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Abstract In this article, we develop a quasi-Newton method to obtain nondominated solu-
tions of fuzzy optimization problems. The objective function of the optimization problem
under consideration is a fuzzy-number-valued function. The notion of generalized Hukuhara
difference of fuzzy numbers, and hence generalized Hukuhara differentiability for multi-
variable fuzzy-number-valued functions are used to develop the quasi-Newton method. The
proposed technique produces a sequence of positive definite inverse Hessian approximations
to generate the iterative points. A sequential algorithm and the convergence result of the
proposed method are also given. It is obtained that the sequence in the proposed method
has superlinear convergence rate. The method is also found to have quadratic termination
property. Two numerical examples are provided to illustrate the developed technique.
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˜A, ˜B, …and ã,˜b, … Fuzzy sets on R

F(R) The set of all fuzzy numbers on R

μ(.|˜A) Membership function of the fuzzy set ˜A
˜A(α) α-cut of the fuzzy set ˜A

(l/a/r) A triangular fuzzy number at a

[̃aL
α , ãU

α ] α-cut of the triangular fuzzy number ã

⊕ Extended addition

� Extended substraction

� Extended multiplication

�gH Generalized Hukuhara difference

[ ˜f L
α (x), ˜f U

α (x)] α-cut of the fuzzy function ˜f at x
˜f L
α Lower function of the α-cut of the fuzzy function ˜f

˜f U
α Upper function of the α-cut of the fuzzy function ˜f

∂ ˜f
∂xi

(x) Partial gH -derivative of ˜f with respect to xi at x

∇ ˜f (x) gH -gradient of ˜f at x

∇2
˜f (x) gH -Hessian of ˜f at x

ã � ˜b ãL
α ≤ ˜bL

α and ãU
α ≤ ˜bU

α for all α ∈ [0, 1]
ã ≺ ˜b ã � ˜b and ∃ β ∈ [0, 1] such that ãL

β < ˜bL
β or ãU

β < ˜bU
β .

1 Introduction

After the seminal work by Bellman and Zadeh [7], in 1970, fuzzy optimization problems
(FOPs) are extensively studied to tackle the decision-making problems that are emanated from
the imprecise environment. Recently, Luhandjula [28] projected a condensed and selective
look at the known landscape of the theory and applications of fuzzy optimization. The edited
monograph by Słowínski [36] and the article by Cadenas and Verdegay [8] and the references
therein are the main stream of this topic. An insightful overview on the development of FOPs
has been reported in the survey books by Lai and Hwang [24,25] and by Lodwick and
Kacprzyk [27].

Wu [41–43], Zhong [52] and Cheng [11] have studied duality theory for FOPs. Gong and
Li [23] and Wu [48] have found the saddle point optimality conditions for FOPs. Recently,
Ghosh and Chakraborty reported fuzzy geometrical view [10,16,17] on FOPs [18–21]. In
order to solve an unconstrained FOP, Pirzada and Pathak [32] and Chalco-Cano et al. [9]
developed a Newton method. Much similar to fuzzy optimization, Ghosh [14] derived a
Newton method and quasi-Newton method [15] for interval optimization problems.

The practical situations of mathematical optimizationmodels often encounter the problem
of optimizing a fuzzy function over real data set. Precisely, this problem can be stated as
‘minx∈Rn ˜f (x)’, where ˜f is a fuzzy-number-valued function. In classical optimization theory,
there are various numerical algorithms [1,30,51] for unconstrained optimization problems.
However, thosemethods are evidently not applicable to solve FOPs. In this article, we attempt
to develop a quasi-Newton method to solve an unconstrained FOP.

In the context of conventional optimization problems, towards searching the optimal points
[4,30] of a smooth optimization problem, it is natural to employ the derivative of the objective
function. However, to find the optimal points of an FOP, not only the differentiability of fuzzy
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functions but also an appropriate ordering of fuzzy numbers has to be considered to find the
optimal points, since unlike to the real numbers, fuzzy numbers are not linearly ordered [35].

There have been a wide literature on ordering of fuzzy numbers including the research
articles referred in [12,26,29,34,39,49]. Cheng [12] proposed a ranking of fuzzy numbers
with the help of a distance method. Sun and Wu [38] presented a ranking based on fuzzy
simulation analysis method. Peng et al. [31] studied ranking fuzzy variables in terms of
credibilitymeasure. Yao andWu [50] defined ranking fuzzy numbers based on decomposition
principle and signed distance. Wang [40] proposed a ranking of L-R fuzzy numbers based
on a deviation degree. References of [40] reports the main stream on ordering of fuzzy
numbers.

In this paper, the fuzzy-max ordering of fuzzy numbers of Ramík andRimanek [34]will be
used. There are two reasons behind this selection. First, it is a partial ordering in the space of
fuzzy numbers [32]. Second, it has insightful association [44,45] with the optimality notion
on FOPs.

