‖L∞ + (1 + ε2) ‖∇hπ su‖L∞

] ‖eh‖2L2 (37d)

For H1-conforming methods, (uh ·∇heh, eh)Ω = (uh ·∇eh, eh)Ω = 0 and the proof is
already complete at this point. For H(div)-FEM, this term is balanced by the facet terms. In
fact, for these facet terms inserting the error splitting leads to

T2 = −
∑

F∈F i
h

∮

F
(uh · nF )�η� · {{eh

}}
ds +

∑

F∈F i
h

∮

F
(uh · nF )�eh� ·

{{
eh
}}
ds (38a)

= T2,1 + T2,2 (38b)

T3 =
∑

F∈F i
h

∮

F

1

2
|uh · nF |�η� · �eh� ds −

∑

F∈F i
h

∮

F

1

2
|uh · nF |�eh� · �eh� ds (38c)

= T3,1 − |eh |2uh ,upw (38d)

Here, due to the discrete coercivity of ch (Lemma 3.4), we can conclude that T2,2 =
(uh ·∇heh, eh)Ω and thus, in the end, the term cancels out with its corresponding part from
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the volume term T1. For the remaining two facet terms, apply Hölder’s inequality after again
inserting the relation uh = eh + π su:

∣
∣T2,1

∣
∣ �

∑

F∈F i
h

∮

F

∣
∣(eh · nF )�η� · {{eh

}}∣
∣ ds +

∑

F∈F i
h

∮

F

∣
∣(π su · nF )�η� · {{eh

}}∣
∣ ds (39a)

� ‖η‖L∞
∑

F∈F i
h

∥
∥
{{
eh
}}∥
∥2
L2(F)

+ ‖π su‖L∞
∑

F∈F i
h

‖�η�‖L2(F)

∥
∥
{{
eh
}}∥
∥
L2(F)

(39b)

= T2,1,1 + T2,1,2 (39c)

Using the bound 1
2 (a + b)2 �

(
a2 + b2

)
for a, b ∈ R and the discrete trace inequality

(Assumption F) we observe that

∑

F∈F i
h

∮

F

∣
∣
{{
eh
}}∣
∣2 ds �

∑

F∈F i
h

[∥
∥eh+∥∥2

L2(F)
+ ∥
∥eh−∥∥2

L2(F)

]
(40a)

�
∑

K∈Th

‖eh‖2L2(∂K )
� C2

trh
−1 ‖eh‖2L2 . (40b)

The same estimate can be obtained when the average is replaced by the jump over facets.
Together with the L∞ approximation properties of π su (Assumption E), this results in

∣
∣T2,1,1

∣
∣ � C ‖∇u‖L∞ ‖eh‖2L2 . (41)

Similarly, with Young’s inequality (ε3 > 0),

∣
∣T2,1,2

∣
∣ � ‖π su‖L∞

⎛

⎜
⎝
∑

F∈F i
h

‖�η�‖2
L2(F)

⎞

⎟
⎠

1/2⎛

⎜
⎝
∑

F∈F i
h

∥
∥
{{
eh
}}∥
∥2
L2(F)

⎞

⎟
⎠

1/2

(42a)

� C ‖π su‖L∞ h−1/2 ‖η‖L2 h−1/2 ‖eh‖L2 (42b)

� Cε−1
3 ‖π su‖L∞ h−1 ‖η‖2

L2 + Cε3 ‖π su‖L∞ h−1 ‖eh‖2L2 . (42c)

The estimate of the upwind termT3,1 is completely analogous after using the triangle inequal-
ity in the form |uh · nF | � |eh · nF | + |π su · nF |. With ε4 > 0, we obtain
∣
∣T3,1

∣
∣ � C |u|W1,∞ ‖eh‖2L2 + Cε−1

4 ‖π su‖L∞ h−1 ‖η‖2
L2 + Cε4 ‖π su‖L∞ h−1 ‖eh‖2L2 .

