
SeMA (2018) 75:1–16
https://doi.org/10.1007/s40324-017-0108-2

Computing the smallest eigenpairs of the graph Laplacian

Luca Bergamaschi1 · Enrico Bozzo2

Received: 28 September 2016 / Accepted: 19 January 2017 / Published online: 6 February 2017
© Sociedad Española de Matemática Aplicada 2017

Abstract The graph Laplacian, a typical representation of a network, is an important matrix
that can tell us much about the network structure. In particular its eigenpairs (eigenvalues and
eigenvectors) incubate precious topological information about the network at hand, includ-
ing connectivity, partitioning, node distance and centrality. Real networks might be very
large in number of nodes; luckily, most real networks are sparse, meaning that the number
of edges (binary connections among nodes) are few with respect to the maximum num-
ber of possible edges. In this paper we experimentally compare three important algorithms
for computation of a few among the smallest eigenpairs of large and sparse matrices: the
Implicitly Restarted Lanczos Method, which is the current implementation in the most pop-
ular scientific computing environments (MATLAB/R), the Jacobi–Davidson method, and
the Deflation Accelerated Conjugate Gradient method. We implemented the algorithms in
a uniform programming setting and tested them over diverse real-world networks including
biological, technological, information, and social networks.

Keywords Graph Laplacian · Eigenpair computation · Algorithms · Networks

Mathematics Subject Classification 65F15 · 65Y20 · 05C82

The work of L. Bergamaschi has been partially supported by the Spanish Grant MTM2010-18674 and by the
Italian Grant CPDA155834/15.

B Luca Bergamaschi
luca.bergamaschi@unipd.it

Enrico Bozzo
enrico.bozzo@uniud.it

1 Department of Civil Environmental and Architectural Engineering, University of Padua, via
Marzolo 9, Padua, Italy

2 Department of Mathematics Computer Science and Physics, University of Udine, via delle Scienze
206, Udine, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40324-017-0108-2&domain=pdf
http://orcid.org/0000-0001-8273-9674

2 L. Bergamaschi, E. Bozzo

1 Introduction

The bi-directional link between network science and matrix algebra is intriguing and promis-
ing [10,22]. Of course we can apply results and methods of matrix algebra to investigate the
properties of networks. On the other hand real networks, with their universal architectures,
represent a class of algebraic structures (matrices) for which results and methods of matrix
algebra can be improved and specialized. Clearly, both network science and matrix alge-
bra would benefit from this synergistic approach. Network science would gain additional
insight in the structure of real networks, while matrix algebra would obtain more challenging
applications.

Networks, in their basic form of graphs of nodes and edges, can be represented asmatrices.
Themost common representation of a graph consists of the graph adjacencymatrix, where the
entries of the matrix that are not null represent the edges of the graph. Often, it is convenient
to represent a graph with its Laplacianmatrix, which places on the diagonal the degrees of the
graph nodes (the number of connections of the nodes) and elsewhere information about the
distribution of edges among nodes in the graph. The Laplacian matrix, and in particular its
smallest eigenpairs (eigenpairs relative to the smallest eigenvalues), turn up in many different
places in network science. Examples include random walks on networks, resistor networks,
resistance distance on networks, current-flow closeness and betweenness centralitymeasures,
graph partitioning, and network connectivity [9,16,23].

Real networksmight be very large; however, they are typically also very sparse.Moreover,
generally, not the entire matrix spectrum is necessary, but only a few eigenpairs, either the
lowest of the largest, are enough. In Sect. 2 we will discuss in detail some applications
that require the approximate computation of a number of the smallest eigenvalues of the
Laplacian matrix. One of these is the computation of the betweenness centrality index [23]
which quantifies the information that passes through a node in order to transit between
others. This index can be approximated by computing some of the smallest eigenpairs of the
Laplacian.

A number of iterative procedures, based on a generalization of the well-known power
method, have been recently developed to compute a few eigenpairs of a large and sparse
matrix. In this paper, we experimentally analyze three important iterative methods: (i) the
Implicitly Restarted Lanczos Method [20], (ii) the Jacobi–Davidson method [25], and (iii)
the Deflation Accelerated Conjugate Gradient method [5]. We implement these methods in
a uniform programming environment and experimentally compare them on four Laplacian
matrices of networks arising from realistic applications. The real networks include a bio-
logical network (a protein-protein interaction network of yeast), a technological network
(a snapshot of the Internet), an information network (a fragment of the Web), and a social
network (the whole collaboration network among Computer Science scholars).

The layout of the rest of the paper is the following. In Sect. 2we describe some applications
of the lowest eigenpairs of the Laplacian matrix of a graph. The compared algorithms are
reviewed in Sect. 3. Section 4 is devoted to the discussion of the outcomes of the comparison
among the algorithmswhen they run on real network data.We drawour conclusions in Sect. 5.

2 Why computing some eigenpairs of the Laplacian matrix of a graph

Let G = (N , E, w) be a simple (no multiple edges, no self-loops) undirected weighted graph
with N the set of nodes, |N | = n, E the set of edges, |E | = m, and w a vector such that

123

Computing the smallest eigenpairs of the graph Laplacian 3

wk > 0 is the positive weight of edge k, for k = 1, . . . ,m. The weighted Laplacian of G is
the n × n symmetric matrix

G = D − A,

where A = (ai, j), i, j = 1, . . . , n, is theweighted adjacencymatrix ofG and D is the diagonal
matrix of the generalized degrees (the sum of the weights of the incident arcs) of the nodes.
Hence, if G = (gi, j), i, j = 1, . . . , n, then gi, j = −ai, j if i �= j while gi,i = ∑n

j=1 ai, j . In
the following we focus on the spectral properties of the weighted Laplacian matrix and on
their applicative importance.

