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Abstract We propose a variant of GMRES, where multiple (two or more) preconditioners
are applied simultaneously, while maintaining minimal residual optimality properties. To
accomplish this, a block version of Flexible GMRES is used, but instead of considering
blocks associated with multiple right hand sides, we consider a single right-hand side and
grow the space by applying each of the preconditioners to all current search directions,
minimizing the residual norm over the resulting larger subspace. To alleviate the difficulty
of rapidly increasing storage requirements, we present a heuristic limited-memory selective
algorithm, and demonstrate the effectiveness of this approach.
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1 Introduction

We are interested in the iterative solution of a linear system of the form

Ax = b, (1.1)

whereA ∈ R
n×n is a large and sparse, possibly nonsymmetric or indefinite,matrix.Wewould

like to use amodern iterativemethod, such as those associatedwith aKrylov subspace [34,43],
and in particular GMRES [35]. One ingredient in the successful application of these methods
is the use of a (nonsingular) preconditioner, P . Here we consider only right preconditioning,
i.e., we consider the equivalent system

AP−1u = b, (1.2)

where u = Px.
It is common to have two or more different candidate preconditioners for the same linear

system, each possessing different properties. For example, in the case of saddle-point prob-
lems, block diagonal preconditioners and constraint preconditioners provide such a choice;
see, e.g., [4,21,23,29,39]. What we propose in this paper is a way to use more than one
preconditioner simultaneously. We accomplish this by employing what one may think of
as a block version of Flexible GMRES (FGMRES) [33], whereby at each step we add to
the space multiple directions based on the application of all the preconditioned operators.
The new iterate is optimal in this subspace in the minimum residual least-squares sense.
We mention that Calandra et al. [7] have recently described a block version of FGMRES
which—while sharing some similarities with the work described here—differs both in scope
and details with the GMRES algorithm with multiple preconditioners we propose.

Block methods are used either for the solution of linear systems with multiple right hand
sides, or to enrich the space with additional directions; see, e.g., the pioneering paper [24],
the survey [16], or [9,30], and references therein. One of the new ingredients in our proposed
technique is the use of different preconditioning directions for each component of the block
method.

Another element that distinguishes our proposal from standard block methods is that,
since all preconditioners are applied to the existing basis at each step, the dimension of the
subspace may increase very rapidly. This has the advantage of generating a very rich space
(with information coming from all the preconditioners) where the solution is sought; indeed,
our method might yield significantly faster convergence by combining the preconditioners
compared to methods that force the user to pick just one direction (or even one at a time).
On the other hand, this approach has the disadvantage of excessive memory requirements.
Thus, we consider also a heuristic variant where a selective set of directions from this rich
space are used.Wemention that there are cases where the selective and the complete versions
coincide, i.e., the problems are such that the growth in storage is only linear; see, e.g., Sect.
2.5 and [2].

While the new GMRES with multiple preconditioners (MPGMRES) we propose here
(both in its complete and selective versions) can be used with any number of preconditioners,
we expect that it will be most useful with a small number of preconditioners, typically two,
and our study is in part driven by this consideration.

We present numerical experiments in practical situations where our method with multiple
preconditioners converges faster than alternative formulations involving GMRES with any
one of the preconditioners alone, and faster than FGMRES where one simply cycles through
the available preconditioners, as done in [32] for a particular application.
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GMRES with multiple preconditioners 215

This work is inspired in part by previous work involving one of the authors [6], where
such multiple preconditioning is used for the conjugate gradient method (CG) for symmetric
positive definite linear systems. The algorithm in [6] is called multipreconditioned conju-
gate gradients (MPCG), and it combines the preconditioners while aiming to preserve the
optimality criterion of minimizing the energy norm of the error. However, a drawback of
MPCG is that, while being designed for symmetric positive definite matrices, it does not in
general retain the short-term recurrence of CG. By contrast, since GMRES for general non-
symmetric matrices does not use short recurrences, their absence in the method discussed in
this paper is not a problem.

The remainder of the paper is organized as follows. In Sect. 2 we derive and study our pro-
posed MPGMRES algorithm. We develop a complete algorithm and then present a selective
version of it. In Sect. 3 we give a few details on the computational cost and implementation
issues, including pointers to our software, which is available for the interested readers. In
Sect. 4 we present some numerical experiments illustrating the effectiveness of the proposed
method.

2 MPGMRES

We start this section with a brief description of the GMRES algorithm and its flexible version.
We do this in part to fix the notation and establish some concepts which we then use to
construct GMRES with multiple preconditioners (MPGMRES). We then move on to discuss
the complete and selective MPGMRES algorithms and some of their properties.

