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Abstract It is worth noting that there is a growing interest in obtaining iterative methods that
are totally derivative free. In this paper, we present two new three-step eighth-order classes
of Steffensen-King’s type methods for solving nonlinear equations numerically. In terms of
computational cost, each member of the proposed families requires only four functional eval-
uations per full iteration to achieve optimal eighth-order convergence. A variety of concrete
numerical examples and relevant results are extensively treated to verify the underlying the-
oretical development. Moreover, the presented basins of attraction also confirm that our pro-
posedmethods have better stability and robustness as compared to the other existingmethods.

Keywords Nonlinear equations · Multipoint methods · Kung-Traub conjecture ·
Optimal efficiency index · Basins of attraction
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1 Introduction

Finding rapidly and accurately the zeros of nonlinear functions is a common problem in the
field of computational mathematics. The subject of root-finding of nonlinear equations play
a significant role in numerical analysis and optimization. We need fast iterative algorithms to
approximate the solutionof nonlinear equations arising from the applicationof shootingmeth-
ods to solve boundary value problems. In this study, we consider iterativemethods for solving

B V. Kanwar
vmithil@yahoo.co.in

Raj Bala
rajbala07@gmail.com

Munish Kansal
mkmaths@gmail.com

1 University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India

2 Department of Mathematics, Government College Barwala, Panchkula, Haryana 134 118, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40324-016-0081-1&domain=pdf


76 V. Kanwar et al.

a nonlinear equation f (x) = 0,where f : D ⊆ R→R is a scalar function defined on an open
interval D. Most solution methods for finding a solution α of a nonlinear equation are itera-
tive, since closed form solutions can be found only in special cases [1–24]. Newton’s method
[22] is one of themost famous and basic method for solving such equations, which is given by

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . .

It converges quadratically for simple roots and linearly for multiple roots. In order to improve
the local order of convergence of Newton’s method, a number of modifiedmethods have been
developed and analyzed in the literature, see for example [1–20] and references therein. The
most efficient existing root-solvers are based on multipoint iteration techniques since they
overcome the theoretical limitations of one-point methods regarding their convergence order
and computational efficiency. Kung and Traub [10] conjectured that convergence order of any
multipoint method without memory consuming n functional evaluations can not exceed the
upper bound 2n−1. Multipoint methods with this property are usually called optimal meth-
ods. Therefore, optimal efficiency index [22] of an iterative method is defined by E = p1/d ,
where p denotes the order of convergence and d is the total number of function evaluations
required per full iteration. King’s family [9] and Ostrowski’s method [12] are one of the most
efficient fourth-order multipoint iterativemethods without memory. In spite of being optimal,
they require the evaluation of first order derivative at one or two points and hence cannot
be applied to non-smooth functions. However, there are many practical situations in which
the calculations involving derivatives is very expensive from computational point of view.
Therefore, the idea of removing derivatives from the iteration process is very significant.
Recently, many researchers have developed the idea of removing derivatives from the itera-
tion function in order to avoid defining new functions such as the first or second derivative,
and calculate iterates only by using the function that describes the problem, and obviously try-
ing to preserve the order of convergence. In particular, when the first-order derivative f ′(xn)
in Newton’s method is replaced by forward-difference approximation f (xn+ f (xn))− f (xn)

f (xn)
, we

get the well-known Steffensen’s method [17] as follows:

xn+1 = xn − f (xn)

f [xn, un] ,

where un = xn + f (xn) and f [·, ·] denotes the first order divided difference. As a matter
of fact, both methods maintain quadratic convergence using only two functional evaluations
per full step, but Steffensen method is derivative free, which is very useful in optimization
problems. Therefore, many higher-order derivative-free methods are built according to the
Steffensen’smethod, see [3,7,14,19–21,24] and references therein. In this paper, we intend to
propose two optimal eighth-order derivative-free families of King’s and Ostrowski’s meth-
ods requiring only four function evaluations, viz., f (xn), f (wn), f (yn), and f (zn) per
full iteration. Both families are constructed by using different type of weight functions and
consequently, they can be applied to solve non-smooth functions. All the proposed methods
considered here are found to bemore effective and comparable to the existing robust methods
available in literature.