(43)

Finally, Assumption E implies stability of the Stokes projection in the form ‖π su‖L∞ +
‖∇hπ su‖L∞ � C |u|W1,∞ . Combining the above estimates concludes the proof. ��
Theorem 5.6 (Velocity discretisation error estimate) Let u ∈ V T solve (6) and uh ∈ V T

h

solve (17). If additionally u ∈ L2
(
H

3
2+ε(Th)

)
for ε > 0, u ∈ L1

(
W1,∞) and uh(0) = π su0,

we obtain the following error estimate:

1

2
‖eh‖2L∞(L2) +

∫ T

0

[
νCσ |||eh |||2e + |eh |2uh ,upw

]
dτ (44a)
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� eGu(T )

∫ T

0

[
‖∂tη‖2

L2 + ‖u‖L∞ ‖∇hη‖2
L2 + (

1 + Ch−2) ‖∇u‖L∞ ‖η‖2
L2

]
dτ (44b)

Here, the Gronwall constant is given by

Gu(T ) = T + ‖u‖L1(0,T ;L∞(Ω)) + C ‖∇u‖L1(0,T ;L∞(Ω)) . (45)

Proof Corollary 5.1 with vh = eh(t) ∈ V div
h and the error splitting (33) yields

(∂t eh, eh) + νah(eh, eh) = (∂tη, eh) + νah(η, eh) + ch(u; u, eh) − ch(uh; uh, eh). (46)

We use (∂t eh, eh) = 1
2

d
dt ‖eh‖2L2 and discrete coercivity of ah (Lemma 3.4) on the left-hand

side (note that ∇ · eh = 0). On the right-hand side, apply Cauchy–Schwarz plus Young
(ε5 > 0) and use Definition 5.2. Then, we obtain

1

2

d

dt
‖eh‖2L2 + νCσ |||eh |||2e � ε−1

5 ‖∂tη‖2
L2 + ε5 ‖eh‖2L2 + ch(u; u, eh) − ch(uh; uh, eh).

(47)

The application of Lemma 5.5 results in

1

2

d

dt
‖eh‖2L2 + νCσ |||eh |||2e + |eh |2uh ,upw � ε−1

5 ‖∂tη‖2
L2 + ε−1

1 ‖u‖L∞ ‖∇hη‖2
L2 (48a)

+
[
ε−1
2 + C

(
ε−1
3 + ε−1

4

)
h−1

]
‖∇u‖L∞ ‖η‖2

L2 (48b)

+[ε5 + ε1 ‖u‖L∞ + (
C + ε2 + C(ε3 + ε4)h

−1) ‖∇u‖L∞
] ‖eh‖2L2 . (48c)

The next step is choosing the εi . Note that in this step, numerous different error estimates
can be obtained. In the end, everything multiplying ‖eh‖2L2 will enter the Gronwall exponent
and since we do not want to have negative exponents of h there, choosing ε3 and ε4 such that
ε3 = ε4 = O(h) is a valid strategy. For the remaining variables, we simply set ε1 = ε2 =
ε5 = 1. This results in

1

2

d

dt
‖eh‖2L2 + νCσ |||eh |||2e + |eh |2uh ,upw � ‖∂tη‖2

L2 + ‖u‖L∞ ‖∇hη‖2
L2 (49a)

+(1 + Ch−2) ‖∇u‖L∞ ‖η‖2
L2 + [

1 + ‖u‖L∞ + C ‖∇u‖L∞
] ‖eh‖2L2 . (49b)

The essential regularity assumption u ∈ L1
(
W1,∞) ensures that

Gu(t) =
∫ t

0

[
1 + ‖u(τ )‖L∞ + C ‖∇u(τ )‖L∞

]
dτ < ∞. (50)

Application of Gronwall’s lemma [28, Lemma 6.9] together with uh(0) = π su0 concludes
the proof. ��

