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Abstract Euler collocation method is developed to approximate the solutions of linear and
nonlinear tenth and twelfth-order boundary-value problems. Properties of Euler polynomials
and some operational matrices are first presented. These properties are then used to reduce the
tenth and twelfth-order boundary-value problems into a system of either linear or nonlinear
algebraic equations. Numerical examples illustrate the effectiveness of the method and its
possibility of applications to a wide class of problems. The comparison with other method
are made. It is shown that Euler collocation method gives better results.
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1 Introduction

Twelfth-order boundary-value problems arises in many scientific applications in various
branches of science. For example, when heating an infinite horizontal layer of fluid from
below along with a uniform magnetic field in the same direction across the fluid and with the
fluid is subjected to the action of rotation then, instability will occur. When instability occurs
as ordinary convection, it is modelled by tenth-order boundary-value problems or, when
instability occurs as over stability, it is modelled by twelfth-order boundary-value problems
[5,6,8,9].

Agarwals book [2] contains a detailed theorems which discusses the exitance and unique-
ness for solving general higher-order boundary-value problems.
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Several numerical methods have been developed for solving higher-order boundary value
problem such as non polynomial spline [26,28], modified Adomian decomposition method
[3,31], Legendre operational matrix method [25], Quintic B-spline collocation method [30],
iterative method [29], chebychev polynomial solution [10], differential transform technique
[24] and variational iteration method [23]. Each of these methods has its essential advantages
and disadvantages. An ongoing search for a more effective, general and accurate numerical
techniques is a must.

In recent years, a lot of attention has been devoted to the study of Euler method to inves-
tigate various scientific models. The efficiency of the method has been formally proved by
many researchers [4,16,18–20]. Euler methods for ordinary differential equations has many
salient features due to the properties of the basis functions and the manner in which the
problem is discretized. The approximating discrete system depends only on parameters of
the differential equation.

The aim of this paper is to develop Euler-collocation method for the numerical solution
of the following class of linear and non-linear higher-order boundary value problems:

u(2r)(x) +
2r−1∑

m=0

Pm(x)u(m)(x) = σ(x, u(x)), 0 ≤ x ≤ 1, r = 5, 6. (1.1)

subject to the boundary conditions

u(i)(0) = αi , u(i)(1) = βi , i = 0, 1, 2, . . . , r − 1, (1.2)

where σ(x, u), Pm(x) and u(x) are continuous functions in L2(0, 1).
The organization of the paper is as follows. In Sect. 2, Euler polynomials along with

their relative properties that will be needed later is introduced. In Sect. 3, Euler method is
developed for linear and nonlinear higher-order boundary value problems. Error analysis
of the method is presented in Sect. 4. In Sect. 5, some numerical examples are presented.
Finally, Sect. 6 provides conclusions of the study.

2 Preliminaries and fundamentals relations

2.1 Euler polynomials

The formulation of Euler numbers and polynomials was first introduced by Euler back in
1740 and like other polynomials they have substantial literature and applications in number
theory [7,27,32]. They are well related to Bernoulli polynomials [13,15] where the classical
Euler polynomials En(x) can be defined by means of exponential generating functions as

2etx

et + 1
=

∞∑

n=0

En(x)
tn

n! , (|t | ≤ π), (2.1)

which is also satisfies the following interesting properties

E ′
n(x) = n En−1(x), n = 1, 2, . . . (2.2)
n∑

k=0

(
n

k

)
Ek(x) + En(x) = 2xn, (2.3)

∫ 1

0
En(x)dx = −2n!

(n + 1)! En+1(0), (2.4)
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Fig. 1 Behaviour of Euler polynomials

with E0(x) = 1 and
(n
k

)
is a binomial coefficient. Explicitly, the first few basic Euler poly-

nomials can be expressed by

E1(x) = x − 1

2
, E2(x) = x2 − x, E3(x) = x3 − 3

2
x2 + 1

4
.

