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Abstract
Tensors are in general large-scale datawhich require a special representation. These represen-
tations are also called a format. After mentioning the r -term and tensor subspace formats, we
describe the hierarchical tensor format which is the most flexible one. Since operations with
tensors often produce tensors of larger memory cost, truncation to reduced ranks is of utmost
importance. The so-called higher-order singular-value decomposition (HOSVD) provides a
save truncation with explicit error control. The paper explains in detail how the HOSVD pro-
cedure is performedwithin the hierarchical tensor format. Finally, we state special favourable
properties of the HOSVD truncation.

Keywords Hierarchical tensor representation · HOSVD truncation

Mathematics Subject Classification 15A69 · 15A18 · 15A99 · 65F99 · 65T99

1 Introduction

In the standard case, tensors of order d are quantities v indexed by d indices, i.e., the entries
of v are v[i1, . . . , id ], where e.g. all indices run from 1 to n. Hence the data size is nd . This
shows that even number n and d of moderate size yield a huge value so that it is impossible to
store all entries. Instead one needs some data-sparse tensor representation. In this paper we
mention such representations. The optimal one is the hierarchical representation explained
in Chapter 4. A slight generalisation is the tree-based format described in Falcó et al. [3].

Section 2 contains an introduction into tensor spaces and the used notation. We mainly
restrict ourselves to the finite-dimensional case, in which we do not have to distinguish
between the algebraic and topological tensor spaces. The latter tensor spaces are discussed in
[3]. Since true tensor spaces—those of order d ≥ 3—have less pleasant properties thanmatri-
ces (which are tensors of order 2), one tries to interpret tensors as matrices. This leads to the
technique of matricisation explained in Sect. 2.2. The range of the obtained matrices defines
the minimal subspaces introduced in Sect. 2.3. The dimension of the minimal subspaces
yields the associated ranks. The singular-value decomposition applied to the matricisations
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176 W. Hackbusch

leads to the so-called higher-order singular-value decomposition (HOSVD) which will be
important later. Finally, in Sect. 2.5, we discuss basis transformations.

In Sect. 3 we briefly discuss two classical representations of tensors: the r -term format
(also called CP format) and the tensor subspace format (also called Tucker format). For the
latter format the HOSVD is explained in Sect. 3.3: instead of applying HOSVD to the full
tensor, we can apply it to the smaller core tensor. As a result of HOSVD we can introduce
special HOSVD bases. These bases allow a simple truncation to smaller ranks (i.e., the data
sparsity is improved; cf. Sect. 3.4).

Section 4 is devoted to the hierarchical tensor format. In principle it is a recursive applica-
tion of the tensor subspace format. It is connected with a binary tree. The generalisation to a
general tree yields the tree-based format in [3]. However, for practical reasons one should use
a binary tree. a key point is the indirect coding of the bases discussed in Sect. 4.2. As a result
only transfer matrices are stored instead of large-sized basis vectors. Basis transformations
can be performed by simple matrix operations (cf. Sect. 4.3). Similarly, the orthonormal-
isation of the bases are performed by an orthonormalisation of the transfer matrices (cf.
Sect. 4.4). The main challenge is the computation of the HOSVD bases. As demonstrated
in Sect. 4.5 one can obtain these bases by singular-value decompositions only involving the
transfer matrices. The corresponding truncation can be performed as in the previous chapter
(cf. Sect. 4.6).

The SVD truncation to lower ranks can be regarded as a projection onto smaller subspaces.
However, different from general projections, the SVD projection has particular properties
which are discussed in the final Sect. 5. In Sect. 5.1 we consider the case of the tensor
subspace representation of Sect. 3.2. It turns out that certain properties of the given tensor
(e.g., side conditions or smoothness properties) are inherited by the projected (truncated)
approximation. As proved in Sect. 5.2, the same statement holds for the best approximation
in the format of lower ranks. Finally, this statement is generalised to the hierarchical tensor
representation.

2 Tensor spaces

2.1 Definitions, notation

Let Vj (1 ≤ j ≤ d) be arbitrary vector spaces over the fieldK,where eitherK = R orK = C.

Then the algebraic tensor space V := a
⊗d

j=1 Vj consists of all (finite) linear combinations

of elementary tensors
⊗d

j=1 v( j) (v( j) ∈ Vj ). The algebraic definition ofV and of the tensor
product ⊗ : V1 × · · · × Vd → V reads as follows (cf. Greub [4, Chap. I, §2]): Let U be any
vector space over K. Then, for any multilinear mapping ϕ : V1 ×· · ·×Vd → U , there exists
a unique linear mapping Φ : V → U such that ϕ(v(1), v(2), . . . , v(d)) = Φ(

⊗d
j=1 v( j)) for

all v( j) ∈ Vj .

In the case of infinite-dimensional tensor spaces, one can equip the tensor space with
a norm. The completion with respect to the norm ‖·‖ yields the topological tensor space
‖·‖

⊗d
j=1 Vj (cf. Hackbusch [5, § 4]). In this article, we restrict ourselves to the finite-

dimensional case. Then the algebraic tensor space introduced above is already complete with
respect to any norm and therefore it coincides with the topological tensor space. This fact
allows us to avoid the affix ‘a’ in V = a

⊗d
j=1 Vj . Instead, V = ⊗d

j=1 Vj is sufficient.
The simplest example of a tensor space is based on the vector spaces Vj = K

n j , where
the vectors v ∈ K

n j are indexed by i ∈ I j := {1, . . . , n j }. Instead of K
n j we also write K

I j .
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Truncation of tensors in the hierarchical format 177

Then the elementary product v := ⊗d
j=1 v( j) is indexed1 by d-tuples i ∈ I := I1 × . . . ×

Id :

v[i] = v[i1, . . . , id ] =
d∏

j=1

v( j)[i j ] for i = (i1, . . . , id) ∈ I. (1)

Therefore the tensor space V is isomorphic to K
I.

The second example is based on the matrix spaces Uj = K
m j×n j . Then the tensor space

U := ⊗d
j=1Uj can be interpreted as follows. Set V = ⊗d

j=1 Vj with Vj = K
n j as above,

while W = ⊗d
j=1 Wj is generated by Wj = K

m j . Matrices Mj ∈ Uj define a linear map

belonging to the vector space L(Vj ,Wj ). Now the elementary tensor M := ⊗d
j=1 Mj ∈ U

can be regarded as a linear map of L(V,W) defined by2

M

⎛

⎝
d⊗

j=1

v( j)

⎞

⎠ =
d⊗

j=1

(
Mjv

( j)
)

for all v( j) ∈ Vj . (2)

The tensor product
⊗d

j=1 Mj of matrices is also called the Kronecker product. In the finite-
dimensional case, U coincides with L(V,W).