Remark 5.7 The assumption (10) has also been used for the incompressible Euler equations
(ν = 0); cf. [35,53] where H(div)-FEM are considered. However, it has to be mentioned
that (10) is very strict in case of ν = 0 as there exists no inherent smoothing mechanism
from the incompressible Euler operator in crosswind direction.
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Remark 5.8 In contrast to theGronwall constants (26) and (27) for non-divergence-freeFEM,
the Gronwall constant (45) for divergence-free methods does not imply an explicit depen-
dence on either ν−1 or any discretisation parameter (as for example the grad-div parameter
δ) which may involve classical Poisson locking. In this regard the results from Sect. 5 repre-
sent a step forwards. However, to the best of our knowledge, there does not exist numerical
evidence for the sharpness of these improved estimates, thereby leaving room for further
research.

Corollary 5.9 (Velocity discretisation error convergence rate)Under the assumptions of the
previous theorem, assume a smooth solution according to

u ∈ L∞(0, T ; Hr (Ω)
)
, ∂tu ∈ L2(0, T ; Hr (Ω)

)
, r >

3

2
. (51)

Then, with ru = min {r, k + 1} and a constant C independent of h and ν−1, we obtain the
following convergence rate:

1

2
‖eh‖2L∞(L2) +

∫ T

0

[
νCσ |||eh |||2e + |eh |2uh ,upw

]
dτ (52a)

� Ch2(ru−1)eGu(T )

∫ T

0

[
h2|∂tu|2Hru + [‖u‖L∞ + (

h2 + C
) ‖∇u‖L∞

]|u|2Hru

]
dτ (52b)

Proof Due to Theorem 5.3, we obtain the estimates ‖∂tη‖2
L2 � Ch2ru |∂tu|2Hru , ‖∇hη‖2

L2 �
Ch2(ru−1)|u|2Hru and ‖η‖2

L2 � Ch2ru |u|2Hru . The claim follows directly. ��
5.3 Numerical illustration of the Gronwall factor

We consider the flow of four vortices which are oppositely rotating at a fixed position in the
periodic domain Ω = (0, 1)2. A freely-decaying exact solution of (1) with f = 0 which
describes such a flow is given by

u0(x) =
[
sin (2πx1) sin (2πx2)
cos (2πx1) cos (2πx2)

]

, u(t, x) = u0(x)e−8π2νt . (53)

This example represents a generalised Beltrami flow and has already been investigated in
detail, also qualitatively, in [64,65] and is called ‘planar lattice flow’ as well [8]. The initial
velocity u0 induces a flow structure which, due to its saddle point character, is ‘dynamically
unstable so that small perturbations result in a very chaotic motion’ [52]. The corresponding
pressure level has to be fixed; for example, by imposing the zero-mean condition. Here, we
choose ν = 10−5 which leads to a flow where both viscous and inertia effects are present.
Note that ‖∇u(t)‖L∞ = 2π exp

(−8π2νt
)
.

Our aim is to demonstrate the role of the Gronwall factor for simulations over (0, T ) for
‘large’ T ; we choose T = 26. This examples proves that the estimates are qualitatively sharp
in the sense that the theoretically predicted exponential growth of the errors can actually be
observed in practice. Note that this is not a convergence study. Related exact solutions, for
example the 2D Taylor–Green problem, can also be used to show h convergence at fixed
(small) time instances.

All subsequent computations have been carried out using the high-order finite element
library NGSolve [62]. The main new aspect in this work is that we use high-order FE pairs
of order k = 8 whereas previous work in [64,65] considered only lower order methods with
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Fig. 2 Lattice flow: Initial velocity and triangular meshes without singular vertices for the high-order FEM
applied to the standing vortices problem. Left: Coarse mesh (34 triangles) with h = 0.25 and first component
of u0; middle: fine mesh (902 triangles) with h = 0.05 and second component of u0; right: vorticity computed
from u0

k ∈ {2, 3}.Also,wenowchoose a different time integration procedure; namely a second-order
semi-implicit BDF (SBDF2) method with constant time step size Δt = 10−4; cf. [4]. The
small time step makes it possible to neglect errors stemming from the time discretisation. As
the implicit part we choose the Stokes-like terms (Laplacian and pressure-velocity coupling)
and denote the corresponding systemmatrix by M∗. The convection part is applied explicitly
and therefore the nonlinearity is shifted to the right-hand side.

