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Abstract Based on a two-step Newton-like iterative scheme of convergence order p > 3,
we propose a three-step scheme of convergence order p + 3. Furthermore, on the basis of this
scheme a generalized g 4 2-step scheme with increasing convergence order p+3¢q (¢ € N) is
presented. Local convergence, including radius of convergence and uniqueness results of the
methods, is presented. Theoretical results are verified through numerical experimentation.
The performance is demonstrated by the application of the methods on some nonlinear
systems of equations. The numerical results, including the elapsed CPU-time, confirm the
accurate and efficient character of proposed techniques.
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1 Introduction

The construction of fixed point iterative methods for solving nonlinear equations or systems
of nonlinear equations is an interesting and challenging task in numerical analysis and many
applied scientific branches. The huge importance of this subject has led to the development

B Janak Raj Sharma
jrshira@yahoo.co.in

Toannis K. Argyros
iargyros @cameron.edu

Deepak Kumar
deepak.babbi @ gmail.com

Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal,
Sangrur 148106, India

2 Department of Mathematics Sciences, Cameron University, Lawton, OK 73505, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40324-018-0150-8&domain=pdf

546 J. R. Sharma et al.

of many numerical methods, most frequently of iterative nature (see [4—7,31,32]). With the
advancement of computer hardware and software, the problem of solving nonlinear equations
by numerical methods has gained an additional importance. In this paper, we consider the
problem of approximating a solution x* of the equation F'(x) = 0; where F : Q € B} — By,
Bj and B, are Banach spaces and €2 is a nonempty open convex subset of By, by iterative
methods of a high order of convergence. The solution x* can be obtained as a fixed point of
some function @ : 2 € B; — B, by means of fixed point iteration

Xpt1 = P(xy), n=0,1,2,....

There are a variety of iterative methods for solving nonlinear equations. A classical method
is the quadratically convergent Newton’s method [4]

X1 = Xn — F () " F (xn), (1

where F’(x)~! is the inverse of first Fréchet derivative F'(x) of the function F(x). This
method converges if the initial approximation x is closer to the solution x* and F’ ()t
exists in an open neighborhood €2 of x*. In order to attain the higher order of convergence,
a number of modified Newton’s or Newton-like methods have been proposed in literature,
see, for example [1-3,6,8-10,12-30] and references therein.

In this paper, we consider a three-step iterative scheme and its multistep version for solving
the nonlinear system F'(x) = 0. The three-step scheme is given by

Yn = Xn — O5F/()Cn)_]F(Xn)»

2n =@ (tn. ).
Xpp1 = Zn — W (xn, yn) F(20), ()

where goép ) (xn, yn) is any iterative scheme of convergence order p > 3, ¥ (x,, y,) = (,81 +
)/F/(yn)ilF/(xn) +SF/(xn)71F/(y”))F/(xn)71 and {a, B, y, 8} € R.
The multistep version of (2), consisting of ¢ + 2 steps, is expressed as

Yn = Xn —aF’(x,,)_lF(xn),

in = (p‘gp) Xy Yu),

2 = 24 = Y (s Y F ),
z =2V — Y, y) F D),

—1 -2 -2
247V =297 (e, v FGEET),
—1 —1
2 = xp =20 — Y@ Y F D), 3)

where ¢ € N and z,(qo) = Zn.

In Sect. 2, we show that for a particular set of values of the parameters «, 8, y and é the
methods (2) and (3) possess convergence order p 43 and p + 3¢, respectively. In Sect. 3, the
local convergence including radius of convergence, computable error bounds and uniqueness
results of the proposed methods is presented. In order to verify the theoretical results, some
numerical examples are presented in Sect. 4. Finally, in Sect. 5 the methods are applied to
solve some systems of nonlinear equations.
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2 Convergence-I
We present the convergence of method (2), when F : @ C R” — R™.

Theorem 1 Suppose that

(1) F:Q C R™ — R™ is a sufficiently many times differentiable mapping.
(ii) There exists a solution x* € Q of equation F(x) = 0 such that F'(x*) is nonsingular.