2.1 GMRES and flexible GMRES

GMRES is often the solution method of choice for non-symmetric linear systems of the
form (1.1). Starting from some initial vector x(0), and the corresponding initial residual
r(0) = b − Ax(0), the kth step of GMRES consists of computing the vector x(k) in the space
x(0) + Kk(A, r(0)), where

Kk(A, r(0)) := span{r(0),Ar(0), . . . ,Ak−1r(0)} = {p(A)r(0), deg p < k}

is the standard Krylov subspace (p here denotes a polynomial), such that the residual cor-
responding to x(k) has the minimal norm among all vectors in x(0) + Kk(A, r(0)). Consider
the preconditioned system (1.2); preconditioned GMRES finds u(k) which minimizes the
2-norm of the residual over u(0) + Kk(AP−1, r(0)). Written in terms of x, since x = P−1u,
we therefore find

x(k) ∈ x(0) + P−1Kk(AP−1, r(0))

∈ x(0) + Kk(P−1A,P−1r(0)). (2.1)

Note that the latter space is the same as in left-preconditioned GMRES, but when using left
or right preconditioning, the functional which is minimized is different; see, e.g., [34, p. 272],
[38].

An orthonormal basis for the Krylov subspace Kk(AP−1, r(0)) is computed using the
Arnoldi algorithm. This generates a decomposition of the form

AZk := AP−1Vk = Vk+1 ˜Hk,
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216 C.Greif et al.

where Vk ∈ R
n×k has orthonormal columns with the first being r(0)/‖r(0)‖2, and ˜Hk ∈

R
(k+1)×k is upper Hessenberg. Since the columns of Vk span the space Kk(AP−1, r(0)), the

iterate x(k) therefore must have the form

x(k) = x(0) + P−1Vky(k) = x(0) + Zky(k)

for some vector y(k) ∈ R
k . GMRES finds this vector y(k) by solving a least-squares problem

min
y∈Rk

‖‖r(0)‖2e1 − ˜Hky‖2, (2.2)

since ‖b − Ax(k)‖2 = ‖‖r(0)‖2e1 − ˜Hky(k)‖2.
The Flexible GMRES method of Saad [33] allows us to use a different preconditioner at

each iteration.The key idea of FGMRES is to store the application of the preconditioner at
the j th step, P−1

j v j , in the j th column of Zk , so that we still have

AZk = Vk+1 ˜Hk, (2.3)

and the same least-squares problem (2.2) is solved. Thus, the approximation at the kth step is
still in x(0)+R(Zk), whereR(·) denotes the range of a linear operator. Note thatR(Zk) is not,
strictly speaking, a Krylov subspace, but it is nonetheless the space where the approximation
is sought [42,43]. We also note that in FGMRES, one usually stores both Vk and Zk , i.e.,
effectively doubling the storage requirements of GMRES.

2.2 Derivation of MPGMRES

Suppose that instead of just a single preconditioner we have t (nonsingular) preconditioners,
P1, . . . ,Pt , t ≥ 2. We have in mind t = 2 for most applications, and to simplify notation,
we will in the sequel occasionally discuss certain issues specifically for two preconditioners.
For a fixed preconditioner, sayP j , the GMRES algorithmwould commence with the product
P−1

j r(0) as in (2.1). In our proposed method, we collect all these vectors in

Z (1) = [P−1
1 r(0), . . . ,P−1

t r(0)] ∈ R
n×t ,

and consider the first iterate x(1), which minimizes the residual norm of vectors over

x(0) + span{P−1
1 r(0), . . . ,P−1

t r(0)}. (2.4)

We can therefore define the first iterate of a new method as

x(1) := x(0) + Z (1)y(1),

where the vector y(1) ∈ R
t is chosen to minimize the residual in the 2-norm. Thus, x(1) is

the best approximation which incorporates information from all preconditioners. It follows
from (2.4) that

r(1) = b − Ax(1) ∈ r(0) + span
{

AP−1
1 r(0), . . . ,AP−1

t r(0)
}

. (2.5)

Our proposedmethod is in part based on blockGMRES, whichwas first introduced in [47]
for multiple right hand sides. It was studied, e.g., in [9,22,30,41], and applied recently, e.g.,
in [7]; see also [16] and references therein. We also mention block Arnoldi as a necessary
important ingredient; see, e.g., [36,37], [34, §6.12].

In our Arnoldi-type block procedure to obtain an orthonormal basis of the search space, we
start by orthogonalizing every column of W := AZ (1) with respect to V (1) := r(0)/‖r(0)‖2,
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Fig. 1 Schematic diagram of the Arnoldi-type decomposition (2.7)

and among themselves (using a reduced QR factorization), and storing the coefficients in the
matrices H ( j,1), j = 1, 2, which are part of the upper Hessenberg matrix ˜Hk (see Fig. 1);
thus obtaining V (2). Then we increase the space by applying the multiple preconditioners,
i.e., at step k, compute

Z (k) = [P−1
1 V (k) . . .P−1

t V (k)], (2.6)

and repeat the process. As with block Arnoldi, we obtain the relation

A˜Zk = ˜Vk+1 ˜Hk, (2.7)

where

˜Zk = [

Z (1) . . . Z (k)
]

, ˜Vk+1 = [

V (1) . . . V (k+1)
]

and

˜Hk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

H (1,1) H (1,2) · · · H (1,k)

H (2,1) H (2,2) H (2,k)

. . .
...

H (k,k−1) H (k,k)

H (k+1,k)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We have implicitly assumed that Z (k) and ˜Zk have full rank. We keep this assumption
throughout this section and address the situation when this assumption fails to hold, and
deflation is needed, in Sect. 3.