We compare results on the two meshes shown in Fig. 2. Note that the meshes are
unstructured and therefore do not exploit the saddle-point structure of the flow. On these
meshes, the H1-conforming methods under comparison are the pure Galerkin formulation
of the Taylor–Hood method (Galerkin-TH8), Taylor–Hood with additional grad-div stabil-
isation (grad-div-TH8) with δ = 0.1 (both non-divergence-free) and the divergence-free
Scott–Vogelius element (SV8). The chosen H(div)-conforming methods are based on the
Brezzi–Douglas–Marini (BDM) element where one is an H(div)-conforming DG method
as in [23] (BDM8) and the other is a hybridised variant introduced in [46] (hBDM8). For
the DG variant we choose σ = 4k2 in (19) and make a corresponding choice for HDG. In
terms of our analysis, both methods share the same discretisation properties but differ in
computational aspects that are discussed in more detail in the Appendix.

A visualisation of the performance of the different methods can be seen in Fig. 3. Let us
comment on some aspects of the results. For classical Taylor–Hood elements, one observes a
blow-up of the Gronwall factor due to the term 4ν−1 ‖u‖2

L2(L∞)
, see (26). Grad-div stabilisa-

tionwith δ = O(1) can considerably improve the results of theGalerkin variant. Non-div-free
grad-div stabilised Taylor–Hood, div-free Scott–Vogelius FEM and div-free BDM-(H)DG
show the theoretical qualitative behaviour of the exponential Gronwall factor. No immediate
blow-up occurs. On the coarse mesh, H(div)-conforming FEM provide much better results
than H1-conforming FEM. In this work, we choose the (relatively) high order k = 8 only
in order to be able to compute accurately on coarse meshes. The conclusions of the numer-
ical experiments are in no way restricted to higher order methods. Indeed, the behaviour
is consistent with the lower order case as has been observed in [64]. On the fine mesh, all
Re-semi-robust methods perform similarly.

5.4 Brief demonstration of the advantages of divergence-free methods

In this second example, we aim at showing that in certain flow configurations, divergence-
free (or pressure–robust) methods outperform non-divergence-free methods immensely. To
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BDM8 hBDM8 SV8 grad-div-TH8 Galerkin-TH8
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Fig. 3 Lattice flow: Evolution of L2-norm and (broken) H1-seminorm errors for different methods. Com-
putations on the coarse mesh are shown by solid lines whereas the fine mesh is indicated by dashed lines. The
H(div)-HDG method on the coarse mesh is shown with black dots

Fig. 4 Transient potential flow:
Evolution of L2-norm and
(broken) H1-seminorm errors for
grad-div stabilised Taylor–Hood
and divergence-free H(div)-DG.
Computations are performed on
an unstructured triangular mesh
with h = 0.5 using polynomial
order k = 4
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this end, consider the transient potential flow defined by u = ∇ϕ with the harmonic potential
ϕ(t) = t

[
x5 − 10x3y2 + 5xy4

]
. Inserting this into (1) with f = 0 leads to the following

exact solution; cf. [50]:

u = t

(
5x4 − 30x2y2 + 5y4

−20x2y + 20xy3

)

, p = −1

2
|∇ϕ|2 − ∂tϕ = −12.5t2

(
x2 + y2

)4 − t−1ϕ

(54)

As opposed to (1), in this example we prescribe time-dependent non-zero Dirichlet bound-
ary conditions according to the exact solution and choose ν = 1. For the solution of this
problem we fix the order k = 4 and use the same grad-div stabilised Taylor–Hood (grad-
div-TH4) and the same divergence-free H(div)-DG (BDM4) method as for the lattice flow
problem. For the time-discretisation we again employ the semi-implicit SBDF2 method with
constant time-step size Δt = 10−3.