Then, sequence {x,} generated by method (2) for xo € Q converges to x* with order p + 3
for p > 3 if and only if

and § = —. “4)
Proof Let e, = x, — x*. Using Taylor’s theorem and the hypothesis F (x*) = 0, we obtain
in turn that

1 1
F(xp) =F' (x*)(x, — x*) + EF"(X*)(Xn —x*7 + EF”’(x*)(x,, -x*’+0 (Ilxn — X*||4) )
= F'(x*) (en + Ta(en)’ + T3(en)’ + O(en)*) ,

where T; = L F/(x*) "' F®O(x*) and (en)' = (en, en,.'.,en), en €R, i € N.
I

Also
F'(xy) = F'(x*) (I +2T2e, + 3T3(en)* + O((en))) Q)
F'(xp)™" = (I —2Trey + (4TF — 3T3)(en)* + O((en))) F'(x*) 71, (©6)
and
F'(x0) 7 F(xn) = ey — Ta(en)* + 2(T3 — T3)(en) + O((en)h). (7

For e, = y, — x*, we have that
&n = (1 — ey +aTa(en)” = 2a(T5 — T3)(en)’ + O((en)®).
Using again Taylor’s theorem on F’(y,) about y, = x*, we get in turn that
F'(yn) =F' () (I + 2128, 4 3T3(20)” + 0((En)Y)),
= F' () (I +2(1 — a)Taen + (2075 +3(1 — ) T3)(ex)* + O((en))),  (8)
SO
F'(yn) ™" = (I = 2Taé, + (4T3 — 3T3)(@)" + 0((@) ) F'(x) 7",
=(I —2(1 =) Prey + (22 — 5o + 20T — 3(1 — ) T3) (en)?
+ 0(en))) F'(x*)7". ©)
It then follows from the Egs. (5), (6), (8) and (9), respectively that
F'(x0) " F'(yn) = 1 = 2aTaey + (62T — 302 — ) T3)(en)? + O((en)*)
and

F'(y0) " F'(xy) = 1 4+ 2aTae, — (203 — 2a)TF + 3a(a — 2)T3) (ex) + O((en)?).
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Consequently, summing up we get in turn that
BI+yF (ya) ' F'(x) + 8F (xa) ' F'(3n) = (B+y +8I +2a(y —8)Tre,
+ (2038 = 3B + 2ay) T3 — 3a(er — 2)(y — 8)T3)(en)> + O((en)?).
Then
Yy yn) = (BI+yF () F' () + 8F () ™ F () F (x) ™!
= (B+y+8OI=2B+y+8—aly —8))Te,
+(@do’y = 10a(y =8 +4(B+y + T3 =3B +y +3
+ala —2)(y — NTs)(en)* + O(en))) F'(x") 7" (10)

By hypothesis {z,} is of order p. Set e, : z, — x* = K((en)?) + O((e))?™), K # 0.
Then, we have
F(zn) = F'(x*)(@n + 0((@n)?). (11)

Using (10) and (11) in the third substep of method (2), it follows that
ent1 =1 =B —y—28en+ 2(,3 +y+d—aly - 6))T2(€nén)
— Q@Y +B+y +8) —Saly =T —3(B+y +38
+ala —2)(y —T3)((en)*en) + O((en)’en). (12)

Therefore, the order of convergence to x* is of order p + 3 (p > 3), if and only if, the
parameters o, f, y and § satisfy

B+y+ds=1,

aly =8) =1,

2%y + B4y +8) —5a(y —8) =0,
B+y+d+al@—2)(y -8 =0, (13)

leading to the unique solutions of the system (13) given in (4).

Note that we have not shown the coefficient of (¢,)&, in (12) due to lengthy expression.
However, using the values of parameters given in (4), we can write the error equation in
simplified form as

ent1 =212 (4T3 — T3)((en)’@n) + O ((en)*@n)
=2K T2 (477 = T3)((en)"*) + O((en)”™).
It follows from Theorem 1 that the method to be used from the family (2) is given by

Yn = Xn — F/(xn)ilF(-xn)a

(pip) (Xn, Yn),

X _ _(_I é/ —1 l/ —1 / —1
ntl = Zn +2F(M) F(w)+2F%M) F(WﬂFKM) F(zp). (14

n

Next we show that the method (3), on using the values of parameters «, 8, y and § given
in (4), possesses convergence order p + 3¢g. Thus the following theorem is proved:

Theorem 2 Under the hypotheses of Theorem 1, the sequence {x,} generated by method (3)
for xog € Q converges to x* with order p 4+ 3q for p > 3 and g € N.
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Proof Taylor’s expansion of F(z\¢™") about x* yields

FY™Y) = F/(X*)<(z,(ﬂ’1) X Ty TY a2 4 ) (15)
Then, we have that
Y, 3 F @l ™) = (1= 245 = TaT3)(en)’ + 0((en) ) F'(x) ™!
) F'a)(G9) = x4+ 1Y — x40
= @D —x") = 20T3 ~ BT (e GV~ x)
FEEY a2 (16)
Using (16) in (3), we obtain
29 x24T — BT @) T )+ BT — 2 e ()