2 A new Steffensen-Ostrowski type family with optimal order
of convergence

In this section, we intend to derive a new eighth-order derivative-free optimal family based
on Ostrowski’s method. For this, we consider a three-step iteration scheme as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

yn = xn − f (xn)
f ′(xn) ,

zn = yn − f (yn)
2 f [yn ,xn ]− f ′(xn) ,

xn+1 = zn − f (zn)
f ′(zn) ,

(2.1)

where first two steps of well-known Ostrowski’s method are composed with the Newton
step. The above method is not optimal according to the Kung-Traub conjecture, because
it has eighth-order convergence and requires five functional evaluations per full iteration.
However, we can reduce the number of function evaluations by using some suitable approxi-
mations of derivatives that use available data. Following Cordero-Torregrosa conjecture [3],
we approximate {

f ′(xn) ≈ f [xn, wn],
f ′(zn) ≈ f [yn, zn] + f [wn, yn, zn](zn − yn),

(2.2)

where wn = xn + β f (xn)3, β ∈ R\{0} and f [x, y], f [x, y, z] denote the first and second
order divided differences (without index n), respectively.
Substituting the approximations (2.2) in (2.1), we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] ,

zn = yn − f (yn)
2 f [yn ,xn ]− f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

.

(2.3)

It satisfies the following error equation

en+1 = c22c3
(−c22+c1c3

)
e7n

c51
+ c2

(
c62+4c1c42c3+c21c

2
2

(
βc41−11c3

)
c3+4c31c

3
3−c21c

3
2c4+3c31c2c3c4

)
e8n

c71
+ O(e9n).

Again, the above method is not optimal according to the Kung-Traub conjecture. To this
end, by introducing a two-variable weighting function in the third step of (2.3), we propose
a higher-order family of three-point methods in the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3,

zn = yn − f (yn)
2 f [yn ,xn ]− f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

H(τ, φ),

(2.4)

where β ∈ R\{0} and H : C
2 → C is an analytic function in the neighborhood of (0,0)

with τ = f (zn)
f (yn)

= O(e2n), φ = f (yn)
f (xn)

= O(en). If we closely examine the relation wn =
xn + β f (xn)3 in (2.4), we find that f (xn)3 becomes smaller than f (xn) near the root. As a
consequence, yn rapidly approaches xn , provided β is kept fixed. Theorem 1 illustrates that
under what conditions on weight function, convergence order of three-step family (2.4) will
arrive at the optimal level eight.

Theorem 1 Assume that function f : D ⊆ R → R is sufficiently differentiable and f has
a simple zero α ∈ D. If an initial guess x0 is sufficiently close to α ∈ D, then the iterative
three-step class of methods (2.4) is of optimal order eight when

{
H00 = H11 = 1, H10 = H01 = H02 = 0,
H03 = −6, H12 = −16, H20 = 10,

(2.5)
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where Hi j =
[

1
i ! j !

∂H(τ,φ)

∂τ iφ j

]

(0,0)
, i, j = 0, 1, 2, 3.

It satisfies the following error equation

en+1 = c2
(
c22 − c1c3

) (
βc31c

2
2 − 5c23 + c2c4

)
e8n

c51
+ O(e9n), (2.6)

where en = xn − α and c j = f ( j)(α)
j ! , j = 1, 2, 3, . . ..

Proof Using Taylor’s series and symbolic computation, we can determine the asymptotic
error constant of family (2.4). Furthermore, taking into account that f (α) = 0, we can
expand f (xn) around the simple zero α. Therefore, we get,

f (xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n + O(e9n) (2.7)

and

f (wn) = c1bn + c2b
2
n + c3b

3
n + c4b

4
n + c5b

5
n + c6b

6
n + c7b

7
n + c8b

8
n + O(b9n), (2.8)

where en = xn − α and bn = wn − α.
Hence, substituting (2.7) and (2.8) in the first step of (2.4), we get

yn − α = c2e2n
c1

+ 2
(−c22 + c1c3

)
e3n

c21
+

(
c2

(
βc51 + 4c22 − 7c1c3

)

c31
+ 3c4

c1

)

e4n + O(e5n)

(2.9)

and in the combination of Taylor series expansion of f
(
xn − f (xn)

f [xn ,wn ]
)
about xn = α, we

have

f (yn) = f

(

xn − f (xn)

f [xn, wn]
)

= c2e2n + (
−2c22
c1

+ 2c3)e3n + · · · + O(e9n). (2.10)

Furthermore, we have

φ= f (yn)

f (xn)
= c2en

c1
+

(−3c22+2c1c3
)
e2n

c21
+

(
βc51c2+8c32 − 10c1c2c3+3c21c4

)
e3n

c31
+· · ·+O(e9n)

(2.11)
and for the second substep of (2.4), we get

zn−α =
(
c32 − c1c2c3

)
e4n

c31
−

(
βc51c

2
2 + 4c42 − 8c1c22c3 + 2c21

(
c23 + c2c4

))
e5n

c41
+· · ·+O(e9n).