As can be seen in Fig. 4, the divergence-free method performs about ten orders of magni-
tude better compared to the non-divergence-free one. In fact, the fourth-order divergence-free
method delivers the exact velocity solution—up to accumulated round-off errors from time
discretisation and linear solvers—in every discrete time point, while the fourth-order non-
divergence-free method does not. The excellent behaviour of the pressure–robust method is
somewhat surprising since the problem is discretised in space and time, simultaneously. Such
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a seemingly strange phenomenon can be explained by the nature of time-dependent potential
flows, see [50], which are related to the elliptic Laplace problem −Δϕ(t) = 0. Note that
using k = 4, we have that u ∈ V h and therefore, the error which can be seen for the grad-div
stabilised Taylor–Hood method originates in the lack of pressure–robustness exclusively.
Indeed, the exact pressure is an eight-order polynomial and both numerical methods only use
a third-order ansatz space for the discrete pressure.

6 Open problems

Let us comment on some open problems we deliberately circumvented in this work.

Maximum norm estimates for H(div) Stokes projection: Assumption E has been important
in our analysis and yet, no rigorous mathematical proof is available. We further comment on
this point in Remark 5.4.

Sufficient conditions for the regularity assumption on ∇u: As the regularity assumption

∇u ∈ L1(0, T ; L∞(Ω)
)

(55)

is crucial for a Re-semi-robust error analysis, sufficient conditions for this are desired. In
[34, Section 7], sufficient conditions for the regularity ∇u ∈ L∞ have been derived for
the stationary incompressible Navier–Stokes problem. There, in case of no-slip boundary
conditions and convex polyhedral domains, a condition on the forcing term of the form
f ∈ L3+ε(Ω) with 0 < ε � 3/2 is sufficient; cf. [34, Lemma 9].

Optimality of velocity error estimate in L∞(L2
)
: The velocity error estimate in Theorem 5.6

is optimal with respect to the spatial discretisation regarding the dissipation energy error

∫ T

0
νCσ |||u − uh |||2e dτ , (56)

but suboptimal regarding the kinetic energy error 1
2 ‖u − uh‖2L∞(L2). A similar result has

been observed in [3,25] for inf-sup stable LPS-stabilised methods and in [33] for inf-sup
stable grad-div stabilised FEM. For exactly divergence-free and H1-conforming methods,
corresponding suboptimal results can be found in [65]. Let us remark that the formally quasi-
optimal results for some variants of divergence-free (pressure–robust) isogeometric FEM in
[29,31] are not Re-semi-robust. Conversely, in the equal-order case (stabilised by CIP or
LPS), Re-semi-robust error estimates with optimal h-convergence rates are proved in [13,32]
but, by construction, they cannot be pressure–robust.

For exactly divergence-free H(div)-FEM, a similar suboptimal result has been derived
for the incompressible Euler problem (ν = 0) in [35]. Analogously to the present work, the
condition∇u ∈ L1

(
L∞) is crucial; see also [53]. This is a very strong regularity assumption

on the solution of the Euler problem as there is no crosswind diffusion in the continuous
problem. A corresponding result for the time-dependent Oseen problem (ν > 0) can be
found in [64], which has been extended in the present paper to problem (1) with ν > 0.

For DG-FEM applied to scalar convection-diffusion problems, certain techniques can
be applied to the convective term which allows an additional error order 1/2 in case of
sufficiently small viscosity ν � Ch; cf. [26]. It remains an open problem whether similar
techniques can be used for inf-sup stable FEM in the Navier–Stokes case. On the other hand,
the suboptimality with respect to h becomes less important in case of high-order FEM.
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Practically relevant boundary conditions: In this work as well as in most of related work, the
error estimates for problem (1) usually are derived under the no-slip condition u = 0 for the
velocity. This excludes, for example, channel-like problems with in- and outflow which are
important, for example for biomedical flows (see the review [7]). Therefore, an extension of
the error estimates to such more practically relevant flow problems is desired. A first attempt
to grad-div stabilised FEM can be found in [2].

