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Abstract In this paper an efficient method based on Legendre-Galerkin method for com-
puting the eigenvalues of fourth-order Sturm-Liouville problem subject to a kind of fixed
boundary conditions is developed. Properties of Legendre polynomials are first presented,
these properties are then utilized to reduce the eigenvalues of fourth-order Sturm-Liouville
problem to some linear algebraic equations. The method is computationally attractive, and
applications are demonstrated through an illustrative example and a comparisons with other
methods are made.
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1 Introduction

The present work describes Legendre-Galerkin method for finding the eigenvalues and the
eigenelements of fourth-order Sturm-Liouville problems of the form

[
p1(x)

d2u

dx2

]′′
−
[
s(x)

du

dx

]′
= [λw(x) − q(x)] u(x), a < x < b, (1.1)
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subject to one of the following pairs of homogenous boundary conditions:

(1) u(a) = u′(a) = u(b) = u′(b) = 0
(2) u(a) = u′′(a) = u(b) = u′′(b) = 0
(3) u′′(a) = u′′′(a) = u′′(b) = u′′′(b) = 0
(4) u(a) = u′(a) = u(b) = u′′(b) = 0

(1.2)

where λ is a parameter is independent on x and p1(x), q(x), s(x) and w(x) are piecewise
continuous functions and p1(x) and w(x) are positive.

The Sturm-Liouville problems arise throughout applied mathematics, classical and quan-
tum mechanics. Most of physical phenomena, can describe by PDEs in several dimensions.
This leads to a Sturm-Liouville problem when the equations are separable. The Sturm-
Liouville boundary value problems for ODEs play an important role in both the theory and
applications of physical, biological and chemical phenomena [10].

In elasticity, this equation is associated to the steady-state Euler-Bernoulli beam equation
for the deflection u of a vibrating beam, with the other quantities involved having physical
meaning, e.g. p > 0 is the flexural rigidity of the beam, p1u′′ is the bending moment and
(λw − q) is the frequency of vibration.

It is well known that (1.1) has an infinite sequence of eigenvalues (λk)k≥1 which are
bounded from below by a constant λ0, i.e.

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · (1.3)

with limk→∞ λk = ∞ and each eigenvalues has multiplicity at most 2. For more details see
[11,12]. In applications, there are more types of boundary conditions commonly used with
(1.1) discussed in [5,13].

In most cases, it is not possible to obtain the eigenvalues of the problem analytically. How-
ever, there are various approximate methods for solving special types of Sturm-Liouville
problems as, for example, Adomian decomposition method [4], the homotopy analysis
method [2], variational iteration method [3], spectral parameter power series method [14],
Extended sampling method [9], finite difference and Numerov’s methods [6], differential
quadrature method [1], Chebyshev spectral collocation method [10], Haar wavelet method
[13] and polynomial expansion method [5].

In recent years, a lot of attention has been devoted to the study of Legendre methods
to investigate various scientific models. Using these methods made it possible to solve
differential equations of Lane-Emden type [16], second and fourth order equations [18],
Cahn-Hilliard equations with Neumann boundary conditions [19], Fredholm integral [21],
Helmholtz equation [22], second kind Volterra integral equations [20], high-order linear
Fredholm integro-differential [23] and Abels integral equation [17].

Legendre methods for ordinary differential equations has many salient features due to
the properties of the basis functions and the manner in which the problem is discretized.
The approximating discrete system depends only on parameters of the differential equation.
The approximation rate of Legendre polynomials is n−k where n is the number of Legendre
polynomial elements used, and k is a positive constant. The efficiency of the method has been
formally proved by many researchers [15,24,25].

The paper is organized as follows: in Sect. 2, we present the preliminaries of Legendre
polynomials. Section 3 presents the convergence of Legendre polynomials and error estima-
tion for Legendre-Galerkin method. Section 4 is devoted to derivation of the discrete system.
Section 5 shows the accuracy of the proposed method using numerical examples and mak-
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ing comparisons with other methods. Section 6 gives a brief conclusion. Note that we have
computed the numerical results by Mathematica programming.

2 Preliminaries and fundamentals

Orthogonal polynomials have very useful properties in the solution of mathematical and
physical problems. They provide a natural way to solve, expand, and interpret solutions to
many types of important differential and integro-differential equations.Legendre polynomials
are one of the most common orthogonal polynomial set.