If e denotes a vector of ones by definition De = Ae so that Ge = 0. Thus e is an
eigenvector of G associated to the eigenvalue λ1 = 0. In addition if x ∈ R

n then

0 ≤ 1

2

n∑

i, j=1

ai, j (xi − x j)
2 = 1

2

⎛

⎜
⎜
⎝2

n∑

i=1

x2i

n∑

j=1

ai, j − 2
n∑

i, j=1
j �=i

xi x j ai, j

⎞

⎟
⎟
⎠

= 1

2

⎛

⎜
⎜
⎝2

n∑

i=1

x2i gi,i + 2
n∑

i, j=1
j �=i

xi x j gi, j

⎞

⎟
⎟
⎠

=
n∑

i, j=1

xi x j gi, j = xT Gx . (1)

From (1) it follows that G, besides symmetric, is positive semidefinite, and hence it has real
and nonnegative eigenvalues that is useful to order 0 = λ1 ≤ λ2 ≤ · · · ≤ λn .

A basic result states that the multiplicity of λ1 = 0 as an eigenvalue of G coincides with
the number of the connected components of G. Hence λ2 > 0 if and only if G is connected.
Fiedler [12] was one of the pioneers of the study of the relations between the connectivity
properties of G and the spectral properties of G, and for this reason λ2 is called algebraic
connectivity or Fiedler value.

Since G is symmetric it admits the spectral decomposition

G = V�V T

where� is the diagonal matrix such that�(i, i) = λi , i = 1, . . . , n, and V is orthogonal, i.e.
VV T = I = V T V , and its columns are the eigenvectors ofG. In particular, the first columnof
V is equal to e/

√
n since it is the normalized eigenvector of G associated with the eigenvalue

λ1 = 0. Hence, by using the well known MATLAB colon notation, V (:, 1) = e/
√
n. In

addition V (:, 2) will be called Fiedler vector, being the eigenvector associated with the
Fiedler value.

Certain applicative problems require the minimization of xT Gx under the condition that
the entries of the vector x belong to some discrete set.

An important example is discussed in [23] and concerns graph partitioning. Let us partition
N in two subsets N1 and N2. If we set xi = 1

2 (−1) j if xi ∈ N j then 1
2

∑n
i, j=1 ai, j (xi − x j)2

is the sum of the weighs of the arcs between N1 and N2, and is called the cut size. The
graph partitioning problem requires to find N1 and N2 of prescribed dimensions n1 and
n2 = n − n1, in such a way the cut size is minimized. Actually, all the known methods for
finding the minimum are very demanding, since they reduce to an enumeration of all the
(n
n1

) = n!
n1!(n − n1)! possible solutions. However, it is possible to approximate the minimum

123

4 L. Bergamaschi, E. Bozzo

by relaxing the constraints on the entries of x , allowing them to assume real values in such
a way that xT x = n/4 and eT x = (n1 − n2)/2. From (1) it follows that

min
s.t.

xT x=n/4
xT e=(n1−n2)/2

1

2

n∑

i, j=1

ai, j (xi − x j)
2 = min

s.t.
xT x=n/4

xT e=(n1−n2)/2

xT Gx .

If we set y = V T x we obtain eT x = eT V y = y1
√
n so that

min
s.t.

xT x=n/4
xT e=(n1−n2)/2

xT Gx = min
s.t. yT y=n/4

y1=(n1−n2)/(2
√
n)

yT�y.

Presented in this spectral form the problembecomes simple. It is easy to find that theminimum
is n1n2

n λ2 and is obtained when y1 = (n1 − n2)/(2
√
n), y2 = √

(n1n2)/n and yi = 0 for
i > 2. Hence, the minimum of the original problem is obtained for

x = n1 − n2
2n

e +
√
n1n2
n

V (:, 2),
showing the central role played by the Fiedler vector in the problem.

A second example of the same nature is discussed in [17]. In the case where all the weights
are equal to one, the minimization of xT Gx , with the constraint that the entries of x belong
to the n! possible permutations of the integers from 1 to n, allows to find an ordering of
the nodes of G that concentrates the entries of A near the main diagonal. For this reason it
is known as profile reducing ordering. By relaxing the problem we find as an approximate
solution the ordering induced by the entries of the Fiedler vector. This kind of applications
do not require an accurate computation of the entries of the vector.

A different but equally important application concerns the problem of the computation
of betweenness centrality [23]. This centrality index quantifies the quantity of information
that passes through a node in order to transit between others. Actually, for the computation
of betweenness centralities, a linear system in G for every couple of nodes of the network
has to be solved. This is actually equivalent to the computation of G+, the Moore–Penrose
generalized inverse of G [3,16]. It turns out that

G+ =
n∑

i=2

1

λi
V (:, i)V (:, i)T .

The use of approximations of G+ obtained by partial sums

T (k) =
k∑

i=2

1

λi
V (:, i)V (:, i)T ,

has been proposed in [9]. Clearly this implies the computation a certain number of the smallest
eigenpairs of the Laplacian. Moreover, if the eigenvalues λi , for i = k+1, . . . , n are close to
each other it is possible to approximate them by means of a suitable constant σ (for example
σ = (λk + λn)/2, or simply σ = λk). In [9] it has been shown that the use of

S(k) = T (k) +
n∑

j=k+1

1

σ
V (:, j)V (:, j)T

= 1

σ
I − 1

σ
V (:, 1)V (:, 1)T +

k∑

j=2

(
1

λ j
− 1

σ

)

V (:, j)V (:, j)T ,

123

Computing the smallest eigenpairs of the graph Laplacian 5

in the place of T (k) leads to improved approximations of the centralities. It is important to
note that in order to use S(k) no additional eigenpairs with respect to T (k) are requested.