Additional stabilisation and turbulence modelling: The numerical results for the problem
in Sect. 5.3 suggest that an additional stabilisation term can help to improve the results for
non-divergence-free H1-FEM. Indeed, the blow-up for standard Taylor–Hood elements can
be reduced dramatically by adding grad-div stabilisation. This can be explained by the fact
that grad-div stabilisation can counteract problems which result from a lack of pressure–
robustness; cf. [41]. Furthermore, for both Scott–Vogelius and Taylor–Hood elements, it is
shown in [64,65] that an additional explicit convection stabilisation leads to some improve-
ments as well. For H(div)-(H)DG methods, the natural upwind mechanism takes care of
dominant convection and no additional convection stabilisation is required.

However, in case of turbulent flows, an additional turbulence model, for example via
subgrid-viscosity terms, might be needed. Potential candidates are a local projection stabili-
sation based on the Smagorinsky model [39], or residual-based eddy-viscosity methods [54].
We again want to emphasise that for H(div)-conforming (H)DG methods with an upwind
discretization for the convection, there is no need for an additional stabilisation. Therefore,
the effect of explicit turbulence modelling, which usually has a dissipative character, can be
distinguished neatly from convection stabilisation. This is, in our opinion, a good starting
point to assess explicit turbulence models.

RefinedGronwall estimates: Let us return to the velocity error estimateswhere an exponential
Gronwall factor with argument depending on ∇u ∈ L1

(
L∞) occurs. In boundary layers, the

latter term may typically depend on ν−1/2. It remains an open problem whether it is possible
to refine the analysis, for example, based on a variational multiscale decomposition of the
solution. Such an approach has been considered in [12] for two-dimensional problems (1) in
case of high Reynolds numbers.

7 Summary and outlook

The regularity assumption ∇u ∈ L1
(
L∞), which represents a class of flows frequently

discussed in both physical and mathematical literature, leads to computable flows for exactly
divergence-free FEM.

Classical inf-sup stable mixed FEM are in general not suitable for long-time integration
of the time-dependent incompressible Navier–Stokes problem. This can be caused by the
linear phenomenon of a lack of pressure–robustness. The nonlinear effects may reduce the
computable time intervals to ultra short times.

Exactly divergence-free inf-sup stable FEM may serve as best practice examples for the
time-dependent incompressible Navier–Stokes problem. In particular, the excessive growth
of the exponential Gronwall factor with respect to ν−1 is circumvented.

Drawbacks of exactly divergence-free, inf-sup stable H1-conforming FEM stem from
technical problems. Scott-Vogelius requires barycentre-refined meshes if the element order
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is not high-enough. Isogeometric based FEM are probably not available in standard FEM
packages.

Exactly divergence-free, inf-sup stable H(div)-conforming FEMcan be constructed using
Raviart–Thomas or BDM elements on arbitrary meshes. An upwind stabilisation of the
convective term based on DG-FEM can be incorporated in a very natural way.

Due to their discontinuous nature, exactly divergence-free, inf-sup stable H(div)-
conforming DG-FEM can be hybridised. Such HDG-based H(div) methods allow highly
efficient discrete solvers and, in particular, massively parallel implementation with very
favourable scalability can be achieved.

Summarising, we believe that exactly divergence-free, inf-sup stable H(div)-conforming
FEM provide the most promising approach from both theoretical and practical point of view.

Appendix: Computational aspects of H(div)-conforming methods
for Navier–Stokes

Improving the efficiency of H(div)-conforming methods In this section we explain how
H(div)-conforming FE methods, that are often seen as too complicated and inefficient for
real application, can be made efficient. We restrict the discussion here to BDM elements as
they are computationally more efficient in the context of incompressible flows compared to
RT elements since they have less degrees of freedom (DOFs) for the same velocity approxi-
mation.

