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Abstract We propose an accurate and computationally efficient numerical technique for
solving the biharmonic eigenvalue problem. The technique is based on the sinc-Galerkin
approximation method to solve the clamped plate problem. Numerical experiments for plates
with various aspect ratios are reported, and comparisons are made with other methods in
literature. The calculated results accord well with those published earlier, which proves the
accuracy and validity of the proposed method.
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1 Introduction

Eigenvalue problems such as plate vibration problems have attracted much research using
a wide range of methods. However, exact solutions are available only for certain boundary
conditions and domain configurations, hence approximate solutions are of great importance
when analytical methods fail or become too cumbersome.
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A large number of numerical methods have been developed to obtain solutions for many
rectangular plate problemswith different boundary conditions [23,26,29,37–39].Aboundary
homotopy method was used in [46] to obtain strict bounds for the N lowest eigenvalues of
the clamped plate equation in the unit square. Some of these methods can only provide upper
bounds for the eigenvalues. For example, spectral Legendre-Galerkin method [6] was used
to provide highly accurate solution to the biharmonic eigenvalue problem for the clamped
unit-square plate and buckling plate problems. Another method that always gives upper
bounds for the eigenvalues is the Rayleigh-Ritzmethod [48]. Recently, Gavalas and El-Raheb
[21] extended the method for eigenvalue problems with discontinuous boundary conditions
applied to vibration of rectangular plates. Also, themethodwas applied in [8] for the vibration
analysis of exponential functionally graded rectangular plates in thermal environment. On the
other hand, the superposition method developed by Gorman [24] gives lower bound results to
the same problem. This method has been successfully applied for the analysis of undamped
out-of-plane vibrations of single isotropic plates [22]. Other successful numerical methods
include the spline finite strip method by Fan and Cheung [19], the Galerkin approach by Chia
[11] and Leipholz [27], the least squares technique [45], meshless methods [4,13], and finite
element methods [1,10]. Differential quadrature (DQ) methods [2,9] have been successfully
applied in the vibration analysis. A generalized differential quadrature (GDQ) method was
introduced by Shu and Richards [41] to simplify the calculation of the weighting coefficients
of the derivatives approximation.

The biharmonic boundary value problem

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= f (x, y), (x, y) ∈ � ≡ (a, b) × (c, d),

subject to the nonhomogeneous boundary conditions

u|∂� = g(x, y),
∂u

∂n

∣
∣
∣
∣
∂�

= h(x, y)

(where ∂u
∂n is the outward normal derivative) was solved using the sinc-Galerkin method

in [18]. In this paper, we apply the sinc-Galerkin method to solve the biharmonic eigenvalue
problem

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= λu, (x, y) ∈ � ≡ (a, b) × (c, d),

subject to the following boundary conditions for a clamped plate

u|∂� = ∂u

∂n

∣
∣
∣
∣
∂�

= 0.

In recent years, a lot of attention has been devoted to the study of the sinc method to
investigate various scientific models. It is possible to solve two point boundary value prob-
lems [5,34], initial-value problems [3], fourth-order differential equations [40], sixth-order
boundary-value problems [17], nonlinear higher-order boundary-value problems [16], par-
tial differential equations [32], eigenvalue problems, singular problem-like Poisson [47],
linear Fredholm integro-differential equations [33], linear and nonlinear Volterra integro-
differential equations [35], linear and nonlinear system of second-order boundary value
problems [14], as well as Troesch’s problem [15] by using sinc methods. The comparison of
finite difference, spectral and sinc-convolution treatments was considered in [12].

The outline of the paper is as follows. Section 2, contains notations, definitions and some
results of sinc function theory. In Sect. 3, the sinc-Galerkin approach to the clamped plate
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eigenvalue problem is presented. In Sect. 4, we verify the reliability of the proposed algo-
rithm by numerical results obtained and comparisons with published results in literature.
Conclusions are given in Sect. 5.