Legendre polynomials Pn(x) satisfy Legendre differential equation

d

dx

[
(1 − x2)

d

dx
Pn(x)

]
+ n(n + 1)Pn(x) = 0,−1 ≤ x ≤ 1, n ≥ 0, (2.1)

with recurrence relations

(n + 1)Pn+1(x) = (2n + 1)x Pn(x) − nPn−1(x), (2.2)

and the orthogonality on [−1, 1]
∫ 1

−1
Pm(x)Pn(x)dx =

{
1, if m = n,

0, if m �= n.
(2.3)

Theorem 2.1 [15] Let n and m be any two integer numbers such that n,m ≤ N, then

(i)
∫ 1

−1
P ′
n(x)Pm(x)dx =

{
2, i f n = m + i,

0, i f n �= m + i or m ≥ n.

(ii)

∫ 1

−1
x P ′

n(x)Pm(x)dx =

⎧⎪⎪⎨
⎪⎪⎩

2n

2n + 1
, i f m = n,

0, i f n = m + i or m > n,

2, i f n �= m + i.

(iii)

∫ 1

−1
x Pn(x)Pm(x)dx =

⎧⎪⎪⎨
⎪⎪⎩

2(m − 1)

(2m − 1)(2m − 3)
, i f n = m − 1,

2(n − 1)

(2n − 1)(2n − 3)
, i f n = m + 1.

(iv)
∫ 1

−1
P ′′
n (x)Pm(x)dx =

{
n(n + 1) − m(m + 1), i f n �= m + i,

0, i f n = m + i or m ≥ n.

(v)
∫ 1

−1
x P ′′

n (x)Pm(x)dx =
{
n(n + 1) − m(m + 1) − 2, i f n = m + i,

0, i f n �= m + i or m ≥ n.
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(vi)

∫ 1

−1
x2P ′′

n (x)Pm(x)dx =

⎧⎪⎨
⎪⎩

2n(n−1)
2n+1 , i f m = n,

n(n + 1) − m(m + 1) − 4, i f n = m + i + 1,

0, i f n �= m + i + 1 or m > n.

(vii)

∫ 1

−1
x2Pn(x)Pm(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4n2 + 4n − 2

(2n + 3)(2n + 1)(2n − 1)
, i f n = m,

2(n + 2)(n + 1)

(2n + 5)(2n + 3)(2n + 1)
, i f n = m − 2,

2n(n − 1)

(2n + 1)(2n − 1)(2n − 3)
, i f n = m + 2.

where i = 1, 3, 5, . . . , 2k + 1 ≤ N − m.

Theorem 2.2 Let n and m be any two integer numbers such that n,m ≤ N, then

(i) ∫ 1

−1
x3Pn(x)Pm(x)dx

=
⎧⎨
⎩

2n(m−2)(m−1)
(2m−1)(2m−3)(2m−5)(2n−1) , i f n = m − 3 or m = n − 3,

2
(
m(6n3−19n2+9n+7)−2n3+5n2−n−2

)
(2m+1)(2m−1)(2m−3)(2m−5)(2n−1) , i f n = m − 1 or m = n − 1.

(ii) ∫ 1

−1
x4Pn(x)Pm(x)dx

=

⎧⎪⎪⎨
⎪⎪⎩

2m(m+1)(n−2)(n−1)
(2n−3)(2n−1)(2n+3)(2n+1)(2n−1) , i f n = m + 4 or m = n+4,

�(n,m)
(2m−3)(2m−1)(2m+1)(2n−3)(2n−1)(2n+1) , i f n = m+2 or m = n+2,

ϒ(n,m)

(2n−1)2(2n−3)(2n+1)(2n+3)(2m−5)(2m−3)(2m−1)(2m+1)
, i f n = m.

where

ϒ(n,m) = 2
(
m3(4n2 − 4n − 2) + m2(4n3 − 12n2 + 4n + 5)

+m(−4n3 + 4n2 + 4n − 1) + (−2n3 + 5n2 − n − 2)
)
,

�(n,m) = 2
(
8n5(2 + m − 5n2 + 2n3) + 2mn(27 + m − 29m2 + 10m3)

+ n2(189 − 102m − 670m2+690m3−164m4)+3(−9+25m2 − 20m3 + 4m4)

− 2n3(22 + 41m − 57m2 − 2m3 + 8m4)

+ 4n4(−21 + 18m + 74m2 − 82m3 + 20m4))
)
,

and i = 1, 3, 5, . . . , 2k + 1 ≤ N − m − 1.