In order to find the notion of differentiability of fuzzy functions, Dubois and Prade [13]
used the extension principle. Dubois an Prade [13] have also reported that a fuzzy extension
of the usual definition of differentiation is of no use. As a result of this fact, Goetschel and
Voxman [22] used a so-called ‘opposite’ of a fuzzy number to define fuzzy differentiation
in analogy to the usual definition of differentiation. Recently, Hukuhara differentiability (H -
differentiability) [3] received substantial attention in fuzzy optimization theory. Banks and
Jacobs [3] developed H -differentiability for multifunctions. Puri and Ralescu [33] further
extended the H -differentiability for fuzzy functions. The concept of H -fuzzy differentia-
tion is rigorously discussed in [2] for the univariate and multivariate fuzzy functions. The
H -differentiation is also studied by several authors in different fields. For instance, Wu et
al. [47] applied the H -differentiability in fuzzy differential equations. In fuzzy optimization,
Wu employed the H -derivative in order to find optimality conditions for multi-objective [46]
and single objective [44,45] fuzzy-valued functions. Bede and Gal [5,37] proposed general-
izations of H -differentiability (gH -differentiability) and its application in fuzzy differential
equations. Bede and Stefanini [6] gave a generalized H -differentiability of fuzzy-valued
functions. Pirzada and Pathak [32] derived a Newton method for FOP using H -derivative.
Chalco-Cano et al. [9] used gH -differentiability to modify the Newton method in [32].

Since gH -derivative is themost general concept [9] for differentiability of fuzzy functions,
in this paper,we employ the gH -derivative and its calculus [9,44,45] to derive a quasi-Newton
method for solving an FOP.

It is to note that in the derivation of Newton method for FOPs [9,32], the generating
equation for iterative points involves computation of inverse of the concernedHessianmatrix.
Computation of inverse-Hessian is truly cost effective. Thus, in this study, we attempt to
propose a quasi-Newton method to sidestep the inherent computational expense in computing
inverse-Hessian in the existing Newton method for FOPs. This sidestepping is done through
a rank-two modification to an appropriate approximation of the pertaining inverse-Hessian.

The work in this study is organized as follows. Immediately next of this paragraph, list
of symbols those are used throughout the article is given. In Sect. 2, the notations and
terminologies are given which are used throughout the paper. In Sect. 3, we derive a quasi-
Newtonmethod for FOPs. Convergence analysis of the proposedmethod is presented in Sect.
4. Section 5 includes two illustrative numerical examples. Finally, we give a brief conclusions
and scopes for future research in Sect. 6.
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2 Preliminaries

This section provides basic definitions and notations which are employed in this article.
Upper and lower case letters with a tilde (˜A, ˜B, ˜C , …and ã, ˜b, c̃, …) denote fuzzy subsets
of R. The membership function of a fuzzy set ˜A of R is represented by μ(x |˜A), for x in R,
with μ(R) ⊆ [0, 1].
2.1 Fuzzy numbers

Definition 1 (α-cut of a fuzzy set [16]) The α-cut of a fuzzy set ˜A of R, denoted ˜A(α), is
defined by

˜A(α) =
{

{x : μ(x |˜A) ≥ α} if 0 < α ≤ 1

closure{x : μ(x |˜A) > 0} if α = 0.

The sets {x : μ(x |˜A) > 0} and {x : μ(x |˜A) = 1} are respectively called the support and the
core of the fuzzy set ˜A.

Definition 2 (Fuzzy number [16]) A fuzzy set ˜N of R is called a fuzzy number if its mem-
bership function μ has the following properties:

(i) μ(x |˜N ) is upper semi-continuous,
(ii) μ(x |˜N ) = 0 outside some interval [a, d], and
(iii) there exist real numbers b and c such that a ≤ b ≤ c ≤ d and μ(x |˜N ) is increasing on

[a, b] and decreasing on [c, d], and μ(x |˜N ) = 1 for each x in [b, c].
In particular, when b = c, and the parts of the membership functionsμ(x |˜N ) in [a, b] and

[c, d] are linear, then the fuzzy number is called a triangular fuzzy number and is denoted by
(a/c/d). We denote the set of all fuzzy numbers on R by F(R).

Since μ(x |̃a) is upper semi-continuous for a fuzzy number ã, the set {x : μ(x |̃a) ≥ α} is
closed for each α in R. Thus, the α-cut of a fuzzy number ã (the set ã(α)) is a closed and
bounded interval of R for all α in [0, 1]. We write ã(α) = [

ãL
α , ãU

α

]

.
Let ⊕ and � denote the extended addition and multiplication. According to the extension

principle [53], the membership function of ã ⊗˜b (⊗ = ⊕ or �) is defined by

μ(z |̃a ⊗˜b) = sup
x×y=z

min
{

μ(x |̃a), μ(y|˜b)
}

.

For any ã and ˜b in F(R), the α-cut (for any α in [0, 1]) of their addition and scalar
multiplication can be obtained as [53]:

(

ã ⊕˜b
)

(α) =
[

ãL
α +˜bL

α , ãU
α +˜bU

α

]

and

(

λ � ã
)

(α) =
{

[

λ̃aL
α , λ̃aU

α

]

if λ ≥ 0,
[

λ̃aU
α , λ̃aL

α

]

if λ < 0.

Definition 3 (Generalized Hukuhara difference [37]) Let ã and ˜b be two fuzzy numbers.
If there exists a fuzzy number c̃ such that c̃ ⊕ ˜b = ã or ˜b = ã � c̃, then c̃ is said to be
generalized Hukuhara difference (gH -difference for short) between ã and˜b. If such c̃ exists,
then it is unique. Hukuhara difference between ã and˜b is denoted by ã �gH ˜b.

In terms of α-cut, for all α ∈ [0, 1], we have
(

ã �gH ˜b
)

(α) =
[

min
{

ãL
α −˜bL

α , ãU
α −˜bU

α

}

, max
{

ãL
α −˜bL

α , ãU
α −˜bU

α

}]

.
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2.2 Fuzzy functions

Let ˜f : R
n → F(R) be a fuzzy function. We present the α-cuts of this fuzzy function by

˜f (x)(α) =
[

˜f L
α (x), ˜f U

α (x)
]

for all α ∈ [0, 1].
Here the functions ˜f L

α and ˜f U
α are two real valued functions and are called lower and upper

functions, respectively.