(2.12)
Moreover, we find

f (zn) =
(
c32 − c1c2c3

)
e4n

c21
−

(
βc51c

2
2 + 4c42 − 8c1c22c3 + 2c21

(
c23 + c2c4

))
e5n

c31
+· · ·+O(e9n)

(2.13)
and

τ = f (zn)

f (yn)
=

(
c22 − c1c3

)
e2n

c21
+

(−βc51c2 − 2c32 + 4c1c2c3 − 2c21c4
)
e3n

c31

+
(−2βc51c

2
2 + c42 − 3βc61c3 − 6c1c22c3 + 3c21c

2
3 + 5c21c2c4 − 3c31c5

)
e4n

c41
+ · · · + O(e9n). (2.14)
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Since, it is clear from (2.11) and (2.14) that φ and τ are of order en and e2n , respectively.
Therefore, we can expand weight function H(τ, φ) in the neighborhood of origin by Taylor
series expansion up to third order terms as follows:

H(τ, φ) = H00 + H10τ + H01φ + 1

2!
(
H20τ

2 + 2H11τφ + H02φ
2)

+ 1

3!
(
H30τ

3 + 3H21τ
2φ + 3H12τφ2 + H03φ

3) . (2.15)

Using (2.11), (2.13), (2.14) and (2.15) in the last step of (2.4) yields

en+1 = (−1 + H00)c2
(−c22 + c1c3

)
e4n

c31

+
(
β(−1+H00)c51c

2
2+(−4+4H00 − H01)c42+(8 − 8H00+H01)c1c22c3 + 2(−1+H00)c21

(
c23+c2c4

))
e5n

c41

+ · · · + O(e9n). (2.16)

This implies that the derivative free class of methods arrives at eighth-order of convergence
by choosing the weight function as follows:

{
H00 = H11 = 1, H10 = H01 = H02 = 0,
H03 = −6, H12 = −16, H20 = 10.

(2.17)

Finally, using (2.17) in (2.16), we get the following error equation

en+1 = c2
(
c22−c1c3

)(
βc31c

2
2−5c23+c2c4

)
e8n

c51
+ O(e9n).

This reveals that the three-step derivative-free class (2.4) reaches the optimal convergence
order eight by using only four functions evaluations per full iteration. ��

Note that some particular forms of different weight functions satisfying the above condi-
tions (2.17) are displayed in Table 1. Finally, implementing the conditions on weight function
as given in Theorem 1, we get the most simplest case of our three-step optimal eighth-order
derivative-free class as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3, β ∈ R\{0},

zn = yn − f (yn)
2 f [yn ,xn ]− f [xn ,wn ] ,

xn+1= zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

{

1−
(

f (yn)
f (xn)

)3 − 8 f (yn) f (zn)
f (xn)2

+ f (zn)
f (xn)

+5
(

f (zn)
f (yn)

)2
}

.

(2.18)

Table 1 Some particular types of weight functions H(τ, φ), P(t) and Q(s), where, μ, ν, ω, η, η1, η2, γ
∈ R

Weight H(τ, φ) P(t) Q(s)

T ype 1 1 + τφ + 5τ2 − φ3 − 8φ2τ μt2 + t − ν + 1 (−1 − 2γ )s3 + ν

T ype 2 1 + τφ + 5τ2 − φ3 − 8φ2τ + 1
2φτ2 t

1+ωt (−1 − 2γ )s3 + 1

T ype 3 1 + τφ + 5τ2 − φ3 − 8φ2τ + τ3
1−η

1+ 1
η−1 t

2s3 + η

T ype 4 1 + τφ + 5τ2 − φ3 − 8φ2τ + φτ2τ3
(ν−1)(η2−νη2+η1t)−η1t+η2(−1+ν+t) −2γ s3 − s + ν
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It satisfies the following error equation

en+1 = c2
(
c22 − c1c3

) (
βc31c

2
2 − 5c23 + c2c4

)
e8n

c51
+ O(e9n).