Proof By recalling Eq. (2.2) twice for (i) and three times for (ii) beside the orthogonality
relation (2.3), Theorem 2.2 can be proved. �	
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To solve the fourth-order equation, we need the following theorem.

Theorem 2.3 [26] Let n and m be any two integer numbers such that n,m ≤ N, then

(i)

∫ 1

−1
P ′′′
n (x)Pm(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

3∏
i=0

(n − i + 2) −
[m
2

]∑
k=1

(4k − 1) [n(n + 1)

−2k(2k − 1)] , m =even, n =odd, 2k − 1 < n,

1
4

3∏
i=0

(n − i + 2) −
[m
2

]∑
k=0

(4k + 1) [n(n + 1)

−2k(2k + 1)] , m =odd, n =even, 2k < n,

0, otherwise.

(ii)

∫ 1

−1
P ′′′′
n (x)Pm(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
24

5∏
i=0

(n − i + 3) −
[m
2

]∑
k=1

(4k − 1)

[
1
4

3∏
i=0

(n − i + 2)

−
[
2k−1
2

]
∑
r=0

(4r + 1) (n(n + 1) − 2r(2r + 1))

]
,

m and n are even, 2r < n,

1
24

5∏
i=0

(n − i + 3) −
[m
2

]∑
k=0

(4k + 1)

[
1
4

3∏
i=0

(n − i + 2)

−
k∑

r=1
(4r − 1) (n(n + 1) − 2r(2r − 1))

]
,

m and n are odd, 2r − 1 < n,

0, otherwise.

3 Convergence and error estimation

3.1 Convergence of Legendre polynomial

Lemma 3.1 [24,25] Let x(t) ∈ Hk(−1, 1) (a Sobolev space) and let xn(t) =∑n
i=0 ai Pi (t)

be the best approximation polynomial of x(t) in the L2-norm, then

||x(t) − xn(t)||L2[−1,1] ≤ c0n
−k ||x(t)||Hk (−1,1),

where

||x(t)||L2[−1,1] =
(∫ 1

−1
x2(t)dt

)1/2

,

||x(t)||Hk (−1,1) =
(

k∑
i=0

∫ 1

−1
|x (i)(t)|2dt

)1/2

.

and c0 is a positive constant, which depends on the selected norm and is independent of x(t)
and n.
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By regard to the Lemma 3.1we conclude that approximation rate of Legendre polynomials
is n−k

3.2 Error estimation of Legendre-Galerkin method

In this subsection an error estimator for Legendre-Galerkin approximate solution of a Sturm-
Liouville equation is obtained. Let us call en(x) = u(x) − un(x) as the error function of
Legendre approximation un(x) to u(x), where u(x) is the exact solution of (1.1) with one
boundary from (1.2). Hence, un(x) satisfies the following problem(

p1(x)u
′′
n(x)

)′′ − (s(x)u′
n(x)

)′ = (λw(x) − q(x)) un(x) + Hn(x), x ∈ (a, b), (3.1)

with one boundary condition from (1.2)

un(a) = u′
n(a) = un(b) = u′

n(b) = 0, (3.2)

where Hn is a perturbation term associated with un(x) and can be obtained by substituting
un(x) into the equation

Hn(x) = (p1(x)u′′
n(x)

)′′ − (s(x)u′
n(x)

)′ − (λw(x) − q(x)) un(x). (3.3)

We proceed to find an approximation en,N (x) to the en(x) in the same way as in Sect. 4
for the solution (1.1) and (1.2).

Subtracting (3.1) and (3.2) from (1.1) and (1.2), respectively, the error function en(x)
satisfies the equation(

p1(x)e
′′
n(x)

)′′ − (s(x)e′
n(x)

)′ = (λw(x) − q(x)) en(x) + Hn(x), (3.4)

with boundary conditions

(1) en(a) = e′
n(a) = en(b) = e′

n(b) = 0.
(2) en(a) = e′′

n(a) = en(b) = e′′
n(b) = 0.

(3) e′′
n(a) = e′′′

n (a) = e′′
n(b) = e′′′

n (b) = 0.
(4) en(a) = e′

n(a) = en(b) = e′′
n(b) = 0.

(3.5)

By solving this problem in the same way as Sect. 4, we get the approximation en,N (x). It
should be noted that in order to construct Legendre approximation en,N (x) to en(x).

4 Legendre-Galerkin method

4.1 Eigenvalues computation

In this subsection, we explain how Legendre bases are used beside Galerkin method to find
the eignvalues of (1.1) with one boundary conditions from (1.2).