2 Preliminaries and fundamentals

The books [31,43] provide excellent overviews ofmethods based on sinc functions for solving
ordinary and partial differential equations and integral equations. The goal of this section is
to recall notations and definitions of the sinc function, state some known results, and derive
useful formulas that are important for this paper.

The sinc function is defined on the whole real line by

sinc(x) = sin(πx)

πx
, −∞ < x < ∞.

For h > 0, the translated sinc functions with evenly spaced nodes are given as

S(k, h)(x) = sinc

(
x − kh

h

)

, k = 0,±1,±2, . . .

If f is defined on the real line, then for h > 0 the series

C( f, h) =
∞
∑

k=−∞
f (hk)sinc

(
x − hk

h

)

,

is called theWhittaker cardinal expansion of f whenever this series converges. The properties
of Whittaker cardinal expansions have been studied and are thoroughly surveyed in [43].
These properties are derived in the infinite strip Dd of the complex plane where for d > 0

Dd =
{

ζ = ξ + iη : |η| < d ≤ π

2

}

. (2.1)

To construct approximations on the interval (a, b) which are used in this paper, we consider
the conformal map [43]

φ(z) = ln

(
z − a

b − z

)

, (2.2)

The map φ carries the eye-shaped region

DE =
{

z = x + iy :
∣
∣
∣
∣
arg

(
z − a

b − z

)∣
∣
∣
∣
< d ≤ π

2

}

, (2.3)

onto the infinite strip Dd .
The “mesh sizes” h represent the mesh sizes in Dd for the uniform grids {kh}, k =

0,±1,±2, . . .. The sinc grid points zk ∈ (a, b) in DE will be denoted by xk because they
are real, and are given by

xk = φ−1(kh) = a + b ekh

1 + ekh
, (2.4)

The class of functions suitable for sinc interpolation and quadrature is denoted by B(D) and
defined below.

Definition 2.1 [43] Let B(D) be the class of functions F that are analytic in D, satisfy
∫

ψ(L+t)
|F(z)dz| → 0, as t = ±∞,
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where

L =
{

iy : |y| < d ≤ π

2

}

,

and on the boundary of D (denoted ∂D) satisfy

N (F) =
∫

∂DE

|F(z)dz| < ∞.

The following theorem provides the error bounds of sinc interpolation and quadrature for-
mulae for functions in B(D).

Theorem 2.1 [43]Let � be (a, b). Let F ∈ B(D) and τ j = ψ( jh) = φ−1( jh), j =
0,±1,±2, . . . ,. Let there exist positive constants α, β and C such that

∣
∣
∣
∣

F(τ )

φ′(τ )

∣
∣
∣
∣
≤ C

{

exp(−α|φ(τ)|), τ ∈ ψ((−∞, 0)),

exp(−β|φ(τ)|), τ ∈ ψ((0,∞)).
(2.5)

then the error bound is
∣
∣
∣
∣
∣
∣

∫

�

F(τ )dτ − h
N

∑

j=−M

F(τ j )

φ′(τ j )

∣
∣
∣
∣
∣
∣

≤ C

(
e−αMh

α
+ e−βNh

β

)

+ |IF | . (2.6)

Making the selections

h =
√

πd

αM
, and N ≡

[∣
∣
∣
∣

α

β
M + 1

∣
∣
∣
∣

]

,

where [x] is the integer part of x, then
∫

�

F(τ )dτ = h
N

∑

j=−M

F(τ j )

φ′(τ j )
+ O

(

e−(παdM)1/2
)

.

The sinc-Galerkin method requires that the derivatives of composite sinc functions be eval-
uated at the nodes. We need the following lemma.

Lemma 2.1 [31,43] Let φ be the conformal one-to-one mapping of the simply connected
domain DE onto Dd , given by (2.2). Then

δ
(0)
jk = [S( j, h) ◦ φ(x)] |x=xk =

{

1, j = k,
0, j 	= k,

(2.7)

δ
(1)
jk = h

d

dφ
[S( j, h) ◦ φ(x)] |x=xk =

{

0, j = k,
(−1)k− j

k− j , j 	= k,
(2.8)

δ
(2)
jk = h2

d2

dφ2 [S( j, h) ◦ φ(x)] |x=xk =
{ −π2

3 , j = k,
−2(−1)k− j

(k− j)2
, j 	= k.