As we know that 7\ — x* = 2K Ty(4T2 — T3)(e,)P 3 + O((en)?™™), therefore, from (17)
for g = 2, 3, we have

P —x* =204 — BT (e @ —x%) + -
= 2K TPATE — T3)%(en)"* + 0((en)"*)
and
¥ —x* = 2(4T) — BT’ @ — )+
= DKTIATE — T3) ()" + 0 ((en)” ).
Proceeding by induction, we have
en1 =50 2" = 2K T 4T3 = T3)" ()" + O ((en)" 7).

This completes the proof of Theorem 2. O

3 Convergence-II

In this section we study the convergence of new methods in Banach space settings. Let
wo : Ry U {0} — R4 U {0} be a continuous and nondecreasing function with wo(0) = 0.
Let also o be the smallest positive solution of equation

wo(t) = 1. (18)

Consider, function w : [0, 9) — R4 U {0} continuous and nondecreasing with w(0) = 0.
Define functions g; and & on the interval [0, o) by

Jy w1 —6)r)do

1 —wo(2) )

g1t) =
and

hi(r) = g1(t) — 1.

We have h1(0) = —1 < Oand hy(t) — 400 ast — o~ . The intermediate value theorem
guarantees that equation 41 (¢#) = 0 has solutions in (0, 0). Denote by g the smallest such
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solution. Let A > 1 and g5 : [0, 01) — R4 U {0} be a continuous and nondecreasing function.
Define function 4, on [0, 01) by

ha(t) = g2 ()"~ = 1. (20)
Suppose that g»(£)t*~! — 1 — 400 or a positive number as t — o] -
Then, we get that 75(0) = —1 < 0 and h3(f) — +00 or a positive number as t — @, .

Denote by o> the smallest solution in (0, 1) of equation h(t) = 0. If A = 1, suppose
instead of (20) that

£2(0) <1 1)
and g>(t) — 1 — +o0 or a positive number as t — @] . Denote again by o> the smallest
solution of equation A, (¢) = 0.

Letv : (0, 01) — R4 U {0} be a continuous and nondecreasing function. Define functions
g3 and i3 on the interval (0, o1) by

0 = ( Jo w((1 = 0)ga2()r*)d6
830 = 1= wo(g2 (1"
(o (1) + wo(g1 (1) fiy v(Og2(1)*)do
(1 — wo()(1 — wo(g1(1)1))
1 (wo(g2(01*) + wo(g1(1)1)) ) v(Oga()*)do
2 (1 —wolga)tM)(1 — wo(gi (1))
( CION v(gz(t)t))v( Lo do
1 \ T=wo(grn T—wo (1) g1 f() v(fg2(H)t")

= - 22
T3 (1= wolg2(7 N1 — wo(0) )gz(m (22

and
h3(t) = g3(1) — 1.

We obtain that 73(0) = —1 < 0 and h3(t) — oo ast — @, . Denote by g3 the smallest
solution of equation A3(¢) in (0, 02). Then, we have that for each ¢ € [0, o)

0<g@)<l1, i=1273.

Denote by U(u, &) = {x_ € By : |lx — u|l < €} the ball with center © € B; and of
radius ¢ > 0. Moreover, U (i, €) denotes the closure of U (u, €). We shall show the local
convergence analysis of method (14) in a Banach space setting under hypotheses (A):

(al) F :Q < B} — B3 is acontinuously Fréchet-differentiable operator.

(a2) There exists x* € Q such that F(x*) = 0 and F'(x*)~! € £(Bs, B)).

(a3) There exists function wo : Ry U {0} — R4 U {0} continuous and nondecreasing with
wo(0) = 0 such that for each x € Q

IF" ()N () = F 7D < wollx — x*).

(a4) Let Q9 = Q N U(x*, o), where o was defined previously. There exist functions w :
[0, 0) = RLU{0},v : [0, 0) — R4 U{0} continuous and nondecreasing with w(0) = 0
such that for each x, y € Qo

IF' (x*) " N(F'(x) — F'))ll < w(llx — yI)
and

IF ()T F o))l < v(llx — x*|).
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(a5) There exists function g> : [0, 01) — R4 U {0} continuous and nondecreasing and A > 1
satisfying (20) if A > 1 and (21), if . = 1 such that
* ||A. .

o (e, x = P Fio) = x| = ol =Dl — x

(a6) U(x*, 03) € Q.
(a7) Let o* > o3 and set @ = QN U (x*, 0%), [l wo(60*)d < 1.