3 Three algorithms for eigenvalue computations of large matrices

Starting from the subspace iteration, which is a generalization of the well-known power
method, a number of iterative procedures have been developed to compute a few eigenpairs
of a large and sparse matrix A. In the following, we describe three important methods:

• The Implicitly Restarted Lanczos Method (IRLM).
• The Jacobi–Davidson method (JD).
• The Deflation Accelerated Conjugate Gradient method (DACG).

All the methods are iterative, in the sense that they compute one or more eigenpairs by
constructing a sequence of vectors which approximate the exact solution. They are all based
on the following tasks which must be efficiently carried on:

1. Computation of the product of the matrix A by a vector. This matrix vector product
(MVP) has a cost proportional to the number of nonzero entries of A.

2. Computation of a matrix M , known as preconditioner, that approximates A−1 in such a
way that the eigenvalues of MA are well clustered around 1 and in addition the compu-
tations of Mv and Av, being v a generic vector, require comparable CPU time.

It is important to stress that IRLM and JD are characterized by an inner-outer iteration,
where at every outer iteration a linear system has to be solved. However, while IRLM requires
to solve these linear systems to a high accuracy, which is strictly related to the accuracy
requested for the eigenpairs, for JD inexact solution of inner linear system is sufficient to
achieve overall convergence. On the other hand, DACG does not require any linear system
solution.

3.1 Description of implicitly restarted Lanczos method

The best known method, the Implicitly Restarted Arnoldi Method (IRAM), is implemented
within the ARPACK package [20] and is also available in the most popular scientific com-
puting packages (MATLAB/R). For symmetric positive definite matrices, IRAM simplifies
to IRLM, Implicitly Restarted Lanczos Method which reduces the computational cost, by
taking advantage of the symmetry of the problem.

The idea of the Lanczos method is to project the coefficient matrix A onto a subspace
generated by an arbitrary initial vector v1 and the matrix A itself, known as Krylov sub-
space. In particular, a Krylov subspace of dimension m is generated by the following set of
independent vectors:

v1, Av1, . . . A
m−1v1.

Actually it is convenient to work with an orthogonal counterpart of this basis and to organize
its vectors as columns of a matrix Vm . Then, a symmetric and tridiagonal matrix

Tm =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α1 β2

β2 α2 β3
. . .

. . .
. . .

βm−1 αm−1 βm

βm αm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

123

6 L. Bergamaschi, E. Bozzo

Algorithm 1 Implicitly Restarted Lanczos Method
Computation of Tm for A.
v1 := unitary norm initial vector.
v0 := 0
β1 := 0
for j = 1, 2, . . . ,m

w j := Av j

α j := wT
j v j

w j := w j − α jv j − β j v j−1
β j+1 := ∥

∥w j
∥
∥

v j+1 := w j /β j+1
end for

Computation of Tm for A−1.
v1 := unitary norm initial vector.
v0 := 0
β1 := 0
for j = 1, 2, . . . ,m

Solve Aw j = v j using the PCG method

α j := wT
j v j

w j := w j − α jv j − β j v j−1
β j+1 := ∥

∥w j
∥
∥

v j+1 := w j /β j+1
end for

can be computed as

Tm = V T
m AVm .

It is well known that the largest eigenvalues of Tm , λ
(m)
n , λ

(m)
n−1, . . . converge, as the size of

the Krylov subspace m increases, to the largest eigenvalues of A: λm, λm−1, . . . , while the
corresponding eigenvectors of A can be computed from the homologous eigenvectors of Tm
by ui = Vmu

(m)
i .

Such a convergence in many cases is very fast: denoted with Neig the number of sought
eigenpairs, we experimentally found that 2Neig ÷ 3Neig matrix-vector products (MVP) are
usually enough to compute a small number Neig of the rightmost eigenpairs to a satisfactory
accuracy. The ratio between the MVP number and Neig is also known to decrease when Neig

is increasing. This eigenvalue solver exits whenever the following test is satisfied:

p∑

k=1

1

p

‖Auk − λkuk‖
λk

≤ δ,

with δ a fixed tolerance.
Convergence to the smallest eigenvalues is much slower. Hence, to compute the leftmost

part of the spectrum, it is more usual to apply the Lanczos process to the inverse of the
coefficient matrix A−1. Since A is expected to be large and sparse, its explicit inversion is
not convenient from both CPU time and storage point of view. Algorithm 1, left code, must
then be changed since now w j is computed as the solution of the linear system Aw j = v j ,
as reported in Algorithm 1, right code.

We also adopted the implicit-restart strategy as described in [20], a technique to combine
the implicitly shifted QR scheme with a k-step Lanczos factorization and obtain a truncated
form of the implicitly shifted QR iteration. The numerical difficulties and storage problems
normally associated with the Lanczos process are avoided. The algorithm is capable of com-
puting k eigenvalues using storage for only a moderate multiple of k vectors. The computed
eigenvectors form a basis for the desired k-dimensional eigenspace and are numerically
orthogonal to working precision.

Implicit restart provides a means to extract interesting information from large Krylov
subspaces while avoiding the storage and numerical difficulties associated with the standard
approach. It does this by continually compressing the interesting information into a fixed-size
k-dimensional subspace. This is accomplished through the implicitly shifted QRmechanism.
A Lanczos factorization of length m = k + p, AVm = VmTm + rmem , is compressed to a
factorization of length k that retains the eigeninformation of interest.