(2.9)

δ
(3)
jk = h3

[
d3

dφ3 [S( j, h) ◦ φ(x)]
]

x=xk

=
{

0, j = k,
(−1)k− j

(k− j)3
[

6 − π2(k − j)2
]

, j 	= k,

(2.10)
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δ
(4)
jk = h4

[
d4

dφ4 [S( j, h) ◦ φ(x)]
]

x=xk

=
{

π4

5 , j = k,
−4(−1)k− j

(k− j)4
[

6 − π2(k − j)2
]

, j 	= k,

(2.11)

3 The Sinc-Galerkin approach to the biharmonic eigenvalue problem

The equation of motion for the undamped free vibration of a plate may be written as [44]

∂4u

∂ x̄4
+ 2

∂4u

∂ x̄2∂ ȳ2
+ ∂4u

∂ ȳ4
+ ρ

D

∂2u

∂t2
= 0 (3.1)

where u is the transverse displacement at a point defined by the coordinates (x̄, ȳ) ∈ (0, a)×
(0, b) where a and b are the plate dimensions, at any given time t , D is the flexural rigidity
of the plate and ρ is the mass of the plate per unit area of its surface.

For a plate of constant thickness σ and material properties E (Young’s modulus of elas-
ticity) and ν (Poisson’s ratio), the flexural rigidity D is given by

D = E σ 3

12(1 − ν2)

Assuming harmonic vibration, we may write

u(x̄, ȳ, t) = U (x̄, ȳ)sin(ωt) (3.2)

where U (x̄, ȳ) is a shape function satisfying the fully clamped plate boundary conditions
and describing the shape of the deflected middle surface of the vibrating plate, and ω is a
natural circular frequency of the plate. Substituting for u in Eq. (3.1), we obtain

∂4U

∂ x̄4
+ 2

∂4U

∂ x̄2∂ ȳ2
+ ∂4U

∂ ȳ4
− ρω2

D
U = 0 (3.3)

For convenience, the governing Eq. (3.3) is expressed in dimensionless form. Define the
dimensionless coordinates x and y, where x = x̄/a and y = ȳ/b. Equation (3.3) may be
then written as

LU ≡ ∂4U

∂y4
+ 2�2 ∂4U

∂x2∂y2
+ �4 ∂4U

∂x4
− �4λ2U = 0, (3.4)

where (� = b/a) is the plate aspect ratio, and the non-dimensional frequency parameter, λ
of the plate may be expressed as

λ = ωa2
√

ρ

D
(3.5)

The assumed sinc approximate solution to the eigenvalue problem (3.4) takes the form:

Un(x, y) =
N

∑

j=−M

N
∑

i=−M

Ui j Si j (x, y), n = M + N + 1 (3.6)

where the basis functions
{

Si j (x, y)
}

for −M ≤ i, j ≤ N are given as simple product basis
functions of one dimensional sinc basis
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Si j (x, y) = Si (x)S j (y)
= [S(i, hx ) ◦ φ1(x)][S( j, hy) ◦ φ2(y)] (3.7)

where φ be as before.
The assumed approximate solution satisfies the clamped plate boundary conditions

U |� = ∂U

∂n

∣
∣
∣
∣
�

= 0

where � is the boundary of the new dimensionless domain, � ≡ (0, 1) × (0, 1), and n is the
outward normal to the boundary.