We call the columns of Z (k) search directions, and the columns of V (k) basis vectors.
Observe that Z (1) and V (2) have t columns, while Z (2) and V (3) have t2 columns, and in

general Z (i) and V (i+1) have t i columns. Therefore ˜Vk+1 has

τk :=
k

∑

i=0

t i = tk+1 − 1

t − 1
(2.8)

columns, while ˜Zk has τk − 1 = (tk+1 − t)/(t − 1) columns. Thus, in the common case of
t = 2 the dimension of the search space is 2(2k − 1). Note also that H (1,i) ∈ R

1×t for all
i , and since the blocks H (i+1,i) on the sub-diagonal come from the QR factorization, they
are all upper triangular. Therefore, as in this Arnoldi-type algorithm, the matrix ˜Hk above
is upper Hessenberg, here of order (τk − 1) × τk . Figure 1 is a schematic diagram of the
Arnoldi-type decomposition (2.7) showing the dimensions of the matrices involved.
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As in block GMRES,since the columns of the basis matrix ˜Vk+1 are orthogonal, we have

arg min
x̂∈x(0)+R(˜Zk )

‖b − Ax̂‖2 = argmin
y

‖βe1 − ˜Hky‖2, (2.9)

where we have used x̂ = x(0) + ˜Zky and β = ‖r(0)‖2. The proposed method, complete
MPGMRES, is given as Algorithm 1.

Algorithm 1 Complete MPGMRES

Choose x(0), r(0) = b − Ax(0)

β = ‖r(0)‖, V (1) = r(0)/β
for k = 1, . . ., until convergence do
Z (k) = [P−1

1 V (k) . . .P−1
t V (k)]

W = AZ (k)

for j = 1, . . . , k do
H ( j,k) = (V ( j))T W
W = W − V ( j)H ( j,k)

end for
W = V (k+1)H (k+1,k) (reduced QR factorization)
y(k) = argmin‖βe1 − ˜Hky‖2
x(k) = x(0) + [Z (1) . . . Z (k)]y(k)

end for

Note thatAlgorithm1 contains the variant of blockArnoldi and reducedQR factorizations.
Both of these algorithms can be thought of in terms of Gram-Schmidt orthogonalization, and
we can perform the QR step explicitly in an Arnoldi-style algorithm. This is known as
the band Arnoldi algorithm, and was first proposed (for the block-Lanczos case) by Ruhe
[31]; see, e.g., [12, §6], [16, §9] [34, p. 209], for the block-Arnoldi case. In our experience
taking advantage of blocking techniques (e.g., by using Level 3 BLAS calls), rather than
the vector-based calculations needed in a Ruhe-style implementation, make Algorithm 1 the
most efficient style of implementation. On the other hand, an implementation of the Ruhe
version may mitigate the effects of dealing with loss of rank, which we discuss in some detail
in Sect. 3.

2.3 The search and residual spaces

We describe the spaces where the iterates, and more importantly, the associated residuals
computed in Algorithm 1 reside. We illustrate first the case t = 2. The first two iterates
satisfy

x(1) − x(0) ∈ span{P−1
1 r(0),P−1

2 r(0)};
x(2) − x(0) ∈ span{P−1

1 r(0),P−1
2 r(0),P−1

1 AP−1
1 r(0),P−1

1 AP−1
2 r(0),

P−1
2 AP−1

1 r(0),P−1
2 AP−1

2 r(0)},
and the rest follows the same pattern. It follows (cf. (2.5)) that

r(1) − r(0) ∈ span{AP−1
1 r(0),AP−1

2 r(0)};
r(2) − r(0) ∈ span{AP−1

1 r(0),AP−1
2 r(0),AP−1

1 AP−1
1 r(0),AP−1

1 AP−1
2 r(0),

AP−1
2 AP−1

1 r(0),AP−1
2 AP−1

2 r(0)},
= {p(AP−1

1 ,AP−1
2 )r(0)},
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where p = p(z1, z2) is a multivariate second degree polynomial in two (non-commuting)
variables with p(0, 0) = 1.

Using the same observation, it is not hard to see that in the case of t preconditioners,

r(k) = r(0) + p(AP−1
1 , . . . ,AP−1

t )r(0)

∈ R(AZ (k)) = R(V (k+1)) = {p(AP−1
1 , . . . ,AP−1

t )r(0), p(0, . . . , 0) = 1},
where p = p(z1, . . . , zt ) is a multivariate polynomial of degree k in t (non-commuting)
variables. We call this space Pk = Pk[z1, . . . , zt ]. Note that what makes this space so rich
is the presence of not only the powers of AP−1

j , but also the cross terms, say of the form

AP−1
i AP−1

j .
Therefore, from (2.9), we have that

‖r(k)‖ = min
p∈Pk [z1,...,zt ]
p(0,...,0)=1

‖p(AP−1
1 , . . . ,AP−1

t )r(0)‖. (2.10)

Notice that (2.10) reduces back to the standard minimal residual characterization of GMRES
in the case of a single preconditioner (t = 1).

It follows from (2.10) that the known GMRES convergence bounds can be generalized
to this situation, e.g., by replacing the univariate polynomial bounds with those using multi-
variate polynomials (on the spectra of each preconditioned matrix AP−1

j ).