Figure 1 shows the behavior of the first few Euler polynomials on the interval [−1, 2].
Also, Euler polynomials En(x) are related to Bernoulli polynomials from the following

formula

En(x) = 1

n + 1

n+1∑

k=1

(
2 − 2k+1

)(
n + 1

k

)
Bk(0) x

n+1−k, n = 0, 1, . . . (2.5)

where Bk(x), k = 0, 1, . . . are the Bernoulli polynomials of order k which satisfies the well
known relations [1,14,22]

B ′
n(x) = nBn−1(x),

∫ 1

0
Bn(x)dx = 0, n = 1, 2, . . . ,

n∑

k=0

(
n + 1

k

)
Bk(x) = (n + 1)xn .

For the approximation of any unknown function, Euler basis En(x) has several advantages
over other methods since they uses less number of basis functions compared to other meth-
ods and their implementations are simple and straightforward. Next, we will introduce the
differentiation matrix of these polynomials that will be needed later.

2.2 Euler operational matrix of differentiation

Euler polynomials has a lot of interesting relations and properties as mentioned in Sect. 2.1
and the most important relation is the relations of their derivatives which is used for solving
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different type of boundary-value problem. We introduce a technique based on Euler approx-
imation to the solution of Eqs. (1.1)–(1.2) expressed in the truncated Euler series form

uN (x) =
N∑

n=0

cn En(x) = E(x)c (2.6)

where {cn}Nn=0 are the unknown Euler coefficients, N is any chosen positive integer such that
N ≥ 2r , and En(x), n = 0, 1, . . . , N are the Euler polynomial of the first kind which are
constructed according to Eq. (2.5) and it’s relations. Then, the Euler coefficient vector c and
the Euler vector E(x) are given by

ct = [c0, c1, . . . , cN ], E(x) = [E0(x), E1(x), . . . , EN (x)].
According to the expansion in Eq. (2.5) and it’s later properties we find

⎡

⎢⎢⎢⎢⎢⎣

E0(x)

E1(x)

.

.

.

EN (x)

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Et (x)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(2−22)
1

(1
1

)
B1(0) 0 . . . 0

(2−23)
2

(2
2

)
B2(0)

(2−22)
2

(2
1

)
B1(0) . . . 0

.

.

.
.
.
.

. . .
.
.
.

(2−2N+2)
N

(N
N

)
BN (0) (2−2N+1)

N

( N
N−1

)
BN−1(0) . . .

(2−22)
N

(N
1

)
B1(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡

⎢⎢⎢⎢⎢⎣

1

x

.

.

.

xN

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Xt (x)

.

(2.7)
SinceB is a lower triangular matrix which has a nonzero diagonal elements , it is nonsingular
and B−1 exists. Thus, Euler vector can be described directly from

E(x) = X(x)Bt (2.8)

note that [ ]t denotes transpose of the matrix [ ] where Et (x) and Xt (x) be the (N + 1) × 1
and B is the (N + 1) × (N + 1) operational matrix. Now, the matrix form of the solution

uN (x) = X(x)Bt c. (2.9)

According to Eq. (2.8) the following formula is concluded evidently. Also, the relation
between he matrix X(x) and its derivative X(1)(x) is

X(1)(x) =
[
1, x, x2, . . . , xN

]

︸ ︷︷ ︸
X (x)

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

, (2.10)

from which we conclude that

X(i)(x) = X(x)Mi , i = 0, 1, . . . , 2r (2.11)

where X(i)(x) is denoting the i th derivative of X(x) then we have

u(i)
N = X(x)MiBtc, i = 0, 1, . . . , 2r (2.12)

Next, we will illustrate the use of these polynomials along with their operational matrix of
derivative for solving Eq. (1.1).
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3 Application of Euler matrix collocation method