With the help of gH -difference between two fuzzy numbers, gH -differentiability of a fuzzy
function is defined as follows.

Definition 4 (gH-differentiability of fuzzy functions [5]) Let ˜f : R
n → F(R) be a fuzzy

function and x0 = (

x01 , x02 , . . . , x0n
)

be an element of R
n . We define a fuzzy function ˜hi :

R → F(R) for each i = 1, 2, . . . , n as follows. Consider

˜hi (xi ) = ˜f
(

x01 , . . . , x0i−1, xi , x0i+1, . . . , x0n
)

.

We say˜hi is gH -differentiable if the following limit exists

lim
ti →0

˜hi (x0i + ti ) �gH ˜hi (x0i )

ti
.

If ˜hi is gH -differentiable, then we say that ˜f has the i th partial gH -derivative at x0 and is

denoted by ∂ ˜f
∂xi

(x0).

The function ˜f is said to be gH -differentiable at x0 ∈ R
n if all the partial gH -derivatives

∂ ˜f
∂x1

(x0),
∂ ˜f
∂x2

(x0), . . .,
∂ ˜f
∂xn

(x0) exists on some neighborhood of x0 and are continuous at x0.

Proposition 1 (See [9]) If a fuzzy function ˜f : R
n → F(R) is gH-differentiable at x0 ∈ R

n,
then for each α ∈ [0, 1], the real valued function ˜f L

α + ˜f U
α is differentiable at x0. Moreover,

∂ ˜f L
α

∂xi
(x0) + ∂ ˜f U

α

∂xi
(x0) = ∂( ˜f L

α + ˜f U
α )

∂xi
(x0).

Definition 5 (gH -gradient [9]) The gH -gradient of a fuzzy function ˜f : R
n → F(R) at a

point x0 ∈ R
n is defined by

(

∂ ˜f (x0)

∂x1
,
∂ ˜f (x0)

∂x2
, . . . ,

∂ ˜f (x0)

∂xn

)t

.

We denote this gH -gradient by ∇ ˜f (x0).

We define an m-times continuously gH-differentiable fuzzy function ˜f as a function whose
all of the partial gH -derivatives of order m exist and are continuous. Then, we have the
following immediate result.

Proposition 2 (See [9]) Let ˜f be a fuzzy function. Let at x0 ∈ R
n, the function ˜f be m-times

gH-differentiable. Then the real-valued function ˜f L
α + ˜f U

α is m-times differentiable at x0.

Definition 6 (gH -Hessian [9]) Let the fuzzy function ˜f be twice gH -differentiable at x0.

Then, for each i , the function ∂ ˜f
∂xi

is gH -differentiable at x0. The second order partial gH -

derivative can be calculated through computing all the ∂2 ˜f
∂xi ∂x j

’s. The gH -Hessian of ˜f at x0
can be captured by the square matrix
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∇2
˜f (x0) =

[

∂2 ˜f

∂xi∂x j
(x0)

]

n×n

.

2.3 Optimality concept

As it is mentioned in Sect. 1 that in order to search the optimal solution of an FOP, we
need a partial order relation between fuzzy numbers. Recently, fuzzy-max ordering of fuzzy
numbers are extensively used [32,44,45] in fuzzy optimization, since it is a partial order
relation in F(R) [32]. Fuzzy-max ordering is defined as follows.

Definition 7 (Dominance relation between fuzzy numbers [32]) Let ã and ˜b be two fuzzy
numbers. For any α ∈ [0, 1], let ã(α) = [

ãL
α , ãU

α

]

and˜b(α) = [

˜bL
α ,˜bU

α

]

. We say ã dominates
˜b if ãL

α ≤ ˜bL
α and ãU

α ≤ ˜bU
α for all α ∈ [0, 1]. If ã dominates ˜b, then we write ã � ˜b. The

fuzzy number ˜b is said to be strictly dominated by ã, if ã � ˜b and there exists β ∈ [0, 1]
such that ãL

β < ˜bL
β or ãU

β < ˜bU
β . If ã strictly dominates˜b, then we write ã ≺ ˜b.

With the help of Definition 7, the concept of non-dominated solution for FOPs is defined as
follows.

Definition 8 (Non-dominated solution for fuzzy optimization [32]) Let ˜f : R
n → F(R) be

a fuzzy function and we intend to find a solution of ‘minx∈Rn ˜f (x)’. A point x̄ ∈ R
n is said

to be a locally non-dominated solution if there exists no x ∈ Nε(x̄) such that ˜f (x) � ˜f (x̄),
where Nε(x̄) denotes ε-neighborhood of x̄ . A local non-dominated solution is called a local
solution of ‘minx∈Rn ˜f (x)’.

For local non-dominated solution, the following result is proved in [9].

Proposition 3 (See [9]) Let ˜f : R
n → F(R) be a fuzzy function. If x∗ is a local minimizer

of the real valued ˜f L
α + ˜f U

α for all α ∈ [0, 1], then x∗ is a locally non-dominated solution of
‘minx∈Rn ˜f (x)’.