123

Computing the smallest eigenpairs of the graph Laplacian 7

3.1.1 Solution of the linear system

The linear system solution needed at every Lanczos step can be solved either by a direct
method (Cholesky factorization) or by an iterative method such as the Preconditioned Con-
jugate Gradient (PCG) method. The former approach is unviable if the system matrix size is
large (say n > 104÷105) due to the excessively dense triangular factor provided by the direct
factorization. In such a case the PCGmethod should be used with the aid of a preconditioner,
which speeds ups convergence. We choose the best known multi purpose preconditioner: the
incomplete Cholesky factorization with no fill-in. Another advantage of the iterative solution
is that the iterative procedure to solve the inner linear system is usually stopped when the
following test is satisfied:

‖v j − Aw j‖
‖v j‖ ≤ δPCG

where the tolerance δPCG can be chosen proportional to the accuracy required for the eigen-
vectors.
Note Since in our applications matrix A is singular, we computed the incomplete Cholesky
factorization for A + ε I with ε = 10−8 and worked with matrix A + uuT , being u the unit
eigenvector corresponding to λ = 0. Clearly we did not compute explicitly the dense matrix
Ã = A + uuT ; we only needed to provide a routine to multiply such matrix times a vector:

z = Ãw −→ α = uTw; z = Aw + αu.

3.2 Description of the Jacobi–Davidson method

To compute the smallest eigenvalue this method considers the minimization of the Rayleigh
Quotient

q(x) = xT Ax

xT x

which can be accomplished by setting its gradient to 0, namely

Ax − q(x)x = 0. (2)

Equation (2) is a nonlinear system of equations which can be solved by means of the
classical Newton’s method in which the Jacobian of (2) (or the Hessian of the Rayleigh
Quotient) is replaced by a simplified formula: J (u) ≈ A−q(u)I , which is shown tomaintain
the convergence properties of the Newton’s method. The kth iterate of this Newton’s method
hence reads

(A − q(uk)I)sk = −(Auk − q(uk)uk) (3)

uk+1 = uk + sk . (4)

In practice solution of the system (3) is known to produce stagnation in the Newton process.
In [25] the authors proposed to use a projected Jacobian namely

(I − uku
T
k)(A − q(uk)I)(I − uku

T
k)sk = −(Auk − q(uk)uk) (5)

uk+1 = uk + sk (6)

ensuring that the search direction sk be orthogonal to uk to avoid stagnation.
Even this corrected Newton iteration may be slow, especially if a good starting point is not

available. In [25] it is proposed to perform a Rayleigh–Ritz step at every Newton iteration. In

123

8 L. Bergamaschi, E. Bozzo

Algorithm 2 Jacobi–Davidson method
Choose unitary starting vector v. Initialize empty matrices H, V and W , k = 0.
while k < kmax

1. k := k + 1.
2. Orthogonalize v against V via modified Gram-Schmidt.
3. Normalize v. Compute w = Av.

4. H :=
(

H VTw

vT W vT w

)

, V := [V |v] W := [W |w].
5. Compute the smallest eigenpair (θ, y) of H (with ‖ y|‖ = 1).
6. Compute the vector u := V y and the associated residual vector r := Au − θu.
7. if ‖r‖ < ε (θ‖u‖) STOP
8. Solve the linear system

(I − uuT)(A − θ I)(I − uuT)v = −(Au − θu),

using the PCG method.

end while

detail, the Newton iterates are collected as columns of a matrix V ; then a very small matrix
H = V T AV is computed. The leftmost eigenvector y is easily computed and a new vector
u is obtained as u = V y. The main consequence of this procedure is the acceleration of the
Newton’s method toward the desired eigenvector.

To computeλ2, λ3, . . . , the previous scheme can be used provided that the Jacobianmatrix
is projected onto a subspace orthogonal to the previously computed eigenvectors. In detail,
if λ j is to be computed, the Newton step reads:

(I − QQT)(A − q(uk)I)(I − QQT)sk = −(Auk − q(uk)uk) (7)

uk+1 = uk + sk (8)

where Q = [v1 v2 . . . v j−1 uk]. In order to maintain the dimension of matrix H sufficiently
small, two additional parameters are usually introduced. If the size of matrix H is larger than
mmax then only the last mmin columns of matrix V are kept.

Even more than in the Lanczos process, the solution of linear system (5) must be found
using an iterative method. This system is usually solved to a very low accuracy so that in
practice few iterations (20÷30) are sufficient to provide a good search direction sk .Moreover,
it has been proved in [24] that linear system (5) can be solved by the PCG method, despite
of the fact that the system matrix is not symmetric positive definite. The resulting algorithm
is very fast in computing the smallest eigenvalue provided that a good preconditioner is
available for the matrix A in order to solve efficiently the system (5).

3.2.1 Comments on the algorithm

The sketch of the Jacobi–Davidson algorithm is reported in Algorithm 2. Step 5 implements
the Rayleigh–Ritz projection. It is a crucial step for the convergence of the algorithm, but
requires small CPU time since it consists in the eigensolution of the usually very small matrix
H .

Step 8 is themost relevant one from the viewpoint of computational cost. A good projected
preconditioner should be devised in order to guarantee fast convergence of the PCG method.
We used here as the preconditioner M = (I −uuT)P(I −uuT), with P the same incomplete
Cholesky factorization employed by IRLM.