2.4 Selective MPGMRES

As we saw in Sect. 2.2, since Z (k) ∈ R
n×tk , the dimension of the search space in MPGMRES

grows exponentially fast. It is natural to consider an approximation of the entire space by
selective directions, and thus find an appropriate subspace whose dimension would grow
more slowly, ideally only linearly. We call this algorithm selective MPGMRES (sMPGM-
RES). There is an inexhaustible list of potential selection strategies, and we describe some
possibilities below:

• First we describe our heuristic method of choice for modifying complete MPGMRES to
get a practical algorithm. At step k, apply the preconditioners only to certain columns
of V (k). As a default we apply P1 to the first column of V (k), P2 to the second, and so
on. Using this method the matrix Z (k) is in R

n×t for all k, and we just have to perform a
QR factorization of a matrix whose number of columns is equal to the (typically small)
number of preconditioners. This process can be represented by replacing the second to
last line in Algorithm 1, namely (2.6), by

Z (k) = [P−1
1 V (k)

1 . . .P−1
t V (k)

t ]. (2.11)

Of course, it is not necessary to associate the i th preconditioner with the i th column, and
other alternatives are possible. In general, given some permutation π (which may or may
not change with each iteration), we can compute the i th column of Z (k) as P−1

i V (k)
π(i).

• A viable alternative is to use all the columns of V (k) simultaneously by applying the
multipreconditioning step to V (k)αk for any vector αk of appropriate size. Specifically,
giving equal weight to all columns, i.e., using the vector V (k)1, where 1 denotes the
vector of ones, may be an appropriate choice.

• One could choose the “best” possible subspace in some sense, as was done by de Sturler
[8] in another context; see also [13]. Note that such choices still keep Z (k) ∈ R

n×t for
all k.
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220 C.Greif et al.

Fig. 2 Schematic diagram of Arnoldi-type decomposition for selective MPGMRES

Applying any of the selective schemes described above produces an Arnoldi-type decom-
position, which we show schematically in Fig. 2. For the rest of this section, and in our
numerical experiments, we will use the choice (2.11) as our selective version of MPGMRES;
see also Sect. 4.

In terms of the optimality condition (2.10), selective MPGMRES minimizes the residual
in a tk-dimensional subspace of the space

{p(AP−1
1 , . . . ,AP−1

t )r(0), p ∈ Pk[z1, . . . , zt ], p(0, . . . , 0) = 1},
which is itself (tk − 1) dimensional.

The heuristic choice (2.11), or any other choice of selected columns, determines which
subspace one is using.

2.5 A case of linear growth of the search space

Let us consider the special case where we have two (nonsingular) preconditioners that add
up to the coefficient matrix, i.e., A = P1 + P2. This situation represents, for example, the
ADI preconditioning approach; see, e.g., [5,19]. We begin with a general lemma which we
find of interest beyond its use in this paper: If the sum of two preconditioners equals the
matrix of coefficients of the original problem, then the preconditioned operators commute,
and their product equals its sum. The converse also holds.

Lemma 2.1 Let A,P1,P2 be nonsingular matrices, and let M1 = AP−1
1 , M2 = AP−1

2 .
Then, A = P1 + P2 if and only if

M1M2 = M2M1 = M1 + M2.

Proof Assume first that A = P1 + P2. Then,

M1 = AP−1
1 = I + P2P−1

1 , and M2 = AP−1
2 = I + P1P−1

2

It follows that

M1M2 = (I + P2P−1
1 )(I + P1P−1

2 ) = 2I + P2P−1
1 + P1P−1

2 = M1 + M2 = M2M1.

For the converse, we have that M1 + M2 = M1M2 implies

0 = A(P−1
1 + P−1

2 − P−1
1 AP−1

2 ) = AP−1
1 (P2 + P1 − A)P−1

2 ,

and the lemma follows. ��
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Observe that Lemma 2.1 also applies to the matrices P−1
1 A and P−1

2 A. The proof is
essentially the same. The lemma is useful because it implies that the mixed terms do not bring
any additional information to the space. Specifically, we can see in the case of polynomials
of degree 2 that this lemma implies

P2[M1,M2] = span
{

I,M1,M2,M2
1,M2

2

} = P2[M1] + P2[M2].
More generally, we have that the polynomials in two variables decouple into the sum of
polynomials in one variable of the same degree.

Proposition 2.2 Let the variables z1, z2 be such that z1z2 = z2z1 = z1 + z2. Then,
Pk[z1, z2] = Pk[z1] + Pk[z2], k = 1, 2, . . .

Proof We use induction on k. For k = 1, there is nothing to prove since

P1[z1, z2] = span {I, z1, z2} = P1[z1] + P1[z2].
We then assume that the statement of the proposition is true for k, and prove it for k + 1. All
we need to do is to show that any mixed terms of order k+1 can be written as a sum of terms
in Pk[z1, z2]. Indeed, for 1 ≤ i ≤ k,

z1
k+1−i z2

i = z1
k−i (z1 + z2)z2

i−1

= z1
k+1−i z2

i−1 + z1
k−i z2

i .

��
One of the direct consequences of Proposition 2.2 is that the search space has dimension 2k
instead of O(2k).