The definition of V = ⊗d
j=1 Vj by all linear combinations of elementary tensors ensures

that any v ∈ V has a representation

v =
r∑

i=1

d⊗

j=1

v
( j)
i (v

( j)
i ∈ Vj ). (3)

The tensor rank of v is the smallest possible integer r in (3). It is denoted by rank(v).
If d = 2 and Vj = K

n j , the tensor space V = V1 ⊗ V2 is isomorphic to the matrix space
K

n1×n2 . The elementary tensor v ⊗ w corresponds to the rank-1 matrix vwT. In this case the
tensor rank coincides with the usual matrix rank.

d = 1 is the trivial case where V = ⊗d
j=1 Vj coincides with V1. For d = 0, the empty

product V = ⊗d
j=1 Vj is defined by the underlying field K.

Remark 1 The dimension of V = ⊗d
j=1 Vj is dim(V) = ∏d

j=1 dim(Vj ). This fact implies
that, e.g.,U ⊗ V ⊗W , (U ⊗ V )⊗W ,U ⊗ (V ⊗ W ) , and (U ⊗ W )⊗ V are isomorphic as
vector spaces. Here (U ⊗ V ) ⊗ W is the tensor space of order 2 based on the vector spaces
X := U ⊗V andW .However, these spaces are not isomorphic as tensor spaces. For instance
they have different elementary tensors. V = ⊗d

j=1 Vj and W = ⊗d
j=1 Wj are isomorphic

as tensor spaces if, for all 1 ≤ j ≤ d, the vector spaces Vj and Wj are isomorphic.

2.2 Matricisation

Within the theory of tensor spaces, the matrix case corresponding to d = 2 is an exceptional
case. This means that most of the properties of matrices do not generalise to tensors of order
d ≥ 3. An example is the tensor rank for d ≥ 3. In general its determination is NP hard (cf.
Håstad [9]). Tensors in

⊗d
j=1 R

n j can also be regarded as elements in
⊗d

j=1 C
n j , but the

1 The indices are written in square brackets since we want to avoid secondary indices.
2 Here we use that a linear map is uniquely defined by its action on elementary tensors.
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178 W. Hackbusch

corresponding tensor ranks may be different. Matrix decompositions like the Jordan normal
form or the singular-value decomposition do not have an equivalent for d ≥ 3.

To overcome these difficulties one may try to interpret tensors are matrices. According to
Remark 1, for all 1 ≤ j ≤ d, the tensor space V = ⊗d

k=1 Vk is isomorphic to

Vj ⊗ V[ j], where V[ j] :=
⊗

k �= j
Vk .

Here k �= j means k ∈ {1, . . . , d}\{ j}. The vector space isomorphism M j : V =
⊗d

k=1 Vk → Vj ⊗ V[ j] is defined byM j (
⊗d

k=1 v(k)) 	→ v( j) ⊗ v[ j] with v[ j] = ⊗
k �= j v

(k)

and called the j-th matricisation. In the case of Vk = K
Ik , the image M j (v) of v ∈ V is a

matrix M ∈ K
I j×I[ j] with I[ j] = ×k �= j Ik I[ j] = ×k �= j Ik and the entries

M[i j , i[ j]] = v[i1, . . . , id ]
for all i j ∈ I j and i[ j] = (i1, . . . , i j−1, i j+1, . . . , id) ∈ I[ j]. An obvious generalisation
reads as follows. Set D := {1, . . . , d} and choose a subset α ⊂ D with ∅ �= α �= D. The
complement is αc := D\α. Define Iα := × j∈α I j and Vα = ⊗

j∈α Vj . The matricisation
with respect to α uses the isomorphism

Mα : V → Vα ⊗ Vαc , Mα(v)[iα, iαc ] = v[i] for i = (iα, iαc ) ∈ ID . (4)

Here iα is the tuple (i j ) j∈α ∈ Iα.Mα(v) can be regarded as a matrix in K
Iα×Iαc . For α = { j}

we obtain the j-th matricisation M j from above. For α = D, the set αc is empty. The
formal definition

⊗
j∈∅ Vj = K explains that MD : V → V ⊗ K. Regarding MD(v) as a

matrix means that there is only one column containing the vectorised tensor v. Analogously,
M∅(v) = MD(v)T contains v as row vector.

The α-rank of a tensor v is already defined by Hitchcock [10, p. 170] via the matrix rank
of Mα(v):

rankα(v) := rank (Mα(v)) .

For different α the α-ranks are different. The only relations are

rankα(v) = rankαc (v),

rankα(v) ≤ rankα′(v) rankα′′(v) for α = α′ ∪̇ α′′

(cf. Hackbusch [5, Lemma 6.19], ∪̇ is the disjoint union). The connection with the tensor
rank introduced in Sect. 2.1 is

rankα(v) ≤ rank(v)

(cf. Hackbusch [5, Remark 6.21]). For α = { j} we write rank j (v). The tuple (rank1(v), . . . ,
rankd(v)) is also called the multilinear rank of v.

LetM := ⊗d
j=1 M

( j) be an elementary Kronecker product of matrices M ( j). The tensor
Mv is defined by (2) and satisfies

Mα(Mv) = (Mα ⊗ Mαc )Mα(v), (5a)

where Mα = ⊗
j∈α M ( j) and Mαc = ⊗

j∈αc M ( j) are partial Kronecker products. Inter-
preting Mα(v) and Mα(Mv) as matrices, the equivalent statement is

Mα(Mv) = Mα Mα(v)MT
αc . (5b)
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Truncation of tensors in the hierarchical format 179

2.3 Minimal subspaces

Given v ∈ V = ⊗d
j=1 Vj , there may be smaller subspaces Uj ⊂ Vj such that v ∈ U =

⊗d
j=1Uj .The subspaces ofminimal dimension are called theminimal subspaces anddenoted

by Umin
j (v). They satisfy

v ∈
d⊗

j=1

Umin
j (v) (6)

while v ∈ ⊗d
j=1Uj implies Umin

j (v) ⊂ Uj .

The generalisation to subsets α ⊂ D = {1, . . . , d} uses the isomorphism V � Vα ⊗Vαc .

Umin
α (v) ⊂ Vα is defined as the subspace of minimal dimension such that v ∈ Umin

α (v)⊗Vαc .

The minimal subspaces can be characterised by

Umin
α (v) := range (Mα(v)) . (7)

This includes the case α = { j}, for which Umin
α (v) is written as Umin

j (v).
In the infinite-dimensional case one cannot interpretMα(v) as a matrix. Then the defini-

tion (6) must be replaced by

Umin
α (v) :=

{
φαc (v) : φαc ∈ a

⊗

j∈αc
V ′
j

}
, (8)

where V ′
j is the dual space

3 of Vj . The application of φαc = ⊗
j∈αc ϕ( j) to v is defined by

φαc

⎛

⎝
d⊗

j=1

v( j)

⎞

⎠ :=
⎛

⎝
∏

j∈αc

ϕ( j)(v( j))

⎞

⎠
⊗

j∈α

v( j) ∈ Vα.