We will illustrate our method based on Eq. (1.1) on two different cases

3.1 Linear high-order BVP

In this case we assign the source term σ(x, u) = f (x) into Eq. (1.1), then the equation
becomes

u(2r)(x) +
2r−1∑

m=0

Pm(x)u(m)(x) = f (x), 0 ≤ x ≤ 1, r = 5, 6. (3.1)

Let us seek an approximation of (3.1) expressed in terms of Euler polynomials as

u(x) ≈ uN (x) =
N∑

n=0

cn En(x) = E(x) c

where the Euler coefficient vector c and the Euler vector E(x) are given

ct = [c0, c1, . . . , cN ], E(x) = [E0(x), E1(x), . . . , EN (x)],
then the i th derivative of uN (x) can be expressed in the matrix from by

u(i)
N (x) = E(i) c = X(x)MiBt c i = 1, 2, . . . , 2r. (3.2)

To obtain the approximated solution,we first reduce the terms of Eq. (3.1) . The corresponding
form of the nonhomogeneous term f (x) of Eq. (3.1), can be shown

f (x) ≈
N∑

n=0

fn En(x) = E(x)F = X(x)Bt F, (3.3)

where F = [ f0, f1, . . . , fN ]t and f j , for j = 0, 1, ..., N can be calculated from the a
backward linear relation [17]

fN = 1

N !
∫ 1

0
f (N )(x)dx, j = N , (3.4)

and

f j =
∫ 1
0 f ( j)(x)dx + ∑N− j−1

k=0
2 j !
k+2

(k+ j+1
k+1

)
Ek+2(0) f j+k+1

j ! ,

j = 0, 1, . . . , N − 2, N − 1. (3.5)

By replacing each term of (3.1) with it’s approximation defined in (2.8), (2.11) and (3.3)
respectively, and substituting x = xk collocation points defined by

xk = 1

N
k, k = 0, 1, . . . , N ,

we reach the following theorem.

Theorem 3.1 If the assumed approximate solution of the boundary-value problem (3.1),
(1.2) is (2.5) then the discrete Euler system for the determination of the unknown coefficients
{cn}Nn=0 is given by
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N∑

n=0

cn E
(2r)
n (xk) +

2r−1∑

m=0

N∑

n=0

cn Pm(xk) E (m)
n (xk) =

N∑

n=0

fn En(xk). (3.6)

Proof If we replace each term of (3.1) with its corresponding approximation given by (2.5),
(3.2) and (3.3) and substitute with the collocation points x = xk which is mentioned in
section 2.2 and applying the collocation to it. ��

Equation (3.6) can be written in matrix form

Wc = F (3.7)

where

W =
[
M2r +

2r−1∑

m=0

Pm Mm

]

and

Pm =

⎛

⎜⎜⎜⎜⎜⎝

pm(x0) 0 0 . . . 0
0 pm(x1) 0 . . . 0
0 0 pm(x2) 0 0
...

... . . .
. . .

...

0 0 . . . 0 pm(xN )

⎞

⎟⎟⎟⎟⎟⎠
.

The matrix representation of the boundary conditions (1.2), can be written as

MiE(0) c = αi ,

MiE(1) c = βi , i = 0, 1, 2, . . . , r − 1.
(3.8)

The simplification in conditions is done by writing (3.8) as

� c = F̃ (3.9)

To obtain the solution of Eq. (3.1) with their conditions (1.2), we have to replace the row
matrices (3.9) by the last 2r rows of the matrix (3.7) and acquire the new augmented matrix

[
�, F̃

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 · · · w0N
... f0

w10 w11 · · · w1N
... f1

w20 w21 · · · w2N
... f2

...
... · · · ...

...
...

wN−2r,0 wN−2r,1 · · · wN−2r,N
... fN − 2r

u00 u01 · · · u0N
... α0

...
... · · · ...

...
...

u2r,0 u2r,1 · · · u2r,N
... β2r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

Now, we have a linear system of N + 1 equations of the N + 1 unknown coefficients. Calcu-
lations of those coefficients can be done by solving this linear system. There are numerous
method for solving the system (3.10) among which is the Q-Rmethod that will be used in this
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paper. This solution produces the coefficients c that is used for approximating Euler solution.
The algorithm for the proposed method is listed below.