While the case described here is indeed special, it indicates that in some casesMPGMRES
may perform very well without necessarily incurring an exponential growth of the dimension
of the search space; see, e.g., the very recent paper [2] presenting another case where the
search space has linear growth. This special case is also exploited to obtain short recurrences
in MPCG; see [6, Theo. 3.3]

2.6 Related algorithms

Recently, combination preconditioners of the form

P−1 = α1P−1
1 + α2P−1

2 (2.12)

have been proposed and explored for saddle-point problems, where the constants α1, α2 are
fixed; see in particular [27,28,45]. One can interpret the first step of MPGMRES, for t = 2,
as choosing the optimal values of α1, α2 in (2.12) so that the residual r(1) is minimal. In
the second step, though, MPGMRES changes the values of α1, α2 in (2.12) to minimize the
residual in a richer space, as described in Sect. 2.3.

In the recent paper [1], linear combinations of twopreconditioners are used as in (2.12), and
the coefficients are computed at each step tominimize the residual, as inMPGMRES. The dif-
ference is that only linear combinations (2.12) and not polynomials of higher order are sought.

In terms of the multipreconditioning paradigm considered in this paper, one could cycle
with FGMRES through the available preconditioners in some prescribed order. This strategy
was in fact proposed byRui,Yong, andChen in the context of electromagneticwave scattering
problems [32] in a method they termed ‘multipreconditioned GMRES’. They show numeri-
cally that for their applications, the convergenceof thismethod is never better than thebest pre-
conditioner applied by itself, although of course onemay not knowwhich preconditioner will
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222 C.Greif et al.

perform best a priori. This is in contrast to the selective MPGMRES method described here,
which is derived to work in a potentially richer subspace and may beat single preconditioners
applied separately (and therefore FGMRES with cycling); see the experiments in Sect. 4.

In general, we can say that (complete) MPGMRES is an extension of a block version of
FGMRES, using an Arnoldi-type process, where at each step the space grows with applica-
tion of all preconditioners to the current basis vectors. On the other hand, if one interprets
FGMRES as any method having the property (2.3), then complete MPGMRES would be a
special case.

Finally, we mention multi-splitting methods. Given a set of preconditioners Pi , i =
1, . . . , t , and a corresponding set of positive semi-definite diagonal weighting matrices Di

such that
∑

i Di = I , the multi-splitting algorithm [25] is defined as the iterative method
governed by the stationary iteration x(k+1) = x(k) + ∑t

i=1 DiP−1
i r(k), where as usual

r(k) = b − Ax(k). The difference is that in this method one has to define a weighting of
the preconditioners a priori, whereas in MPGMRES a weighting which is in some sense
optimal is computed as part of the algorithm.

3 Implementation details and computational cost

We first discuss the possibility of breakdowns and provide a few details on implementation.
It is well known that all breakdowns in GMRES—i.e., cases where the last sub-diagonal
entry of the matrix ˜Hk is zero—are ‘lucky’ in that they occur only when the algorithm has
converged to the exact solution. This is not the case with an algorithm that uses multiple
preconditioners, as there are cases—e.g., if P1 = P2 or P−1

1 AP−1
2 = P−1

2 AP−1
1 —where

the matrix defined in (2.6) will not be of full rank, and hence we may have a zero on the
sub-diagonal of ˜Hk before reaching the exact solution.

To remove linear dependence we need to detect the rank of the matrix W in Algorithm
1; we do this by employing a rank-revealing QR factorization, e.g., the LAPACK routine
xGEQP3. Such a factorization applies column pivoting to find a factorization of W of the
form

WP = Q

[

R R̂
0 0

]

,

where P is a permutation matrix and R ∈ R
r×r is upper triangular, where r is the (numerical)

rank of W . We can then set V (k+1) to the first r columns of Q, and H (k+1,k) to R. Note that,
since we have a QR factorization of the permuted WP (not W ) we must also change the
other blocks H (i,k) in the last column of H ; we keep the first rcolumns of the matrix H (i,k)P .
The ordering of Z (k) also changes to Z (k)P . Note that these changes of ordering can be done
by storing an index vector, and no copying or deleting of vectors need be performed. This
process is related to deflation in block GMRES algorithms; see, e.g., [16,22,30]. In block
methods a vector is removed when a linear combination of the right hand side vectors has
converged. Here, in contrast, the linear dependence is not an inherent issue, but is purely a
result of the redundancy of the user-provided preconditioners.

Since the matrix ˜Hk in MPGMRES is upper Hessenberg, the Givens rotations used in
the solution of the least-squares problem (2.9) are applied in the same way as in GMRES.1

The main difference in the implementation for MPGMRES is that—as described above—
it is possible to have a sub-diagonal entry of ˜Hk that is zero while the algorithm has not

1 As with GMRES, other implementations are possible, e.g., using Householder transformations.
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converged to the exact solution. There can be two reasons why the matrix W is deemed to
be rank deficient. Either

• one or more of its columns have contributed nothing to the space; or
• we have a lucky breakdown, and the algorithm has converged.

We now establish a condition for distinguishing between these two situations. Suppose,
without loss of generality, that pivoting was not required. The difference between an actual
breakdown and a lucky breakdown is that in the former the corresponding column of Z (k) is
linearly dependent on the previous columns, whereas in the latter the linear dependence is a
result of convergence, and so the relevant columns of Z (k) are full rank.