We use the Galerkin scheme to determine the unknown coefficients
{

Ui j
}

in (3.6). First,
we define the inner product of two functions f and g by

〈 f, g〉 =
∫ 1

0

∫ 1

0
f (x, y) g(x, y)w(x) v(y) dx dy,

where w(x) = 1
[φ′

1(x)]2 and v(y) = 1
[φ′

2(x)]2 are the weight functions in the direction of the

x-axis and y-axis, respectively.
The discrete Galerkin system is then given by

〈LUn, Skl〉 = �4λ2〈Un, Skl〉, −M ≤ k, l ≤ N (3.8)

Instead of substituting the approximate solution given by (3.6) into (3.8), we first analyze
the equation

〈

�4Uxxxx , Sk Sl
〉 + 〈

2�2Uxxyy, Sk Sl
〉 + 〈

Uyyyy, Sk Sl
〉 = 〈

�4λ2U, Sk Sl
〉

(3.9)

The method of approximating the integrals in (3.9) begins by integrating by parts to transfer
all derivatives from U to Skl . We are lead to the following theorem

Theorem 3.1 The following relations hold

〈

�4Uxxxx , Sk Sl
〉 ≈ hxhy�

4 v(yl)

φ′
2(yl)

N
∑

i=−M

4
∑

j=0

U (xi , yl)

φ′
1(xi )

[

1

h j
x

δ
( j)
ki μ j

]

, (3.10)

〈

Uyyyy, Sk Sl
〉 ≈ hxhy

w(xk)

φ′
1(xk)

N
∑

i=−M

4
∑

j=0

U (xk, yi )

φ′
2(yi )

[

1

h j
y

δ
( j)
li η j

]

, (3.11)

〈

2 �2uxxyy, Sk Sl
〉 ≈ 2�2hx hy

N
∑

j=−M

N
∑

i=−M

2
∑

r=0

2
∑

p=0

τr ξp U (xi , y j )

hrx h
p
y φ′

1(xi ) φ′
2(yi )

δ
(r)
ki δ

(p)
l j ,

(3.12)
and

〈

�4λ2U, Sk Sl
〉 ≈ �4λ2 hx hy

w(xk)U (xk, yl) v(yl)

φ′
1(xk) φ′

2(y j )
(3.13)

for some functions μ j ,η j , ξp and τr to be determined.

Proof The proof is given in Appendix 1. 
�
Replacing each term of (3.9) with the corresponding approximations defined in

(3.10), (3.11), (3.12) and (3.13) and replacing U (xk, yl) by Ukl and dividing by hx hy , we
obtain the following theorem
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Theorem 3.2 If the assumed approximate solution of the boundary-value problem (3.1) is
(3.6), then the discrete sinc-Galerkin system for the determination of the unknown coefficients
{Ukl , k = −M, . . . , N , l = −M, . . . , N } is given by

�4 v(yl)

φ′
2(yl)

N
∑

i=−M

4
∑

j=0

Uil

φ′
1(xi )

[

1

h j
x

δ
( j)
ki μ j

]

+ 2�2
N

∑

j=−M

N
∑

i=−M

2
∑

r=0

2
∑

p=0

τr ξp δ
(r)
ki δ

(p)
l j

hrx h
p
y φ′

1(xi ) φ′
2(y j )

Ui j

+ w(xk)

φ′
1(xk)

N
∑

i=−M

4
∑

j=0

Uki

φ′
2(yi )

[

1

h j
y

δ
( j)
li η j

]

= �4λ2
w(xk)U (xk, yl) v(yl)

φ′
1(xk) φ′

2(yl)
(3.14)

Recall the notation of Toepleitz matrices [25]. Let I (P)
n , P = 0, 1, 2, 3, 4 be the n × n

matrices I (P), with jk-th entry δ
(P)
jk as given by equations (2.7)–(2.11). Further, D(gx ) is an

n×n diagonal matrix whose diagonal entries are [g−M , g−M+1, . . . , gN ]T . Lastly, the n×n
matrix U has kl-th entries given by Ukl . Introducing this notation in Eq. (3.14) leads to the
matrix form

AX + CXE + XB = λ2 X (3.15)

where A, B, C, E and X are matrices of size n × n, and given by

A = D(φ′
1)

