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Abstract This paper deals the implementation of homotopy perturbation transform method
(HPTM) for numerical computation of initial valued autonomous system of time-fractional
partial differential equations (TFPDEs) with proportional delay, including generalized Burg-
ers equations with proportional delay. The HPTM is a hybrid of Laplace transform and
homotopy perturbation method. To confirm the efficiency and validity of the method, the
computation of three test problems of TFPDEs with proportional delay presented. The pro-
posed solutions are obtained in series form, converges very fast. The scheme seems very
reliable, effective and efficient powerful technique for solving various type of physical mod-
els arising in sciences and engineering.

Keywords Homotopy perturbation transform method · Fractional derivative, in Caputo
sense · Autonomous differential equations · Fractional partial deferential equation with
proportional delay · Generalized Burgers equations with proportional delay
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1 Introduction

Fractional differential equation have achieved great attention among researchers due to its
wide range of applications in various meaningful phenomena in fluid mechanics, electrical
networks, signal processing, diffusion, reaction processes and other fields of science and
engineering [4,19,26], among them, the non-linear oscillation of earthquake can be modeled
with fractional derivatives [9], the fluid-dynamic traffic model having fractional derivatives
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[11] can eliminate the deficiency arising from the assumption of continuum traffic flow,
fractional non linear complex model for seepage flow in porous media in [10].

Indeed, it is too tough to find an exact solution of a wide class of the differential equation.
Keeping all this in mind, various type of vigorous techniques has been developed to find an
approximate solution of such type of fractional differential equations, among others, gener-
alized differential transform method [22], variational iteration method [32], local fractional
variational iteration method [47], reproducing kernel Hilbert space method [7], Adomian
decomposition method [27] and homotopy analysis method [31], reduced differential trans-
formmethod [39,43] and fractional reduced differential transformmethod [34,36–38,40,44].

In the recent, vigourous techniques with Laplace transform has been developed, among
them, see [8,13–18,20]. Among others, HPTM has been employed for solving fractional
model of Navier–Stokes equation [21], optimal control problems [6], fractional coupled
sine-Gordon equations [30], Falkner–Skan wedge flow [24], time- and space-fractional cou-
pled Burgers’ equations [42], strongly nonlinear oscillators [28], non-homogeneous partial
differential equations with a variable coefficient [23]. The reader also refer to read [33].

The partial functional differential equations with proportional delays, a special class of
delay partial differential equation, arises specially in the field of biology,medicine, population
ecology, control systems and climate models [46], and complex economic macrodynamics
[12].

In this paper, we obtain the numerical solution of initial valued autonomous system of
TFPDEs with proportional delay [33] defined by{

Dα
t (u(x, t)) = f

(
x, u(a0x, b0t),

∂
∂x u(a1x, b1t), . . . ,

∂m

∂xm u(amx, bmt)
)

,

uk(x, 0) = ψk(x).

where ai , bi ∈ (0, 1) for all i ∈ N ∪ {0}. gk is initial value and f is the differential operator,
the independent variables (x, t) (where t denote time, and x-space variable) generally denotes
the position in space or size of cells, maturation level, at a time while its solution may be the
voltage, temperature, densities of different particles, form instance, chemicals, cells, etc.. One
significant example of the model: Korteweg–de Vries (KdV) equation, arise in the research
of shallow water waves is as follow:

Dα
t (u(x, t)) = bu

∂

∂x
u(a0x, b0t) + ∂3

∂x3
u(a1x, b1t), 0 < α < 1.

where b is a constant. The another well-known model: time-fractional nonlinear Klein–
Gordon equation with proportional delay, aries in quantum field theory to describe nonlinear
wave interaction

Dα
t (u(x, t)) = u

∂2

∂x2
u(a0x, b0t) − bu(a1x, b1t) − F(u(a2x, b2t)) + h(x, t), 1 < α < 2.

where b is a constant, h(x, t) known analytic function and F is the nonlinear operator of
u(x, t). For details of various type ofmodels, we refer the reader to [33,46] and the references
therein.

To best of my knowledge, a little literature of numerical techniques to solve TFPDE with
delay, among them, Chebyshev pseudospectral method for linear differential and differential-
functional parabolic equations by Zubik-Kowal [48], spectral collocation and waveform
relaxation methods by Zubik-Kowal and Jackiewicz [49] and iterated pseudospectral method
[25] for nonlinear delay partial differential equations, two dimensional differential transform
method (2D-DTM) and RDTM for partial differential equations with proportional delay by
Abazari and Ganji [2], Abazari and Kilicman [1] used DTM for nonlinear integro-differential
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equationswith proportional delay, group analysismethod for nonhomogeneousmucilaginous
Burgers equation with proportional delay due to Tanthanuch [45], homotopy perturbation
method forTFPDEwith proportional delay bySakar et al. [33] andShakeri-Dehghan [35], and
Biazar and Ghanbari [3], variational iteration method (VIM) for solving neutral functional-
differential equation with proportional delays by Chena and Wang [5] and TFPDE with
proportional delay by Singh and Kumar [41], functional constraints method for the exact
solutions of nonlinear delay reaction-diffusion equations by Polyanin and Zhurov [29] and
so forth.