Let Z̄k denote Z̃k−1 with the first r columns of Z (k) appended, and similarly V̄k+1 for Ṽk .
Let H̄k be the upper Hessenberg matrix formed by appending [(H (1,k))T . . . (H (r,k))T ]T to
H̃k−1. Then for any vector v which is orthogonal to the columns of V̄k+1 we have

[

G 0
0 I

]

[V̄k+1 v]TA[Z̄k (Z (k))i ] =
[

GH̄k Gh
0 0

]

for some vector h, where G is the matrix corresponding to the previously defined Givens
rotations, and hence GH̄k is an upper triangular matrix.

If [Z̄k (Z (k))i ] has rank s, say, then since V̄k+1 and A have full rank, we must have that
[

H̄k h
0 0

]

also has rank s. In particular, if (Z (k))i is a linear combination of the columns of

Z̄k , then Gh ∈ R(GH̄k), and hence the final entry of Gh will vanish. On the other hand, if

[Z̄k (Z (k))i ] is full rank, then the rectangular matrix

[

GH̄k Gh
0 0

]

must be of full rank too,

and so the final entry of Gh must be non-zero. Therefore, we can say that the zero in the
(i, i) position of H (k+1,k) corresponds to a lucky breakdown if and only if the entry in the
i th column of the final row of GH (k,k) is non-zero, where GH (k,k) denotes the matrix H (k,k)

after the previous Givens rotations have been applied to it.
We remark that in order to calculate the rank numerically we must prescribe a tolerance

on the diagonal entries of R. In our experience the performance of MPGMRES is not very
sensitive to the choice of this parameter—if a column is nearly linearly dependent, then it
may be removed and, in the case of selective MPGMRES, we can find an alternative vector
which enriches the space in a more meaningful way. In our MATLAB and Fortran 95 codes
we currently set this tolerance to

√
εmachine. Note that this is different than the situation for

deflation in block GMRES for multiple right hand sides, where there are good numerical
reasons for keeping the deflated columns available for further calculation; see, e.g., [22,30].

We have made available two codes which implement MPGMRES. There is a MAT-
LAB implementation available on the Mathworks File Exchange2, and a Fortran 95 version,
HSL_MI29, which is part of HSL [18] and is freely available to academics. Of these, the HSL
code uses reverse communication for the user to apply the preconditioner and matrix-vector
products, and this can be done in parallel.

We now summarize the computational cost. In Table 1, we compare the number of matrix-
vector products, inner products, and preconditioner solves for Algorithm 1 in its complete
and selective versions, and Flexible GMRES with cycling preconditioners. While complete
MPGMRES offers the possibility of rapid convergence due to a very rich space, its applica-
bility with a large number of preconditioners, is limited by the explosion of its storage
requirements. On the other hand, the selective version remains viable for small t .

2 http://www.mathworks.com/matlabcentral/fileexchange/34562-multi-preconditioned-gmres
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Table 1 Number of matrix-vector products, inner products and preconditioner solves at the kth iteration
when using t preconditioners, for complete and selective versions of MPGMRES, and FGMRES with cycling
multiple preconditioners

Matrix-vector Inner Preconditioner
products products solves

MPGMRES tk t2k+1+t2k+tk+1−3tk
2(t−1) tk

sMPGMRES t (k − 1
2 )t2 + 3

2 t t

FGMRES 1 k + 1 1

Finally, we mention the potential for parallelization. Given a distributed memory archi-
tecture, each preconditioner solve can be performed on a separate processor, and by taking
advantage of this one can obtain significant savings.

4 Applications and numerical experiments

In this section we apply the proposed algorithms to two numerical examples: the solution of
a problem from PDE-constrained optimization, and preconditioners for the Navier–Stokes
equations. See also [15] for a domain decomposition example.

We present convergence graphs, as well as computational times. In one set of examples we
provide timings in a parallel setting with a Fortran code, and in other examples the timings
are based on running a serialMATLAB implementation.We are aware that in many instances
MATLAB times may be unreliable, but in this case we are comparing very similar codes,
and therefore the computational times are representative of the performance of the method.

4.1 PDE-constrained optimization

Many real-world problems can be formulated as PDE-constrained optimization problems;
see, e.g., [17,46], and references therein. Consider the following model problem

min
y,u

1

2
||y − ŷ||22 +β

2 ||u||22 (4.1)

s.t. − ∇2y = u in �

y = f on ∂�.

Here ŷ is some pre-determined optimal state, and we want the system to get to a state y as
close to the optimal state as possible—in the sense of minimizing the given cost functional—
while satisfying Poisson’s equation in some domain�. The mechanism we have of changing
y is by varying the right-hand side of the PDE, u, which is called the control in this context.
Note that the norm of the control appears in the cost functional, along with a Tikhonov
regularization parameter, β, to ensure that the problem is well-posed.