3 A new Steffensen-King’s type family with optimal order of convergence

Now, we extend the idea of previous section to King’s family schemes, which contains
Ostrowski’s method for a specific value of the parameter. Here, we use the same approx-
imations for the first order derivatives as given in (2.2) to obtain a parametric family of
optimal derivative-free methods of order eight. Therefore, we suggest a more general class
of eighth-order Steffensen-King’s type methods without memory as follows:

⎧
⎪⎨

⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3, β ∈ R\{0},

zn = yn − f (xn)+γ f (yn)
f (xn)+(γ−2) f (yn)

f (yn)
f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

{P(t) + Q(s)} , t = f (zn)
f (xn)

, s = f (yn)
f (xn)

,

(3.1)

where γ is a free disposable parameter and P(t) and Q(s) are two single variable real-valued
weight functions such that its order of convergence reaches at the optimal level eight without
using any more functional evaluations. Theorem 2 illustrates that under what conditions on
weight functions, convergence order of three-step derivative-free family (3.1) will arrive at
the optimal level.

Theorem 2 Assume that function f : D ⊆ R → R is sufficiently differentiable and f has
a simple zero α ∈ D. If an initial guess x0 is sufficiently close to α ∈ D, then the iterative
three-step class of methods (3.1) is of optimal order eight when

P(0) = 1 − Q(0), Q′(0) = Q′′(0) = 0, P ′(0) = 1,

Q′′′(0) = −6 − 12γ, |P ′′(0)| ≤ ∞, |Q(4)(0)| ≤ ∞. (3.2)

It satisfies the following error equation

en+1 =
c22

(
(1+2γ )c22 − c1c3

) (
24βc51c2+

(
−72 − 48γ + 48γ 2 − Q(4)(0)

)
c32 − 48c1c2c3+24c21c4

)
e8n

24c71

+O(e9n), (3.3)

Proof The proof is similar to the proof of Theorem 1. Hence, it is omitted here. ��

4 Special cases

Now, applying the conditions on weight functions according to Theorem 2, we can build
different three-step optimal eighth-order iteration schemes of King’s type which are totally
free from derivatives. Some easy to implement methods of our proposed class (3.1) are given
below:

123



Some new weighted eighth-order 81

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3, β ∈ R\{0},

zn = yn − f (xn)+γ f (yn)
f (xn)+(γ−2) f (yn)

f (yn)
f [xn ,wn ] ,

xn+1= zn − f (zn)
f [yn ,zn ]+f [wn ,yn ,zn ](zn−yn)

{

μ
(

f (zn)
f (xn)

)2+ f (zn)
f (xn)

+(−1 − 2γ )
(

f (yn)
f (xn)

)3+1

}

,

(4.1)

where μ and γ are free disposable parameters. This is a new optimal eighth-order derivative-
free family of King’s method. It satisfies the following error equation

en+1= c22
(
(1+2γ )c22−c1c3

) (
βc51c2+

(−3 − 2γ +2γ 2
)
c32−2c1c2c3+c21c4

)
e8n

c71
+O(e9n).

It is interesting to note that one can easily get many new higher order iteration schemes of
King’s type methods by choosing different values of the disposable parameters β, γ and μ.

4.1 Sub special cases

(i) For γ = 0, family (4.1) reads as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3, β ∈ R\{0},

zn = yn − f (xn)
f (xn)−2 f (yn)

f (yn)
f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

{

μ
(

f (zn)
f (xn)

)2 + f (zn)
f (xn)

−
(

f (yn)
f (xn)

)3 + 1

}

.

(4.2)

This is a new modified optimal eighth-order Steffensen-King’s type family. It satisfies the
following error equation

en+1 = −c22
(−c22 + c1c3

) (
βc51c2 − 3c32 − 2c1c2c3 + c21c4

)
e8n

c71
+ O(e9n).

(ii) For γ = − 1
2 , family (4.1) reads as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3, β ∈ R\{0},

zn = yn − 2 f (xn)− f (yn)
2 f (xn)−5 f (yn)

f (yn)
f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [yn ,zn ]+ f [wn ,yn ,zn ](zn−yn)

{

μ
(

f (zn)
f (xn)

)2 + f (zn)
f (xn)

+ 1

}

.

(4.3)

This is another optimal eighth-order Steffensen-King’s type family of King’s method. It
satisfies the following error equation

en+1 = c22c3
(−2βc51c2 + 3c32 + 4c1c2c3 − 2c21c4

)
e8n

2c61
+ O(e9n).