Algorithm

• Input number of iterations N ,
• Enter x = xk collocation points,
• Calculate f j from equations (3.4–3.5),
• Formulate the system � c = F̃,
• Solve the system using the Q-R method to find c,
• End.

3.2 Nonlinear high-order BVP

In this case we assign the source term σ(x, u) = f (x) − [u(x)]n in Eq. (1.1) then by
substituting each term in Eq. (3.1) with the approximation defined in (2.8),(2.11) and (3.3)
respectively the equation becomes

[
M2r +

2r−1∑

m=1

Pm(x)Mm

]
X(x)Bt c + [

X(x)Bt c
]n = X(x)BtF. (3.11)

where F = [ f0, f1, . . . , fN ]τ can be calculated also according to Eqs. (3.4)–(3.5). Then the
residual term can be calculated

	N (x) =
[
M2r +

2r−1∑

m=1

Pm(x)Mm

]
X(x)Bτ c + [

X(x)Bτ c
]n − X(x)BτF (3.12)

We need to first collocate Eq. (3.12) at N − 2r + 1 points. For suitable collocation points we
use the first N − 2r + 1 Euler roots of EN+1(x). These equations obtained from Eq. (3.12)
along with the boundary conditions from (1.2) generates N +1 nonlinear equations in N +1
unknowns coefficients c that can be solved using Newton’s iterative method [11]. Conse-
quently, u(x) can be calculated according to Eq. (2.5).

Newton’s method
In order to solve the system of Eq. (3.12), we formulate it as

R(c) =

⎛

⎜⎜⎜⎝

R1(c0, c1, . . . , cN )

R2(c0, c1, . . . , cN )
...

RN+1(c0, c1, . . . , cN )

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0
0
...

0

⎞

⎟⎟⎟⎠ . (3.13)

where c is the column vector of the independent variables and R is the column vector of the
function Ri , with Ri (C) = Ri (c0, c1, . . . , cN ),1 ≤ i ≤ N + 1. The number of zero valued
functions is equal to the numbers of the independent variables. Then a good approximation
to the method for solving Eq. (3.13) is the Newton’s method [11].
Consider c( j) be the initial guess at the iteration j of the solution. Also, let R( j) indicate the
value ofR at the j th iteration. Assuming that ‖R( j)‖ is not too small, then we need to update
vectors �c( j)
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c( j+1) = c( j) + �c( j) ⇐⇒

⎛

⎜⎜⎜⎜⎜⎝

c j+1
0

c j+1
1

...

c j+1
N

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

c j0
c j1
...

c jN

⎞

⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎝

�c j0
�c j1

...

�c jN

⎞

⎟⎟⎟⎟⎟⎠
(3.14)

such that R(c j+1) = 0. Using the multidimensional extension of Taylor’s theorem for the
approximation of the variation of R(c) in the neighborhood of c j gives

R(c j + �c j ) = R(c( j)) + R′(c( j))�c j + o(‖�c( j)‖2) (3.15)

where R′(c( j)) is the jacobian of the system of equations

R′(c) ≡ J(c) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂R1
∂c0

(c) ∂R1
∂c1

(c) . . . ∂R1
∂cN

(c)

∂R2
∂c0

(c) ∂R2
∂c1

(c) . . . ∂R2
∂cN

(c)

...
...

...
...