If we discretize the problem using finite elements, then the minimum of the discretized
cost functional is found by solving the linear system of equations

⎡

⎣

βQ 0 −Q
0 Q K

−Q K 0

⎤

⎦

⎡

⎣

u
y
p

⎤

⎦ =
⎡

⎣

0
b
d

⎤

⎦ , (4.2)
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where Q is a mass matrix, K is a stiffness matrix and u, y and p represent the discretized
control, state and Lagrange multipliers respectively [29,39]. This matrix is typically very
large and sparse, and the system (4.2) is generally solved iteratively. It was shown in [29]
that two preconditioners that are optimal in terms of the mesh size taken are

Pbd :=
⎡

⎣

βQ 0 0
0 Q 0
0 0 K Q−1K

⎤

⎦ and Pcon :=
⎡

⎣

0 0 −Q
0 βK Q−1K K

−Q K 0

⎤

⎦ .

Although these preconditioners perform well for moderately small values of β—say β >

10−4—the clustering of the generalized eigenvalues of the preconditioned systemdeteriorates
as β → 0 [29, Corollary 3.3 and Corollary 4.4].

We remark that since this is a symmetric problem, for single preconditioners we would
typically use a short-term recurrence Krylov method, such as MINRES in the case of Pbd or
projected CG in the case of Pcon . Using such a method would result in smaller storage costs
and computational time than with GMRES, although care must be taken if a large number
of iterations are needed as MINRES can become unstable; see [44]. Note also that other
preconditioners have been developed which may be better suited for small β, for example a
block triangular preconditioner [3], or preconditioners that are β independent [26,39]. Here
our aim is not to argue that this is the way one should solve such control problems—justifying
such a claim would require more exhaustive tests and domain-specific theory, and as such
is beyond the scope of this work. Rather, we use it to highlight a real-world case where
combining two preconditioners using MPGMRES gives a solution faster than solving using
GMRES with either preconditioner alone.

Example 4.1 We discretize the control problem (4.1) on the domain � = [0, 1]2 using Q1

finite elements with a uniform mesh size of h = 2−7. We take the desired state as

ŷ =
{

(2x1 − 1)2(2x2 − 1)2 if (x1, x2) ∈ [0, 1
2 ]2

0 otherwise
.

We apply the preconditionersPbd ,Pcon exactly (usingMATLAB’sbackslash command),
withMPGMRES (selective and complete), GMRES, and FGMRESwith cycling.We used the
MATLAB implementation of MPGMRES (available on the Mathworks File Exchange), and
applied Pbd and Pcon to the first and second columns of Z (k) respectively on odd iterations,
reversing the order on even iterations. For all other options we used the defaults. The results
are given in Fig. 3.

Figure 3 and the accompanying Table 23 show that, although neither of the preconditioners
Pbd or Pcon are effective for small β, their combination generates an effective solution pro-
cedure. In this table, and those that follow, bold face indicates the fastest algorithm. For β >

10−4—the range inwhich the preconditionerswere designed to be effective—there is nobene-
fit to usingMPGMRES.We see that FGMRESwith cycling preconditioners is not competitive
for this example. In Fig. 3,we show relative residual norms vs. (preconditioned)matrix-vector
products, i.e., vs. the dimension of the search space. This measure represents most of the
work performed for each method (especially for t = 2), and thus it gives a fair comparison.

We note that Pbd + Pcon = A + E , where

E =
⎡

⎣

0 Q 0
0 βK Q−1K 0
0 0 K Q−1K

⎤

⎦ .

3 These experiments were ran on a machine with an Intel Core i5-2500S CPU @ 2.70GHz with 8GB RAM.
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Fig. 3 Convergence curves showing number of matrix-vector products vs. relative residuals for solving the
optimal control problem with MPGMRES, GMRES and FGMRES with cycling
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Table 2 Timings (s) for
Example 4.1

Bold face indicates the fastest
algorithm

β = 10−4 β = 10−6 β = 10−8

Complete MPGMRES 6.5 1.7 1.6

Selective MPGMRES 4.1 1.3 1.2

GMRES, Pbd 2.1 6.9 16.2

GMRES, Pcon 1.9 4.7 17.4

FGMRES (cycling) 13.6 5.3 26.3

In other words, especially for small β, these two preconditioners add up to the coefficient
matrix, except in two blocks, one of which is small in magnitude if the regularization para-
meter β is small. Thus, we are close, in a structural sense, to the special case analyzed in
Sect. 2.5. This observation may provide some intuitive insight as to why the complete and
selective versions of MPGMRES perform almost identically. The two preconditioners seem
to complement each other in terms of the eigenvectors associated with the eigenvalue 1.
Both of the associated preconditioned matrices have an eigenvalue 1 of high multiplicity and
the eigenvectors associated with one of these preconditioned matrices are orthogonal to the
eigenvectors associated with the other preconditioned matrix; cf. the analyses in [14,42].

4.2 Navier–Stokes equations

The steady-state Navier–Stokes equations describe the flow of an incompressible Newtonian
fluid, and are given by

−ν ∇2u + u · ∇u + ∇ p = f

∇ · u = 0,

plus appropriate boundary conditions. A common method to solve these equations numer-
ically is to use a Picard iteration, which requires the solution of a linearized version of the
Navier–Stokes equations—the Oseen problem—at each iteration. The Oseen problem takes
the form

−ν ∇2u + w · ∇u + ∇ p = f

∇ · u = 0,

where, in a Picard method, the vectorw is the computed velocity from the previous iteration.
An important quantity when dealing with the Navier–Stokes equations is the Reynolds

number, R = UL/ν, where U denotes some reference value (e.g., the maximum magnitude
of the inflow velocity) and L denotes a characteristic length scale. Reynolds numbers R > 1
correspond to convection-dominatedflows,which canbe challenging to compute numerically.