Remark 1 Note that the scheme (4.1) can produce many more new optimal derivative-free
families of King’s and Ostrowski’s method for simple roots by choosing different kind of
weight functions as given in Table 1 and different values of free disposable parameters.
The beauty of this modified Steffensen-King’s scheme is that it has optimal eighth-order
convergence, in spite of being derivative-free . Therefore, these techniques can be used as an
alternative toKing’s andOstrowski’s techniques or in the caseswhereKing’s andOstrowski’s
techniques are not successful.
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5 Numerical examples and conclusion

In this section, we shall check the effectiveness of the new optimal methods. We employ
the presented methods (2.18), (4.2), (4.3) denoted by SOM1

8 , SKM1
8 , SKM2

8 (for β =
0.001) respectively to solve some nonlinear equations. Comparison of different eighth-order
derivative-free iterative methods with respect to the same number of iterations (TNE=12)
is provided in Tables 2, 3, 4, 5, 6 7, 8. All computations have been performed using the
programming package Mathematica 9 with multiple precision arithmetic. We use ε =
10−35 as a tolerance error. We are going to use the following test functions, the first five ones
are smooth functions and the other are non-smooth ones.

Table 2 Comparison of different eighth-order methods for test function f1(x)

Derivative-free methods without memory | f (x1)| | f (x2)| | f (x3)|
Method KTM8 (5.1) 1.15e−1 8.85e−9 2.45e−65

Method MSM8 (5.2) D D D

Method SM8 (5.3) 3.68e−4 1.95e−31 1.24e−249

Method ZM8 (5.4) 3.92e−3 2.85e−21 2.32e−166

Our Method SOM8 (2.18) 1.16e−5 5.29e−44 9.82e−351

Our Method SKM1
8 (4.2) 1.40e−4 1.71e−34 8.51e−274

Our Method SKM2
8 (4.3) 4.47e−5 5.38e−39 2.35e−310

Table 3 Comparison of different eighth-order methods for test function f2(x)

Derivative-free methods without memory | f (x1)| | f (x2)| | f (x3)|
Method KTM8 (5.1) 3.72e−2 2.99e−14 5.23e−111

Method MSM8 (5.2) 7.41e−2 1.10e−11 8.12e−91

Method SM8 (5.3) 1.57e−5 7.16e−42 1.37e−332

Method ZM8 (5.4) 1.62e−3 3.26e−26 8.69e−208

Our method SOM8 (2.18) 1.90e−5 3.05e−42 1.38e−336

Our method SKM1
8 (4.2) 2.89e−5 4.99e−40 3.89e−318

Our method SKM2
8 (4.3) 8.33e−6 8.61e−45 0.12e−344

Table 4 Comparison of different eighth-order methods for test function f3(x)

Derivative-free methods without memory | f (x1)| | f (x2)| | f (x3)|
Method KTM8 (5.1) 4.47e−1 2.45e−5 1.49e−39

Method MSM8 (5.2) 3.58e−2 1.22e−14 5.51e−115

Method SM8 (5.3) 6.17e−5 5.50e−38 2.17e−302

Method ZM8 (5.4) 1.05e−2 1.14e−19 2.24e−155

Our method SOM8 (2.18) 7.43e−5 9.68e−38 8.08e−301

Our method SKM1
8 (4.2) 2.27e−5 6.80e−41 4.41e−325

Our method SKM2
8 (4.3) 1.07e−5 1.69e−44 0.12e−346
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Table 5 Comparison of different eighth-order methods for test function f4(x)

Derivative-free methods without memory | f (x1)| | f (x2)| | f (x3)|
Method KTM8 (5.1) D D D

Method MSM8 (5.2) D D D

Method SM8 (5.3) 2.52e−2 6.96e−14 3.71e−106

Method ZM8 (5.4) D D D

Our method SOM8 (2.18) 8.79e−2 7.64e−10 4.22e−74

Our method SKM1
8 (4.2) 5.83e−4 7.40e−27 4.99e−210

Our method SKM2
8 (4.3) 8.67e−4 3.31e−25 1.50e−196

Table 6 Comparison of different eighth-order methods for test function f5(x)

Derivative-free methods without memory | f (x1)| | f (x2)| | f (x3)|
Method KTM8 (5.1) 2.4e−2 6.28e−11 2.43e−79

Method MSM8 (5.2) 1.70e−2 6.64e−13 9.52e−96

Method SM8 (5.3) 1.14e−2 4.31e−13 2.20e−96

Method ZM8 (5.4) 3.21e−2 2.75e−10 1.37e−74

Our method SOM8 (2.18) 2.36e−3 3.43e−19 6.46e−146

Our method SKM1
8 (4.2) 2.72e−3 6.40e−19 5.69e−144

Our method SKM2
8 (4.3) 1.65e−2 2.70e−12 1.58e−90

Table 7 Comparison of different eighth-order methods for test function g1(x)