In this paper, our main goal is to propose an alternative numerical solution of initial
valued autonomous system of time fractional partial differential equation with proportional
delay [33]. The paper is organized into five more sections, which follow this introduction.
Specifically, Sect. 2 deals with revisit of fractional calculus. Section 3 is devoted to the
procedure for the implementation of the HPTM for the problem (4). Section 4 is concerned
with three test problems with the main aim to establish the convergency and effectiveness
of the HPTM. Finally, Sect. 5 concludes the paper with reference to critical analysis and
research perspectives.

2 Preliminaries

This section revisit some basic definitions of fractional calculus due to Liouville [26], which
we need to complete the paper.

Definition 1 Let μ ∈ R and m ∈ N. A function f : R+ → R belongs to Cμ if there exists
k ∈ R, k > μ and g ∈ C[0,∞) such that f (x) = xkg(x), ∀x ∈ R

+. Moreover, f ∈ C
m
μ if

f (m) ∈ Cμ.

Definition 2 Let J α
t (α ≥ 0) be Riemann–Liouville fractional integral operator and let

f ∈ Cμ, then

(*) J α
t f (t) = 1

Γ (α)

t∫
0

(t − τ)α−1 f (τ ) dτ, if α > 0,

(**) J 0
t f (t)= f (t), where Γ (z) :=

∞∫
0
e−t t z−1dt, z ∈ C.

For f ∈ Cμ,μ ≥ −1, α, β ≥ 0 and γ > −1, the operatorJ α
t satisfy the following properties

(i) J α
t J β

t f (x) = J α+β
t f (x) = Jβ

t J α
t f (x), (ii) J α

t x
γ = Γ (1+γ )

Γ (1+γ+α)
xα+γ .

The Caputo fractional differentiation operator Dα
t defined as follows:

Definition 3 Let f ∈ Cμ, μ ≥ −1 and m − 1 < α ≤ m,m ∈ N. Then

Dα
t f (t) =J m−α

t Dm
t f (t) = 1

Γ (m − α)

t∫
0

(t − τ)m−α−1 f (m) (τ ) dτ, (1)

Moreover, the operator Dα
t satisfy following the basic properties

Lemma 1 Let m − 1 < α ≤ m,m ∈ N, and f ∈ C
m
μ,μ ≥ −1, and γ > α − 1, then

(a) Dα
t Dβ

t f (x) = Dα+β
t f (x); (b) Dα

t x
γ = Γ (1+γ )

Γ (1+γ−α)
xγ−α,

(c) Dα
t J α

t f (t) = f (t), (d) J α
t Dα

t f (t) = f (t) − ∑m
k=0 f (k)

(
0+) tk

k! , for t > 0.
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For more details on fractional derivatives, one can refer [4,19,26].

Definition 4 The Laplace transform of a piecewise continuous function u(t) in (0,∞) is
defined by

U(s) = L{u(t)} =
∫ ∞

0
u(t) exp(−st)dt, (2)

where s is a parameter. Moreover, for the Caputo derivativeDα
t u (t) and Riemann– Liouville

fractional integral J α
t u (t) of a function u ∈ Cμ (μ ≥ −1), the laplace transform [19,26] is

defined as

L{J α
t u (t)} = s−αU(s),

L{Dα
t f (t)} = sαU(s) −

m−1∑
r=0

sα−r−1u(r)(0+), (m − 1 < α ≤ m)
(3)

3 Implementation: HPTM for TFPDEs with proportional delay

This section describes the implementation of HPTM to the initial valued autonomous system
of TFPDEs with proportional delay, defined as below:{

Dα
t (u(x, t)) = f

(
x, u(a0x, b0t),

∂
∂x u(a1x, b1t), . . . ,

∂m

∂xm u(amx, bmt)
)

,

u(x, 0) = ψ(x).
(4)

Taking Laplace transform on Eq. (4), we get

U(x, s) = u(x, 0)

s
+ 1

sα
L
[
f

(
x, u(a0x, b0t),

∂

∂x
u(a1x, b1t), . . . ,

∂m

∂xm
u(amx, bmt)

)]
(5)

Inverse Laplace transform of Eq. (5) leads

u(x, t) = ψ(x) + L−1
[
1

sα
L
[
f

(
x, u(a0x, b0t),

∂

∂x
u(a1x, b1t), . . . ,

∂m

∂xm
u(amx, bmt)

)]]
,

(6)

where ψ(x) denotes source term, usually the recommended initial conditions.
Let us assume from homotopy perturbation method that the basic solution of Eq. (5) in a

power series:

u∗(x, t) =
∞∑
ı=0

pıuı (x, t). (7)

From Eqs. (7) and (6), we get

∞∑
r=0

prur (x, t)= u(x, 0)+ p

[
L−1

{
1

sα
L
{
f

(
x, t,

∞∑
r=0

ur (a0x, b0t),
∂

∂x

∞∑
r=0

ur (a1x, b1t),

. . .
∂m

∂xm

∞∑
r=0

ur (amx, bmt)

)}}]
(8)
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On equating like powers of p, we get

p0 : u0(x, t) = ψ(x)

p1 : u1(x, t) = L−1
[
1

sα
L
[
f

(
x, t, u0(a0x, b0t),

∂

∂x
u0(a1x, b1t), . . . ,

∂m

∂xm
u0(amx, bmt)

)]]
.
.
.