First, let us rewrite (1.1) in the following form

u(4)(x) + μ3(x)u
′′′(x) + μ2(x)u

′′(x) + μ1(x)u
′(x) + μ0(x)u(x) = λW (x)u(x), (4.1)

where

μ3(x) = 2
p′
1(x)

p1(x)
, μ2(x) = p′′

1 (x) − s(x)

p1(x)
, μ1(x) = − s′(x)

p1(x)
, μ0(x) = q(x)

p1(x)

and W (x) = w(x)

p1(x)
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are defined on the interval a ≤ x ≤ b and λ is a parameter is independent on x .
Second, we must transform the solution domain from [a, b] to [−1, 1] by using the linear

transformation x = b−a
2 X + b+a

2 . So, the Eq. (1.1) can be written as
(

2

b − a

)4

u(4)(X) + 2

(
2

b − a

)3

μ3(X)u′′′(X) +
(

2

b − a

)2

μ2(X)u′′(X)

+
(

2

b − a

)
μ1(X)u′(X) + μ0(X)u(X) = λW (X)u(X), −1 ≤ X ≤ 1, (4.2)

subject to one of the following homogenous boundary conditions

1. u(−1) = u′(−1) = u(1) = u′(1) = 0.
2. u(−1) = u′′(−1) = u(1) = u′′(1) = 0.
3. u′′(−1) = u′′′(−1) = u′′(1) = u′′′(1) = 0.
4. u(−1) = u′(−1) = u(1) = u′′(1) = 0.

(4.3)

where X := ( 2
b−a )x − 1.

Assume the solution of the Eq. (4.2) is approximate by the finite expansion of Legendre
basis function with n + 1 undetermined coefficients {c0, c1, . . . , cn}

un(X) =
n∑
j=0

c j Pj (X). (4.4)

We can reduce the Eq. (4.2) by orthogonalizing the residual with respect to the basis
functions(

2

b − a

)4

〈u(4)(X), Pr (X)〉 + 2

(
2

b − a

)3

〈μ3(X)u′′′(X), Pr (X)〉

+
(

2

b − a

)2

〈μ2(X)u′′(X), Pr (X)〉 +
(

2

b − a

)
〈μ1(X)u′(X), Pr (X)〉

+ 〈μ0(X)u(X), Pr (X)〉 = λ〈W (X)u(X), Pr (X)〉, (4.5)

where

〈ζ, η〉 =
∫ 1

−1
ζ · η dX.

The method of approximating the integrals in (4.5) begins by integrating by parts to transfer
all derivatives from u to Pr . The approximation of the last four inner products on the left-hand
side of (4.5) has been thoroughly treated in [15]. We will list them for convenience

〈
μ2(X) u′′(X), Pr (X)

〉 = BT,2 +
∫ 1

−1
u(X)[μ2(X)Pr (X)]′′dX, (4.6)

where

BT,2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, in case (1),[
μ2(X)u′(X)Pr (X)

]1
−1 , in case (2),[

μ2(X)u′(X)Pr (X)
]1
−1 − [u′(X) (μ2(X)Pr (X))′

]1
−1 , in case (3),

μ2(1)u(1)Pr (1), in case (4).

〈
μ1(X) u′(X), Pr (X)

〉 = BT,1 −
∫ 1

−1
u(X)[μ1(X)Pr (X)]′dX, (4.7)
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where

BT,1 =
{
[μ1(X)u(X)Pr (X)]1−1 , in case (3),

0, in case (1), (2) and (4).

and

〈S(X) u(X), Pr (X)〉 =
∫ 1

−1
μ(X) u(X) Pr (X) dX, (4.8)

To solve the Eqs. (1.1)–(1.2), we need the following lemma

Lemma 4.1 The following relations hold

(i)

〈
u(4)(X), Pr (X)

〉
=

3∑
k=2

(−1)k+1
[
u(k)(X)P(3−k)

r (X)
]1
−1

+
∫ 1

−1
u(X)P(4)

r (X)dX,

(4.9)

(ii)

〈
μ3(X) u′′′(X), Pr (X)

〉 = BT,3 −
∫ 1

−1
u(X)[μ3(X)Pr (X)]′′′dX, (4.10)

where

BT,3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
μ3(X)u′′(X)Pr (X)

]1
−1 , in case (1),

− [(μ3(X)Pr (X))′u′(X)
]1
−1 , in case (2),

− [(μ3(X)Pr (X))′u′(X)
]1
−1 + [(μ3(X)Pr (X))′′u(X)

]1
−1 , in case (3),

−μ3(−1)u(−1)Pr (−1) − (μ3(1)Pr (1))′u′(1), in case (4).