∂RN+1
∂c0

(c) ∂RN+1
∂c1

(c) . . .
∂RN+1
∂cN

(c)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (3.16)

Appointing J( j) as the jacobian evaluated at c( j) and neglect terms of higher-order then we
can rearrange Eq. (3.15) as

R(c j + �c j ) = R(c( j)) + J( j)�c( j). (3.17)

Our goal of this method is to reach R(c j + �c j ) = 0, so assigning that term to zero in the
last equation gives

J( j)�c( j) = −R(c( j)). (3.18)

Then, Eq. (3.18) is the system of N + 1 linear equation in the N + 1 unknown �c( j). Each
Newton iteration step involves evaluating the vector R( j), the matrix J( j) and a solution to
Eq. (3.18). Newton iteration is stopped whenever the distance between two iteration is less
than a give tolerance, i.e., when ‖c( j+1) − c( j)‖ ≤ ε. The algorithm for the above method is
listed below.

Algorithm

• Initialize c = c(0),

• For i = 0, 1, 2, . . . ,R( j) from equation (3.12),
• If ‖R( j)‖ is small enough, stop,
• Compute J( j),

• Solve J( j)�c( j) = −R(c( j)),
• c( j+1) = c( j) + �c( j),

• End.

4 Error analysis

In this section, wewill analyze the error of the presentedmethod, suppose that H = L2[0, 1],
U = span{E0(x), E1(x), . . . , EN (x)},
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f be an arbitrary element in H and U is a finite dimensional vector space and f has the
unique best approximation out of U such that f̄ ∈ U , that is

∀ u ∈ U, ‖ f − f̄ ‖ ≤ ‖ f − u‖.
Since f̄ ∈ U is the best L2 approximation of f in U, there exist a unique coefficients
{ f0, f1, . . . , fN } such that

f (x) � f̄ (x) =
N∑

n=0

fn En(x) = E(x)F,

where

E(x) = [E0(x), E1(x), . . . , EN (x)] and F = [ f0, f1, . . . , fN ]t .

Theorem 4.1 [21] Suppose that f (x) ∈ C∞[0, 1] and F(x) is the approximated function
using Euler polynomials. Then the upper bound for these polynomials would be calculated
according to the following

‖EN (x)‖∞ ≤ μN !π−(N+1)

where μ is a positive number independent of N .

Theorem 4.2 Suppose that u(x) be an enough smooth function and uN (x) be the truncated
Euler series of u(x). Then,

‖u(x) − uN (x)‖∞ ≤ G N ! (π)−(N+1),

where G is a positive constant and the global error O
(
N !π−(N+1)

)
.

Proof In an operator form, Eq. (1.1) can be written as

Lu = u(2r) = f (x) + g(x, u) (4.1)

where the differential operator L is given by

L = d2r

dx2r
.

The inverse operator L−1 is therefore considered a 2r-fold integral operator defined by

L−1 =
∫ x

0︸︷︷︸
(2r)times

(.) dx︸︷︷︸
(2r)times

Operating with L−1 on (4.1) yields

u(x) = L−1 f (x) + L−1g(x, u)

=
∫ x

0︸︷︷︸
(2r)times

f (x) dx︸︷︷︸
(2r)times

+
∫ x

0︸︷︷︸
(2r)times

g(x, u) dx︸︷︷︸
(2r)times

= F(x) + G(x, u(x)).
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By approximating the functions u(x) and F(x) by the Euler polynomials. Therefore,

uN (x) = FN (x) + G(x, uN (x)),

thus, by subtracting the last two equations we find

‖u(x) − uN (x)‖∞ = ‖F(x) − FN (x) + (G(x, u(x)) − G(x, uN (x)))‖∞
= ‖F(x) − FN (x)‖∞ + ‖(G(x, u(x)) − G(x, uN (x)))‖∞

‖u(x) − uN (x)‖∞ ≤ ‖F(x) − FN (x)‖+LG‖u(x) − uN (x)‖∞,

(4.2)

where LG is the Lipschitz constant of the function G(x, u(x)), then

‖u(x) − uN (x)‖∞ ≤ 1

1 − LG
‖F(x) − FN (x)‖∞,

Using Theorem 4.1 yields

‖u(x) − uN (x)‖∞ ≤ 1

1 − LG

[
μN !π−(N+1)

]
≤ GN !π−(N+1).

where G = μ
1−LG

. Thus the presented method supplies an approximate solution with global

error O(N !π−(N+1)) which completes the proof. ��

In the next section we will discuss the accuracy of the solution based on the residual
function.