123

Computing the smallest eigenpairs of the graph Laplacian 9

Algorithm 3 Deflation Accelerated Conjugate Gradient method

Choose tolerance ε, set U = 0.

do j = 1, p
1. Choose x0 such that UT x0 = 0; set k = 0, β0 = 0;

2. Find the minimum of the Rayleigh Quotient q(x) = xT Ax

xT x
for every x such that UT x0 = 0 by a

nonlinear preconditioned conjugate gradient procedure.
3. Stop whenever the following test is satisfied:

‖Axk − qk xk‖
q(xk)

≤ ε

4. Set λ j = qk , u j = xk/
√

η, U = [U, u j].
end do

For the details of this method we refer to the paper [25], as well as to successive works by
[13,24,26] who analyze both theoretically and experimentally a number of variants of this
well known method.

3.3 Description of the deflation accelerated conjugate gradient method

Instead of minimizing q(x) by Newton’s method the nonlinear Conjugate Gradient method
can be employed. Differently from the two methods just described, this one does not need
any linear system solution. Like the JD method, Deflation Accelerated Conjugate Gradient
(DACG) computes the eigenvalues sequentially, starting from the smallest one [5,7]. The
leftmost eigenpairs are computed sequentially, by minimizing the Rayleigh Quotient over
a subspace orthogonal to the previously computed eigenvectors. Although not as popular
as IRLM and JD, this method, which applies only to symmetric positive definite matrices,
has been proven very efficient in the solution of eigenproblems arising from discretization
of Partial Differential Equations (PDEs) in [8] DACG also proved very suited to parallel
implementation as documented in [6] where an efficient parallel matrix vector product has
been employed.

Convergence of DACG is strictly related to the relative separation between consecutive
eigenvalues, namely

ξ j = λ j

λ j+1 − λ j
. (9)

When two eigenvalues are relatively very close, DACG convergence may be very slow. Also
DACG takes advantage of preconditioning which, as in the two previous approaches, can be
chosen to be the Incomplete Cholesky factorization.

3.3.1 Comments on the algorithm

The DACG procedure is described in Algorithm 3. The PCG minimization of the Rayleigh
Quotient (Step 2) is carried out by performing a number of iterations. Themain computational
burden of a single iteration is represented by:

1. One matrix-vector product.
2. One application of the preconditioner.

123

10 L. Bergamaschi, E. Bozzo

3. Orthogonalization of the search direction against the previously computed eigenpairs
(columns of matrix U). The cost of this step is increasing with the number of eigenpairs
begin sought.

As common in the iterative methods, the number of iterations can not be known in advance.
However, it is known to be proportional to the reciprocal of the relative separation ξ between
consecutive eigenvalues (Eq. (9)).

4 Numerical results and comparisons

In this section we experimentally compare the three previously described solvers in the
computation of some of the leftmost eigenpairs of a number of Laplacian matrices of graphs
G arising from the following realistic applications covering all four main categories of real
networks, namely biological networks, technological networks, information networks, and
social networks:

1. Matrix protein represents the Laplacian of the protein-protein interaction network
of yeast [18]. In a protein-protein interaction network the vertices are proteins and two
vertices are connected by an undirected edge if the corresponding protein interact.

2. Matrix internet is the Laplacian of a symmetrized snapshot of the structure of the
Internet at the level of autonomous systems, reconstructed fromBGP tables posted by the
University of Oregon Route Views Project. This snapshot was created by Mark Newman
and is not previously published.

3. Matrixwww is the Laplacian of theWeb networkwithin nd.edu domain [1]. This network
is directed but arc direction has been ignored in order to obtain a symmetric Laplacian.

4. Matrix dblp is the Laplacian of a graph describing collaboration network of computer
scientists. Nodes are authors and edges are collaborations in published papers, the edge
weight is the number of publications shared by the authors [14].

In Table 1 we report the number of matrix rows (n), the number of matrix nonzero entries
(nnz), the average nonzeros per row (anzr), which account for the sparsity of the matrix,
and the ratio λ51/λ2 (gap), which indicates how the 50 smallest nonzero eigenvalues are
separated. Note that the number of nonzeros is computed as nnz = n + 2m where m is the
number of arcs in the graph.

We also report the distribution of the first 50 normalized eigenvalues for the four test prob-
lems in Fig. 1. As mentioned before, a pronounced relative separation between consecutive
eigenpairs may suggest fast convergence of the iterative procedures, and particularly so for
the DACGmethod. We notice from Fig. 1 that for three problems out of four, with the excep-
tion of matrix www, the eigenvalues are clustered, thus suggesting a slow convergence of the
iterative solvers. This fact is also accounted for by the ratios λ51/λ2 provided by Table 1.
The smallest this ratio, the slowest the convergence to the desired eigenvalues.

Table 1 Main characteristics of
the sample matrices: size (n),
number of nonzero entries (nnz),
average nonzeros per row (anzr)
and ratio between the largest and
smallest computed eigenvalues
(gap)

Matrix n nnz anzr gap

protein 1453 5344 3.7 7.28

internet 22,963 119,835 5.2 4.39

www 325,729 2,505,945 7.8 23.25

dblp 928,498 8,628,378 9.3 2.11

123

Computing the smallest eigenpairs of the graph Laplacian 11

Fig. 1 Semilog plot of the distribution of the 50 smallest normalized eigenvalues (λ j /λ2) of the four test
matrices