.

.

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

For p = 1, an approximate solution is given by

u(x, t) =
∞∑
ı=0

uı (x, t). (10)

3.1 Convergence analysis and error estimate

This sections studies the convergence of the HPTM solution and the error estimate.

Theorem 1 Let 0 < γ < 1 and let un(x, t), u(x, t) are in Banach space (C[0, 1], ‖·‖). Then
the series solution

∑∞
n=0 un(x, t) from the sequence {un(x)}∞n=0 converges to the solution of

Eq. (4) whenever un(x) ≤ γ un−1)(x) for all n ∈ N.
Moreover, the maximum absolute truncation error of the series solution (10) for Eq. (4)

is computed as

∣∣∣∣∣
∣∣∣∣∣u(x, t) −

	∑
ı=0

uı (x, t)

∣∣∣∣∣
∣∣∣∣∣ ≤ γ 	+1

1 − γ
‖u0(x, t)‖ <

‖u0(x, t)‖
1 − γ

. (11)

Proof The proof is similar to [33, Theorem 4.1, 4.2].

4 Application of HPTM for TFPDEs with proportional delay

In this section, the effectiveness and validity of HPTM is illustrated by three test problems
of initial valued autonomous system of TFPDEs with proportional delay.

Example 1 Consider initial values systemof time-fractional order, generalizedBurgers equa-
tion with proportional delay as given in [33]

⎧⎪⎨
⎪⎩

Dα
t u(x, t) = ∂2

∂x2
u(x, t) + u

(
x

2
,
t

2

)
∂

∂x
u

(
x,

t

2

)
+ 1

2
u(x, t)

u(x, 0) = x,

(12)

Taking Laplace transformation of Eq. (12), we get

U(x, s) = x

s
+ 1

sα
L
[

∂2

∂x2
u(x, t) + u

(
x

2
,
t

2

)
∂

∂x
u

(
x,

t

2

)
+ 1

2
u(x, t)

]
(13)
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Now, inverse Laplace transform with basic solution (7) leads to

∞∑
r=0

prur (x, t) = x + p

[
L−1

{
1

sα
L
(

∂2

∂x2

( ∞∑
r=0

ur (x, t)

)

+
∞∑
r=0

ur

(
x

2
,
t

2

)
∂

∂x
uk−r

(
x,

t

2

)
+ 1

2

∞∑
r=0

ur (x, t)

)}]
(14)

On comparing the coefficient of like powers of p, we get

p0 : u0(x, t) = x,

p1 : u1(x, t) = L−1
[
1

sα
L
[

∂2

∂x2
(u0(x, t)) + u0

(
x

2
,
t

2

)
∂

∂x
u0

(
x,

t

2

)
+ 1

2
u0(x, t)

]]

= xtα

Γ (1 + α)

p2 : u2(x, t) = L−1
[
1

sα
L
{

∂2

∂x2
(u1(x, t)) + 1

2
u1(x, t)

+ u0

(
x

2
,
t

2

)
∂

∂x
u1

(
x,

t

2

)
+ u1

(
x

2
,
t

2

)
∂

∂x
u0

(
x,

t

2

)}]

= (1 + 21−α)xt2α

2Γ (1 + 2α)

(15)

p3 : u3(x, t) = L−1
[
1

sα
L
[

∂2

∂x2
(u2(x, t)) + u2(x, t)

2
+ u2

(
x

2
,
t

2

)
∂

∂x
u0

(
x,

t

2

)

+ u0

(
x

2
,
t

2

)
∂

∂x
u2

(
x,

t

2

)
+ u1

(
x

2
,
t

2

)
∂

∂x
u1

(
x,

t

2

)]]

= xt3α

4Γ (1 + 3α)

{
1 + 21−α + 21−2α + 22−3α + Γ (1 + 2α)

Γ (1 + α)2
21−2α

}

p4 : u4(x, t) = L−1
[
1

sα
L

[
∂2

∂x2
u3(x, t) + u3(x, t)

2
+ u0

(
x

2
,
t

2

)
∂

∂x
u3

(
x,

t

2

)

+ u1

(
x

2
,
t

2

)
∂

∂x
u2

(
x,

t

2

)
+ u2

(
x

2
,
t

2

)
∂

∂x
u1

(
x,

t

2

)

+ u3

(
x

2
,
t

2

)
∂

∂x
u0

(
x,

t

2

)]]

= xt4α

8Γ (1 + 4α)

{
1 + 29−6α + 28−5α + 3 × 27−3α + 27−2α + 27−α + 28−4α

+ (28−5α + 27−2α)
Γ (1 + 2α)

Γ (1 + α)2
+ (29−4α + 28−3α)

Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)

}
...