4.1 Accuracy of the solution based on residual function

We can easily check the accuracy of the suggested method as follows. Since the truncated
Euler series in Eq. (2.6) is an approximate solution of Eq. (1.1), when the function uN (x)
and it’s derivatives are substituted in Eq. (1.1), the resulting equation must be approximately
satisfied ; that is, for

x = xk ∈ [0, 1], k = 0, 1, . . . , N .

	N (xk) = |u(2r)(x) +
2r−1∑

m=0

Pm(x)u(m)(x) − σ(x, u(x))| ∼= 0. (4.3)

or

	N (xk) ≤ 10−qk

where qk is any positive integer. Ifmax 10−qk = 10−q (q is any positive integer) is prescribed,
then the truncation limit N is increased until the difference 	N (xk) at each of the points
become smaller than the prescribed 10−q . Also, the error function can be estimated from

	N (x) = u(2r)(x) +
2r−1∑

m=0

Pm(x)u(m)(x) − σ(x, u(x)).

If EN (x) → 0, as N has sufficiently enough value, then the error decreases.
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5 Numerical examples

We present four numerical examples which will prove the accuracy, performance and effec-
tiveness of the proposed techniques. We compare our results with the results that were
collected from the open literature found in [12,23,24,28–30]. The computations associ-
ated with these examples were performed using Matlab 2014 on a personal computer. The
absolute error may be defined as

‖eN (x)‖ = max ‖u(x) − uN (x)‖, 0 ≤ x ≤ 1 .

Example 5.1 [30] Let us consider The linear 10th order boundary value problem according
to Eq. (1.1) with r = 5 in the form

u(10) + 5u = 10 cos(x) + 4(x − 1) sin(x), 0 ≤ x ≤ 1,

subject to the boundary conditions

u(0) = 0, u(1) = 0,

u′(0) = −1, u′(1) = sin(1),

u′′(0) = 2, u′′(1) = 2 cos(1),

u′′′(0) = 1, u′′′(1) = −3 sin(1),

u(4)(0) = −4, u(4)(1) = −4 cos(1).

whose exact solution is

u(x) = (x − 1) sin x .

Maximum absolute error are tabulated in Table 1 at different values of N along with the
CPU time. Table 2 exhibits a comparison between the errors obtained by using Euler matrix
method with the analogous results of Viswanadham and Raju [30], for underlying B-spline
method. Figure 2, illustrates the approximate and exact solution at N = 14 and the error
history at the same values.

Example 5.2 [29,30] Now, we consider a nonlinear 10th-order boundary value problem

u(10) = e−xu2

Table 1 Maximum absolute
errors and CPU time for Example
5.1

N ‖eN (x)‖ CPU time (s)

10 3.05459E−10 2.36

12 3.30336E−11 2.65

14 1.90653E−12 2.75

16 1.56855E−12 3.24

Table 2 Comparison of absolute
error for Example 5.1

Presented method at N = 14 Quintic B-spline [30]

1.90653E-12 6.705523E−07
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Fig. 2 a Approximate and exact solution, b error history at N = 14

subject to the boundary conditions

u(0) = u′(0) = u′′(0) = u′′′(0) = u(4)(0) = 1,

u(1) = u′(1) = u′′(1) = u′′′(1) = u(4)(1) = e,

whose exact solution is

u(x) = ex .