In the JD implementation two parameters are crucial for its efficiency namely mmin and
mmax, the smallest and the largest dimension of the subspace where the Rayleigh Ritz pro-
jection takes place. After some attempts, we found that mmin = 5 and mmax = 10 were
on the average the optimal values of such parameters. As for the solution of the Newton
linear systems we choose as the maximum number of inner iterations I T MAX = 20 and we
use as the accuracy for the inner linear solver δPCG = 10−2. Regarding IRLM parameters,
we set δPCG = 10−2 × δ, since the iterative solution of the inner linear system must be
run to a higher accuracy than that required for the eigenpairs. The dimension of the Krylov
subspace ncv for the restarted Lanczos iteration has been chosen as ncv = 15, 30, 60, 120,
for Neig = 1, 5, 20, 50, respectively. The previously described parameters regard memory
storage and efficiency for both JD and IRLM. JD is usually less demanding than IRLM in
terms of memory storage. If Neig eigenvectors are to be computed, the Jacobi–Davidson
method requires saving of at most Neig +mmax = Neig + 10 dense vectors. For both solvers
three more vectors are needed by the PCG implementation. Also the fact that the inner linear
system has to be solved much more accurately by IRLM is accounted for by the choice
of parameter δPCG . The DACG code requires the storage of only Neig + 5 vectors, begin
therefore the less demanding algorithm in terms of memory occupancy.

The three solvers, IRLM, DACG and JD have been preconditioned by K−1 = (
LLT

)−1

being L the lower triangular factor of the Cholesky factorization of A with no fill-in. We
reported the results in computing the smallest strictly positive Neig = 1, 5, 20, 50 eigenvalues
with tolerances δ = 10−3, 10−6 for the relative residual using as the exit test:

‖Auk − θkuk‖
θk

< δ

where θk = uk T Auk is the approximation of the eigenvalue being uk normalized.
The results regarding the four test problems are summarized in Tables 2, 3, 4 and 5,

respectively, where we report CPU times and number of matrix vector products (MVP) for
the three codes. The number of linear system solutions of IRLM and JD are also provided
(outer iterations). Notice that DACG does not need to solve any linear system. The Fortran

123

12 L. Bergamaschi, E. Bozzo

Table 2 Number of linear system solutions (outer its), number of matrix vector products (MVP), and CPU
times for DACG, JD, and IRLM onmatrix protein for the computation of the 50 smallest eigenvalues with
two different accuracies (δ)

δ DACG JD IRLM

MVP CPU Outer its MVP CPU Outer its MVP CPU

10−3 3623 0.46 191 2501 0.44 155 2403 0.45

10−6 6513 0.82 293 4084 0.68 175 4381 0.72

Table 3 Number of linear system solutions (outer its), number of matrix vector products (MVP), and CPU
times for DACG, JD, and IRLM on matrix internet for the computation of the smallest 1, 5, 20 and 50
eigenvalues with two different accuracies (δ)

Neig δ DACG JD IRLM

MVP CPU Outer its MVP CPU Outer its MVP CPU

1 10−3 54 0.48 13 162 0.66 21 939 2.23

5 10−3 324 0.97 33 337 1.04 29 1176 2.86

20 10−3 1394 3.12 82 1030 2.89 82 2231 7.41

50 10−3 4090 10.66 197 2383 7.71 202 5258 19.29

1 10−6 93 0.50 15 159 0.67 27 1927 4.40

5 10−6 589 1.42 32 454 1.26 40 2904 6.48

20 10−6 2701 5.41 116 1585 3.98 96 6724 15.72

50 10−6 7591 18.97 285 4266 12.93 211 14,578 36.31

Table 4 Number of linear system solutions (outer its), number of matrix vector products (MVP), and CPU
times for DACG, JD, and IRLMonmatrixwww for the computation of the smallest 1, 5, 20 and 50 eigenvalues
with two different accuracies (δ)

Neig δ DACG JD IRLM

MVP CPU Outer its MVP CPU Outer its MVP CPU

1 10−3 1262 50 34 1631 90 37 18,999 655

5 10−3 5835 246 63 2958 169 49 24,023 870

20 10−3 23,733 1211 103 9851 604 81 36,483 1231

50 10−3 64,197 4086 504 22,993 1757 120 53,742 2289

1 10−6 2121 96 44 2143 143 40 2502 860

5 10−6 9058 428 109 5359 358 52 31,244 1147

20 10−6 38,544 2329 373 18,317 1411 97 56,578 2217

50 10−6 143,102 10,935 986 44,469 3545 150 89,675 3853

implementations of the three solvers have been run on an IBM Power6 at 4.7 GHz and with
up to 64 Gb of RAM. The CPU times are expressed in seconds.

Regarding the small-size protein we only report the results of the computation of 50
eigenpairs since computing Neig = 1, 5 and 20 eigenvalues is done by every solver in an

123

Computing the smallest eigenpairs of the graph Laplacian 13

Table 5 Number of linear system solutions (outer its), number of matrix vector products (MVP), and CPU
times for DACG, JD, and IRLM on matrix dblp for the computation of the smallest 1, 5, 20 and 50 eigen-
values with two different accuracies (δ)

Neig δ DACG JD IRLM

MVP CPU Outer its MVP CPU Outer its MVP CPU

1 10−3 178 79 10 148 82 17 1359 421

5 10−3 797 286 31 450 206 41 2979 937

20 10−3 3808 1324 107 1675 745 103 8001 2447

50 10−3 11,239 5231 315 5384 2463 225 11,111 4033

1 10−6 1000 319 16 244 118 24 3373 1021

5 10−6 2142 690 48 803 340 43 5975 1813

20 10−6 7810 2709 171 2981 1257 110 15,628 4728

50 10−6 24,978 10,571 543 9654 4665 270 34,445 11,396

almost negligible CPU time on our computer. Table 2 shows a very similar behavior of the
three solvers both in terms of MVPs and CPU time.