4
∑

i=0

[

1

hix
I(i)n D

(

μi

φ′
1
2
w

)]

D(φ′
1),

B =
(

1

�4

)

D(φ′
2)

4
∑

i=0

[

1

hiy
I(i)n D

(

ηi

φ′
2
2
v

)]T

D(φ′
2),

C =
(

2

�2

)

D(φ′
1)

2
∑

i=0

[

1

hix
I(i)n D

(

τi

φ′
1
2
w

)]

D(φ′
1)

E = D(φ′
2)

2
∑

i=0

[

1

hiy
I(i)n D

(

ξi

φ′
2
2
v

)]T

D(φ′
2)

and

X = D(w)UD(v),

The last step is to convert the matrix equation (3.15) to a matrix eigenvalue problem. This
is done via vectorization of (3.15) using Kronecker matrix products [36]. This yields the
algebraic eigenvalue problem

M z = λ2 z (3.16)

where

M = In ⊗ A + ET ⊗ C + BT ⊗ In

From the above equation, the values of λ defined in Eq. (3.5) can be obtained from the
eigenvalues of matrix M.
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4 Numerical results and discussions

For purposes of comparison, contrast and performance, we consider the computation of λ

for the square plate and rectangular plates of various aspect ratios, �. For all cases, we have
made the selections, d = π/2, α = 0.5 and h = π/

√
M .

• Case 1 In this case, a clamped square plate is considered. In Table 1, we report the
calculated values of λ1, λ2, λ3 and λ4 using different number of sinc basis functions with
M = 5, 10, 15, . . . , 50.

It is worth noting that clamped plate eigenvalue problem has no exact solution. Hence,
we further use the results obtained in Table 1 to find the limit values

{

λ∗
1, λ∗

2, λ∗
3, λ∗

4

}

using
the minimal polynomial extrapolation (MPE) approach [7,42]. The obtained limit values are
reported in Table 2 along with the strict lower bounds, λ j and upper bounds, λ j obtained
in [46].

Sincewe are using theGalerkin scheme,we note from the results in Table 1 that ourmethod
converges to the accurate upper bound. We define an approximate relative error (ARE) by

ei =
∣
∣λsinc − λ∗

i

∣
∣

λ∗
i

, i = 1, . . . , 4. (4.1)

The exponential convergence rate shown in Fig. 1 for the ARE of the first four frequency
paramters verifies the validity and accuracy of the proposed scheme. The shapes of the
corresponding eigenmodes are shown in Fig. 2.

The results in Table 3 also show good agreement with those obtained by other methods;
the Rayleigh–Ritz method with displacement components expressed in simple algebraic

Table 1 Convergence of the computed values of λ for the square plate using different M

M λ1 λ2 λ3 λ4

5 35.31842943502423 75.663083586124 75.66308358612369 108.99701174386280

10 36.01186902491406 75.189800637716 75.18980063773876 111.77565118066765

15 35.97852996553088 73.298707870932 73.29870787093215 107.83109310267633

20 35.98630157083767 73.462784551881 73.46278455205049 108.37576563864191

25 35.98491854966878 73.379810693652 73.37981069999269 108.17595847912698

30 35.98526594894749 73.399756043821 73.39975604382076 108.23138796521422

35 35.98516958251560 73.391942503801 73.39194272596092 108.21143908446292

40 35.98519840348746 73.394621971451 73.39462578813033 108.21847745722619

45 35.98518863479417 73.393542486825 73.39354248682497 108.21572730381321

50 35.98519148325810 73.393983806872 73.39399978580005 108.21684351123402

Table 2 Minimal polynomial
extrapolation limits of λ for the
square plate compared to the
strict lower and upper bounds
of [46]

j λ j [46] λ∗
j λ j [46]