Theorem 3 Suppose that the hypotheses (A) are satisfied. Then, the sequence {x, } generated
forxo € U(x*, 03) — {x*} by method (14) is well defined in U (x*, 03), remains in U (x*, 03)

foralln =0, 1,2, ... and converges to x*, so that
lyn = 2" < g1(llxn = x*Dlxn = x*[| < llxn — x*|| < 03, (23)
lzn = x*Il < g2(llxn — x* Dl — x*|* < [lxy — x| (24)
and
X1 — 211 < g3(llxn — x*IDllxn — x™|| < [l — x™ |, (25)

where the functions g;, i = 1,2, 3 are defined previously. Moreover, the vector x* is the
only solution of equation F(x) = 0in Q.

Proof We shall show estimates (23)—(25) using mathematical induction. By hypothesis (a2)
and for x € U(x*, 03), we have that

IF' )~ F () = F/ DI < wollx — x*[1) < woes) < 1. (26)

By the Banach perturbation Lemma [4,6] and (26) we get that F’ (x)~! € £(By, B)) and

1
IF' ()" F' (x| < ]

_—. 27
— wo(flx — x*|) @0

In particular, (27) holds for x = xg, since xg € U (x*, ¢) — {x*} and yy, zo are well defined

by the first and second substep of method (14) for n = 0. We can write by the first substep
of method (14) and (a2) that

Yo —x* =x0 —x* — F'(x0) "' F(x0)
1
- fo F'(x0) ™ (F/(x* 4+ 0(xg — x*)) — F'(x0)) (x0 — x™)d6. (28)

Then, using (22) (for i = 1), the first condition in (a4), (27) (for x = x¢) and (28) we get
in turn that

1
lyo —x*|l = IIF/(x0) L F' ()| H fo F/(x*)_l[F/(x*+9(X()—x*)—F/(xo)](XO—x*)dQH

_ Jo w(@ = O)llx — x*Ddbl|xg — x*|

L —wo(llxo — x*[)
= g1(lxo — x*Dllxo — x*|| < llxo — x*|| < 03, (29)

which implies (23) for n = 0 and yg € U (x*, 03).
Using (a5) and (22) for i = 2, we get that

llzo — x*|| = llg1(x0, yo) — x*II < ga(llxo — x* D lxo — x*|* < Ilxo — x*|| < 03, (30)
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s0 (24) holds for n = 0 and z9 € U (x*, ¢3). Notice that since yg, zo € U (x*, 03), we have
that

1
IF' Qo)™ F )l = = oo ==
1
= T wotg1(Ixo — x*IDllxo — 1) GD
and
1
IF (zo) ™" F'(x*)|| < v
! (32)

< .
1 —wo(g2llxo — x*IDllxo — x*[1*)

Moreover, x; is well defined by the third substep of method (14) for n = 0. We can write by
the third substep of method (14) forn =0

x) —x* =z0 —x* — F'(z0) "' F(z0) + F'(z0) ' F(z0) 4+ F'(x0) "' F(z0)
3 1
- EF’(yor‘ F(z0) — 5F’<xo>*1F’(yo)F’(xo)*‘ F(z0)
=(z0 —x* — F'(z0) "' F(20)) + (F'(x0) ™" = F'(30) ") F(20)

1
+ E(F/(zo)_l — F'(3o) ") F(z0)

1
+ 5<F/<zo>*1 — F'(x0) " F'(yo) F'(x0) ") F (20)

=(z0 — x* — F'(z0) "' F(20)) + F'(x0) "'[(F'(y0) — F'(x*))
+ (F'(x*) — F' (xo))1F (y0) "' F(z0)

1
+ 5F’(zo)—‘ [(F'(yo) — F'(x*)) + (F'(x*) — F'(z0)] F'(y0) ™' F(z0)

1
+ EF’<ZO>‘1 [F'(x))F'(yo) ™" = F'(z0) F'(x0) '] F' (y0) F'(x0) ' F (20).