...

(16)

Therefore the solution for Eq. (12) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + · · · (17)

The same solution is obtained by Sarkar et al. [33]. In particular, for α = 1, the seventh order
solution is
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Table 1 Approximate HPTM
solution of Example 1 with first
six terms for at α = 1.0

x t Exact HPTM solution Eabs

0.25 0.25 0.321006 0.321004 2.122401E−06

0.50 0.412180 0.412109 7.094268E−05

0.75 0.529250 0.528686 5.634807E−04

1.00 0.679570 0.677083 2.487124E−03

0.5 0.25 0.642012 0.642008 4.244802E−06

0.50 0.824361 0.824219 1.418854E−04

0.75 1.058500 1.057373 1.126961E−03

1.00 1.359141 1.354167 4.974248E−03

0.75 0.25 0.963019 0.963012 6.369688E−06

0.50 1.236541 1.236328 2.128250E−04

0.75 1.587750 1.586060 1.690020E−03

1.00 2.038711 2.031250 7.461370E−03

(a) (b) (c)

Fig. 1 The surface HPTM solution behavior of u of Example 1 for a α = 0.8; b α = 0.9; c α = 1.0

Fig. 2 Plots of HPTM solution
u(x, t) of Example 1 for
α = 0.8, 0.9, 1.0,
t ∈ (0, 1); x = 1

u(x, t) = x

(
1 + t + t2

2
+ t3

6
+ t4

24
+ t5

120
+ t6

720
+ t7

5040

)
(18)

which is same as obtained by DTM and RDTM [2], and is a closed form of the exact solution
u(x, t) = x exp(t). The HPTM solution for α = 1 is reported in Table 1. The surface solution
behavior of u(x, t) for different values of α = 0.8, 0.9, 1.0 is depicted in Fig. 1, and the plots
of the solution for x = 1 at different time intervals t ≤ 1 is depicted in Fig. 2. It is found
that the results are agreed well with HPM as well as DTM solutions and approaching to the
exact solution.
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Example 2 Consider initial value TFPDE with proportional delay as given in [2,33]⎧⎪⎨
⎪⎩

Dα
t u(x, t) = u

(
x,

t

2

)
∂2

∂x2
u

(
x,

t

2

)
− u(x, t)

u(x, 0) = x2,

(19)

Taking Laplace transform of Eq. (19), we get

U(x, s) = x2

s
+ 1

sα
L
[
u

(
x,

t

2

)
∂2

∂x2
u

(
x,

t

2

)
− u(x, t)

]
(20)

The inverse Laplace transform of Eq. (20) leads to

u(x, t) = x2 + L−1
[
1

s
x + 1

sα
L
{
u

(
x,

t

2

)
∂2

∂x2
u

(
x,

t

2

)
− u(x, t)

}]
(21)

Eq. (21) with basic solution (7) leads to
∞∑
n=0

pnun(x, t) = x2 + p

[
L−1

{
1

sα
L
( ∞∑
n=0

un

(
x,

t

2

)
∂2

∂x2
uk−n

(
x,

t

2

)
−

∞∑
n=0

un(x, t)

)}]

(22)

On comparing the coefficient of like powers of p, we get

p0 : u0(x, t) = x2,

p1 : u1(x, t) = L−1
[
1

sα
L
[
u0

(
x,

t

2

)
∂2

∂x2
u0

(
x,

t

2

)
− u0(x, t)

]]

= x2tα

Γ (1 + α)

p2 : u2(x, t) = L−1
[
1

sα
L
[
u0

(
x,

t

2

)
∂2

∂x2
u1

(
x,

t

2

)
+ u1

(
x,

t

2

)

× ∂2

∂x2
u0

(
x,

t

2

)
− u1(x, t)

]]
= x2t2α(22−α − 1)

Γ (1 + 2α)

p3 : u3(x, t) = L−1
[
1

sα
L
[
u0

(
x,

t

2

)
∂2

∂x2
u2

(
x,

t

2

)
+ u2

(
x,

t

2

)
∂2

∂x2
u0

(
x,

t

2

)]]

+ L−1
[
1

sα
L
[
u1

(
x,

t

2

)
∂2

∂x2
u1

(
x,

t

2

)
− u2(x, t)

]]

= x2t3α

Γ (1 + 3α)

{
1 − 22−α − 22−2α + 24−3α + Γ (1 + 2α)

Γ (1 + α)2
21+α

}

p4 : u4(x, t) = L−1
[
1

sα
L
{
u0

(
x,

t

2

)
∂2

∂x2
u3

(
x,

t

2

)
+ u2

(
x,

t

2

)
∂2

∂x2
u1

(
x,

t

2

)

+ u1

(
x,

t

2

)
∂2

∂x2
u2

(
x,

t

2

)
+ u3

(
x,

t

2

)
∂2

∂x2
u0

(
x,

t

2

)
− u3(x, t)

}]

= x2t4α

Γ (1 + 4α)

(
1 − 22−α − 22−2α + 3 × 22−3α + 24−4α + 24−5α − 26−6α

)

+ x2t4α

Γ (1 + 4α)

(
(21+4α − 23+2α)Γ (1 + 2α)

Γ (1 + α)2
+ (22+3α − 24+2α)Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)

)
...