Proof For u(4), the inner product with Legendre basis elements is given by

〈
u(4), Pr (X)

〉
=
∫ 1

−1
u(4)Pr (X)dX.

Integrating by parts to remove the fourth derivatives from the dependent variable u leads to
the equality 〈

u(4)(X), Pr (X)
〉
= BT,4 + bT,4 +

∫ 1

−1
u(X)P(4)

r (X)dX, (4.11)

where the boundary terms are

Case (1)

BT,4 =
[

1∑
k=0

(−1)k+1 u(k)(X)P(3−k)
r (X)

]1
−1

= 0,

bT,4 =
3∑

k=2

(−1)k+1
[
u(k)(X)P(3−k)

r (X)
]1
−1

.

Case (2)

BT,4 =
[

2∑
k=0

− u(k)(X)P(3−k)
r (X)

]1
−1

= 0, k = even,
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bT,4 =
2∑

k=0

[
u(k+1)(X)P(2−k)

r (X)
]1
−1

, k = even.

Case (3)

BT,4 =
[

3∑
k=2

(−1)k+1 u(k)(X)P(3−k)
r (X)

]1
−1

= 0,

bT,4 =
1∑

k=0

(−1)k+1
[
u(k)(X)P(3−k)

r (X)
]1
−1

.

Case (4)

BT,4 = [
u(X)P ′′′

r (X)
]1
−1 − [u′(−1)P ′′

r (−1)
]− [u′′(1)P ′

r (1)
] = 0,

bT,4 = [
u′′′(X)Pr (X)

]1
−1 + [u′′(−1)P ′

r (−1)
]+ [u′(1)P ′′

r (1)
]
.

Then (4.11) may be written as (4.9). In the same way, Lemma 4.1(ii) can be proved. �	
Replacing each term of (4.5) with the approximation defined in (4.6)–(4.10), we obtain the
following theorem

Theorem 4.2 If the assumed approximate solution of (1.1)with the boundary-value problem
case (1) is (4.4), then the discrete Legendre-Galerkin system for the determination of the
unknown coefficients {c j }nj=0 is given by

n∑
j=0

[(
2

b − a

)4 [ 3∑
k=2

(−1)k+1
[
P(k)
j (X)P(3−k)

r (X)
]
1−1 +

∫ 1

−1
Pj (X)P ′′′′

r (X) dX

]

+
(

2

b − a

)3 [[
μ3(X)P ′′

j (X)Pr (X)
]1
−1

−
∫ 1

−1
Pj (X)[μ3(X)Pr (X)]′′′dX

]

+
(

2

b − a

)2 ∫ 1

−1
Pj (X) [μ2(X)Pr (X)]′′ dX

+ 2

b − a

∫ 1

−1
Pj (X) [μ1(X)Pr (X)]′ dX

+
∫ 1

−1
Pj (X)μ0(X)Pr (X)dX

]
c j = λ

n∑
j=0

[∫ 1

−1
W (X)Pj (X)Pr (X)dX

]
c j . (4.12)

The system in (4.12) takes the matrix form

Ac = λBc, (4.13)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e0, 0 + v0, 0 + w0, 0 e1, 0 + v1, 0 + w1, 0 . . . en, 0 + vn, 0 + wn, 0

e0, 1 + v0, 1 + w0, 1 e1, 1 + v1, 1 + w1, 1 . . . en, 1 + vn, 1 + wn, 1

e0, 2 + v0, 2 + w0, 2 e1, 2 + v1, 2 + w1, 2 . . . en, 2 + vn, 2 + wn, 2

e0, 3 + v0, 3 + w0, 3 e1, 3 + v1, 3 + w1, 3 . . . en, 3 + vn, 3 + wn, 3
...

...
. . .