Analyzing the results in Tables 3, 4, and 5 we can make the following observations:

1. The IRLM is almost always slower than the remaining two. This occurs since it requires
many accurate inner linear system solutions. Actually IRLM implicitly computes the
largest eigenpairs of A−1. The latter matrix is not explicitly formed since it would have
an excessive number of nonzeros. Only the action of A−1 upon a vector is computed as
a linear system solution. Solving this system to a low accuracy would mean compute
eigenpairs of a matrix different from A thus introducing unacceptable errors. However,
it can be observed that the distance between IRLM and the other two solvers decreases
as the number of sought eigenpairs increases.

2. The JD algorithm displays the best performance in terms of number of MVP and CPU
time. In particular on the largest problem, it neatly outperforms both DACG and IRLM.
The JDmethod inherits the nice convergence properties of theNewton’smethod enhanced
by the Rayleigh–Ritz acceleration. Moreover, it allows very inaccurate (and hence very
cheap) solution of the inner linear system.

3. TheDACGalgorithmprovides comparable performanceswith JD for a very small number
of eigenpairs (up to 5) and particularlywhen the eigenvalues are needed to a low accuracy.
When the number of eigenvalues is large, the reorthogonalization cost prevails andmakes
this algorithm not competitive. For the sample tests presented in this paper, the DACG
method is also penalized by the clustering of eigenvalues which results in a very small
relative separation between consecutive eigenvalues. This argument applies also tomatrix
www where, apart of the first 10 eigenvalues which are relatively well separated, the
remaining ones are as clustered as those of the other test problems, see Fig. 1.

4. When few eigenpairs are to be computed (and hence the reorthogonalization cost is
not prevailing) JD does not seem particularly sensitive to eigenvalue accuracy. This is
not surprising as it is based on a Newton iteration. This process is known to converge
very rapidly in a neighborhood of the solution. For this reason, the transition between
δ = 10−3 and 10−6 tolerance is very fast.

5. Despite of the favorable distribution of the leftmost part of its eigenspectrum (see Fig. 1),
the number of iterations to eigensolvematrixwww is high for all the three solvers. For this

123

14 L. Bergamaschi, E. Bozzo

test problem, the incomplete Cholesky factorization with no fill-in preconditioner does
not provide a satisfactory acceleration. The choice of a suitable preconditioner is crucial
for the convergence of all iterative methods. Devising a more “dense” preconditioner
would improve the performance of all the methods described and particularly so for
IRLM and JD that explicitly require a linear system solution.

4.1 Related work

We selected to use for the three methods the established implementations without making
optimization to any of them.However, it is worthmentioning thatmuchwork is being devoted
particularly to the Arnoldi method (the non symmetric counterpart of the Lanczos Method)
in order to reduce its computational cost and memory storage. We refer e.g. to the recent
work [15].

Other methods are efficiently employed for computing a number of eigenpairs of sparse
matrices. Among these, we mention the Rayleigh Quotient iteration whose inexact variant
has been recently analyzed in [27]. A method which has some common features with DACG
is LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient Method) which has
been proposed in [19], and is currently available under the hypre package [11]. We did not
report any results with the LOBPCG package mainly since this code has been previously
compared with the DACG code in [6] displaying comparable performances on a large set of
test problems.

Another important class of iterative eigensolvers, which have not been reviewed in this
manuscript, are the block variants of e.g. DACG and Jacobi–Davidson, see [2]. The block
counterparts of the algorithms described in this paper are expected to be useful, particularly
due to the high clustering of the smallest eigenvalues in our graph-based matrices. We leave
a further comparison with such codes to a future work.

4.2 Preconditioners

We selected to use the incomplete Cholesky factorization with no fill-in as the preconditioner
for all the iterative eigensolvers. It is worth noticing that selection of more appropriate pre-
conditioners could change the experimental findings of this work. Some recent papers related
to the acceleration of the Arnoldi method (we quote e.g. [15,21]) show that the performance
of this method may be greatly improved by employing low-rank variation of a given ini-
tial preconditioner. At our knowledge, neither for DACG nor for JD similar preconditioned
strategies could be carried on.

5 Conclusion

We experimentally compare three important iterative algorithms for computation of eigen-
pairs of large and sparse matrices: the Implicitly Restarted Lanczos Method, the Jacobi–
Davidson method, and the Deflation Accelerated Conjugate Gradient method. We uniformly
implemented the algorithms and ran them in order to compute some of the smallest eigenpairs
of the Laplacian matrix of real-world networks of different sizes.

The iterative approach followed in this work seems to be particularly suited for the Lapla-
cian matrices presented since it fully exploits the sparsity of the matrices involved. Each of
our realistic test cases, indeed, has a very high degree of sparsity as accounted for by the very
small number of nonzeros per row.

123

Computing the smallest eigenpairs of the graph Laplacian 15

Contrary to what observed for matrices arising from discretization of Partial Differential
Equations [8], where especially the smallest eigenvalues are well separated, here the high
clustering of lowest eigenvalues is disadvantageous for the Deflation Accelerated Conjugate
Gradient algorithm. As for the Implicitly Restarted Lanczos Method, the need to solve the
inner linear systems to a high accuracy makes this method less attractive for large eigen-
problems. The Jacobi–Davidson procedure is less sensitive to the clustering thanks to the
Rayleigh–Ritz projection; moreover, for this method, inexact and hence efficient solution of
the inner linear systems is sufficient to achieve overall convergence. All in all, the Jacobi–
Davidson algorithm is performing the best on our test problems.