In the general case the α-rank is defined by rankα(v) = dim(Umin
α (v)).

An important property is that under natural conditions weak convergence vn⇀v implies

rankα(v) ≤ lim inf
n→∞ rankα(vn) (9)

(cf. Hackbusch [5, Theorem 6.24], Falcó–Hackbusch [2]).

2.4 Higher-order singular-value decomposition (HOSVD)

In the following we assume that all Vj are pre-Hilbert spaces equipped with the Euclidean
scalar product 〈·, ·〉 . The Euclidean scalar product in Vα = ⊗

j∈α Vj satisfies
〈
⊗

j∈α

v( j),
⊗

j∈α

w( j)

〉

=
∏

j∈α

〈
v( j), w( j)

〉
.

Interpreting Mα(v) as a matrix, one may determine its singular-value decomposition
(SVD)

∑
i σ

(α)
i b(α)

i (b(αc)
i )T. The tensor representation is

Mα(v) =
rα∑

i=1

σ
(α)
i b(α)

i ⊗ b(αc)
i , (10)

3 In the case of infinite-dimensional normed spaces one has to distinguish the algebraic dual space V ′
j from

the space V ∗
j of continuous linear functionals. Definition (8) holds with V ′

j as well as with V ∗
j .

123



180 W. Hackbusch

where rα = rankα(v) is theα-rank andσ
(α)
1 ≥ σ

(α)
2 ≥ · · · ≥ σ

(α)
rα > 0 are the singular values,

while {b(α)
i : 1 ≤ i ≤ rα} ⊂ Vα and {b(αc)

i : 1 ≤ i ≤ rα} ⊂ Vαc are the orthonormal systems
of the left and right singular vectors. De Lathauwer–DeMoor–Vandewalle [1] introduced the
name HOSVD for the simultaneous SVD of the matricisationsM j (v), 1 ≤ j ≤ d.Note that

in general the SVD spectra (σ
( j)
i )1≤i≤r j as well as r j = rank j (v) do not coincide. Compare

also Hackbusch–Uschmajew [8].
It will turn out that the important quantities in (10) are the singular values σ

(α)
i and the

left singular vectors b(α)
i . These quantities are also characterised by the diagonalisation of

the matrix Mα(v)Mα(v)H:

Mα(v)Mα(v)H =
rα∑

i=1

(σ
(α)
i )2b(α)

i (b(α)
i )H.

In the case ofα = { j},M j (v) is amatrixwith n j = dim(Vj ) rows and n[ j] = ∏
k �= j dim(Vk)

columns. Note that n[ j] may be a huge quantity. However,M j (v)M j (v)H is only of the size
n j × n j .

2.5 Basis representations, transformations

The notation (1) refers to the unit vectors e( j)
i (1 ≤ i ≤ n j ) of Vj = K

n j , i.e., the tensor is

v = ∑n1
i1=1 · · ·∑nd

id=1 v[i1, . . . , id ]
⊗d

j=1 e
( j)
i j

. We may choose another basis b( j)
i (1 ≤ i ≤

n j ) of Vj = K
n j and obtain

v =
n1∑

i1=1

· · ·
nd∑

id=1

c[i1, . . . , id ]
d⊗

j=1

b( j)
i j

(11)

with another coefficient tensor c ∈ V := ⊗d
j=1 K

n j . The basis b( j)
i (1 ≤ i ≤ n j ) yields the

regular matrix Bj =
[
b( j)
1 , . . . , b( j)

n j

]
. Forming the Kronecker product B := ⊗d

j=1 Bj ∈
L(V,V), Eq. (11) becomes

v = Bc.

If Bj and B ′
j are two bases of Vj , there are transformations T ( j) and S( j) = (T ( j))−1 with

Bj = B ′
j T

( j) and B ′
j = Bj S

( j), i.e., b( j)
i =

r j∑

k=1

T ( j)
ki b′( j)

k .

Form T := ⊗d
j=1 T

( j) and S := ⊗d
j=1 S

( j) = T−1. Then

v = Bc = B′c′ holds with B = B′T, B′ = BS, c = Sc′, c′ = Tc. (12)

Remark 2 According to (5b), the matricisations of v and its core tensor c are related by
Mα(v) = Bα Mα(c)BT

αc with Bα := ⊗
j∈α Bj .
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Truncation of tensors in the hierarchical format 181

3 Tensor representations

3.1 r-Term format

Often, the dimension
∏d

j=1 n j of
⊗d

j=1 K
n j is much larger than the available computer

memory. Therefore a naive representation of a tensor via its entries (1) is impossible. A
classical tensor representation is the r-term format (also called the canonical or CP format)
related to (3). Let V = ⊗d

j=1 Vj . We fix an integer r ∈ N0 = N ∪ {0} and define the set

Rr :=
⎧
⎨

⎩
v ∈ V : v =

r∑

i=1

d⊗

j=1

v
( j)
i , v

( j)
i ∈ Vj

⎫
⎬

⎭
,

i.e., v is represented by r elementary tensors with the factors v
( j)
i . Assuming dim(Vj ) =

n j ≤ n, the memory cost of v ∈ Rr is rnd (unit: numbers in K).
One checks thatRr = {v : rank(v) ≤ r} .As long as rank(v) ≤ r holdswith r ofmoderate

size, this format yields a suitable representation. If rank(v) is too large, one may try to find
an approximating tensor v′ of smaller rank. Another question is the implementation of tensor
operations within this format. Adding u ∈ Rr and v ∈ Rs, one obtains the representation
of the sum w := u + v in Rr+s . Other operations let the representation rank increase even
more. An example is the multiplication of the Kronecker matrixM := ∑ρ

i=1

⊗d
j=1 M

( j)
i by

a tensor v ∈ Rr . The product belongs to Rr ·s .Therefore one needs a truncation procedure
which approximates a tensor fromRt (t too large) by an approximation in Rr for a suitable
r < t . Unfortunately, this task is rather difficult within the r -term format (cf. Hackbusch [5,
§7, §9]).

3.2 Tensor-subspace format

A remedy is the Tucker format or tensor-subspace format, which is related to (6) and (11).
Let n j = dim(Vj ). Assume that we know that v ∈ ⊗d

j=1Uj holds for subspaces Uj ⊂ Vj

of (hopefully much) smaller dimension than n j . Choose any basis (or even only a generating

system) b( j)
i (1 ≤ i ≤ r j ) of Uj , i.e.,

Uj = span{b( j)
i : 1 ≤ i ≤ r j }. (13a)

Then there is a tensor c ∈ ⊗d
j=1 K

r j – the so-called core tensor—such that

v =
r1∑

i1=1

· · ·
rd∑

id=1

c[i1, . . . , id ]
d⊗

j=1

b( j)
i j

. (13b)

Note the difference to (11). The sums in (11) have n j terms, whereas (13b) only uses r j < n j

as upper bound.