...

(23)
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Table 2 Approximate HPTM
solution of Example 2 with first
six terms for at α = 1.0

x t Exact HPTM solution Eabs

0.25 0.25 0.0802516 0.0802516 7.812108E−10

0.50 0.1030451 0.1030450 1.032903E−07

0.75 0.1323125 0.1323107 1.824464E−06

1.00 0.1698926 0.1698785 1.414206E−05

0.50 0.25 0.3210064 0.3210064 3.124843E−09

0.50 0.4121803 0.4121799 4.131611E−07

0.75 0.5292500 0.5292427 7.297854E−06

1.00 0.6795705 0.6795139 5.656823E−05

0.75 0.25 0.7222643 0.7222643 7.030897E−09

0.50 0.9274057 0.9274048 9.296126E−07

0.75 1.1908130 1.1907963 1.642017E−05

1.00 1.5290340 1.5289062 1.272785E−04

(a) (b) (c)

Fig. 3 The surface solution behavior of u of Example 2 for a α = 0.8; b α = 0.9; c α = 1.0

Thus, the solution for Eq. (19) is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + · · · (24)

which is the required exact solution, same solution is obtained by Sarkar et al. [33]. In
particular for α = 1, the seventh order solution is obtained as

u(x, t) = x2
(
1 + t + t2

2
+ t3

6
+ t4

24
+ t5

120
+ t6

720
+ t7

5040

)
(25)

which is same as obtained by DTM and RDTM [2], and is a closed form of the exact solution
u(x, t) = x2 exp(t). The HPTM solution for α = 1 is reported in Table 2. The surface
solution behavior of u(x, t) for different values of α = 0.8, 0.9, 1.0 is depicted in Fig. 3, and
the plots of the solution for x = 1 at different time intervals t ≤ 1 is depicted in Fig 4. It is
found that the proposed HPTM results are agreed well with HPM as well as DTM solutions
and approaching to the exact solution.
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Fig. 4 Plots of HPTM solution
u(x, t) of Example 2 for
α = 0.8, 0.9, 1.0;
t ∈ (0, 1); x = 1

Example 3 Consider initial value TFPDE with proportional delay as given in [2,33]

⎧⎪⎨
⎪⎩

Dα
t u(x, t) = ∂2

∂x2
u

(
x

2
,
t

2

)
∂

∂x
u

(
x

2
,
t

2

)
− 1

8

∂

∂x
u (x, t) − u(x, t)

u(x, 0) = x2,

(26)

Taking Laplace transform of Eq. (26), we get

U(x, s) = x2

s
+ 1

sα
L
[

∂2

∂x2
u

(
x

2
,
t

2

)
∂

∂x
u

(
x

2
,
t

2

)
− 1

8

∂

∂x
u (x, t) − u(x, t)

]
(27)

The inverse Laplace transform leads to

u(x, t) = x2 + L−1
[
1

s
x + 1

sα
L
{

∂2

∂x2
u

(
x

2
,
t

2

)
∂

∂x
u

(
x

2
,
t

2

)
− 1

8

∂

∂x
u (x, t) − u(x, t)

}]
(28)

Homotopy perturbation transform method on Eq. (28) leads to

∞∑
n=0

pnun(x, t) = x2 + p

(
L−1

[
1

sα
L
[
k=∞∑
n=0

∂2un
∂x2

(
x

2
,
t

2

)
∂uk−n

∂x

(
x

2
,
t

2

)

− 1

8

∂

∂x

∞∑
n=0

un (x, t) −
∞∑
n=0

un(x, t)

]])
(29)
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On comparing the coefficient of like powers of p, we get

p0 : u0(x, t) = x2,

p1 : u1(x, t) = L−1
[
1

sα
L
[

∂2

∂x2
u0

(
x

2
,
t

2

)
∂

∂x
u0

(
x

2
,
t

2

)
− 1

8

∂

∂x
u0 (x, t) − u0(x, t)

]]

= −x2tα

Γ (1 + α)

p2 : u2(x, t) = L−1
[
1

sα
L
[

∂2

∂x2
u0

(
x

2
,
t

2

)
∂

∂x
u1

(
x

2
,
t

2

)
+ u1

(
x

2
,
t

2

)
∂

∂x
u0

(
x

2
,
t

2

)

−1

8

∂

∂x
u1 (x, t) − u1(x, t)

]]

= t2αx
(21−α + 22x + 1)

