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Abstract This paper shows a summary of mathematical results about the Muskat problem.
The main concern is well-posed scenarios which include the possible formation of singu-
larities in finite time or existence of solutions for all time. These questions are important in
mathematical physics but also have a strong mathematical interest. Stressing some recent
results of the author, we also give a new estimate for the problem in the last section. Initial
data with L2 decay and slope less than one provide weak solutions which satisfy a parabolic
inequality as in the linear regime.
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1 Introduction

The mathematical analysis of fluid mechanics models in PDEs is a classical topic of research
since Euler’s 1757 paper, where the evolution equation of an ideal flow was first derived.
For the well established models, such as Navier-Stokes and Euler, the incompressible case
presents basic and important open questions such as global regularity and finite time singu-
larity formation of the solutions. It is a current area of mathematical research of fundamental
interest in particular due to its relevance in Physics and wide applicability.

In the analysis of PDEs from fluid mechanics, an outstanding class of problems are those
in which the evolution of fluids of different nature are modeled. The interaction between the
fluids provides the dynamics of their common free boundary that evolves with the flow. It
gives rise to long standing problems such as vortex-patch [14], vortex-sheet [4,50], water
waves [44], viscous waves evolution [41], interface flows in porous media and Hele-Shaw
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cells [9,37], as well as atmospheric front dynamics [23], among others. These free boundary
dynamics problems are modeled by fluid mechanics PDEs such as Euler, Navier-Stokes,
Darcy momentum equation and quasi-geostrophic systems. In all of them fundamental
questions are local-in-time existence, global-in-time regularity of solutions or finite time
singularity formation in well-posed scenarios.

In this manuscript we focus on the classical Muskat problem [45]. It considers contour
dynamics problems for incompressible fluids of different nature permeating a porousmedium.
Recently, computer evidence has shown how singularities may developed in Muskat [12].
With recent new techniques, it is nowpossible to prove different types of finite time singularity
formation for those scenarios [10,11,13]. These are the first analytic proofs of blow-up for
incompressible fluid in well-posed situations.

We introduce now the equations of the problem, considering an active scalar ρ(x, t),
depending on time t ≥ 0 and position x ∈ R

2. Here we will pick the two dimensional case
for simplicity of exposition. The fluid velocity is incompressible

∇ · u(x, t) = 0, (1)

and the scalarρ(x, t) satisfies a general transport evolution equation for incompressible flows

ρt (x, t) + u(x, t) · ∇ρ(x, t) = 0. (2)

That we are dealing with two different fluids is reflected in the configuration of ρ(x, t), which
is a discontinuous function with constant values in two complementary connected sets D1(t)
and D2(t) = R

2\D1(t):

ρ(x, t) =
{

ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

(3)

The constants ρ1 and ρ2 represent the density of each fluid that occupy the sets D1(t) and
D2(t), respectively. Therefore Eq. (2) becomes the conservation of mass and it is understood
in a weak sense. The main concern is about the dynamics of the free boundary of the fluids
∂D j (t), j = 1, 2, which is parameterized by the curve z(α, t) as follows:

∂D j (t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R}.
Above the curve z(α, t) is asymptotically flat: z(α, t) − (α, 0) → 0 as α → ∞, and we
will consider also the case of a 2π -periodic contour in the x1 direction: z(α + 2π, t) =
z(α, t) + (2π, 0). The fluid with density ρ2 essentially lies below the fluid of density ρ1 in
such a way that there is a constant M > 1 big enough so that R × (−∞,−M] ⊂ D2(t).

For the Muskat problem, the most common example for applications is the dynamics of
water and oil [6]. This is a classical topic of investigation dating back toMuskat’s 1934 paper
[45]. In consequence the fluids can also have different constant viscosities, given by

μ(x, t) =
{

μ1, x ∈ D1(t),
μ2, x ∈ D2(t).

(4)

Finally, the system is closed using Darcy’s law

μ(x, t)

κ
u(x, t) = −∇ p(x, t) − g(0, ρ(x, t)), (5)

which relates the incompressible velocity with the pressure [31], considering that the fluids
saturate the porous media. The permeability and the gravity constants are given by κ and g
respectively.
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In [47], a completely different physical scenario is studied, with comparable mathematical
properties. This describes the flow evolution inHele-Shaw cells, where the fluids are confined
between two parallel plates that are close together. The evolution is essentially in 2D, and it
is governed by the equation

12

b2
μ(x, t)u(x, t) = −∇ p(x, t) − g(0, ρ(x, t)),

where b is the distance between the plates. Since these two pioneering works, these different
physical phenomena have been extensively studied from a mathematical point of view.

2 Contour evolution equation

The Muskat problem can be considered taking into account many more peculiarities as
boundary effects [27] and three dimensional flows [2,20]. The framework picked in this
presentation allows us to reduce the problem from its original Eulerian variables formulation
(Eqs. 1–5) to the self-evolution of an interface, hence the name contour evolution equation.
It provides a simple way to linearize the system of equations to illustrate in a non-technical
manner what is going on at the nonlinear level.