We finally remark that on the basis of the previously cited recent works, such as [15,27],
the proposed implementations of inexact variants of Implicitly Restarted Lanczos Method
could make this solver competitive respect to Jacobi–Davidson, if a relatively large number
of eigenpairs is desired.

All the proposed algorithms are well-suited to parallelization on supercomputers. The
most important kernel is represented by the matrix-vector product which can be efficiently
implemented in parallel environments. Also application of preconditioner, which is one of
the most time-consuming task, in its turn can be devised as a product of sparse matrices as
e.g. in the “approximate inverse preconditioner” approach (see the review article by [4]).
The DACG method has been successfully parallelized as documented in [6], however all the
iterative solvers described here, being based on the same linear algebra kernels, could be
implemented in parallel with the same satisfactory results.

In our implementation we used a general purpose preconditioner, obtained by means of
incomplete Cholesky factorization with no fill in. Certainly, the three methods would greatly
benefit from the use of a more specific preconditioner. This point will be a topic of future
research.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the world-wide web. Nature 401, 130–131 (1999)
2. Arbenz, P., Hetmaniuk, U., Lehoucq, R., Tuminaro, R.: A comparison of eigensolvers for large-scale 3D

modal analysis using AMG-preconditioned iterative methods. Int. J. Numer. Methods Eng. 64, 204–236
(2005)

3. Ben-Israel, A., Greville, T.: Generalized inverses. In: CMS Books in Mathematics/Ouvrages de Mathé-
matiques de la SMC, vol. 15. Springer, New York (2003)

4. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477
(2002)

5. Bergamaschi, L., Gambolati, G., Pini, G.: Asymptotic convergence of conjugate gradient methods for the
partial symmetric eigenproblem. Numer. Linear Algebra Appl. 4, 69–84 (1997)

6. Bergamaschi, L., Martínez, A., Pini, G.: Parallel Rayleigh quotient optimization with FSAI-based pre-
conditioning. J. Appl. Math., Article ID 872901, 14 pp. (2012)

7. Bergamaschi, L., Pini, G., Sartoretto, F.: Approximate inverse preconditioning in the parallel solution of
sparse eigenproblems. Numer. Linear Algebra Appl. 7, 99–116 (2000)

8. Bergamaschi, L., Putti, M.: Numerical comparison of iterative eigensolvers for large sparse symmetric
matrices. Comput. Methods Appl. Mech. Eng. 191, 5233–5247 (2002)

9. Bozzo, E., Franceschet, M.: Approximations of the generalized inverse of the graph Laplacian matrix.
Internet Math. 8, 1–26 (2012)

10. Brouwer, A.E., Haemers, W.: Spectra of Graphs. Springer, Berlin (2012)
11. Falgout, R.D., Jones, J.E., Yang, U.M.: Pursuing scalability for hypre’s conceptual interfaces. ACM.

Trans. Math. Softw. 31(3), 326–350 (2005)
12. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 298–305 (1973)
13. Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for

the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 94–125 (1998) (electronic)

123

16 L. Bergamaschi, E. Bozzo

14. Franceschet, M.: Collaboration in computer science: a network science approach. J. Am. Soc. Inf. Sci.
Technol. 62, 1992–2012 (2011)

15. Freitag, M.A., Spence, A.: Shift-invert Arnoldi’s method with preconditioned iterative solves. SIAM J.
Matrix Anal. Appl. 31, 942–969 (2009)

16. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAMRev. 50, 37–66 (2008)
17. Hu,Y., Scott, J.: HSLssMC73:AFastMultilevel Fiedler and ProfileReductionCode. RutherfordAppleton

Laboratory, Oxfordshire (2003)
18. Jeong, H., Mason, S., Barabási, A.-L., Oltvai, Z.: Lethality and centrality in protein networks. Nature

411, 41–42 (2001)
19. Knyazev, A.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned con-

jugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)
20. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide. Solution of Large Scale Eigenvalue

Problem with Implicit Restarted Arnoldi Methods. SIAM, Philadelphia (1998)
21. Martínez, A.: Tuned preconditioners for iterative SPD eigensolvers. Numer. Linear Algebra Appl. 23,

427–443 (2016)
22. Mieghem, P.V.: Graph Spectra for Complex Networks. Cambridge University Press, New York (2011)
23. Newman, M.: Networks: An Introduction. Oxford University Press Inc, New York (2010)
24. Notay, Y.: Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenprob-

lem. Numer. Linear Algebra Appl. 9, 21–44 (2002)
25. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson method for linear eigenvalue problems. SIAM

J. Matrix Anal. 17, 401–425 (1996)
26. Stathopoulos, A.: A case for a biorthogonal Jacobi–Davidson method: restarting and correction equation.

SIAM J. Matrix Anal. Appl. 24, 238–259 (2002) (electronic)
27. Xue, F., Elman, H.C.: Convergence analysis of iterative solvers in inexact Rayleigh quotient iteration.

SIAM J. Matrix Anal. Appl. 31, 877–899 (2009)

123

	Computing the smallest eigenpairs of the graph Laplacian
	Abstract
	1 Introduction
	2 Why computing some eigenpairs of the Laplacian matrix of a graph
	3 Three algorithms for eigenvalue computations of large matrices
	3.1 Description of implicitly restarted Lanczos method
	3.1.1 Solution of the linear system

	3.2 Description of the Jacobi–Davidson method
	3.2.1 Comments on the algorithm

	3.3 Description of the deflation accelerated conjugate gradient method
	3.3.1 Comments on the algorithm

	4 Numerical results and comparisons
	4.1 Related work
	4.2 Preconditioners

	5 Conclusion
	References