(33)

Using (22) (for i = 3), (27), (a3), (29)—(33), and the triangle inequality, we obtain in turn

that

Jy w( = 0)llz0 — x*]|d6

L —wo(llzo — x*[))
[wo(llxo — x*[) + wo(llyo — x*ID1 fy v(@llz0 — x*[)d6
(I —wo(llxo — x*IN)(1 — wo(llyo — x*[1))
1 [wo(llzo = x*I) + wo(llyo — x*D] fol v(@llzo — x*[)dO

lxr — x| < (

2 (1 —wo(llzo — x*IN)(1 — wo(llyo — x*))
B —x* 1

1l gt s+ el s Tl — 1D fy v(@llzo — x*n)de)

2 (1 —wo(llzo — x*IN)(1 — wo(llxo — x*]))

x llzo = x*|I < g3(llxo — x*IDIxo — x| < llxo — x™|| < o3,
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which shows (25) for (k = 0) and x; € U(x*, 03). The induction for estimates (23)—
(25) is completed by simply replacing xo, Yo, 2o, X1 by Xk, Yk, Zk. Xk+1 in the preceding
estimates. Then, from estimate

k41— x*I1 < cllxe —x*|l < 03, where ¢ = g3(|lxo — x*|) € [0, 1),

we deduce that limg_, ooxx = x* and xx41 € U (x*, 03).

The uniqueness part is shown using (a3) and (a7) as follows:

Define operator Q by Q = fol F'(x** 4+ 0(x* — x**))d0 for some x** € Qp with
F(x**) = 0. Then, we have that

1
IF' (0 — F'a)l < /0 wo(Bl1x* — x**[)d6

1
< / wo(00*)d6 < 1,
0

SO Q’1 € £(By, By). Then, from the identity
0=F@x") — F(x™) = Q(x* —x™),
we conclude that x* = x™**, O

Next, we present the local convergence analysis of method (3) along the same lines of
method (14). Define functions g», A, u and &, on the interval [0, 02) by

L3 1 1 fy v(®21()0do
L—wo(t) 21 —wo(g1(Mr) 2 (1 —wo(r))?

1
MO = 14 220) [ o(6g2000)do.
0

() = 29(1) g2 (1)t (34)

&) =

and
hy() = p() — 1.
We have that /2,,(0) < 0. Suppose that
u(t) — 400 ora positive number as t — @, . (35)

Denote by 0@ the smallest zero of function & . on the interval (0, g2). Define the radius of
convergence o* by
o* = minfoy, 0'}. (36)

Denote by (A’) the conditions (A) but with o* replacing ¢ together with condition (35).

Proposition 1 Suppose that the conditions (A’) hold. Then, sequence {x,} generated for
xo € U(x*, 0*) — {x*} by method (3) is well defined in U (x*, 0*), remains in U (x*, 0*) and
converges to x*. Moreover, the following estimates hold
e = x*I < gullxe — x*Dllxe — x*| < llxe — x| < 0%,
lzx = x*I| < galllxx — x* D llxx — x*|* < Jlax — ¥
. . -
lzg” = X1 < Al — x*IDllzg " — x|
< Ml = x*Dgallxe — x* Dl — x*1*
<l —x*l, i=1,2,...,9—1 (37)

)
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and

@) @1
k1 — [ = llzg” = 21 < A9l — * Dz = x|

< wlllxe = x*Dllxe — x*I, (38)

where the functions A and p are defined previously. Furthermore, the vector x* is the only
solution of equation F(x) = 0 in Q.

Proof We shall only show new estimates (37) and (38). Using the proof of Theorem 3, we
show the first two estimates. Then, we can obtain that

3
1 ok, YO F/ ) < 1F ) ™ F/ %) |+ EIIF’(yk)_lF/(x*)II

1 _ _ _

+ S IF () L' G NE ) F Gl E (o) ™ F/ ()|

1 3 1
< +3
I —wo(llxxe —x*I) 21 —wolllyx — x*[)
1 Jo v@llye —x*hdo
2. (1 — wo(llxx —x*[)? ~
Moreover, we have in turn the estimates

1
lz(" — x|l = 2k — x* — ¥ () F ()|

< llzk — x|l + ¥ G, YO F' GOF (%) F ()|

g2 (llxe — x*D.