Choosing the pressure space Qh as the space of (discontinuous) piecewise polynomials
of one degree less than the H(div)-conforming velocity space V h renders (16) an equality,
that is, ∇ · V h = Qh . A special property of this velocity–pressure pair is that the inf-sup
constant is robust in the polynomial degree leading to hp-optimal convergence; cf. [44] for
a rigorous analysis in 2D. The strong relation ∇ · V h = Qh can further be exploited with a
smart choice of the basis functions for V h and Qh ; cf. [63,67]. The a priori knowledge that
the discrete solution will be pointwise divergence-free then allows to remove some DOFs for
the velocity and all pressure unknowns except for the piecewise constants; cf. [46, Remark 1]
and [45, Section 2.2.4.2]. We make use of this in our numerical experiments.

To account for the tangential discontinuity in the H(div)-conforming FE space, a DG
formulation has to be applied. This aspect can be regarded ambivalently. On the one hand,
the discontinuous nature of the tangential component offers the possibility of applying an
upwind discretisation for the convection, cf. (22), which results in stable discretisations
also in the convective limit [35] without adding too much dissipation compared to most
convection stabilisations of H1-FEM. On the other hand, the DG formulation results in
computationally less attractive features. Due to the break-up of the tangential continuity,
several DOFs for the velocity are multiplied compared to H1-conforming methods. Even
worse, the number of couplings in a corresponding system matrix increases which results in
much higher computational costs for (direct and iterative) solvers of linear systems.

Severalmeasures can be taken to compensate for these costs. To this end,we briefly discuss
the concept of hybridisation in the context of DG methods [22]. To reduce the couplings of
neighbouring elements, additional unknowns on the facets are introduced (which typically
approximate the trace of the unknown field). These additional unknowns are used to replace
the direct couplings of neighbouring elements with couplings between element unknowns
and the facet unknowns. Due to the lower dimension of the facets, this reduces the overall
amount of couplings especially in the higher order case. More importantly, it allows for static
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Fig. 5 Sketch of fourth order FE discretisations with different types of unknowns for velocity and pressure:
unknowns that can be remove beforehand if a suitable basis is used, local unknowns that can be eliminated
by static condensation and the remaining global unknowns. The space F3 in the H(div)-HDG method is the
space of vector-valued functions that are tangential polynomials up to degree three on every facet

condensation, i.e. the elimination of interior unknowns by a local Schur complement strategy
which reduces the number of DOFs for which a global linear system needs to be solved.

Depending on the problem at hand there are many ways to make use of hybridisation. For
an overview we refer to the review article [18]. For Stokes and Navier–Stokes discretisations
many variants have been considered; see, for instance, [19–21]. Exactly divergence-freeHDG
methods have also been considered in [17,57,58] where additional facet unknowns can be
used to enforce normal continuity on a standardDG spacewhich circumvents the construction
of H(div)-conforming FE spaces. Here, we use the formulation presented in [46] where,
additionally to an H(div)-conforming FE space V h for the velocity and a discontinuous
pressure space Qh , facet unknowns are introduced only for the tangential component of the
velocity. The DG terms in the variational formulation are then adjusted correspondingly.
Finally, the element unknowns of the H(div)-conforming FE space couple with neighbour
elements only through facet unknowns. These facet unknowns are either the DOFs for the
normal continuity of V h or the additional facet unknowns. All remaining velocity unknowns,
as well as the pressure unknowns, have only element local couplings such that these—except
for the mean element pressure—can be eliminated during static condensation; cf. Fig. 5 for
a sketch.

In the viscosity dominated case hybridisation can be optimised further so that only facet
unknowns of one degree less need to be considered; cf. [46,55,56]. A similar optimisation can
also be made for the unknowns for the normal continuity by relaxing the H(div)-conformity
slightly. We do not treat this here but instead refer to [42]. To make use of these superconver-
gence properties ofHDGmethodswe apply—as suggested in [46]—an operator splitting time
integration method where the convection operator is treated only explicitly while the remain-
ing time-independent operators are treated implicitly. Note that such an operator splitting
is not only desirable for hybrid DG discretisations. Several time integration methods allow
for such a splitting; cf. [46, Section 3]. For the experiments in Sect. 5.3 a second-order
implicit-explicit BDF2 method has been used.