...

e0, n + v0, n + w0, n e1, n + v1, n + w1, n . . . en, n + vn, n + wn, n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.14)
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and

B =
n∑
j=0

∫ 1

−1
W (X)Pj (X)Pr (X)dX,

e j,r =
(

2

b − a

)4 ∫ 1

−1
Pj (X)P ′′′′

r (X)dX − 2

(
2

b − a

)3 ∫ 1

−1
Pj (X)[μ3(X)Pr (X)]′′′dX

+
(

2

b − a

)2 ∫ 1

−1
Pj (X) [μ2(X)Pr (X)]′′ dX− 2

b − a

∫ 1

−1
Pj (X) [μ1(X)Pr (X)]′ dX

+
∫ 1

−1
Pj (X)μ0(X)Pr (X)dX,

v j,r =
(

2

b − a

)4
[

3∑
k=2

(−1)k+1P(k)
j (X)P(3−k)

r (X)

]1
−1

,

w j,r = 2

(
2

b − a

)3 [
μ3(X)P ′′

j (X)Pr (X)
]1
−1

.

e j,r can be evaluated from theorems and lemmas in Sect. 2 and the boundary term and
v j,r can be calculated as

3∑
k=2

(−1)k
[
P(k)
j (X)P(3−k)

r (X)
]1
−1

= 1

16

[
(r(r + 1))(1 − (−1)n+r+ j−1)

] 3∏
i=0

( j − i + 2)

− 1

48

[(
1 + (−1)n+r+ j

)] 5∏
i=0

( j − i + 3).

By multiplying (4.13) by B−1 yields the equivalent system

�c = λ c, (4.15)

where

� = B−1A.

From Eq. (4.15), the values of λ can be obtained from the eigenvalues of matrix �. This can
be done by using various methods.

In the samemanner, to solve (1.1)with other boundary of (1.2),we can rewrite theTheorem
4.2 after applying the remainder three homogeneous boundary value problem.

4.2 Eigenfunction computation

This subsection illustrates howeigenfunctions canbe computed.Themainpoint of calculation
associate an initial condition to problem (1.1). We compute the eigenfunctions as solutions
to the initial value problems with the initial conditions

(
u(−1), u′(−1), u′′(−1), u′′′(−1)

) =
⎧⎨
⎩

(0, 0, 1, β), for case (1) and (4),
(0, 1, 0, β), for case (2),
(1, β, 0, 0), for case (3).

We normalize the eigenfunction using u′(x) = 1 for case (2), u(x) = 1 for case (3) and
u′′(x) = 1 for case (1) and (4). If we denote u1n(x, λ) and u2n(x, λ) the solutions corre-
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sponding to initial conditions (0, 0, 1, 0) and (0, 0, 1, 1) respectively for case (1) and (4),
(0, 1, 0, 0) and (0, 1, 0, 1) respectively for case (2) and (1, 0, 0, 0) and (1, 1, 0, 0) respec-
tively for case (3). Then the eigenfunctions u(x) given by

un(x) = u1n(x) + βu2n(x).

By applying the boundary conditions, β can be evaluated as

β =

⎧⎪⎪⎨
⎪⎪⎩

−u1n(1, λ)

u2n(1, λ)
, for case (1), (2) and (4),

−u′′
1n(1, λ)

u′′
2n(1, λ)

, for case (3).

So, we can write the eigenfunctions un(x) as

un(x) =

⎧⎪⎪⎨
⎪⎪⎩
u1n(x, λ) − u1n(1, λ)

u2n(1, λ)
u2n(x, λ), for case (1), (2) and (4),

u1n(x, λ) − u′′
1n(1, λ)

u′′
2n(1, λ)

u2n(x, λ), for case (3).

5 Numerical examples

The six examples included in this section were selected in order to illustrate the performance
of Legendre-Galerkin method to find the eigenvalues of the regular Sturm-Liouville problem.
We compare our method once with the exact solution and other with the methods introduced
in [1–10]. It is shown that Legendre-Galerkin method yields better results. Here, we used of
the Mathematica 10 package to calculate the eigenvalues and eigenfunction problem (1.1)
with one boundary condition of (1.2). The computational codeswere conducted on an Intel(R)
Core(TM) i3 CPU with power 2.40 GHz, equipped with 4 GB of RAM.

Example 1 [1–5] Consider the eigenvalue problem

u(4)(x) = λu(x), 0 ≤ x ≤ 1,

subject to the boundary conditions

u(0) = u′(0) = 0,
u(1) = u′′(1) = 0.

The exact eigenvalues in the latter case can be obtained by solving

tanh 4
√

λ − tan 4
√

λ = 0.

CPUtimeof calculating the eigenfunction and the comparisonbetweenLegendre-Galerkin
method with other methods is tabulated in Table 1. The first four eigenfunctions have been
computed using Legendre-Galerkin method and are displayed in Fig. 1. When the estimate
error en(x) is calculated for the first four eigenfunctions, we find en(x) = 0.