1
< llzk = x*II + &2 (llxk — x*ll)/ v(@llze —x*DdOllzk — x|
0
< Alle — x*Dllzk — x|l
< wdllxe = x*Dllxe — x*|1.
Similarly, we get that

2 1
Iz = X% < Al — x*Dllzy” — x|

< 2% (llxx = x* D llzx — x*]|
lzg” —x* < A ok — x*Dllzy ™ — %)
v — x50 = l1ze” = x* 1 < A9 — x* DIz ™" = x*)|
< (ke — x* D lloex — x™1.
That is we have xi, zx, z,({i) eUMx* 0%,i=1,2,...,q and
Iveer — x| < Ellxe — x*]1,
where ¢ = u(|lxg — x*||) € [0, 1), so limg— o0 xx = x* and xg4+1 € U(x™, 0%). O

Remark (a) The result obtained here can be used for operators F' satisfying autonomous
differential equation [5] of the form

F'(x) = T(F (x)),

where T is a known continuous operator. Since F'(x*) = T (F(x*)) = T(0), we can
apply the results without actually knowing the solution x*. Let as an example F(x) =
e¢* — 1. Then, we can choose: T (x) = x + 1.
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(b) Itis worth noticing that methods (14) and (3) do not change when we use the conditions
of Theorem 3 instead of stronger conditions used in Theorems 1 and 2. Moreover, we
can compute the computational order of convergence (COC) [32] defined by

_ * _ *
coczm(”’c’“rl ol ”)/ln( lbxn = X1 ) n=1.2... (39)
I, — x*|| lx,—1 — x*|

or the approximate computational order of convergence (ACOC) [14], given by

Acoczln<”x”“_x””>/1n< lxn = Xn—1l ) n=1.2,...  (40)
lxn — xp—1ll lXp—1 — xp—2ll

This way we obtain in practice the order of convergence.
(¢) Numerous choices for function (p(p )

are possible. Let us choose, e.g. p =4, = 1 and

4 _
o\ W yn) = yn — F' ) " F (), @1
which is a fourth order iteration function. Then, we can have as in (29) that
1
Jo wd =) [lyn — x*IDdO]ly, — x*|
I —wo(llyn — pID

fo w(l —0)g1(lxn — x*IDllxn — x*NdOg1 (Ilxn — x* DXy — x ||
I —wo(g1(llxn — x*Dllxn — x*I)

llzn — x*| <

So, we can choose

Jo w1 = 0)g1()1)g1(1)d6
1 —wo(g1()1)

Then function g3 is given by Eq. (22).

g (1) = and A = 1.

It is worth noticing that the definition of function g> (and consequently of function g3)
is not unique. Indeed, let wo(¢) = lpt, w(t) = [t. Then we get g((¢t) = ﬁ, g (t) =

3
(%) = 1 =my and A = 4 (see also Example 2 for [p = 15 and [ = 30).

4 Numerical examples

Here, we shall demonstrate the theoretical results which we have proved in section 3. For
this, the methods of the family (3) chosen, with the choices g1, g2, g3 and (p§4) (xn, yn) given
in Remark (c), are of order seven and ten that now we denote by M7 and M1, respectively.
We consider two numerical examples, which are defined as follows:

Example 1 Let By = B, = CJ0, 1]. Consider the equation

1 (1)2
x(s) = / T (s, t)<fx(t)2 + T)dl (42)
0

where the kernel T is the Green’s function defined on the interval [0, 1] x [0, 1] by

(1—95)t, t<s, (43)

TG, 0 = {s(l —1), s<t.
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Table 1 Numerical results of

Example 1 M7 Mio
o1 = 10.5212 o1 = 10.5212
o = 6.00895 0@ =4.05263
0* = 6.00895 0" = 4.05263
1’;‘2::;})216 2Numerlcal results of M, Mo
o1 = 0.033333 o1 = 0.033333
oM =0.021401 0@ =0.012603
0* = 0.021401 0™ = 0.012603

Define operator F : C[0, 1] — CJO0, 1] by

: (1)
F(x)(S)ZX(S)—/ T (s, t)( (t)z +T> .
0

then,

1
F'(x)p(s) = p(s) —/0 T, t)(*x(t)2 + ()>M(t)dt~

Notice that x*(s) = 0 is a solution of (42). Using (43), we obtain

1
H / T (s, t)dt
0

Then, by (43) and (a4), we have that

1
<-.
— 8

1 1
IF'(x) = F' ()l < 5(3”36 —ylI2 4+ llx = yl).

(44)

(45)

Hence, we can set wo(t) = w(t) = 3—12(3t% + t) and v(r) = 1 + wo(¢). Numerical results
are displayed in Table 1. From the numerical values we observe that ox > 1. But, since we
cannot go outside the unit ball, we choose o* to be the maximum available value which is
1. to be the maximum available value which is 1. Thus, for both methods M7 and Mg, we

have px = 1.

Thus the convergence of the methods M7 and Mg to x*(s) = 0 is guaranteed, provided
thatxg € U(x*, 0*). Notice that in view of (45) earlier results using hypotheses on the second

derivative or higher cannot be used to solve this problem [3,4,26].