Some performance comparisons for the numerical study in Sect. 5.3 In Sect. 5.3 the errors
for Taylor–Hood, Scott–Vogelius, BDM and the hybridised BDM FE discretisation on two
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Table 1 Overview of meshes, DOFs and non-zero entries of M∗

Mesh Method #{uDOFs} #{pDOFs} #{DOFs} #
{
nz(M∗)

}

Coarse (h = 0.25)
34 triangles

TH8 2306 (748) 890 (323) 3196 (1071) 465K (128K)

SV8 2306 (748) 1224 (1224) 3530 (1972) 479K (223K)

BDM8 2673 (1483) 1224 (34) 3897 (1517) 1.93M (327K)

hBDM8 3204 (867) 1224 (34) 4428 (901) 779K (77.2K)

Fine (h = 0.05)
902 triangles

TH8 58370 (19844) 22380 (8569) 80750 (28413) 12.3M (3.38M)

SV8 58370 (19844) 32472 (32472) 90842 (52316) 12.7M (5.93M)

BDM8 69363 (37793) 32472 (902) 101835 (38695) 51.3M (8.70M)

hBDM8 81900 (23001) 32472 (902) 38695 (23903) 20.7M (2.05M)

Abbreviations of different methods with k = 8: Non-div-free H1 Taylor–Hood (TH8), div-free H1 Scott–
Vogelius (SV8) and div-free H(div) Brezzi–Douglas–Marini (BDM8) together with the hybridised variant
(hBDM8). In brackets are the numbers after reduction of the basis and static condensation

different meshes are compared. At this point, this study shall be complemented with infor-
mation on the computational costs of the methods. The results are shown in Table 1 where
we make this comparison only in terms of the following measures. Firstly, the numbers of
DOFs for velocity and pressure (#{uDOFs}, #{pDOFs}, #{DOFs}) are compared. Secondly,
we consider the same numbers that remain in a global linear system after static condensation
and a potential reduction of the basis (in brackets). Thirdly, the non-zero entries in the global
matrix M∗ before (#{nz(M∗)}) and after reduction and static condensation (in brackets)
are considered. Note that these numbers can only give an indication of the computational
efficiency of the methods. Many different practically relevant aspects, as for example paral-
lelisability or the availability and performance of suitable preconditioners, are not reflected
in these numbers.

Regarding static condensation in the Taylor–Hood method, independent of the grad-div
stabilisation, we can eliminate all interior unknowns for velocity and pressure. On general
meshes, the pressure unknowns for the Scott–Vogelius element cannot be eliminated and
hence, static condensation is only applied with respect to the interior velocity DOFs.We note
that on barycentre refined meshes static condensation can also be applied for the pressure
unknowns; cf. [24]. In case of a DG formulation with BDM elements we utilise the special
basis introduced in [63,67] to eliminate some velocity unknowns and all pressure unknowns
except for the mean element pressure. However, static condensation cannot be applied to
any additional DOFs due to the DG couplings. Note that this could potentially be improved
slightly by choosing a nodal basis similar to the one in [37] where interior unknowns only
couple with the boundary nodes of neighbouring elements. To the best of the authors’ knowl-
edge, such a basis has not yet been proposed for an H(div)-conforming FE space. For the
hybridised DG method we can apply the reduction of the basis for the H(div)-conforming
FE space as well as static condensation. Note that in this work, the formulation from [46] is
used which only involves tangential facet unknowns of degree 7. The results are shown in
Table 1.

We observe that the effect of the basis reduction and especially the hybridisation reduces
the computational costs of the H(div)-conforming methods drastically, thereby rendering
them competitive not only in terms of accuracy, cf. Sect. 5.3, but also in terms of computing
time; see also the benchmark results in [46, Section 4.5].
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