Discretization of the Oseen equations by finite elements leads to a saddle-point system of
the form

[

A + N BT

B 0

]

,

whereA,N and B denote the vector Laplacian, vector convection and the divergencematrices
respectively. For further details, see, e.g., [11, Chapter 7.3]. A number of precondition-
ers have been proposed for this linear system. Two of the most successful have been the
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Table 3 Iteration numbers, with
wall-clock times in parentheses,
for solving an Oseen problem
with R = 100

Bold face indicates the fastest
algorithm

N dim PCD LSC sMPGMRES

22 162 21 (0.03) 16 (0.02) 14 (<0.01)

23 578 30 (0.04) 21 (<0.01) 27 (0.07)

24 2178 37 (0.03) 25 (0.04) 35 (0.22)

25 8450 39 (0.19) 31 (0.17) 22 (0.13)

26 33,282 38 (0.50) 37 (0.60) 24 (0.30)

27 1,32,098 36 (1.92) 44 (2.62) 25 (1.05)

28 5,26,338 35 (6.27) 52 (9.60) 24 (3.84)

Table 4 Iteration numbers, with
wall-clock times in parentheses,
for solving an Oseen problem
with h = 2−8

Bold face indicates the fastest
algorithm

R PCD LSC sMPGMRES

1 18 (2.86) 44 (8.18) 13 (2.07)

10 22 (3.81) 49 (9.49) 15 (2.32)

100 35 (5.99) 52 (10.16) 24 (3.92)

pressure-convection-diffusion (PCD) [20,40] and least-squares-commutator [10] (LSC) pre-
conditioners.

The ideal PCD preconditioner, derived using a commutator argument, is given by the
matrix

[

A + N BT

0 ApF−1
p Q

]

,

where Ap denotes the discrete Laplacian in the pressure space, Fp = Ap + Np denotes the
convection-diffusion equation in the pressure space, and Q denotes the pressure mass matrix.
Alternatively, the ideal LSC preconditioner is given by the matrix

[

A + N BT

0 (BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

]

,

where Q is the velocity mass matrix, and F = A + N.
We approximate themassmatrix by its diagonal, and other systems are solved using a direct

solver, either HSL_MA48 (for non-symmetric systems) or HSL_MA57 (for the symmetric
systems). In practice these solves may be replaced by a spectrally equivalent preconditioner,
e.g., a multigrid V-cycle.

As in Example 4.1, usingMPGMRES here seems to be a promising alternative for solving
matrices from Navier–Stokes problems, but more focused testing on a range of problems—
which is beyond the scope of this manuscript—needs to be done before we can justify such
a claim. Our primary aim here is to demonstrate two preconditioners that, when combined
using MPGMRES, allow us to solve a non-artificial problem faster than if we employed any
single preconditioner alone. Tables 3 and 4 give iteration counts and timings4 for solving an
Oseen problem posed on a unit square. We apply boundary conditions corresponding to a
leaky cavity problem [11, Example 7.1.3] with an advection field given by

4 These experiments were ran on a two-socket machine, each with Intel Xeon CPU E5-2687W 0@ 3.10 GHz
(i.e. 2 × 8 cores), and with 64GB memory total.
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[

2x2(1 − x21 ), 2x1(1 − x22 )
]

.

The system is discretized with a uniform mesh using Q2-Q1 (Taylor-Hood) finite elements.
The resulting linear system is solved using GMRES and selective MPGMRES, with either
the PCD preconditioner, the LSC preconditioner, or both. We use the Fortran 95 implemen-
tation ofMPGMRES—HSL_MI29—and apply the preconditioners inside a simple openMP
parallel ‘do’ loop. In the case of selective MPGMRES, the selection strategy used is to apply
the LSC preconditioner to the first column of Z (k), and the PCD preconditioner to the second,
otherwise we use the default options in HSL_MI29.

First, we highlight the fact that MPGMRES has greater memory requirements than
GMRES, in this case requiring two columns to be added to Vk in the decomposition (2.7) per
iteration, compared with the one added in standard GMRES (see Sect. 2.4, and note that Zk

can be recovered from Vk). Therefore, if memory is limited, using a single preconditioner
may give a solution where MPGMRES may run out of memory.

Provided the problem can be solved using both methods, the wall clock time tells us which
method is better. Neither the PCD nor the LSC preconditioner is the clear winner here, the
best alternative depending on the mesh size. MPGMRES, on the other hand, almost always
has the fewest iterations. Although each iteration of MPGMRES requires two preconditioner
solves—and hence ismore expensive—these are done in parallel here, and so the cost in terms
of wall-clock time is not much greater (see the final column of the tables). The overhead of
invoking the openMP machinery is amortized as the matrix size increases.

Acknowledgements We thank the two anonymous referees for their questions and comments, which helped
us improve our presentation.
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