Example 2 Let By = B, = C[0, 1], be the space of cont_inuous functions defined on the
interval [0, 1] and be equipped with max norm. Let Q2 = U (0, 1). Define function F on 2

by
1
F(@)(x) = ¢(x) — 10 / 260(6)3d6.
0

‘We have that

1
F'(pE))(x) = &E(x) — 30/ x9g0(9)2.§(9)d9, for each & € Q.
0
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Then for x* = 0 we have wo(t) = 15¢, w(t) = 30z, v(¢t) = 2. The parameters are shown
in Table 2.
Thus, the methods M7 and M converge to x* = 0, provided that xo € U (x*, 0*).

5 Applications

We apply the methods M7 and M1 of the proposed family (3) to solve systems of nonlinear
equations in R”™. A comparison between the performance of present methods with existing
higher order methods is also shown. For example, we choose the fifth order method proposed
by Madhu et al. [23]; sixth order methods by Parhi and Gupta [26], Esmaeili and Ahmadi
[15], Behl et al. [9] and Grau et al. [17]; eighth order method by Sharma and Arora [28].
These methods are given as follows:

Madhu—Babajee—Jayaraman method (M B Js):

Yn =0 — F'(x) " F (xn),
Xn1 =yn — HF (xp) " F(yn),
where H = 21 — t(x,) + 2(t(xy) — D> and 1 (x,) = F'(x2) "' F'(yn).
Behl-Cordero—Motsa—Torregrosa method (BC M Tg)
Yn = Xn _aF/(xn)_lF(xn)v
2 =Yn— (bF ()™ + (cF'(xn) + dF' () ") F (xn),
X1 =20 — (8F ()" + (eF'(xn) + hF' ()" F(2n).

Wherea — %’b: —%,C = —l’d = 3’g = %’e e _2(2§j11)2 andl’l = Z(gZ;T)Z'
Parhi-Gupta method (P Ge):

Yn =Xn — F/(xn)ilF(xn)»
20 =yn = 2(F' () + F'() ™ F ),
Xnt1 =2n — F'(00) ' F () BF () — F'(x)) ™ (F'(x0) + F' ().

Esmaceili-Ahmadi method (E Ag):
Yn =X = F'(0) " F ),
_ 1 / —1 / / —1
i =Yn + 3(F (xXn)™ +2(F (xn) = 3F (yn)) )F(xn),
— 1 ! —1 / ’ -1
Xp+l = Zn + g( — F'(xp)™ + 4 (xn) — 3F (yn)) )F(Zn)~
Grau—-Grau—Noguera method (GG Ng):

Yn =X — F'(x) " F(x),
Zn =Y — (2w X3 F1— F'(x)) " F (o),
Xn+1 =2Zn — (Z[an X F1— F/(xn))_lF(Zn)-
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Sharma—-Arora method (S Ag):
Yn =Xn — F/(xn)ilF(xn)a

13 75 o
t =y = (51 = Ga(51 = 36u) ) F' ) FOow),

7 3 _
Xn+1 =2Zn — (51 - Gn(41 - EGn)>F/(xn) IF(Zn),

where G, = F'(x,) " F'(yp).

The programs are performed in the processor, AMD A8-7410 APU with AMU Radeon
R5 Graphics @ 2.20 GHz(64 bit Operating System) Microsoft Window 10 Ultimate 2016
and are complied by Mathematica using multi-precision arithmetics. For every method, we
record the number of iterations (n) needed to converge to the solution such that the stopping
criterion

161 = Xl |+ || F Can)|| < 1074
is satisfied. In order to verify the theoretical order of convergence, we calculate the approxi-
mate computational order of convergence (ACOC) using the formula (40). In the comparison
of performance of methods, we also include CPU time utilized in the execution of program
which is computed by the Mathematica command “TimeUsed[ ]”.

We consider the nonlinear integral equation F(x) = 0 where

1
Fx)(s) =x(s) — 1+ %/ s cos(x(1))dt, (46)
0

whereins € [0, []Jandx € Q = U(0,2) C X.Here, X = C[0, 1] is the space of continuous
functions on [0, 1] with the max-norm,

lx]l = maxgefo,171x(s)].

Integral equation of this kind is called Chandrasekhar equation (see [11]) which arises in the
study of radiative transfer theory, neutron transport problems and kinetic theory of the gases.