Table 3 exhibits the maximum absolute error for different values of N along with the CPU
time. Table 4 exhibits a comparison between the errors obtained by using Eulermatrixmethod
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Table 3 Maximum absolute
errors and CPU time for
Example 5.2

N ‖eN (x)‖ CPU time (s)

10 1.7891355E−10 3.007

12 3.9337866E−11 4.032

14 3.320233E−12 4.993

16 4.1944226E−13 6.056

18 5.7509557E−14 7.532

Table 4 Comparison of absolute error for Example 5.2

Presented method at N=18 Iterative method [29] Quintic B-spline [30]

5.7509557E−14 4.120E−09 2.14576E−06

Table 5 Maximum absolute
errors and CPU time for
Example 5.3

N ‖eN (x)‖ CPU time (s)

12 5.32157E−12 2.826

14 1.38123E−11 3.029

16 1.09609E−11 3.504

Table 6 Comparison of absolute
error for Example 5.3

Presented method at N = 14 1.38123E−11

Non-polynomial spline [28] 7.380E−09

with the analogous results of Rashidinia et al. [29], for underlying Iterative method and with
the analogous results of Viswanadham, and Raju [30], for underlying B-spline method.

Example 5.3 [28] Now we turn to linear 12th-order boundary value problem

u(12) + xu = −(120 + 23x + x3)ex , 0 ≤ x ≤ 1,

Table 7 Maximum absolute
errors and CPU time for
Example 5.4

N ‖eN (x)‖ CPU time (s)

12 1.97953E−13 3.45

14 1.32117E−14 4.23

16 6.66134E−16 5.79

18 3.33067E−16 7.17

Table 8 Comparison of
maximum absolute error for
Example 5.4

Presented method at N = 16 6.66134E−16

Iterative method [29] 3.220E−10

Differential transformation method [24] 1.610E−07

Homotopy perturbation method [12] 1.610E−07

Variational method [23] 1.612E−07
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Fig. 3 a Approximate and exact solution for Example 5.4, b comparison of error with N = 12, 14, 16 for
Example 5.4

subject to the boundary conditions

u(0) = 0, u(1) = 0,

u′(0) = 1, u′(1) = −e,

u′′(0) = 0, u′′(1) = −4e,

u′′′(0) = −3, u′′′(1) = −9e,

u(4)(0) = −8, u(4)(1) = −16e,

u(5)(0) = −15, u(5)(1) = −25e,

123



Numerical investigation of the solution of. . . 363

whose exact solution is

u(x) = x(1 − x)ex .

Table 5 exhibits the maximum absolute error for different values of N along with the CPU
time. Table 6 exhibits a comparison between the errors obtained by using Eulermatrixmethod
with the analogous results of Shahid [28], for underlying spline method.

Example 5.4 [10,12,23,24,29] Our final example is a nonlinear 12th-order boundary value
problem

u(12) − u′′′ = 2exu2, 0 ≤ x ≤ 1,

subject to the boundary conditions

u(i)(0) = (−1)i , u(i)(1) = (−1)i e−1, i = 0, 1, . . . , 5.

whose exact solution is

u(x) = e−x .

Table 7 exhibits the maximum absolute error of the presented method at different values of N
along with the CPU time. Also, Table 8 gives a comparison between the results obtained with
the analogous results of Ullah et al. [29], for underlying Iterative method, with the analogous
results of Opanuga et al. [24], for underlying differential transformation method, with the
analogous results of Grover and Kumar [12] for underlying Homotopy perturbation method
and with the analogous results of Noor and Mohyud-Din [23] for underlying variational
method. Also, Fig. 3a introduces the maximum absolute error at different N and Fig. 3b
exhibits the Euler solution and exact solutions.

6 Conclusion

This paper has discussed how Euler matrix collocation method can be applied for obtaining
solutions of linear and nonlinear both tenth and twelfth-order boundary-value problems.
The formulation and implementation of the scheme are illustrated. Our method is tested
on four examples and comparisons with other methods are made. It is shown that Euler
matrix method yields good results. Euler matrix method is a simple tool for providing high
accurate numerical simulations to a large variety of model problems. So it is easily applied
by researchers and engineers familiar with Euler matrix method.

Acknowledgements The authors are grateful for the referees for their valuable comments and suggestions
on the original manuscript.
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