2Γ (1 + 2α)

p3 : u3(x, t) = L−1
[
1

sα
L

[
∂2

∂x2
u0

(
x

2
,
t

2

)
∂

∂x
u2

(
x

2
,
t

2

)
+ ∂2

∂x2
u1

(
x

2
,
t

2

)
∂

∂x
u1

(
x

2
,
t

2

)

+ ∂2

∂x2
u2

(
x

2
,
t

2

)
∂

∂x
u0

(
x

2
,
t

2

)
− 1

8

∂

∂x
u2 (x, t) − u2(x, t)

]]

= t3α

2Γ (1 + 3α)

{−1 − 2x2 − 24 + 2−α + 2−2α + 2−3−α + 2−3−2α + 2−2−3α

+ 2−1−2αx
Γ (1 + 2α)

Γ (1 + α)2

}

p4 : u4(x, t) = L−1
[
1

sα
L
[

∂2u0
∂x2

(
x

2
,
t

2

)
∂u3
∂x

(
x

2
,
t

2

)
+ ∂2u1

∂x2

(
x

2
,
t

2

)
∂u2
∂x

(
x

2
,
t

2

)

+ ∂2u2
∂x2

(
x

2
,
t

2

)
∂u1
∂x

(
x

2
,
t

2

)
+ ∂2u3

∂x2

(
x

2
,
t

2

)
∂u0
∂x

(
x

2
,
t

2

)
− 1

8

∂

∂x
u3 (x, t) − u3(x, t)

]]

= t4α

Γ (1 + 4α)
{(3 × 2−5 − 2−3−α − 2−3−2α + 2−3−4α + 2−3−5α)}

+ t4α

Γ (1 + 4α)

{
((−2−2−3α − 2−2−2α − 2−2−α + 3 × 2−3)x + x2)

}
+ t4α

Γ (1 + 4α)
− (−2−4−α + 2−5−2α + 2−2−2αx)

Γ (1 + 2α)

Γ (1 + α)2

− t4α

Γ (1 + 4α)

{
2−4−4α(−2 + 2α + 23+αx)

Γ (1 + 3α)

Γ (1 + 2α) × Γ (1 + 4α))

}
.
.
.

.

.

.

(30)

The required solution of Eq. (26) is

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · · (31)

which is a closed form to the exact solution and the solution obtained by Sarkar et al. [33].
In particular, for α = 1, the seventh order solution is obtained as

u(x, t) = x2
(
1 − t + t2

3
− t3

6
+ t4

24
− t5

120
+ t6

720
− t7

5040
+ · · ·

)
(32)
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Table 3 Approximate HPTM solution of Example 3 with first six terms for at α = 1.0

x t Exact HPTM solution Eabs

0.25 0.25 4.867505E−02 4.867505E−02 7.338727E−10

0.50 3.790817E−02 3.790826E−02 9.114643E−08

0.75 2.952291E−02 2.952442E−02 1.512146E−06

1.00 2.299247E−02 2.300347E−02 1.100715E−05

0.50 0.25 1.947002E−01 1.947002E−01 2.935491E−09

0.50 1.516327E−01 1.516330E−01 3.645857E−07

0.75 1.180916E−01 1.180977E−01 6.048582E−06

1.00 9.196986E−02 9.201389E−02 4.402860E−05

0.75 0.25 4.380754E−01 4.380754E−01 6.604854E−09

0.50 3.411735E−01 3.411743E−01 8.203179E−07

0.75 2.657062E−01 2.657198E−01 1.360931E−05

1.00 2.069322E−01 2.070313E−01 9.906434E−05

(a) (b) (c)

Fig. 5 The solution behavior of HPTM solution u of Example 3 for a α = 0.8, 0.9, 1.0; b α = 0.9; c α = 1.0

Fig. 6 Plots of HPTM solution
u(x, t) of Example 3 for
α = 0.8, 0.9, 1.0;
t ∈ (0, 1); x = 1

which is same as obtained by DTM and RDTM [2], and is a closed form of the exact solution
u(x, t) = x2 exp(−t). The HPTM solution for α = 1.0 is reported in Table 3. The solution
behavior of u for different values of α = 0.8, 0.9, 1.0 is depicted in Fig. 5, while the plots for
x = 1 at different time levels t ≤ 1 is depicted in Fig. 6. This evident that HPTM solutions
are agreed well with HPM as well as DTM solutions, and approaching to the exact solution.
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5 Conclusion

In this paper, homotopy perturbation transform method is successfully
employed for numerical computation of initial valued autonomous system of time-fractional
model of TFPDE with proportional delay, where we use the fractional derivative in Caputo
sense. Three test problems are carried out in order to validate and illustrate the efficiency
of the method. The proposed solutions agreed excellently with HPM [33], VIM [41] and
DTM [2]. The proposed approximate series solutions are obtained without any discretization,
perturbation, or restrictive conditions, which converges very fast. However, the performed
calculations show that the describedmethod needs a small size of computation in comparison
to HPM [33] and DTM [2]. Small size of computation of this scheme is the strength of the
scheme.