Definition 1 We denote the set of all tensors in V with a representation (13b) by Tr, where
r = (r1, . . . , rd) is a multi-index.

Remark 3 The optimal choice of Uj is given by Uj = Umin
j (v) (cf. Sect. 2.3), since then

r j = rank j (v) is minimal. The memory cost for the core tensor is
∏d

j=1 r j . Therefore this
representation is unfavourable for large d.
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182 W. Hackbusch

Build the (rectangular) matrices Bj =
[
b( j)
1 , . . . , b( j)

r j

]
∈ K

n j×r j and the Kronecker

product B := ⊗d
j=1 Bj ∈ L(

⊗d
j=1 K

r j ,V) as in Sect. 2.5. Then (13b) is equivalent to

v = Bc. (13c)

3.3 HOSVD

The first step are transformations into orthonormal bases B ′
j with Bj = B ′

j Tj (e.g., by a QR
decomposition of Bj yielding B ′

j = Q and Tj = R). According to (12), we have v = B′c′
with c′ := Tc. Denoting B′ and c′ again by B and c, we obtain the representation (13b) with
orthonormal bases (b( j)

i )1≤i≤r j .

The second step is the HOSVD applied to the core tensor c ∈ ⊗d
j=1 K

r j . Assume that

the matricisation Cα := Mα(c) has the singular-value decomposition Cα = XαΣαY T
α with

diagonal Σα and unitary matrices Xα, Yα. By Remark 2 the matricisation of v is Mα(v) =
Bα Mα(c)BT

αc = Bα XαΣαY T
α BT

αc . This is the singular-value decomposition ofMα(v)with
the unitary matrices Bα Xα and BαcYα. Taking α = { j}, we obtain a new basis transform by
B ′
j := Bj X j (1 ≤ j ≤ d). The new basis (b′( j)

i )1≤i≤r j is called the j-th HOSVD basis. The
core tensor has to be transformed into c′ as above. Again denoting B′ and c′ by B and c, we
obtain the representation (13b) with respect to the HOSVD bases.

Since we do not need the right singular vectors in Yα, the practical computation first forms
the product Pj := M j (c)M j (c)H ∈ K

r j×r j . This is the most expensive step with an arith-
metic cost of O((

∑d
j=1 r j )

∏d
j=1 r j ). The second step is the singular-value decomposition

of Pj (cost: O(
∑d

j=1 r
3
j )).

The representation of v ∈ Tr by the HOSVD bases allows two types of truncations.
The number r j = dim(Uj ) may be larger than necessary, i.e., larger than rank j (v) =
dim(Umin

j (v)). This is detected by vanishing singular values. Assume that σ ( j)
s j > 0,whereas

σ
( j)
i = 0 for s j < i ≤ r j . Then the sums in (13b) can be shortened (replace r j by s j ). After

this step, v ∈ ⊗d
j=1Uj ⊂ Ts holds with Uj = Umin

j (v) and s j = rank j (v). Note that the
described procedure yields a shorter representation while the tensor is unchanged.

A truncation changing the tensor is described next.

3.4 HOSVD truncation

Assume again that the representation (13b) of v ∈ Tr uses the HOSVD bases. We are looking
for an approximation u ∈ Ts with smaller dimensions s j < r j of the corresponding subspaces
Uj .This problemhas two answers. First there is a (not necessarily unique) best approximation
ubest ∈ Ts with

‖v − ubest‖ = inf{‖v − u‖ : u ∈ Ts}
(‖·‖ is the Euclidean norm). The computation must be done iteratively. It is hard to ensure
that the corresponding minimisation method converges to the global minimum, since there
may be many local minima.

A much easier approach is the HOSVD truncation: Given v ∈ Tr with HOSVD bases in
(13b), omit all terms involving indices i j > s j .The other terms are unchained. Obviously, the
resulting tensor uHOSVD belongs to Ts and its computation requires no arithmetical operation.
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Truncation of tensors in the hierarchical format 183

In the case of matrices one knows that uHOSVD = ubest. However, for d ≥ 3, uHOSVD is not
necessarily the best, but the quasi-optimal approximation:

‖v − uHOSVD‖ ≤
√
√
√
√
√

d∑

j=1

r j∑

i=s j+1

(
σ

( j)
i

)2 ≤ √
d ‖v − ubest‖ (14)

(cf. [5, Theorem 10.3]). Since the singular values σ
( j)
i are known, the first inequality in (14)

yields a precise error estimate. Given a tolerance ε, one can choose r j such that the error is
below ε. The second inequality proves quasi-optimality.

4 The hierarchical tensor format

4.1 Definition, notation

The tree-based tensor formats use a so-called dimension partition tree TD . The root of the
tree is D = {1, . . . , d},while the leaves are {1}, . . . , {d}.The tree describes how D is divided
recursively. The vertices of the tree are subsets of D. Either a vertex α is a singleton (and
therefore a leaf) or it has sons αi with the property that α is the disjoint union of the αi .

Examples for d = 4 are given below:

1

3

4

21 2 3 41 2 3 4 1 2 3 4
(a) (b) (c) (d) (15)

The first interpretation is that the tree (a) corresponds to V1 ⊗ V2 ⊗ V3 ⊗ V4, (b) to
the isomorphic space (V1 ⊗ V2) ⊗ (V3 ⊗ V4) , (c) to ((V1 ⊗ V2) ⊗ V3) ⊗ V4, and (d) to
(V1 ⊗ V2 ⊗ V3) ⊗ V4.

The second interpretation involves the associated subspaces. The tree (a) corresponds to
the Tucker format in Sect. 3.2: All subspacesU1, . . . ,Ud are joined intoU1⊗U2⊗U3⊗U4.

In the case of tree (b) one first forms the subspaces U1 ⊗U2 and U3 ⊗ U4 and determines
subspaces U{1,2} ⊂ U1 ⊗ U2 and U{3,4} ⊂ U3 ⊗ U4. Finally U{1,2} ⊗ U{3,4} is defined. The
trees (c) and (d) lead to analogous constructions. The final subspace UD must be such that
v ∈ UD holds for the tensor v which we want to represent. Obviously, the one-dimensional
subspace UD = span{v} is sufficient.

Restricting ourselves to binary trees TD, we obtain the hierarchical tensor format (cases
(b), (c) in (15); cf. Hackbusch–Kühn [7]). The practical advantage of a binary tree is the fact
that the quantities appearing in the later computations are matrices. The further restriction to
linear trees as in case (c) of (15) leads to the so-called TT format or matrix product format
(cf. Verstraete–Cirac [14], Oseledets–Tyrtyshnikov [11,12]).