1 35.98519056501 35.985190478245 35.98519123195

2 73.39384442854 73.393857389441 73.39384579105

3 73.39384442854 73.393878120887 73.39384579105

4 108.2164973560 108.21651715621 108.2165019764
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M
5 10 15 20 25 30 35 40 45 50
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10-2
e1

e2, e3
e4

Fig. 1 Approximate relative error of the calculated λi , i = 1, . . . , 4

Fig. 2 Eigenmodes of the clamped square plate: a The first mode, λ1 � 35.985. b The second mode,
λ2 � 73.394. c The third mode, λ3 � 73.394. d The fourth mode, λ4 � 108.217

polynomial forms [8], the Rayleigh–Ritz method together with natural co-ordinate regions
and normalized beam characteristic orthogonal polynomials [20], the Ritz method with 36
terms containing the products of beam functions [28], and Rayleigh–Ritz procedure for
minimization of the energy function derived using Mindlin’s plate theory [30].
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Table 3 Comparison of the first four frequency parameters for clamped square plate

λ1 λ2 λ3 λ4

Present 35.985191 73.393857 73.393878 108.216517

Ref. [8] 35.9888 73.3989 73.3989 108.2653

Ref. [20] 35.9852 73.3939 73.3939 108.2166

Ref. [28] 35.990 73.390 473.390 108.220

Ref. [30] 35.9875 73.3943 73.3943 108.2172

Table 4 Convergence of the computed values of λ for clamped rectangular plate with an aspect ratio� = 2/3

M λ1 λ2 λ3 λ4

30 60.76122010739 93.83998365940 148.7920510151 149.6466009464

35 60.76106350275 93.83128876907 148.7758755388 149.6708398564

40 60.76111043487 93.83433147164 148.7813199810 149.6720005497

45 60.76109450428 93.83312644706 148.7791053127 149.6742219060

50 60.76109920513 93.83361184351 148.7799710311 149.6739596225

Limit values (MPE) λ∗
1 λ∗

2 λ∗
3 λ∗

4
60.76113900726 93.83378370844 148.7799435960 149.6834918113

Table 5 Convergence of the computed values of λ for clamped rectangular plate with an aspect ratio� = 1.5

M λ1 λ2 λ3 λ4

30 27.00498671452 41.70665938377 66.12980042868 66.50960041874

35 27.00491711008 41.70279501987 66.12261089919 66.52037319215

40 27.00493799774 41.70414730246 66.12503096920 66.52088922261

45 27.00493098404 41.70361190873 66.12404356175 66.52187622539

50 27.00493294635 41.70382454475 66.12442801675 66.52175983594

Limit values (MPE) λ∗
1 λ∗

2 λ∗
3 λ∗

4
27.00495453929 41.70394873204 66.12446219173 66.52670293706

• Case 2 In this case, we consider clamped rectangular plates with different aspect ratios
� = 2/3, 1.5 and 2.5. The calculated values of λi , i = 1, . . . , 4 for � = 2/3 and 1.5
are reported in Tables 4 and 5, respectively.

The mode shapes for the rectangular plate with an aspect ration, � = 1.5 are shown in
Fig. 3.

In Table 6, the values of λ for the case of a clamped rectangular plate with � = 2.5
are reported. The calculated values of the first four frequency parameters for the cases of
� = 2/3, 1.5 and 2.5 are listed in Table 7, comparedwith those obtained by other approaches
in [8,20,28,30].

Based on the limit values obtained using the MPEmethod, the approximate relative errors
are defined for each case of � = 2/3, 1.5 and 2.5 by (4.1). The values of the AREs are listed
in Table 8.