Derivative-free methods without memory |g(x1)| |g(x2)| |g(x3)|
Method KTM8 (5.1) 5.64e−4 2.38e−31 2.43e−250

Method MSM8 (5.2) D D D

Method ZM8 (5.4) 1.19e−4 9.93e−38 2.21e−302

Our method SOM8 (2.18) 8.47e−7 1.01e−57 4.04e−465

Our method SKM1
8 (4.2) 1.58e−7 2.94e−63 1.46e−253

Our method SKM2
8 (4.3) 8.70e−4 1.13e−15 3.28e−63

Table 8 Comparison of different eighth-order methods for test function g2(x)

Derivative-free methods without memory |g(x1)| |g(x2)| |g(x3)|
Method KTM8 (5.1) 9.81e−3 4.14e−6 8.17e−13

Method MSM8 (5.2) D D D

Method ZM8 (5.4) 1.27e−2 9.76e−6 6.36e−12

Our method SOM8 (2.18) 1.8e−4 8.94e−33 1.27e−261

Our method SKM1
8 (4.2) 4.70e−4 2.83e−37 2.46e−292

Our method SKM2
8 (4.3) 1.01e−5 4.90e−45 0.12e−341
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f1(x) = (x − 1)3 − 1, α = 2, x0 = 1.8

f2(x) = exp (−x) + sin x − 2, α = −1.05412 . . . , x0 = −1.3

f3(x) = sin2 x − x2 + 1, α = 1.4044916 . . . , x0 = 1.8

f4(x) = exp (x2 + x cos x − 1) sin πx + x log (x sin x + 1), α = 0, x0 = 0.6

f5(x) = log (x2 − 2x + 2) + ex
2−5x+4 sin x − 1, α = 1, x0 = 1.35

g1(x) = |x2 − 4|, α = 2, x0 = 2.55

g2(x) =
{
x(x − 1) if x ≤ 0

−2x(x + 1) if x ≥ 0, α = 0, x0 = 0.5.

For demonstration,wehave compared our newproposed schemeswith the different eighth-
order methods given below:

Concrete Method 1 The method by Kung and Traub, see [10], denoted by KT M8, is
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn + β f (xn), β ∈ R\{0}
zn = yn − β

f (xn) f (yn)
f (yn)− f (xn)

,

wn = zn − f (xn) f (yn)
f (zn)− f (xn)

[
1

f [yn ,xn ] − 1
f [zn ,yn ]

]
,

xn+1 = zn − f (xn) f (yn) f (zn)
f (wn)− f (xn)

[
1

f [yn ,xn ]
{

1
f [wn ,zn ] − 1

f [zn ,yn ]
}

− 1
f [zn ,xn ]

{
1

f [zn ,yn ] − 1
f [yn ,xn ]

}]
.

(5.1)

Concrete Method 2 The method by M. Sharifi et al., see [16], denoted by MSM8, is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn)3,

zn = xn −
(

f (xn) f (xn)
f [xn ,wn ]( f (xn)− f (yn))

)
×

(

1 +
(

f (yn)
f (xn)

)2 + 3
(

f (yn)
f (xn)

)3
)

,

xn+1 = zn − f (zn)
f [zn ,yn ]+φzn ,xn ,xn (zn−yn)

[

1 + 2 f (zn)
f (xn)

− 18
(

f (yn)
f (xn)

)4 +
(

f (zn)
f (yn)

)3
]

.

(5.2)

Concrete Method 3 The method by Soleymani, see [20], denoted by SM8, is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn) ,

zn = yn − f (yn)
2 f [yn ,xn ]− f ′(xn) ,

xn+1 = zn − f (zn)
2 f [yn ,xn ]− f ′(xn)+ f (zn ,xn ,xn)(zn−yn)

[

1 + f (zn)
f (yn)

+ 2 f (zn)
f (xn)

− 2
(

f (yn)
f (xn)

)3
]

.

(5.3)
Concrete Method 4 The method by Zheng et al., see [24], denoted by ZM8, is

⎧
⎪⎨

⎪⎩

yn = xn − f (xn)
f [xn ,wn ] , wn = xn + β f (xn),

zn = yn − f (yn)
f [xn ,yn ]+ f [yn ,wn ]− f [xn ,wn ] ,

xn+1 = zn − f (zn)
f [zn ,yn ]+ f [zn ,xn ,xn ](zn−yn)+ f [zn ,yn ,xn ,wn ](zn−yn)(zn−xn)

.