Consider a vertex α ⊂ D of the binary tree TD together with its sons α1 and α2:

α → Uα ⊂ Uα1⊗Uα2

� �

Uα1 ← α1 α2 → Uα2

(16)
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The sons are associated with subspaces Uαi ⊂ Vαi = ⊗
j∈αi

V j (i = 1, 2), while Uα ⊂
Uα1 ⊗ Uα2 ⊂ Vα is the characteristic property of Uα. If α = D, v ∈ UD is required.
Therefore we can choose

UD = span{v}. (17)

The minimal subspaces Umin
α (v) introduced in (7) and (8) satisfy4 the inclusion

Umin
α (v) ⊂ Umin

α1
(v) ⊗ Umin

α2
(v).

This proves the following remark.

Remark 4 The existence of subspaces Uα (α ∈ TD) with the required properties is ensured
by the optimal choice Uα = Umin

α (v). Vice versa, Uα ⊃ Umin
α (v) holds for all subspaces Uα

satisfying v ∈ UD und Uα ⊂ Uα1⊗Uα2 .

4.2 Implementation of the subspaces

In principle, all subspaces Uα (α ∈ TD) are described by basis5 vectors:

Uα = span{b(α)
� : 1 ≤ � ≤ rα}.

However, b(α)
� are already tensors of order #αwhich should not be stored explicitly. Therefore

we distinguish two cases.
Case A. α = { j} is a leaf. Then the basis vectors b( j)

i of Uα = Uj are stored explicitly.

Case B. α is a non-leaf vertex with sons α1 and α2. Note that {b(α1)
i ⊗ b(α2)

j : 1 ≤ i ≤
rα1 , 1 ≤ j ≤ rα2} is a basis of Uα1 ⊗ Uα2 . The inclusion Uα ⊂ Uα1 ⊗ Uα2 implies that the
basis vector b(α)

� ∈ Uα must have a representation6

b(α)
� =

∑

i, j

c(α,�)
i j b(α1)

i ⊗ b(α2)
j (18)

with coefficients c(α,�)
i j forming an rα1 × rα2 matrix

C (α,�) = (c(α,�)
i j ) (1 ≤ � ≤ rα). (19)

The tuple
(
C (α,�)

)
1≤�≤rα

of matrices can be regarded as a tensor Cα of order 3 with entries

Cα[i, j, �] = C (α,�)
i j . In the case of α = D, rD = 1 holds. The desired representation of the

tensor v is
v = c(D)

1 b(D)
1 . (20)

Remark 5 The representation of a tensor v by the hierarchical format uses the data b( j)
i

(1 ≤ j ≤ d, 1 ≤ i ≤ r j ), C (α,�) (1 ≤ � ≤ rα, α non-leaf vertex of TD), and c(D)
1 .

The memory cost of the hierarchical format is bounded by dnr + (d − 1) r3 + 1, where
n := max j dim(Vj ) and r := maxα∈TD rα.

4 This statement also holds for more than two sons. Hence, the construction (16) and Remark 4 can be
generalised to any tree-based format.
5 More generally, the basis vectors may be replaced by any set of spanning vectors.
6 In the case of a general tree-based format with δα sons αi (1 ≤ i ≤ δα) of α, Eq. (18) becomes b(α)

�
=

∑
i1,...,iδα

c(α,�)[i1, . . . , iδα ]⊗δα
j=1 b

(α j )

i j
(cf. (13b)).
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Although the representation of v by the quantities (b( j)
i ,Cα, c(D)

1 ) is rather indirect, all
tensor operations can be performed by a recursion in the tree TD (either from the leaves to the
root or in the opposite direction). Belowwe describe transformations, the orthonormalisation
of the bases, and the HOSVD computation. Concerning other operations we refer to [5, § 13].

4.3 Transformations

We recall that the bases {b(α)
� : 1 ≤ � ≤ rα} are well-defined by (18), but they are not

directly accessible except for leaves α ∈ TD . Transformations of the bases are described by
the corresponding modifications of the matrices C (α,�). As in Sect. 3.2 we form matrices

Bα =
[
b(α)
1 . . . b(α)

rα

]
related to a linear map in L(Krα ,Vα). For simplicity we will call Bα

the basis (of the spanned subspace).

α, Βα

αC

α , Β1 α1
αα , Β2 2

The left figure illustrates the connection of the basis Bα with Bα1 and Bα2 at the son
vertices via the data Cα. Whenever one of these bases changes, also Cα must be updated.
Eq. (21) describes the update caused by a transformation of Bα, while (22) considers the
transformations of Bα1 and Bα2 .

Basis transformation in α. Assume that α is not a leaf and that Bα and B′
α are two bases

related by B′
α = BαS(α), i.e., b′(α)

k = ∑rα
j=1 S

(α)
jk b(α)

j (1 ≤ k ≤ r ′
α). The corresponding

coefficient matrices C (α,�) and C ′(α,�) satisfy

C ′(α,k) =
rα∑

j=1

S(α)
jk C (α, j) (

1 ≤ k ≤ r ′
α

)
. (21)

Using the tensor Cα , this transformation becomes C′
α = (

I ⊗ I ⊗ (S(α))T
)
Cα.

Basis transformation in the son vertices αi . Let α1, α2 be the sons of α. LetBαi andB
′
αi

be two bases related by B′
αi
T (αi ) = Bαi (i = 1, 2). The corresponding coefficient matrices

C (α,�) and C ′(α,�) are related by

C ′(α,�) = T (α1) C (α,�) (T (α2))T for 1 ≤ � ≤ rα. (22)

This is equivalent to C′
α = (

T (α1) ⊗ T (α2) ⊗ I
)
Cα.

4.4 Orthonormalisation

Orthonormality of the (non-accessible) bases {b(α)
� } can be checked by corresponding prop-

erties of the coefficient matrices C (α,�). The following sufficient condition is easy to prove.

Remark 6 Let α be a non-leaf vertex. The basis {b(α)
� } is orthonormal, if (a) the bases {b(α1)

i }
and {b(α2)

j } of the sons α1, α2 are orthonormal and (b) thematricesC (α,�) in (19) are orthonor-

mal with respect to the Frobenius scalar product:
〈
C (α,�),C (α,m)

〉
F = ∑

i j c
(α,�)
i j c(α,m)

i j = δ�m .
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The bases can be orthonormalised as follows. Orthonormalise the explicitly given bases at
the leaves (e.g., by QR). As soon as {b(α1)

i } and {b(α2)
j } are orthonormal, orthonormalise the

matrices C (α,�). The new matrices C (α,�)
new define a new orthonormal basis {b(α)

�,new} via (21).
The above mentioned calculations require basis transformations. Here the following has

to be taken into account (cf. Sect. 4.3 and [5, §11.3.1.4]).