123



Sinc-Galerkin solution to the clamped plate eigenvalue problem 175

Fig. 3 Mode shapes of clamped rectangular plate with� = 1.5: a The first mode, λ1 � 27.005. b The second
mode, λ2 � 41.704. c The third mode, λ3 � 66.125. d The fourth mode, λ4 � 66.527

Table 6 Convergence of the computed values of λ for clamped rectangular plate with an aspect ratio� = 2.5

M λ1 λ2 λ3 λ4

30 23.6438225808 27.80804081952 35.41407342015 46.70972717425

35 23.6437666850 27.80647344327 35.41693379346 46.70942071288

40 23.6437835022 27.80702770197 35.41686532809 46.67057617978

45 23.6437780212 27.80681452817 35.41716005961 46.67725263736

50 23.6437803938 27.80690327282 35.41710051486 46.67011375938

Limit values (MPE) λ∗
1 λ∗

2 λ∗
3 λ∗

4
23.64383887648 27.80745144512 35.41872102840 46.63730533502

5 Conclusion

In this paper, the sinc-Galerkin method was applied to solve the biharmonic eigenvalue
problem. Clamped thin square and rectangular plates with various aspect ratios were con-
sidered. The calculated results for these cases accord well with those published earlier. In
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Table 7 Comparison of the first four frequency parameters for clamped rectangular plates with different
aspect ratios

� λ1 λ2 λ3 λ4

2/3 Present 60.761139 93.833784 148.779944 149.683492

Ref. [8] 60.7626 93.8415 148.7881 149.6842

Ref. [28] 60.772 93.860 148.820 149.740

Ref. [30] 60.7662 93.8390 148.7798 149.6770

1.5 Present 27.004955 41.703949 66.124462 66.526703

Ref. [8] 27.0075 41.7073 66.1280 66.6235

Ref. [20] 27.0050 41.7038 66.1245 66.5225

Ref. [28] 27.0100 41.7160 66.1430 66.5520

2.5 Present 23.643839 27.807451 35.418721 46.637305

Ref. [8] 23.6442 27.8095 35.4201 46.8183

Ref. [20] 23.6438 27.8070 35.4179 46.6762

Ref. [28] 23.648 27.817 35.446 46.702

Ref. [30] 23.6428 27.8056 35.4158 46.6687

Table 8 Approximate relative errors for clamped plates with different aspect ratios

� M e1 e2 e3 e4

2/3 30 1.335E−06 6.607E−05 8.138E−05 2.465E−04

35 1.243E−06 2.659E−05 2.734E−05 8.452E−05

40 4.702E−07 5.838E−06 9.251E−06 7.677E−05

45 7.323E−07 7.005E−06 5.634E−06 6.193E−05

50 6.551E−07 1.832E−06 1.844E−07 6.368E−05

1.5 30 1.191E−06 6.499E−05 8.073E−05 2.571E−04

35 1.386E−06 2.766E−05 2.798E−05 9.515E−05

40 6.125E−07 4.761E−06 8.602E−06 8.739E−05

45 8.723E−07 8.077E−06 6.331E−06 7.255E−05

50 7.996E−07 2.978E−06 5.168E−07 7.429E−05

2.5 30 6.892E−07 2.119E−05 1.312E−04 1.553E−03

35 3.053E−06 3.517E−05 5.046E−05 1.546E−03

40 2.342E−06 1.524E−05 5.239E−05 7.134E−04

45 2.574E−06 2.289E−05 4.407E−05 8.566E−04

50 2.473E−06 1.971E−05 4.575E−05 7.035E−04

addition, compared to the strict lower and upper bounds available for the square plate, the
sinc-Galerkin has a high convergence rate. This proves the accuracy and validity of the
sinc-Galerkin method.

Acknowledgements The authors would like to thank the anonymous reviewer for carefully reading this paper
and for his many useful suggestions.
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Appendix 1: Proof of Theorem 3.1

For Uxxxx , the inner product with sinc basis element is given by

〈

�4Uxxxx , Sk Sl
〉 = �4

∫ 1

0

∫ 1

0
Uxxxx (x, y)Sk(x)Sl(y)w(x)v(y)dxdy.

Integrating by parts to remove the fourth order derivatives from the dependent variable U
leads to the equality.