Darcy’s law (5) shows that the velocity has to be irrotational

∂x1u2(x, t) − ∂x2u1(x, t) = 0,

in the interior of each domain D j (t), j = 1, 2. For that reason the vorticity is given by a
measure on the free interface as follows

∂x1u2(x, t) − ∂x2u1(x, t) = ω(α, t)δ(x = z(α, t)),

defined in a distributional sense as follows:

< u, (∂x2ϕ,−∂x1ϕ) >=
∫

ω(α, t)ϕ(z(α, t))dα, (6)

with ϕ(x) a regular test function. Using the Biot-Savart law

u(x, t) = (−∂x2 , ∂x1)

−1(∂x1u2 − ∂x2u1)(x, t),

it is possible to recover the velocity from the vorticity. It is given by the partial derivatives
of the Newton potential as follows:

u(x, t) = 1

2π
PV

∫
(x − z(α, t))⊥

|x − z(α, t)|2 ω(α, t)dα, (7)

for x 	= z(α, t) where PV denotes principal value (as it is necessary at infinity) and
(x1, x2)⊥ = (−x2, x1). Taking limits by approaching the free boundary in the normal direc-
tion, we can obtain the velocity at the interface with a discontinuity. It reads

u2(z(α, t), t) = BR(z, ω)(α, t) + 1

2

ω(α, t)

|∂αz(α, t)|2 ∂αz(α, t),

u1(z(α, t), t) = BR(z, ω)(α, t) − 1

2

ω(α, t)

|∂αz(α, t)|2 ∂αz(α, t), (8)

where u j (z(α, t), t) denotes the limit obtained from inside D j (t). Above BR stands for the
Birkhoff-Rott integral, which is given by
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BR(z, ω)(α, t) = 1

2π
PV

∫
(z(α, t) − z(β, t))⊥

|z(α, t) − z(β, t)|2 ω(β, t)dβ. (9)

In the above contour operator it is easy to see the importance of the arc-chord condition in
order for the Birkhoff-Rott integral to make sense. A one-to-one curve satisfies the arc-chord
condition if

|z(α, t) − z(β, t)| ≥ Cac(t)|α − β|, ∀ α, β ∈ R, Cac(t) > 0. (10)

The discontinuity of the velocity at the free boundary, which is produced by the vorticity
configuration (6), is given in the tangential direction and consequently it does not give any
insight on the evolution of the shape for z(α, t). In fact, the normal velocity describes the
dynamics and it is continuous on z(α, t) (see (8)). Darcy’s law implies


p(x, t) = −div

(
μ(x, t)

κ
u(x, t) + g(0, ρ(x, t))

)
,

where


p(x, t) = RT (α, t)δ(x − z(α, t)),

and the function RT (α, t) is given by

RT (α, t) = μ2 − μ1

κ
u(z(α, t), t) · ∂αz

⊥(α, t) + g(ρ2 − ρ1)∂αz1(α, t). (11)

Above

u(z(α, t), t) · ∂αz
⊥(α, t) = u2(z(α, t), t) · ∂αz

⊥(α, t)

= u1(z(α, t), t) · ∂αz
⊥(α, t), (12)

due to (8). Recovering the pressure through the Newton potential,

p(x, t) = 1

2π

∫
ln |x − z(α, t)|RT (α, t)dα,

for x 	= z(α, t), it is possible to obtain the continuity of the pressure at the free boundary

p2(z(α, t), t) = p1(z(α, t), t), (13)

which is just a mathematical consequence of Darcy’s law. Let us introduce the following
notation:

[μu](α, t) = (
μ2u2(z(α, t), t) − μ1u1(z(α, t), t)

) · ∂αz(α, t).

Taking limits in Darcy’s law provides

[μu](α, t)

κ
= − (∇ p2(z(α, t), t)−∇ p1(z1(α, t), t)

) · ∂αz(α, t)−g(ρ2−ρ1) ∂αz2(α, t)

= −∂α

(
p2(z(α, t), t) − p1(z(α, t), t)

) − g(ρ2 − ρ1) ∂αz2(α, t)

= −g(ρ2 − ρ1) ∂αz2(α, t),

which allows us to relate the vorticity amplitude ω with the unknown curve through the
following implicit identity

ω(α, t) + 2
μ2 − μ1

μ2 + μ1 BR(z, ω)(α, t) · ∂αz(α, t) = −2gκ
ρ2 − ρ1

μ2 + μ1 ∂αz2(α, t). (14)
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The dynamics is given by the velocity with the following evolution equation

zt (α, t) = BR(z, ω)(α, t) + c(α, t)∂αz(α, t), (15)

where the subscript t denote partial derivative in time and c(α, t) is the function which
provides parametrization freedom. It is worth mentioning that considering different c(α, t)
the geometry of the curve is the same, as the evolution is described by the normal direction
of the velocity [42]. It is usual to pick c as the function zero, but different choices provide
different advantages in the analysis of the evolution equation. In particular, it could be chosen
in such a way that the interface is parameterized as a graph (see formula (23) below). In
conclusion, the contour dynamics equation is now closed and given by (9, 14, 15).