– Case A1. Let α1 be the first son of α. Assume that the basis {b(α1)
i } is transformed into a

newbasis {b(α1)
i,new} so thatb(α1)

i = ∑
k Tki b

(α1)
k,new.ChangingC (α,�) intoC (α,�)

new := TC (α,�),

the basis {b(α)
� } remains unchanged.

– Case A2. If b(α2)
i = ∑

k Tkib
(α2)
k,new is a transformation of the second son of α, C (α,�) must

be changed into C (α,�)T T.

– Case B. Consider a non-leaf vertex α. If the basis {b(α)
� } should be transformed into

b(α)
�,new := ∑

i T�ib
(α)
i , one has to change the coefficient matrices C (α,�) by C (α,�)

new :=
∑

i T�iC (α,i). (In addition, this transformation causes changes at the father vertex accord-
ing to Case A1 or Case A2).

As in Sect. 3.3, the bases have to be orthonormalised before the HOSVD bases are com-
puted.

4.5 HOSVD bases

The challenge is the computation of the HOSVD, more precisely of the singular values σ
(α)
i

and the left singular vectors (tensors) b(α)
i of Mα(v). We recall that these data require the

diagonalisation of the square matrix7 Mα(v)Mα(v)H. In the case of the tensor subspace
representation of Sect. 3.3 it was possible to reduce Mα(v)Mα(v)H to Mα(c)Mα(c)H

involving the (smaller) core tensor. Now we reduce the computation of Mα(v)Mα(v)H to
matrix operations only involving the data Cα.

The basis Bα = {b(α)
i : 1 ≤ i ≤ rα} spans the subspace Uα ⊂ Vα = ⊗

j∈α Vj . The

requirement v ∈ UD implies that Umin
α (v) ⊂ Uα (cf. Remark 4). Together with Umin

α (v) =
range(Mα(v)) (cf. (7)) we conclude that Mα(v)Mα(v)H must be of the form

Xα := Mα(v)Mα(v)H =
rα∑

i, j=1

e(α)
i j b(α)

i (b(α)
j )H = BαEαBH

α (23)

with some coefficients e(α)
i j which form an rα × rα matrix

Eα = (
e(α)
i j

)rα
i, j=1.

To simplify matters we assume that the bases are already orthonormal8 (cf. Sect. 4.4). We
start with the root α = D of the tree TD . Since rD = 1, ED = e(D)

11 is a scalar. The definition

of MD(v) in Sect. 2.2 shows that Xα = vvH. On the other hand, the equality v = c(D)
1 b(D)

1
in (20) implies

ED = e(D)
11 = |c(D)

1 |2 and σ
(D)
1 = |c(D)

1 |, (24)

7 Here we interpretMα(v) as a matrix, not as a tensor.
8 The general case is treated in [5, Theorem 5.14]. There the proof is based on the tensor interpretation of the
quantities, whereas here we use the isomorphic matrix interpretation.
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where σ
(D)
1 is the only singular value of MD(v). Its left singular vector is v. The following

recursion starts with α = D.

Weassume that for somenon-leaf vertexα ∈ TD the singular valuesσ (α)
i and thematrix Eα

are known. Now we want to determine Eα1 and Eα2 for the sons α1 and α2 of α. Concerning
Xα and Xα1 , we recall the definition of Mα(v) by (4 ). The entries of Xα are

Xα[iα, jα] =
∑

kαc∈Iαc
Mα(v)[iα,kαc ]Mα(v)[jα,kαc ]

=
∑

kαc∈Iαc
v[(iα,kαc )] v[(jα,kαc )]. (25)

On the left-hand side, e.g., iα ∈ Iα = × j∈α I j and kαc form the pair of matrix indices, while
in the second line (iα,kαc ) ∈ ID is the index of v. Analogously we have

Xα1 [iα1 , jα1 ] =
∑

kαc1
∈Iαc1

v[
(
iα1 ,kαc

1

)
] v[

(
jα1 ,kαc

1

)
].

The complement of α1 is αc
1 = αc ∪̇ α2 so that Iαc

1
= Iαc × Iα2 . Hence the summation over

kαc
1

∈ Iαc
1
becomes a double sum over kαc ∈ Iαc and kα2 ∈ Iα2 . The sum over kαc ∈ Iαc

already appears in (25) so that

Xα1 [iα1 , jα1 ] =
∑

kα2∈Iα2

∑

kαc∈Iαc
v[(iα1 ,kα2 ,kαc

)] v[(jα1 ,kα2 ,kαc
)]

=
(25)

∑

kα2∈Iα2
Xα[(iα1 ,kα2

)
,
(
jα1 ,kα2

)].

Returning to the matrices Mα(v) and Mα1(v), the latter sum can be regarded as a matrix
multiplication whenwe interpret b(α)

i in (23) as the rα1 ×rα2 matrix
∑

ν,μ C (α,i)
ν,μ b(α1)

ν (b(α2)
μ )T:

Xα1 =
∑

kα2∈Iα2
Xα[(·,kα2

)
,
(·,kα2

)]

=
∑

kα2∈Iα2

⎛

⎝
rα∑

i, j=1

e(α)
i j b(α)

i (b(α)
j )H

⎞

⎠ [(·,kα2

)
,
(·,kα2

)]

=
rα∑

i, j=1

e(α)
i j b(α)

i [ ·,kα2 ]b(α)
j [ ·,kα2 ]

=
(18)

rα∑

i, j=1

e(α)
i j

(
∑

νμ

c(α,i)
νμ b(α1)

ν

(
b(α2)

μ

)T
)(

∑

λκ

c(α, j)
λκ

b(α1)
λ

(
b(α2)

κ

)T
)H

.

Since the basis is orthonormal, we obtain that b(α1)
ν (b(α2)

μ )T
(
b(α1)

λ (b(α2)
κ )T

)H = b(α1)
ν (b(α2)

μ )T

b(α2)
κ (b(α1)

λ )H =
〈
b(α2)

μ ,b(α2)
κ

〉
b(α1)

ν (b(α1)
λ )H = δμκb

(α1)
ν (b(α1)

λ )H (δμκ : Kronecker delta).

Hence
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Xα1 =
rα∑

i, j=1

e(α)
i j

∑

ν,μ,λ

c(α,i)
νμ c(α, j)

λμ b(α1)
ν (b(α1)

λ )H.

This proves that (23) holds for α1 instead of α with coefficients e(α1)
νλ = ∑rα

i, j=1 e
(α)
i j

∑
λ c

(α,�)
νμ c(α,�)

λμ forming the matrix Eα1 = ∑rα
i, j=1 e

(α)
i j C (α,i)(C (α, j))H (cf. (19)). A similar

treatment of Xα2 proves the following theorem.