Acknowledgements The authors are grateful to the anonymous referees for their time, effort, and exten-
sive comment(s) which improve the quality of the paper. Pramod Kumar is thankful to Babasaheb Bhimrao
Ambedkar University, Lucknow, India for financial assistance to carry out the work.

References

1. Abazari, R., Ganji, M.: Extended two-dimensional DTM and its application on nonlinear PDEs with
proportional delay. Int. J. Comput. Math. 88(8), 1749–1762 (2011)

2. Abazari, R., Kilicman, A.: Application of differential transform method on nonlinear integro-differential
equations with proportional delay. Neural Comput. Appl. 24, 391–397 (2014)

3. Biazar, J., Ghanbari, B.: The homotopy perturbation method for solving neutral functional-differential
equations with proportional delays. J. King Saud Univ. Sci. 24, 33–37 (2012)

4. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento 1,
161–98 (1971)

5. Chen, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation
with proportional delays. Comput. Math. Appl. 59, 2696–2702 (2010)

6. Ganjefar, S., Rezaei, S.: Modified homotopy perturbation method for optimal control problems using the
Padè approximant. Appl. Math. Model. (2016). doi:10.1016/j.apm.2016.02.039

7. Geng, F., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems.
Appl. Math. Lett. 25(5), 818–823 (2012)

8. Gondal, M.A., Khan, M., Omrani, K.: A new analytical approach to two dimensional magneto-
hydrodynamics flow over a nonlinear porous stretching sheet by Laplace Padè decomposition method.
Results Math. 63, 289–301 (2013)

9. He, J.H.: Nonlinear oscillation with fractional derivative and its applications. In: International Conference
on Vibrating Engg’98, Dalian, pp. 288–291 (1998)

10. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media.
Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

11. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–62 (1999)
12. Keller, A.A.: Contribution of the delay differential equations to the complex economic macrodynamics.

WSEAS Trans. Syst. 9(4), 258–271 (2010)
13. Khader, M.M., Kumar, S., Abbasbandy, S.: New homotopy analysis transform method for solving the

discontinued problems arising in nanotechnology. Chin. Phys. B 22(11), 110201 (2013)
14. Khan, M., Gondal, M.A.: A reliable treatment of Abel’s second kind singular integral equations. Appl.

Math. Lett. 25(11), 1666–1670 (2012)
15. Khan, M., Hussain, M.: Application of Laplace decomposition method on semi-infinite domain. Numer.

Algorithms 56, 211–218 (2011)
16. Khan, M., Gondal, M.A., Hussain, I., Vanani, S.K.: A new comparative study between homotopy analysis

transformmethod and homotopy perturbation transformmethod on semi-infinite domain. Math. Comput.
Model. 55, 1143–1150 (2012)

17. Khan,M., Gondal, M.A., Kumar, S.: A new analytical solution procedure for nonlinear integral equations.
Math. Comput. Model. 55, 1892–1897 (2012)

18. Khan, M., Gondal, M.A., Batool, S.I.: A new modified Laplace decomposition method for higher order
boundary value problems. Comput. Math. Organ. Theory 19(4), 446–459 (2013)

123

http://dx.doi.org/10.1016/j.apm.2016.02.039


124 B. K. Singh, P. Kumar

19. Kilbas,A.A., Srivastava,H.M., Trujillo, J.J.: Theory andApplications of FractionalDifferential Equations.
Elsevier, Amsterdam (2006)

20. Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M.: Analytical solution of fractional Navier–Stokes
equation by using modified laplace decomposition method. Ain Shams Eng. J. 5(2), 569–574 (2014)

21. Kumar, D., Singh, J., Kumar, S.: A fractional model of Navier–Stokes equation arising in unsteady flow
of a viscous fluid. J. Assoc. Arab Univ. Basic. Appl. Sci. 17, 14–19 (2015)

22. Liu, J., Hou, G.: Numerical solutions of the space-and time-fractional coupled burgers equations by
generalized differential transform method. Appl. Math. Comput. 217(16), 7001–7008 (2011)

23. Madani,M., Fathizadeh,M., Khan, Y., Yildirim,A.: On the coupling of the homotopy perturbationmethod
and Laplace transformation. Math. Comput. Model. 53, 1937–1945 (2011)

24. Madaki, G., Abdulhameed,M., Ali, M., Roslan, R.: Solution of the Falkner–Skan wedge flow by a revised
optimal homotopy asymptotic method, Madaki et al. SpringerPlus 5, 513 (2016)

25. Mead, J., Zubik-Kowal, B.: An iterated pseudospectral method for delay partial differential equations.
Appl. Numer. Math. 55, 227–250 (2005)

26. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.
Wiley, New York (1993)

27. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by adomaian
decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

28. Momani, S., Erjaee, G.H., Alnasr,M.H.: Themodified homotopy perturbationmethod for solving strongly
nonlinear oscillators. Comput. Math. Appl. 58, 2209–2220 (2009)