Example 2 [3,5] Consider the eigenvalue problem

u(4)(x) = λu(x), 0 ≤ x ≤ 1,
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Table 1 Comparison of eigenvalues and CPU time (s) for Example 1

k λExactk λ
Legendre-Galerkin
k Homotopy analysis method [2]

1 237.7210675311166 237.7210675311166 237.72106753

2 2496.487437856831 2496.487437856831 2496.48743785

3 10867.58221697888 10867.58221697888 10867.58221697

4 31780.09645408107 31780.09645408107 31780.09645427

CPU – 0.015625 –

k Variational iteration methods [3] Adomian decomposition method [4]

1 237.7210675352447 237.72106753111657

2 2496.487438430018 2496.4874378489776

3 10867.582216996850 10867.593671455183

4 31780.096507847312 31475.483550381574

CPU – –

0.0 0.2 0.4 0.6 0.8 1.0

-0.002

0.000

0.002

0.004

0.006

0.008

0.010 for λ
1

for λ
2

for λ
3

for λ
4

Ei
ge

nf
un

ct
io
n

x

Fig. 1 The first four eigenfunctions for Example 1

subject to the boundary conditions

u′′(0) = u′′′(0) = 0,
u′′(1) = u′′′(1) = 0.

The exact eigenvalues in the latter case can be obtained by solving

cos 4
√

λ cosh 4
√

λ − 1 = 0.

The comparison between the exact value of the eigenvalues and Legendre-Galerkin method
with other methods is tabulated in Table 2. CPU time of calculating the eigenfunction listed
in Table 2. We are normalizing the eigenfunctions using u′(0) = 1. Figure 2 produces
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Table 2 Comparison of eigenvalues and CPU time (s) for Example 2

k λExactk λ
Legendre-Galerkin
k Variational iteration

method [3]
Polynomial expansion
method [5]

1 500.5639017404325 500.5639017404325 500.5639017568876 500.563902

2 3803.537080497866 3803.537080497866 3803.5370804978857 3803.53708

3 14617.63013112234 14617.63013112234 14617.630131122345 14617.6301

4 39943.79900570930 39943.79900570930 39943.799005710076 39943.7994

5 89135.40765718032 89135.40765718032 89135.40765718037 89135.4223

CPU – 0.015625 – –
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Fig. 2 The first eight eigenfunctions for Example 2

the first eight eigenfunction. When the estimate error en(x) is calculated for the first four
eigenfunctions, we find en(x) = 0.

Example 3 [6] Let us consider the fourth order Sturm-Liouville problems of order four

u(4)(x) + u(x) = λu(x), 0 < x < 1,

subject to the boundary conditions

u(0) = u(1) = 0,
u′′(0) = u′′(1) = 0.

The exact eigenvalues of this problem are given in

λk = (kπ)4, k = 1, 2, 3, . . .

Table 3 lists the CPU time in second for the proposed method beside the compari-
son between Legendre-Galerkin method (LGM) and each of the methods in [6] with the
exact value of the eigenvalues. These methods are finite difference method (FDM), modified
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Table 3 Comparison of eigenvalues for Example 3

Method λ1 λ2(×103) λ3(×103) λ4(×104)

FDM 98.40909079949648 1.559545456837260 7.891136372791951 2.493772730528151

MNM 98.40909053149949 1.559545454217382 7.891136377248733 2.493772730341868

BVM 98.40908696311035 1.559545454175871 7.891136371808981 2.493772730319019

LGM 98.40909103400243 1.559545456544039 7.891136373754197 2.493772730470462

Exact 98.40909103400243 1.559545456544039 7.891136373754197 2.493772730470462

Method λ10(×105) λ50(×108) λ100(×109) λ200(×1011)

FDM 9.740919103371439 6.088068199625164 9.740909104400242 1.558545456554039

MNM 9.740919103339907 6.088068199625074 9.740909104400244 1.558545456554039

BVM 9.740919103368853 6.088068199625131 9.740909104400244 1.558545456554040

LGM 974091.9103400243 6.088068199625152 9.740909104400244 1.558545456554039

Exact 9.740919103400243 6.088068199625152 9.740909104400244 1.558545456554039
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Fig. 3 The first six eigenfunctions for Example 3

Numerovsmethod (MNM) and boundary valuemethod (BVM) of order 10. Figure 3 presents
the first six eigenfunctions. The estimate error en(x) = 0 for the first six eigenfunctions.