3 Quasi-Newton method

In this section, we consider to solve the following unconstrained Fuzzy Optimization Prob-
lem:

(FOP) min
x∈Rn

˜f (x),

where ˜f : R
n → F(R) is a fuzzy-number-valued function. On finding a nondominated

solution of the problem, we note that the existing Newton method (see [9,32]) requires
computation of the inverse of the concerned Hessian. However, computation of the inverse of
Hessian is cost effective. Thus in this article, we intend to develop a quasi-Newton method to
sidestep the computational difficulty of the Newton method. Towards this end, for the FOP
we assume that at each of the following generated sequential points xk , the function ˜f and its
gH -gradient and gH -Hessian are well-defined. Therefore, according to Propositions 1 and
2, we can calculate ˜f L

α (xk), ˜f U
α (xk), ∇ ˜f L

α (xk), ∇ ˜f U
α (xk), ∇2

˜f L
α (xk) and ∇2

˜f U
α (xk) for all

α ∈ [0, 1], for all k = 0, 1, 2, · · · . Hence, we can have a quadratic approximations of the the
lower and the upper functions ˜f L

α and ˜f U
α .
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Let the quadratic approximation models of ˜f L
α and ˜f U

α at xk+1 be

hL
α (x) = f L

α (xk+1) + ∇ f L
α (xk+1)

t (x − xk+1) + 1
2 (x − xk+1)

t ∇2 f L
α (xk+1) (x − xk+1)

and

hU
α (x) = f U

α (xk+1) + ∇ f U
α (xk+1)

t (x − xk+1)

+ 1
2 (x − xk+1)

t ∇2 f U
α (xk+1) (x − xk+1),

which satisfy the interpolating conditions

hL
α (xk+1) = f L

α (xk+1), hU
α (xk+1) = f U

α (xk+1), ∇hL
α (xk+1) = ∇ f L

α (xk+1),

and ∇hU
α (xk+1) = ∇ f U

α (xk+1).

The derivatives of hL
α and hU

α yield
{

hL
α (x) = ∇ f L

α (xk+1) + ∇2 f L
α (xk+1) (x − xk+1) and

hU
α (x) = ∇ f U

α (xk+1) + ∇2 f U
α (xk+1) (x − xk+1).

(3.1)

In the next, the Newton method (see [9,32]) attempts to find x in terms of xk+1 as follows

x = xk+1 − [∇2φ(xk+1)
]−1 ∇φ(xk+1),

where φ(x) = ∫ 1
0

(

f L
α (x) + f U

α (x)
)

dα.

However, due to inherent computational difficulty to find [∇2φ(xk+1)]−1, it is often suggested
that consider an appropriate approximation.

Let Ak+1 be an approximation of [∇2φ(xk+1)]−1. Then, from (3.1), setting x = xk ,
δk = xk+1 − xk , βL

αk = ∇ f L
α (xk+1) − ∇ f L

α (xk) and βU
αk = ∇ f U

α (xk+1) − ∇ f U
α (xk),

we obtain

βL
αk = ∇2 f L

α (xk+1)δk and βU
αk = ∇2 f U

α (xk+1)δk

�⇒ βL
αk + βU

αk =
(

∇2 f L
α (xk+1) + ∇2 f U

α (xk+1)
)

δk for all α ∈ [0, 1]

�⇒
∫ 1

0

(

βL
αk + βU

αk

)

dα =
(∫ 1

0
∇2

(

f L
α + f U

α

)

(xk+1)dα

)

δk

�⇒
∫ 1

0
(∇φα(xk+1) − ∇φα(xk)) dα =

(∫ 1

0
∇2φα(xk+1)dα

)

δk,

where φα(x) = f L
α (x) + f U

α (x)

�⇒ ∇φ(xk+1) − ∇φ(xk) = ∇2φ(xk+1)δk, where φ(x) =
∫ 1

0
φα(x)dα

�⇒ Ak+1Φk = δk, where Φk = ∇φ(xk+1) − ∇φ(xk).

According to Proposition 3, to obtain nondominated solutions of (FOP), we need to have
solutions of the equation ∇( f L

α + f U
α )(x) = 0.

In order to capture solutions of this equation, much similar to the Newton method [32], the
above procedure clearly suggests to consider the following generating sequence

δk = xk+1 − xk = Ak+1Φk

�⇒ xk+1 = xk + Ak+1Φk .
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If Ak is an appropriate approximation of the inverse Hessian
[∇2φ(xk+1)

]−1
and

∇( f L
α + f U

α )(xk+1) ≈ 0, then the equation xk+1 = xk + Ak+1Φk reduces to

xk+1 = xk − [∇2φ(xk+1)
]−1 ∇φ(xk),

which is the generating equation of the Newton method [32] and hence obviously will con-
verge to the minimizer of f L

α + f U
α .

As we observe, the key point of the above method is to appropriately generate Ak’s. Due
to the inherent computational difficulty to find the inverse of the Hessian ∇2φ(xk+1) we
consider an approximation that should satisfy

Ak+1Φk = δk . (3.2)

In this article we attempt to introduce a simple rank-two update of the sequence {Ak} that
satisfy the above quasi-Newton equation (3.2).

Let Ak be the approximation of the kth iteration. We attempt to update Ak into Ak+1 by
adding two symmetric matrices, each of rank one as follows:

Ak+1 = Ak + pkvkv
t
k + qkwkw

t
k

where uk and vk are two vectors in R
n , and pk and qk are two scalars which are to be

determined by the quasi-Newton equation (3.2). Therefore, we now have

AkΦk + pkvkv
t
kΦk + qkwkw

t
kΦk = δk . (3.3)

Evidently, vk and wk are not uniquely determined, but their obvious choices are vk = δk and
wk = AkΦk . Putting this values in (3.3), we obtain

pk = 1

vt
kΦk

= 1

δt
kΦk

and qk = − 1

wt
kΦk

= − 1

Φ t
k AkΦk

.