29. Polyanin, A.D., Zhurov, A.I.: Functional constraints method for constructing exact solutions to delay
reaction–diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer.
Simul. 19(3), 417–430 (2014)

30. Ray, S.S., Sahoo, S.: A comparative study on the analytic solutions of fractional coupled sine-Gordon
equations by using two reliable methods. Appl. Math. Comput. 253, 72–82 (2015)

31. Sakar, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg–
Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Model. 37(20–
21), 1634–1641 (2013)

32. Sakar, M.G., Ergören, H.: Alternative variational iteration method for solving the time-fractional
Fornberg–Whitham equation. Appl. Math. Model. 39(14), 3972–3979 (2015)

33. Sakar, M.G., Uludag, F., Erdogan, F.: Numerical solution of time-fractional nonlinear PDEs with propor-
tional delays by homotopy perturbation method. Appl. Math. Model. (2016). doi:10.1016/j.apm.2016.02.
005

34. Saravanan, A., Magesh, N.: An efficient computational technique for solving the Fokker–Planck equation
with space and time fractional derivatives. J. King Saud Univ. Sci. 28, 160–166 (2016)

35. Shakeri, F., Dehghan, M.: Solution of delay differential equations via a homotopy perturbation method.
Math. Comput. Model. 48, 486–498 (2008)

36. Singh, B.K.: Fractional reduced differential transform method for numerical computation of a system of
linear and nonlinear fractional partial differential equations. Int. J. Open Probl. Comput. Sci. Math. 9(3),
20–38 (2016)

37. Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model
of Navier–Stokes equation. Ain Shams Eng. J. (2016). doi:10.1016/j.asej.2016.04.009

38. Singh, B.K., Kumar, P.: Numerical computation for time-fractional gas dynamics equations by fractional
reduced differential transforms method. J. Math. Syst. Sci. 6(6), 248259 (2016)

39. Singh, B.K., Mahendra: A numerical computation of a system of linear and nonlinear time dependent
partial differential equations using reduced differential transformmethod. Int. J. Differ. Equ. 2016, Article
ID 4275389, 8 pp. (2016)

40. Singh, B.K., Srivastava, V.K.: Approximate series solution of multi-dimensional, time fractional-order
(heat-like) diffusion equations using FRDTM. R. Soc. Open Sci. 2, 140511. doi:10.1098/rsos.140511

41. Singh, B.K., Kumar, P.: Fractional variational iteration method for solving fractional partial differential
equations with proportional delay. Int. J. Differ. Equ. (2017). https://www.hindawi.com/journals/ijde/aip/
5206380/

42. Singh, J., Kumar, D., Swroop, R.: Numerical solution of time- and space-fractional coupled Burgers’
equations via homotopy algorithm. Alex. Eng. J. (2016). doi:10.1016/j.aej.2016.03.028

43. Srivastava, V.K., Mishra, N., Kumar, S., Singh, B.K., Awasthi, M.K.: Reduced differential transform
method for solving (1+ n)-dimensional Burgers’ equation. Egypt. J. Basic Appl. Sci. 1, 115–119 (2014)

44. Srivastava, V.K., Kumar, S., Awasthi, M.K., Singh, B.K.: Two-dimensional time fractional-order biolog-
ical population model and its analytical solution. Egypt. J. Basic Appl. Sci. 1, 71–76 (2014)

45. Tanthanuch, J.: Symmetry analysis of the nonhomogeneous inviscid burgers equation with delay. Com-
mun. Nonlinear Sci. Numer. Simul. 17(12), 4978–4987 (2012)

123

http://dx.doi.org/10.1016/j.apm.2016.02.005
http://dx.doi.org/10.1016/j.apm.2016.02.005
http://dx.doi.org/10.1016/j.asej.2016.04.009
http://dx.doi.org/10.1098/rsos.140511
https://www.hindawi.com/journals/ijde/aip/5206380/
https://www.hindawi.com/journals/ijde/aip/5206380/
http://dx.doi.org/10.1016/j.aej.2016.03.028


Homotopy perturbation transform method for solving fractional… 125

46. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)
47. Yang, X.J., Baleanu, D., Khan, Y., Mohyud-din, S.T.: Local fractional variational iteration method for

diffusion and wave equations on cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)
48. Zubik-Kowal, B.: Chebyshev pseudospectral method and waveform relaxation for differential and

differential-functional parabolic equations. Appl. Numer. Math. 34(2–3), 309–328 (2000)
49. Zubik-Kowal, B., Jackiewicz, Z.: Spectral collocation and waveform relaxation methods for nonlinear

delay partial differential equations. Appl. Numer. Math. 56(3–4), 433–443 (2006)

123


	Homotopy perturbation transform method for solving fractional partial differential equations with proportional delay
	Abstract
	1 Introduction
	2 Preliminaries
	3 Implementation: HPTM for TFPDEs with proportional delay
	3.1 Convergence analysis and error estimate

	4 Application of HPTM for TFPDEs with proportional delay
	5 Conclusion
	Acknowledgements
	References