〈

�4Uxxxx , Sk Sl
〉 = Bx + �4

∫ 1

0

∫ 1

0
U (x, y) [Sk(x)Sl(y)w(x)v(y)]xxxx dxdy. (5.1)

where the boundary term is

Bx = �4
∫ 1

0
[Uxxx (Sk Slwv) −Uxx (Sk Slwv)x +Ux (Sk Slwv)xx −U (Sk Slwv)xxx ]

1
0 dy.

The boundary terms in Eq. (5.1) vanished. Continuing only with the remaining integral in
(5.1) and expanding the derivative results in

〈

�4Uxxxx , Sk Sl
〉 = �4

∫ 1

0

∫ 1

0

4
∑

i=0

U (x, y)
[

S(i)
k μi

]

Slv(y)dxdy. (5.2)

where S(i)
k denotes the ith derivative of Sk with respect to the φ1 and

μ4 = (φ′
1)

4w,

μ3 = 6(φ′
1)

2φ′′
1w + 4(φ′

1)
3w′,

μ2 = 3(φ′′
1 )2w + 4φ′

1φ
′′′
1 w + 12φ′

1φ
′′
1w′ + 6(φ′

1)
2w′′,

μ1 = φ′′′′
1 w + 4φ′′′

1 w′ + 6φ′′
1w′′ + 4φ′

1w
′′′.

and

μ0 = w′′′′

Applying the sinc quadrature in the x-domain and y-domain to Eq. (5.2) yields Eq. (3.10).
The inner product forUyyyy may be handled in a similar manner. This gives the expression

(3.11) where

η4 = (φ′
2)

4v,

η3 = 6(φ′
2)

2φ′′
2v + 4(φ′

2)
3v′,

η2 = 3(φ′′
2 )2v + 4φ′

2φ
′′′
2 v + 12φ′

2φ
′′
2v′ + 6(φ′

2)
2v′′,

η1 = φ′′′′
2 v + 4φ′′′

2 v′ + 6φ′′
2v′′ + 4φ′

2v
′′′.

and

η0 = v′′′′

For Uxxyy , the inner product with sinc basis element is given by

〈

2�2uxxyy, Sk Sl
〉 = 2�2

∫ 1

0

∫ 1

0
Uxxyy(x, y) Sk(x) Sl(y)w(x) v(y) dx dy.
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Integrating by parts to remove the fourth derivatives from the dependent variable U leads to
the equality

〈

2�2Uxxyy, Sk Sl
〉 = Bxy + �2

∫ 1

0

∫ 1

0
U (x, y) [2 Sk(x) Sl(y)w(x) v(y)]xxyy dx dy.

(5.3)
where the boundary term is

Bxy = �2
∫ 1

0

[

Uxyy(Sk Sl w v) −Uyy(Sk Sl w v)x
]1
0 dy

+
∫ 1

0

[

Uy(Sk Sl w v)xx −U (Sk Sl w v)xxy
]1
0 dx = 0

Continuing with the remaining integral in (5.3) and expanding the derivative result in

〈

2�2Uxxyy, Sk Sl
〉 = 2�2

∫ 1

0

∫ 1

0

2
∑

r=0

2
∑

p=0

U (x, y)S(r)
k S(p)

l τr ξp dx dy. (5.4)

where

τ2 = (φ′
1)

2 w, τ1 = 2φ′
1w

′ + φ′′
1w, τ0 = w′′,

and

ξ2 = (φ′
2)

2v, ξ1 = 2φ′
2v

′ + φ′′
2v, ξ0 = v′′

Applying the sinc quadrature in the x-domain and y-domain to the Eq. (5.4) yields Eq.
(3.12).

For �4λ2U (x, y), the inner product is

〈

�4λ2U, Sk Sl
〉 = �4

∫ 1

0

∫ 1

0
λ2U (x, y)Sk Slw(x)v(y)dxdy (5.5)

Applying the sinc quadrature to (5.5) yields

〈

�4λ2U, Sk Sl
〉 ≈ �4λ2hxhy

w(xk)U (xk, yl)v(yl)

φ′
1(xk)φ

′
2(yl)

(5.6)

as given in Eq. (3.13).
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