Therefore,

Ak+1 = Ak + δkδ
t
k

δt
kΦk

− AkΦkΦ
t
k Ak

Φ t
k AkΦk

. (3.4)

We consider this equation to generate the sequence of above mentioned inverse Hessian
approximation.

Therefore, accumulating all, we follow the following sequential way (Algorithm 1) to obtain
an efficient solution of the considered (FOP) minx∈Rn ˜f (x).

4 Convergence analysis

In this section, the convergence analysis of the proposed quasi-Newton method is performed.
At first, we show the superlinear convergence rate of the proposed method. Then, we explore
that the used search directions are descent and the Hessian approximations are positive
definite. Finally, the quadratic termination property of the method is proved.

Theorem 1 (Superlinear convergence rate)
Let ˜f : R

n → F(R) be thrice continuously gH-differentiable on R
n. Suppose that x̄ in R

n

satisfies the following three conditions:

(i) x̄ is a local minimizer of ˜f L
α and ˜f U

α ,

(ii)
∫ 1
0 ∇2

(

f L
α (x) + f U

α (x)
)

dα is symmetric positive definite, and
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Algorithm 1 Quasi-Newton Method with Rank-two Modification to Solve FOP

Require: Given ˜f , the objective function
x0, the initial point
ε, a termination scalar
A0, a symmetric positive definite matrix

1: Compute f L
α , f U

α and φ(x) = ∫ 1
0 ( f L

α (x) + f U
α (x))dα

2: Set k = 0
3: If ‖∇φ(xk)‖ < ε, then Stop
4: Compute the search direction dk = −Ak∇φ(xk)

5: Compute the step length αk := argminα≥0φ(xk + αdk)

6: Evaluate
δk = αkdk

xk+1 = xk + δk

Φk = ∇φ(xk+1) − ∇φ(xk), and

Ak+1 = Ak + δkδ
t
k

δt
kΦk

− AkΦkΦ
t
k Ak

Φ t
k AkΦk

.

7: Set k = k + 1, go to Step 1.

(iii)
∫ 1
0 ∇2

(

f L
α (x) + f U

α (x)
)

dα is Lipschitzian with constant γ L + γ U .

Then the iteration sequence {xk} in Algorithm 1 converges to x̄ superlinearly if and only if

lim
k→∞

∥

∥

∥

[

A−1
k+1 − ∇2φ(x̄)

]

δk

∥

∥

∥

‖δk‖ = 0,

where φ(x) = ∫ 1
0

(

f L
α (x) + f U

α (x)
)

dα.

Proof According to the hypothesis (i), at x̄ we have

∇φ(x̄) =
∫ 1

0
∇

(

f L
α (x̄) + f U

α (x̄)
)

dα = 0.

From hypothesis (ii), the Hessian matrix

∇2φ(x̄) =
∫ 1

0
∇2

(

f L
α (x̄) + f U

α (x̄)
)

dα

is positive definite and a symmetric matrix.
With the help of hypothesis (iii), the function

∇2φ(x) =
∫ 1

0
∇2

(

f L
α (x) + f U

α (x)
)

dα

is found to be Lipschitzian at x̄ with constant γ L + γ U . Mathematically, there exists a
neighborhood Nε(x̄) where

∥

∥∇2φ(x) − ∇2φ(x̄)
∥

∥ ≤ (γ L + γ U )‖x − x̄‖ ∀ x ∈ Nε(x̄).

Towards proving the result, the following equivalence will be proved.

lim
k→∞

∥

∥

∥

[

A−1
k+1 − ∇2φ(x̄)

]

δk

∥

∥

∥

‖δk‖ = 0
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⇐⇒ lim
k→∞

‖Φk+1‖
‖δk‖ = 0

⇐⇒ lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0.

With the help of quasi-Newton equation (3.1), we have
[

A−1
k+1 − ∇2φ(x̄)

]

[

xk+1 − xk
]

= −Φk − ∇2φ(x̄)(xk+1 − xk)

= (

Φk+1 − Φk − ∇2φ(x̄)(xk+1 − xk)
) − Φk+1.

Therefore,

‖Φk+1‖
‖δk‖ ≤ 1

‖δk‖
[∥

∥

∥

(

A−1
k+1 − ∇2φ(x̄)

)

δk

∥

∥

∥ + ∥

∥Φk+1 − Φk − ∇2φ(x̄)δk
∥

∥

]

.

It is evident to note that

‖Φk+1 − Φk − ∇2φ(x̄)δk‖ =
∥

∥

∥

∥

(∫ 1

0
∇2

(

f L
α + f U

α

)

(xk+1 + t (xk+1 − xk))dt

)

δk

−∇2φ(x̄)δk
∥

∥

=
∥

∥

∥

∥

(∫ 1

0

(∇2φ(xk+1 + tδk) − ∇2φ(x̄)
)

dt

)

δk

∥

∥

∥

∥

≤ (γ L + γ U ) (‖xk+1 − x̄‖ + ‖xk − x̄‖) .

Since ∇2φ(x̄) is positive definite, we have ξ > 0 and m ∈ N such that for all k ≥ m

‖Φk+1‖ = ‖Φk+1 − ∇φ(x̄)‖ ≥ ξ‖xk+1 − x̄‖.
Hence we now have

‖Φk+1‖
‖δk‖ ≥ ξ‖xk+1 − x̄‖

‖xk+1 − x̄‖ + ‖xk − x̄‖ = ξ
ck

1 + ck
,

where ck = ‖xk+1−x̄‖
‖xk−x̄‖ . This inequality gives

lim
k→∞

ck

1 + ck
= 0

�⇒ lim
k→∞ ck = 0

�⇒ lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0.