(5.4)

The errors of approximations to the corresponding zeros of test functions are displayed
in Tables 2, 3,4, 5, 6 7, 8, where A(−h) denotes A × 10−h and D stands for divergent. On
the accounts of results obtained in the Tables 2, 3,4, 5, 6 7, 8 it can be concluded that the
proposed methods are highly efficient as compared to the existing robust methods, when the
accuracy is tested in the multi-precision digits.
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Remark 2 Similar numerical experiments have been performed on various test problems by
selecting different values for the free non-zero parameter β. We observe that the convergence
behavior is better using values of β close to zero, as the estimation of the derivative is more
precise in this case. Also, from the Taylor’s expansions of the first-order divided difference
and the derivative about the solution α of nonlinear equation f (x) = 0, we obtain

f ′(xn) = c1 + 2c2en + 3e2nc3 + 4e3nc4 + 5e4nc5 + 6e5nc6 + · · · ,

f [xn, wn] = f (wn) − f (xn)

wn − xn
= c1 + 2c2en + 3c3e

2
n + (βc31c2 + 4c4)e

3
n

+ (3βc21c
2
2 + 3βc31c3 + 5c5)e

4
n

+ 3(βc1c
3
2 + 4βc21c2c3 + 2βc31c4 + 2c6)e

5
n + · · · , (5.5)

where wn = xn + β f (xn)3. Note that as β → 0, both Taylor expansions coincide. For more
details, see [8].

6 Basins of attractions of different eighth-order derivative-free methods

Studying the dynamical behavior, using basins of attractions, of the rational functions asso-
ciated to an iterative method gives important information about the convergence and stability
of the scheme. Therefore, we investigate here the comparison of the attained simple root
finders in the complex plane using the idea of basins of attraction. The basin of attraction is a
method to visually comprehend how an algorithm behaves as a function of the various starting
points. In other words, it tells us how demanding is the method on the initial approximation
of the root. In the literature, a number of iterative root-finding methods were compared from
a dynamical point of view by Amat et al. [1,2], Neta et al. [11], Scott et al. [15], Stewart
[18], Vrscay and Gilbert [23]. To this end, some basic concepts are briefly recalled. Given
a rational map ψ : Ĉ → Ĉ , where Ĉ is the Reimann sphere, the orbit of a point z0 ∈ Ĉ is
defined as :

{z0, ψ(z0), ψ
2(z0), . . . , ψ

n(z0), . . .}.
A point z0 ∈ Ĉ is called periodic point with minimal period m if ψm(z0) = z0, where m is
the smallest integer with this property. A periodic point with minimal period 1 is called fixed
point. Moreover, a point z0 is called attracting if |ψ ′(z0)| < 1, repelling if |ψ ′(z0)| > 1, and
neutral otherwise. The Julia set of a nonlinear map ψ(z), denoted by J (ψ), is the closure
of the set of its repelling periodic points. The complement of J (ψ) is the Fatou set F(ψ),
where the basins of attraction of the different roots lie. From the dynamical point of view,
we take a 250 × 250 grid of the square D = [−4, 4] × [−4, 4] ∈ C and we assign a color
to each point z0 ∈ D according to the simple root at which the corresponding iterative
method starting from z0 converges, and we mark the point as black if the method does not
converge. In this section, we consider the stopping criterion for convergence to be less than
10−3, wherein the maximum number of full cycles for each method is considered to be 150.
In this way, we distinguish the attraction basins by their colors for different methods. We
have compared our newly developed methods (4.1) with different values of free disposable
parameters denoted by MM1

8 , MM2
8 and MM3

8 , respectively. We use different colors for
different roots. In the basins of attraction, the number of iterations needed to achieve the root
is shown by the brightness of the color. Brighter color means less number of iterations are
required for convergence. Here, we paint the initial point z0 by black color if the particular
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Fig. 1 The basins of attraction for KTM8 (5.1) (left), ZM8 (5.4) (center) and MSM8 (5.2) (right) in test 1

Fig. 2 The basins of attraction for MM1
8 (left), MM2

8 (center) and MM3
8 (right) in test 1

method fails to converge to any of the roots (starting from z0) within the prescribed tolerance.
This happens, in particular, when the method converges to a fixed point that is not a root of
the given equation or if it ends in a periodic cycle. From these pictures, we can easily judge
the behavior and suitability of any method depending on the circumstances. If we choose an
initial point z0 in a zone where different basins of attraction touch each other, it is impossible
to predict which root is going to be reached by the iterative method that starts in z0.