Example 4 [5,7] Let us consider the fourth order Sturm-Liouville problems of order four

(
(1 + ax)3u′′(x)

)′′ − λ(1 + ax)u(x) = 0, 0 ≤ x ≤ 1,

subject to the boundary conditions

u(0) = u(1) = 0,
u′(0) = u′(1) = 0,
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Table 4 Comparison of eigenvalues and CPU time (s) for Example 4

Method a = −0.1 CPU

1 2 3

The modified
Rayleigh-Ritz
method [7]

– – – –

Polynomial expansion
method [5]

21.2409778 58.5500546 114.7802778 –

Legendre-Galerkin
method

21.2409777 58.5500545 114.7802416 0.062500

Method a = 0.1 CPU

1 2 3

The modified
Rayleigh-Ritz
method [7]

23.479607 64.721086 126.87804 –

Polynomial expansion
method [5]

23.479607 64.721067 126.87805 –

Legendre-Galerkin
method

23.479607 64.721067 126.87801 0.062500

Method a = 0.2 CPU

1 2 3

The modified
Rayleigh-Ritz
method [7]

24.563418 67.704755 132.72398 –

Polynomial expansion
method [5]

24.563417 67.704755 132.72406 –

Legendre-Galerkin
method

24.563417 67.704755 132.72397 0.062500

where a is a parameter. Table 4 shows the CPU time of Legendre-Galerkin for calculating
eigenvalues and the comparison of the approximations of first three eigenvalues square root√

λ between Legendre-Galerkin method (LGM) and each of the methods in [5,7].

Example 5 [8] Let us consider the fourth order Sturm-Liouville problemswhich is simplified
Cahn-Hilliard equation of order four(

(1.1 − x2)u′′(x)
)′′ + 20u′′(x) = λu(x), −1 ≤ x ≤ 1,

subject the Dirichlet boundary conditions

u(−1) = u(1) = 0,
u′(−1) = u′(1) = 0.

Table 5 presents the comparison of the approximations of eigenvalues between Legendre-
Galerkin method (LGM) andexact dynamic stiffness method analogy in [8]. CPU time for
Legendre-Galerkin method is listed in Table 5. Figure 4 shows the first six eigenfunctions.
Figure 4 displays the estimate error en(x) for first three eigenfunctions.
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Table 5 Comparison of
eigenvalues and CPU time (s) for
Example 5

k λ
Legendre-Galerkin
k Exact dynamic stiffness

method analogy [8]

1 −77.89968895 −77.89968895

2 −43.13822158 −43.13822158

3 81.02449654 81.02449680

4 703.9992915 703.9992919

5 2182.636239 2182.636239

6 4991.260832 4991.260833

7 9702.727093 9702.727093

8 16985.85788 16985.85788

9 27605.35265 27605.35265

10 42421.71721 42421.71719

CPU 0.796875 –

Example 6 [1,4,5,9,10] Next we consider the following fourth-order eigenvalue problems
with variable coefficients

u(4)(x) − 0.02x2u′′(x) − 0.04xu′(x) + (0.0001x4 − 0.02)u(x) = λu(x), 0 ≤ x ≤ 5,

subject the Dirichlet boundary conditions

u(0) = u(5) = 0,
u′(0) = u′(5) = 0.

The numerical results of first five eigenvalues λ obtained by the Adomian decompo-
sition method (ADM) [4], polynomial-based differential quadrature method (PDQM) [1],
the polynomial expansion method (PEM) [5], the extended sampling method (ESM) [9]
and Chebyshev differentiation matrices method (CDMM) [10] are listed in Table 6 beside
Legendre-Galerkin Method (LGM). As compared to the existing results, we can find that
the accuracy of proposed method is very satisfactory. The CPU time for the current work is
compared with the program 40, page 151 [27] and Chebyshev spectral collocation method
[10]. As it is shown in Table 6, the CPU time for the proposed method in this work has less
cost than the one introduced in Refs. [10,27]. Figure 5a shows the first six eigenfunctions.
The estimate error en(x) for first three eigenfunctions displays in Fig. 5b.

6 Conclusion

In this paper, Legendre-Galerkinmethod has been successfully used for finding the solution of
linear fourth-order Sturm-Liouville problems. The results in the previous section indicate that
our procedure can be used to obtain accurate numerical solutions of linear Sturm-Liouville
problems with very little computational effort. The effectiveness of the method has been con-
firmed by comparing our eigenvalues with the exact values and/or other numerical methods.
It was shown that the method is easy to implement and produces accurate results for eigen-
functions. The estimate error en(x) for eigenfunctions is calculated to prove the accuracy of
Legender-Galerkin method for finding eigenfunctions.
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