This completes the proof of superlinear convergence of the sequence {xk} in Algorithm 1.
Conversely, since {xk} converges superlinearly to x̄ and ∇φ(x̄) = 0, we must have β > 0
and p ∈ N such that

‖Φk+1‖ ≤ β‖xk+1 − x̄‖ for all k ≥ p.

Again due to superlinear convergence of {xk}, we have

0 = lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ ≥ lim

k→∞
‖Φk+1‖

β‖xk − x̄‖ = lim
k→∞

1
β

‖Φk+1‖
‖xk+1 − xk‖

‖xk+1 − xk‖
‖xk − x̄‖ .
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Since limk→∞ ‖xk+1−xk‖
‖xk−x̄‖ = 1, this inequality implies limk→∞ ‖Φk‖

‖xk+1−xk‖ = 0. Hence the
result follows. ��
Theorem 2 (Positive definiteness of the inverse Hessian approximation)
Let x0 ∈ R

n and the objective function ˜f in Algorithm 1 is twice continuously gH-
differentiable. If

∫ 1

0
∇

(

˜f L
α (xk) + ˜f U

α (xk)
)

dα �= 0,

then the inverse Hessian approximations Ak’s are positive definite and the search directions
dk = −Ak∇φ(xk) are descent for all k = 1, 2, · · · .

Proof If all Ak’s are positive definite, then according to the hypothesis, the search directions
dk = −Ak∇φ(xk) are trivially descent, since

∇φ(xk+1)
t dk+1 = −∇φ(xk+1)

t Ak+1 ∇φ(xk+1) < 0.

Thus, we prove that all Ak’s are positive definite.
According to Algorithm 1, the matrix A0 is assumed to be positive definite.
Let A1, A2, . . . , Am are positive definite. We will show that Am+1 is positive definite. Then,
by the principle of mathematical induction, the result will follow.
Let x �= 0 be a vector in R

n . With the help of the rank-two update of Ak’s in Algorithm 1,
we obtain

xt Am+1x = xt Am x + (xt δm)2

δt
m Φm

− (xt Am Φm)2

(Φk Am Φm)
. (4.1)

Since Am is a positive definite matrix, by Cholesky decomposition there exists a positive
definite symmetric matrix Dm such that Am = Dm Dm .
Let a = Dm x and b = Dm Φm . Then

xt Am+1 x = at a, Φ t
m Am Φm = bt b, and xt Am Φm = at b.

We note that

(i) δt
m Φm = αm dt

m (∇φ(xm+1 − ∇φ(xm)) = αm ∇φ(xm)t Am∇φ(xm) > 0, since
dm = −Am∇φ(xm) is a descent direction, and hence αm > 0, and dt

m∇φ(xm+1) = 0,
and

(ii) bt b > 0, since Φm �= 0.

Eq. (4.1) gives

xt Am+1 x = at a − (at b)2

bt b
+ (xt δm)2

δt
mΦm

= (at a)(bt b) − (at b)2

bt b
+ (xt δm)2

δt
mΦm

≥ 0, by Cauchy-Schwarz inequality.

Below we prove that out of the two terms (at a)(bt b)−(at b)2

bt b and (xt δm )2

δmΦm
in xt Am+1 x at least

one is strictly positive.
Since x �= 0, the equality in Cauchy–Schwarz inequality holds only when a || b, equivalently,
x || Φm .

Then there exists λ �= 0 such that x = λΦm and hence (xt δm )2

δmΦm
= λ2δt

mΦm > 0. This yields
the result. ��
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Theorem 3 (Quadratic termination property)
Let ˜f (x) = 1

2 xt
˜An×n x ⊕ ˜Bt

n×1 x ⊕ ˜C1×1 be a quadratic fuzzy function with the end point

matrices of ˜A(α) are such that the Hessian matrices
∫ 1
0 ∇2 f L

α (x)dα and
∫ 1
0 ∇2 f U

α (x)dα

are positive definite. Let H be the Hessian of

φ(x) =
∫ 1

0

(

f L
α (x) + f U

α (x)
)

dα.

Then with the help of exact line search, the generated sequence {δk} in Algorithm 1 satisfies
the following properties for i = 0, 1, . . . , m where m ≤ n − 1 :
(i) Ai+1Φ j = δ j , j = 0, 1, 2, . . . , i ,
(ii) δt

i H δ j = 0, j = 0, 1, 2, . . . , i − 1, and
(iii) The method terminates at m + 1 ≤ n steps. If m = n − 1, then An = H−1.

Proof We note that according to the hypothesis,

H = ∇2
∫ 1

0

(

f L
α (x) + f U

α (x)
)

dα

is positive definite.
With the help of induction principle, we show the parts (i) and (ii).
The proof is trivial for i = 0. Let the parts (i) and (ii) be true for some i . We will show that
the results hold for i + 1.
As ∇φ(xi+1) �= 0, by exact line search, and Φk = ∇φ(xk+1) − ∇φ(xk) = H(xk+1 − xk)

= Hδk , k = 1, 2, . . . , i , the induction hypothesis implies that for j ≤ i ,

∇φ(xi+1)δ j = ∇φ(xi+1)
t δ j +

i
∑

k= j+1

(∇φ(xk+1) − ∇φ(xk))
t δ j

= ∇φ(xi+1)
t δ j +

i
∑

k= j+1

Φ t
k δ j

=
i

∑

k= j+1

δt
k Hδ j

= 0.