Theorem 1 The matrices Eα, Eα1 , Eα2 are connected by

Eα1 =
rα∑

i, j=1

e(α)
i j C (α,i)(C (α, j))H, Eα2 =

rα∑

i, j=1

e(α)
i j (C (α,i))T C (α, j).

As in Sect. 3.3 the HOSVD bases {b(α)
i,HOSVD} is defined by the diagonalisation of Xα :=

Mα(v)Mα(v)H = ∑
i (σ

(α)
i )2b(α)

i,HOSVD(b(α)
i,HOSVD)H.A comparison with (23) shows that Xα

is diagonalised if and only if

Eα = diag{(σ (α)
1 )2, (σ

(α)
2 )2, . . .}. (26)

Since rD = 1 at the root α = D, we have σ
(D)
1 = |c(D)

1 | (cf. (24)) and b(D)
1 = b(D)

1,HOSVD.

Assume that the HOSVD basis {b(α)
i,HOSVD} is already chosen for the representation (we

recall that the definition of b(α)
i,HOSVD is implicitly given by the coefficient matrices C (α,i)).

Combining (26) with Theorem 1 we obtain

Eα1 =
rα∑

i=1

(σ
(α)
i )2C (α,i)(C (α,i))H, Eα2 =

rα∑

i=1

(σ
(α)
i )2(C (α,i))T C (α,i).

Diagonalisation of the explicitly given matrices Eα1 and Eα2 yields

Eα1 = UΣ2
α1
UH, Eα2 = VΣ2

α2
V H

with orthogonal matricesU , V and diagonal matrices Σαi = diag{σ (αi )
1 , . . .}. Since also Bαi

is orthogonal (i.e.,BH
αi
Bαi = I ), the diagonalisation is given by Xα1 = (Bα1U )Σ2

α1
(Bα1U )H,

Xα2 = (Bα2V )Σ2
α2

(Bα2V )H. Hence BHOSVD
α1

= Bα1U and BHOSVD
α2

= Bα2V are the desired
HOSVD bases at the vertices α1 and α2. If αi is a leaf, this transformation is performed
explicitly. Otherwise the coefficient matrices are modified according to Sect. 4.3. The proce-
dure is repeated for the sons of α1, α2 until we reach the leaves. Then at all vertices HOSVD
bases are introduced together with singular values σ

(α)
ν .

If there are vanishing singular values σ
(α)
i , the corresponding contributions can be omit-

ted. This reduces the associated subspace Uα (cf. (16)) to the minimal subspace Umin
α (v).

Correspondingly the value of rα becomes rankα(v).

4.6 HOSVD truncation

We assume that following the procedure described above the hierarchical representation uses
the HOSVD bases. The format Hr with r = (rα)α∈TD consists of all tensors v ∈ V with
rankα(v) ≤ rα. Given v ∈ Hr we ask for an approximation u ∈ Hs for a smaller tuple s

with s ≤ r.

123



Truncation of tensors in the hierarchical format 189

The HOSVD truncation is similar to the procedure in Sect. 3.4. In terms of the (implicitly
defined) bases the approximation uHOSVD is obtained by omitting all contributions involving
the HOSVD basis vectors b(α)

i for sα < i ≤ rα. In practice this means that the coefficient
matrices C (α,i) are omitted for sα < i ≤ rα , while the remaining rα1 × rα2 matrices C (α,i)

are reduced to size sα1 × sα2 by deleting the last rα1 − sα1 rows and rα2 − sα2 columns.

If α = { j} is a leaf, the explicitly given basis {b( j)
i,HOSVD : 1 ≤ i ≤ r j } is replaced by

{b( j)
i,HOSVD : 1 ≤ i ≤ s j }.
The approximation error v− uHOSVD satisfies (cf. [5, Theorem 11.58]), where vHOSVD is

the truncated value of v:

‖v − vHOSVD‖ ≤
√∑

α

∑

ν≥sα+1

(σ
(α)
ν )2 ≤ √

2d − 3 ‖v − vbest‖ . (27)

The first inequality allows us to explicitly control the error with respect to the Euclidean norm
by the choice of the omitted singular values. The second inequality proves quasi-optimality
of this truncation. ubest ∈ Hs is the best approximation. The parameter d is the order of the
tensor.

The number 2d − 3 on the right-hand side becomes smaller if sα = rα holds for some
vertices α. For instance, the TT format as described in [11] uses the maximal value s j =
r j = dim(Vj ) for the leaves. Then (27) holds with

√
d − 1 instead of

√
2d − 3.

5 Properties of the SVD projection

5.1 Case of the tensor-subspace format

The HOSVD truncation of the tensor-subspace format in Sect. 3.4 is the Kronecker product

Π :=
d⊗

j=1

Pj ,

where Pj : Vj → span{b( j)
i : 1 ≤ i ≤ s j } with s j < r j is the orthogonal projection. Π is

again an orthogonal projection onto
⊗d

j=1 span{b( j)
i : 1 ≤ i ≤ s j }.

The tensor product Π of the single projections Pj can also be written as a usual product
Π = ∏d

j=1 P j of

P j := I[ j] ⊗ Pj with I[ j] :=
⊗

k �= j
I j , (28)

where I j is the identity map on Vj . Since the projections P j commute, the order of the factors
in

∏d
j=1 P j does not matter. We recall the singular-value decomposition of the matricisation

M j (v) (cf. Sect. 2.4):

M j (v) =
r j∑

i=1

σ
( j)
i b( j)

i (b[ j]
i )T,
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where the superscript [ j] = { j}c denotes the complement of the leaf α = { j}. Using (5b),
we get

M j (P jv) = PjM j (v) =
r j∑

i=1

σ
( j)
i

(
Pjb

( j)
i

)
(b[ j]

i )T =
s j∑

i=1

σ
( j)
i b( j)

i (b[ j]
i )T.

However, we may also define
P̂ j := P[ j] ⊗ I j , (29)

where P[ j] is the orthogonal projection of V[ j] = ⊗
k �= j Vk onto span{b[ j]

i : 1 ≤ i ≤ s j }.
As (5b) again shows

M j (P̂ jv) = M j (v)PT[ j] =
r j∑

i=1

σ
( j)
i b( j)

i (P[ j]b[ j]
i )T =

s j∑

i=1

σ
( j)
i b( j)

i (b[ j]
i )T,

we obtain the identical value P jv = P̂ jv although the projections are different. This property
has interesting consequences. We introduce

Π j :=
(∏

k �= j
Pk

)
P̂ j

and observe thatΠ jv = (
∏

k �= j Pk)P̂ jv = (
∏

k �= j Pk)P jv =Πv holds for the special tensor

v although Π j �= Π . Note that all maps Pk and P̂ j are elementary tensors containing the
identity I j : Vj → Vj with respect to the j-th direction. This proves the next lemma for
which we introduce the following notation. Let ϕ j : Vj → Wj be a linear map. It gives rise
to the elementary Kronecker product φ j := I1 ⊗ · · · ⊗ I j−1 ⊗ ϕ j ⊗ I j+1 ⊗ · · · ⊗ Id .