In what follows, we consider four test problems.

Test problem 1: For the first test, we have taken the function p1(z) = z2 − 1 with roots
−1., 1. Based on Figs. 1 and 2, we can see that our proposed methods namely MM1

8 , MM2
8 ,

MM3
8 shows the best performance as compared to othermethods. The performance ofmethod

MSM8 is worst in this case.

Test problem 2 : The second test problem is p2(z) = z3 − 1 with the simple zeros −0.5 −
0.866025I,−0.5+ 0.866025I, 1. Based on Figs. 3 and 4, methods MM1

8 , MM2
8 , MM3

8 and
ZM8 perform very well. The method KT M8 shows some diverging points, while the method
MSM8 shows a chaotic behavior in this case.

Test problem 3: The third test problem is taken into account as p3(z) = z4 −
1
z with simple roots 0.309017 + 0.951057I, 0.309017 − 0.951057I, 1.,−0.809017 +
0.587785I,−0.809017 − 0.587785I . It is interesting to note from Figs. 5 and 6 that all
methods except the method MSM8 perform nicely, although the chaotic behavior is too
much due to inappropriate values of the free nonzero parameter.

Test problem 4 : The last test problem under consideration is p4(z) = z4−1 with the simple
zeros −1., 0. − 1.I, 0. + 1.I, 1. Figures 7 and 8 demonstrates that our methods shows the
best performance in contrast to other methods.
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Fig. 3 The basins of attraction for KTM8 (5.1) (left), ZM8 (5.4) (center) and MSM8 (5.2) (right) in test 2

Fig. 4 The basins of attraction for MM1
8 (left), MM2

8 (center) and MM3
8 (right) in test 2

Fig. 5 The basins of attraction for KT M8 (5.1) (left), ZM8 (5.4) (center) and MSM8 (5.2) (right) in test 2

Fig. 6 The basins of attraction for MM1
8 (left), MM2

8 (center) and MM3
8 (right) in test 3
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Fig. 7 The basins of attraction for KT M8 (5.1) (left), ZM8 (5.4) (center) and MSM8 (5.2) (right) in test 2

Fig. 8 The basins of attraction for MM1
8 (left), MM2

8 (center) and MM3
8 (right) in test 4

Table 9 Results of chaotic comparisons for various derivative-free methods

Methods p1(z) p2(z) p3(z) p4(z) Average

Kung-Taub method KTM8 (5.1) 3 3 2 2 10/4

Zheng et al. method ZM8 (5.4) 3 1 3 4 11/4

Sharifi et al. method MSM8 (5.2) 4 4 4 4 16/4

our method MM1
8 2 2 2 2 8/4

our method MM2
8 1 2 2 1 6/4

our method MM3
8 1 2 2 1 6/4

In order to summarize these results, we have attached a weight to the quality of the results
obtained by each method. The weight of 1 is for the smallest Julia set and a weight of 4 for
scheme with chaotic behavior alongside the convergence behavior. We then averaged those
results to come up with the smallest value for the best method overall and the highest for the
worst. This data is presented in Table 9. The results shown in Table 9 show that the methods
MM2

8 (center) and MM3
8 are the best methods and the method MSM8 (5.2) is worst one.

7 Conclusions

In this study, we contribute further to the development of the theory of iteration processes and
propose new accurate and efficient higher-order derivative-freemethods for solving nonlinear
equations numerically. Furthermore, by choosing appropriate weight functions provided in
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Table 1, we can develop several new optimal families of eight-order multipoint methods.
In terms of computational cost, each member of the family requires only four function
evaluations, viz., f (xn), f (wn), f (yn), f (zn) per iteration to achieve optimal index of
efficiency E = 81/4 ≈ 1.682. We have also given a detailed proof to prove the theoretical
order of convergence of the presented families. The asserted superiority of proposed methods
is also corroborated by numerical results displayed in the Table 2, 3,4, 5, 6 7, 8. The numerical
experiments suggests that the new class would be valuable alternative for solving nonlinear
equations. Finally, we have also compared the basins of attraction of various eighth-order
derivative free methods in the complex plane.

Acknowledgements The authors are thankful to the anonymous reviewer for useful comments and sugges-
tions towards the improvement of this paper.
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