Thus, with the help of δi+1 = −αi+1Ai+1∇φ(xi+1), it follows that

δt
i+1 H δ j = −αi+1 ∇φ(xi+1)

t Ai+1Φ j = −αi+1∇φ(xi+1)
tδ j = 0,

which completes the proof of the part (ii) holding for i + 1.
Below we show that part (i) holds for i + 1, i.e.,

Ai+2δ j = δ j , j = 0, 1, 2, . . . , i + 1.

From Algorithm 1, the rank-two update of Ak’s clearly shows

Ai+2Φi+1 = δi+1.

Thus, part (i) is true when j = i + 1.
From part (ii), it follows from the induction hypothesis that for j ≤ i ,

δt
i+1 Φ j = δt

i+1Hδ j = 0 and
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Φ t
i+1 Ai+1 Φ j = Φ t

i+1 δ j = δt
i+1Hδ j = 0.

Therefore,

Ai+2Φ j = Ai+1Φ j + δi+1δ
t
i+1Φ j

δt
i+1Φi+1

− Ai+1Φi+1Φ
t
i+1Ai+1Φ j

Φ t
i+1Ai+1Φi+1

= Ai+1Φ j

= δ j .

Hence, the part (i) follows.
Lastly, from part (ii), we note that the directions δi , i = 0, 1, 2, . . . , m are conjugate. Hence,
Algorithm 1 must terminate after m ≤ n steps. If m = n − 1, linear independence of δi ’s,
i = 0, 1, . . . , n − 1 clearly shows

An Hδ j = AnΦ j = δ j , j = 0, 1, 2, . . . , n − 1,

which implies An = H−1. ��

5 Illustrative examples

In this section, two illustrative examples are presented to explore the computational procedure
of Algorithm 1. In the first example, we consider a fuzzy quadratic form as the objective
function. In the second, a general nonlinear fuzzy function is taken as the objective function.

Example 1 Consider the following quadratic fuzzy optimization problem:

min
(x1,x2)∈R2

( 1
2/1/

3
2

)

x21 ⊕ (

0/ 1
2/1

)

x22 ⊕ ( 1
2/1/

3
2

)

x1x2 ⊕ (

0/ 1
2/1

)

x1 � (

0/ 1
2/1

)

x2.

Let us consider the initial approximation to the minimizer as x0 = (x01 , x02 ) = (0, 0). With
the help of fuzzy arithmetic, the lower and the upper function can be obtained as

f L
α (x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1+α
2 x21 + α

2 x22 + 1+α
2 x1x2 + α

2 x1 − (1 − α
2 )x2 if x1 ≥ 0, x2 ≥ 0

1+α
2 x21 + α

2 x22 + 3−α
2 x1x2 + α

2 x1 − α
2 x2 if x1 ≥ 0, x2 ≤ 0

1+α
2 x21 + α

2 x22 + 3−α
2 x1x2 + (1 − α

2 )x1 − (1 − α
2 )x2 if x1 ≤ 0, x2 ≥ 0

1+α
2 x21 + α

2 x22 + 1+α
2 x1x2 + (1 − α

2 )x1 − α
2 x2 if x1 ≤ 0, x2 ≥ 0

and

f U
α (x1, x2)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

3−α
2 x21 + (1 − α

2 )x22 + 3−α
2 x1x2 + (1 − α

2 )x1 − α
2 x2 if x1 ≥ 0, x2 ≥ 0

3−α
2 x21 + (1 − α

2 )x22 + 1+α
2 x1x2 + (1 − α

2 )x1 − (1 − α
2 )x2 if x1 ≥ 0, x2 ≤ 0

3−α
2 x21 + (1 − α

2 )x22 + 1+α
2 x1x2 + α

2 x1 − α
2 x2 if x1 ≤ 0, x2 ≥ 0

3−α
2 x21 + (1 − α

2 )x22 + 3−α
2 x1x2 + α

2 x1 − (1 − α
2 )x2 if x1 ≤ 0, x2 ≥ 0.

Therefore,

φ(x1, x2) =
∫ 1

0

(

f L
α (x1, x2) + f U

α (x1, x2)
)

dα = 2x21 + x22 + 2x1x2 + x1 − x2.
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Here

∇φ(x1, x2) =
[

4x1 + 2x2 + 1
2x1 + 2x2 − 1

]

.

Considering the initial matrix A0 = I2, we calculate the sequence {xk}, xk = (xk
1 , xk

2 ),
through the following equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dk = − Ak

[

4xk
1 + 2xk

2 + 1

2xk
1 + 2xk

2 − 1

]

αk = argminα≥0φ(xk + αdk)

δk = αkdk

xk+1 = xk + δk

Φk = ∇φ(xk+1) − ∇φ(xk) =
[

4(xk+1
1 − xk

1 ) + 2(xk+1
2 − xk

1 )

2(xk+1
1 − xk

1 ) + 2(xk+1
2 − xk

1

]

, and

Ak+1 = Ak + δkδt
k

δt
kΦk

− AkΦkΦ t
k Ak

Φ t
k AkΦk

.

The initial iteration (k = 0)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 = (0, 0)

A0 =
[

1 0

0 1

]

‖∇φ(x0)‖ = ∥

∥(1,−1)t
∥

∥ = √
2 �= 0

d0 = −
[

−1

1

]

α0 = 1

x1 = (−1, 1)

δ1 = (−1, 1)

Φ1 = (−2, 0)

A1 =
[

1
2 − 1

2

− 1
2

3
2

]

.