Lemma 1 Let ϕ j : Vj → Wj and φ j as above. Then φ jΠ j = Π jφ j holds (the latter Π j

contains the identity I j : Wj → Wj instead of I j : Vj → Vj ).

This allows the following estimate with respect to the Euclidean norm.

Conclusion 2 Given v ∈ V, let uHOSVD ∈ Ts be the HOSVD approximation defined in
Sect. 3.4. With φ j from above we have

∥
∥φ juHOSVD

∥
∥ ≤ ∥

∥φ jv
∥
∥ . (30)

Proof uHOSVD = Π jv shows that φ juHOSVD = φ jΠ jv = Π jφ jv. Since Π j is a product of
orthogonal projection,

∥
∥Π jφ jv

∥
∥ ≤ ∥

∥φ jv
∥
∥ follows. ��

In the case of infinite-dimensional Hilbert spaces V we may consider unbounded linear
maps φ j . The subspace of elements v for which φ jv is defined, is called the domain of φ j .

Conclusion 3 If v ∈ V belongs to the domain of φ j , then also uHOSVD belongs to the
domain and satisfies (30).

An important example is the topological tensor space V = L2(Ω) = ⊗d
k=1 L

2(Ω j ),

where Ω is the Cartesian product of the Ω j . Set φ j = ∂k/∂xkj . If the function v ∈ V
possesses a k-th derivative with respect to x j , then by Conclusion 3 also uHOSVD is k-times

differentiable in the L2 sense and satisfies
∥
∥
∥∂kuHOSVD/∂xkj

∥
∥
∥
L2

≤
∥
∥
∥∂kv/∂xkj

∥
∥
∥
L2

. Assuming

sufficient smoothness of v and using the Gagliardo–Nirenberg inequality, we proved in [6]
estimates of ‖v − uHOSVD‖∞ with respect to the maximum norm by means of the L2 norm
of v − uHOSVD. This is important for the pointwise evaluation of the truncated function.
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Another trivial conclusion from (30) is that φ jv = 0 implies φ juHOSVD = 0. For instance,
let ϕ j ∈ V ′

j be a functional on Vj (i.e., Wj = K). Examples of ϕ j are the mean value

ϕ j (u) = 1Tu or a zero at a certain index i∗: ϕ j (u) = ui∗ = 0. We say that v satisfies the side
condition ϕ j if φ jv = 0. We conclude that uHOSVD satisfies the same side condition. In the
case of ϕ j (u) = 1Tu, also uHOSVD has a vanishing mean. If ϕ j (u) = ui∗ , uHOSVD[i] = 0
holds for i with i j = i∗.

In the case of matrix spaces Vj , structural properties like symmetry or sparsity can be
described by functionals. One concludes that the HOSVD approximations lead to matrices
of the same structure.

5.2 Best approximation ubest

We recall that the HOSVD approximation uHOSVD ∈ Tr of v ∈ V is not (necessarily) the
best approximation defined by

ubest ∈ Tr with ‖v − ubest‖ = inf{‖v − u‖ : u ∈ Tr} (31)

(cf. Definition 1). Nevertheless, ubest has similar properties as uHOSVD.

Define

Uk := Umin
k (ubest) for 1 ≤ k ≤ d.

Let Pk : Vk → Uk be the orthogonal projection onto Uk . Based on these projections we
define Pk and Π as in Sect. 5.1. Now we fix one index j and define Π[ j] := ∏

k �= j Pk . Set
v j := Π[ j]v ∈ U1 ⊗ . . .⊗Uj−1 ⊗ Vj ⊗Uj+1 ⊗ . . .⊗Ud and note that P jv j = ubest. Based
on the SVD of M j (v j ) we can determine its HOSVD approximation uHOSVD ∈ Tr. Since
it is the minimiser of minu∈Tr

∥
∥v j − u

∥
∥ , we have

∥
∥v j − uHOSVD

∥
∥ ≤ ∥

∥v j − ubest
∥
∥. For an

indirect proof assume that
∥
∥v j − uHOSVD

∥
∥ <

∥
∥v j − ubest

∥
∥ . Both uHOSVD and ubest are in

the range of Π[ j], i.e.,
(
I − Π[ j]

)
uHOSVD = (

I − Π[ j]
)
ubest = 0.

Pythagoras’ equality yields

‖v − uHOSVD‖2 = ∥
∥Π[ j](v − uHOSVD)

∥
∥2 + ∥

∥
(
I − Π[ j]

)
(v − uHOSVD)

∥
∥2

= ∥
∥v j − uHOSVD

∥
∥2 + ∥

∥
(
I − Π[ j]

)
v
∥
∥2

<
∥
∥v j − ubest

∥
∥2 + ∥

∥
(
I − Π[ j]

)
v
∥
∥2

= ∥
∥Π[ j](v − ubest)

∥
∥2 + ∥

∥
(
I − Π[ j]

)
(v − ubest)

∥
∥2

= ‖v − ubest‖2

in contradiction to the optimality of ubest. Hence, ‖v − uHOSVD‖ = ‖v − ubest‖ must hold.
Depending on the multiplicity of certain singular values, the SVD approximation may be
unique. In this case uHOSVD = ubest holds. If the SVD approximation is not unique, we may
choose ubest as uHOSVD = P jv j . Knowing that P j is a SVD projection, we may replace P j

by P̂ j as defined in (29). The projection Π j := Π[ j]P̂ j has the same properties as Π j in
§5.1. This proves the following (cf. Uschmajew [13]).

Theorem 4 The statements of Lemma 1 and the Conclusions 2 and 3 also hold for the best
approximation ubest in (31) and the related mapping Π j .
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5.3 Case of the hierarchical format

The HOSVD truncation within the hierarchical format (cf. Sect. 4.6) can be expressed by
orthogonal projections Pα for all vertices α of the tree TD .However, different from Sect. 5.1,
projections Pα and Pβ commute if and only α ∩ β = ∅. The truncation is described by the
product

Π :=
∏

α∈TD
Pα,

where the factors are ordered in such a way that Pα is applied before Pα1 and Pα2 (α1, α2 sons
of α) follow. Because of these restrictions, the analysis is more involved. We refer the reader
to Hackbusch [6, § 4]. As a result the statements in Sect. 5.1 also hold for the hierarchical
format.
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