Using the trapezoidal rule of integration with step 2 = 1/m to discretize (46), we obtain
the following system of nonlinear equations

si (1 ol 1 ,
O=x; -1+ m Ecos(xo) + jX_;cos(xj) + Ecos(xm) , 1=0,1,....,m, (47
wheres; = t; = i/mandx; = x(t;) withxg = 1/2. We apply the methods to solve (47) for the
sizem = 8, 25, 50, 100 by selecting the initial value {x1, x2, .. ., x,}7 = (15, 15, - - -

%}T towards the required solutions of the systems. The corresponding solutions are given
by

{0.9565...,0.9130...,0.8696...,0.8261 .A..0.7827...,OA7392A.A,OA6958...,0.6523“.}7“,
{0.9864...,0.9728...,0.9593...,0.9457...,0.9321...,0.9186...,0.9050...,0.8915...,0.8779...,0.8643 ...,
0.8508...,0.8372...,0.8237...,0.8101...,0.7965...,0.7830...,0.7694 ...,0.7559 ...,0.7423 ..., 0.7287 ...
0.7152...,0.7016....,0.6881 ...,0.6745...,0.6609...}T,
{0.9932...,0.9865...,0.9797...,0.9730...,0.9663...,0.9595...,0.9528...,0.9460...,0.9393...,0.9326...,
0.9258...,0.9191...,0.9123...,0.9056...,0.8989...,0.8921...,0.8854...,0.8786...,0.8719...,0.8652...,
0.8584...,0.8517...,0.8449...,0.8382...,0.8315...,0.8247...,0.8180...,0.8112...,0.8045...,0.7978 ...,
0.7910...,0.7843...,0.7775...,0.7708 ..., 0.7641 ...,0.7573 ..., 0.7506 ..., 0.7439 ..., 0.7371 ..., 0.7304 . . .,

0.7236...,0.7169...,0.7102...,0.7034 ...,0.6967 ...,0.6899...,0.6832...,0.6765...,0.6697 ..., 0.6630.. .)74
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and

{0.9966...,0.9932...,0.9899...,0.9865...,0.9832...,0.9798...,0.9764...,0.9731...,0.9697...,0.9664 ...,
0.9630...,0.9596...,0.9563...,0.9529...,0.9496...,0.9462...,0.9428...,0.9395...,0.9361...,0.9328...,
0.9294...,0.9260...,0.9227...,0.9193...,0.9160...,0.9126...,0.9092...,0.9059...,0.9025...,0.8992.. .,
0.8958...,0.8924...,0.8891...,0.8857...,0.8824...,0.8790...,0.8756...,0.8723...,0.8689...,0.8656...,
0.8622...,0.8589...,0.8555...,0.8521...,0.8488...,0.8454...,0.8421...,0.8387...,0.8353...,0.8320...,
0.8286...,0.8253...,0.8219...,0.8185...,0.8152...,0.8118...,0.8085...,0.8051...,0.8017...,0.7984 ...,
0.7950...,0.7917...,0.7883...,0.7849...,0.7816...,0.7782...,0.7749 ..., 0.7379 ...,0.7345 ..., 0.7312.... .,
0.7715...,0.7681...,0.7648 ...,0.7614 ...,0.7581 ...,0.7547...,0.7513...,0.7480...,0.7446 ...,0.7413 .. .,
0.7278...,0.7245...,0.7211...,0.7178 ...,0.7144...,0.7110...,0.7077 ...,0.7043 ..., 0.7010 ..., 0.6976 . ..

0.6942...,0.6909...,0.6875...,0.6842...,0.6808...,0.6774...,0.6741...,0.6707....0.6674...,0.6640..}7.

Numerical results are displayed in Table 3, which include:

— The dimension (m) of the system of equations.

— The required number of iterations (n).

— The error ||x,+1 — x,|| of approximation to the corresponding solution of considered
problems, where A(—#h) denotes A x 10~" in each table.

— The approximate computational order of convergence (ACOC) calculated by the formula

(40).

The elapsed CPU time (CPU-time) in seconds.

It is clear from the numerical results displayed in Table 3 that the new methods like the
existing methods show stable convergence behavior. Also, observe that at same iteration the
absolute value of error of approximating solution obtained by the higher order methods is
smaller than the error by the lower order methods which justifies the superiority of higher
order methods. From the calculation of computational order of convergence, it is also verified
that the theoretical order of convergence is preserved. The CPU time used in the execution
of program shows the efficient nature of proposed methods as compared to other methods.
Similar numerical experimentations, carried out for a number of problems of different type,
confirmed the above conclusions to a large extent.
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