The second iteration (k = 1)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 = (−1, 1)

d1 = (0, 1)

α1 = 1
2

x2 = (−1, 3
2 )

∇φ(x2) =
[

0

0

]

.

Hence x̄ = (−1, 3
2 ) is a nondominated solution of the considered problem. It is important

to note that the method converged at the second iteration since the objective function is a
quadratic fuzzy function. This convergence at second iteration supports the result in Theorem
3.
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Example 2 Consider the following nonlinear fuzzy optimization problem:

min
(x1,x2)∈R2

(0/ 1
2/1)x41 � (3/4/5)x31 ⊕ ( 232 / 25

2 / 27
2 )x21

�(1/2/3)x21 x22 ⊕ (1/2/3)x22 � (15/16/17)x1 ⊕ (6/8/10).

With the help of fuzzy arithmetic, the lower and the upper function can be obtained as

f L
α (x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α
2 x41 − (5 − α)x31 + 23+α

2 x21 − (3 − α)x1x2 + (1 + α)x22
−(17 − α)x1 + (6 + 2α) if x1 ≥ 0, x2 ≥ 0

α
2 x41 − (5 − α)x31 + 23+α

2 x21 − (1 + α)x1x2 + (1 + α)x22
−(17 − α)x1 + (6 + 2α) if x1 ≥ 0, x2 ≤ 0

α
2 x41 − (3 + α)x31 + 23+α

2 x21 − (1 + α)x1x2 + (1 + α)x22
−(15 + α)x1 + (6 + 2α) if x1 ≤ 0, x2 ≥ 0

α
2 x41 − (3 + α)x31 + 23+α

2 x21 − (3 − α)x1x2 + (1 + α)x22
−(15 + α)x1 + (6 + 2α) if x1 ≤ 0, x2 ≥ 0

and

f U
α (x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 − α
2 )x41 − (3 + α)x31 + 27−α

2 x21 − (1 + α)x1x2 + (3 − α)x22
−(15 + α)x1 + (10 − 2α) if x1 ≥ 0, x2 ≥ 0

(1 − α
2 )x41 − (3 + α)x31 + 27−α

2 x21 − (3 − α)x1x2 + (3 − α)x22
−(15 + α)x1 + (10 − 2α) if x1 ≥ 0, x2 ≤ 0

(1 − α
2 )x41 − (5 − α)x31 + 27−α

2 x21 − (3 − α)x1x2 + (3 − α)x22
−(17 − α)x1 + (10 − 2α) if x1 ≤ 0, x2 ≥ 0

(1 − α
2 )x41 − (5 − α)x31 + 27−α

2 x21 − (1 + α)x1x2 + (3 − α)x22
−(17 − α)x1 + (10 − 2α) if x1 ≤ 0, x2 ≥ 0

Therefore,

φ(x1, x2) =
∫ 1

0

(

f L
α (x1, x2) + f U

α (x1, x2)
)

dα

= x41 − 8x31 + 25x21 − 4x1x2 + 4x22 − 32x1 + 16.

Here

∇φ(x1, x2) =
[

4x31 − 24x21 + 50x1 − 4x2 − 32
8x2 − 4x1

]

.

The following Table 1 exhibits the performance of Algorithm 1 on this example with
the initial point as x0 = (0, 3), initial approximation of the Hessian as A0 = I2 and the
termination scalar as ε = 0.01. It is found that (2.12, 1.06) is a solution of the considered
problem.

6 Conclusion

In this paper, a quasi-Newton method with rank-two modification has been derived to find
a non-dominated solution of an unconstrained fuzzy optimization problem. In the opti-
mality concept, the fuzzy-max ordering of a pair of fuzzy numbers has been used. The
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gH -differentiability of fuzzy functions have been employed to find the non-dominated solu-
tion point. An algorithmic implementation and the convergence analysis of the proposed
technique has also been presented. The technique is found to have superlinear convergence
rate and quadratic termination property. Two numerical examples have been explored to
illustrate the proposed technique.

It is to note that unlike Newton method for fuzzy optimization problems [9,32], the
proposed method is derived without using the inverse of the concerned Hessian matrix.
Instead, a sequence of positive definite inverse Hessian approximation {Ak} is used which
satisfies the quasi-Newton equation Ak+1Φk = δk . Thus the derived method sidestepped the
inherent computational difficulty to compute inverse of the concerned Hessian matrix. In this
way, the proposed method is made as more efficient than the existing Newton method [9,32].

The method can be easily observed as much similar to the classical DFP method [30]
for the conventional optimization problem. In the similar way of the presented technique, it
can be further extended to a BFGS-like method [32] for fuzzy optimization. Instead of the
rank-two modification in the approximation of the inverse of the Hessian matrix, a rank-one
modification can also be done. It is also to be observed that in Algorithm , we make use
the exact line search technique along the descent direction dk = −Ak∇φ(xk). However,
an inexact line search technique [30] could have also been used. A future research on this
rank-one modification and inexact line search technique for fuzzy optimization problem can
be performed and implemented on Newton and quasi-Newton method.

It is important to observe that the proposed technique generates only one non-dominated
solution for a fuzzy optimization problem. Development of a method which can capture
complete nondominated solution set is an important issue for fuzzy optimization problem.
Our next step of research would be focused on capturing complete nondominated solution
of a fuzzy optimization problem with the help of the proposed quasi-Newton method.
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