It is possible to write

BR(z, ω)(α, t) · ∂αz(α, t) = ∂α

∫
arctan

(
z2(α, t) − z2(β, t)

z1(α, t) − z1(β, t)

)
ω(β, t)dβ,

so that, in the asymptotically flat and 2π -periodic cases, the amplitude of the vorticity is
found to have mean zero, ∫

ω(α, t)dα = 0,

by integrating identity (14). Hence formula (7) provides

u(x, t) = x⊥

|x |2
∫

ω(α, t)dα + O(|x |−2) = O(|x |−2),

for |x | → +∞. In consequence the velocity is in L2

∫
|u(x, t)|2dx < ∞,

the finite energy and physically relevant scenario.
On the other hand, the velocity can be given through a potential in the interior of each

domain D j (t) as follows

u(x, t) = ∇φ j (x, t), x ∈ int (D j (t)),

due to the irrotationality condition. It gives the possibility of integrating Darcy’s law (5) in
the interior of each domain D j (t),

μ j

κ
φ j (x, t) = −p(x, t) − gρ j x2, x ∈ int (D j (t)). (16)

The incompressibility gives

0 = μ2

κ

∫
D2(t)


φ2(x, t)φ2(x, t)dx = −μ2

κ

∫
D2(t)

|∇φ2(x, t)|2dx

+
∫

∂D2(t)
∇φ2(x, t) · n(t)

μ2

κ
φ2(x, t)dσ(x, t),

where n(t) = ∂αz⊥(α, t)/|∂αz(α, t)|. A similar identity can be obtained in D1(t) so that
adding them and using formula (16) together with (12) and (13) it is possible to get

0 = −
∑
j=1,2

μ j

κ

∫
D j (t)

|u(x, t)|2dx − (ρ2 − ρ1)g
∫

∂D2(t)
u(x, t) · n(t)x2dσ(x, t).
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In the last integral above one finds the time derivative of the potential energy∫
∂D2(t)

u(x, t) · n(t)x2dσ(x, t) =
∫

∂t z(α, t) · ∂αz
⊥(α, t)z2(α, t)dα

= d

dt

1

2

∫
|z2(α, t)|2∂αz1(α, t)dα = d

dt
Ep(t),

so that an energy balance follows:

(ρ2 − ρ1)gEp(t) +
∑
j=1,2

μ j

κ

∫ t

0

∫
D j (s)

|u(x, s)|2dxds = (ρ2 − ρ1)gEp(0). (17)

3 Mathematical results

The Muskat problem has a rich variety of features which have been studied with a wide
diversity of techniques. Interesting scenarios consider 3D fluids, multi-phase flows, bound-
ary effects or permeability discontinuities (see for example [5,43]), etc. Different methods
interact, raging from analytic to computer-assisted proofs [38]. In what follows, the perme-
ability κ is considered to be equal to one.

A very significant peculiarity of the problem is that Muskat develops instabilities [46]. If
the system of Eqs. (1–5) is satisfied in a week sense, some scenarios yield non-uniqueness
of solutions [49]. In the contour evolution setting (9, 14, 15), those unstable cases give rise
to ill-possed equations. These phenomena can be understood through the Rayleigh-Taylor
condition. Considering the jump across the normal direction of the gradient pressures, it is
possible to find

−(∇ p2(z(α, t), t) − ∇ p1(z(α, t), t)
) = RT (α, t),

with RT the Rayleigh-Taylor function given in (11). The Rayleigh-Taylor condition is said
to be satisfied if RT (α, t) > c > 0. By linearizing the Eqs. (9, 14, 15) near the steady state
z(α, t) = (α, 0), it is possible to obtain

f Lt (α, t) = −(μ2 + μ1)−1RT L� f L(α, t), (18)

where (α, f L(α, t)) represents the linearized free boundary, and the constant RT L is the
linear version of the Rayleigh-Taylor function. The operator � is the minus square root of
the Laplacian, � = (−
)1/2, also given by a kernel representation and using the Fourier
transform as follows:

� f L(α) = 1

π
PV

∫
f L(α) − f L(β)

(α − β)2
dβ, ̂� f L(ξ) = |ξ | f̂ L(ξ). (19)

Now the importance of the Rayleigh-Taylor is disclosed. The case RT L > 0 turns theMuskat
problem into a parabolic system at the linear level. For RT L < 0 the character of the equation
changes dramatically, giving an ill-posed system. This fact is easy to understand by using
the Fourier transform in space to solve (18) obtaining

f̂ L(ξ, t) = f̂ L(ξ, 0) exp
(
−(μ2 + μ1)−1RT L |ξ |t

)
.

At the nonlinear level, the Rayleigh-Taylor function (see Eq. (11)) implicates the normal
velocity of the fluids with viscosity jump and the geometry of the contour for different
densities. Basically, the unstable case arises in the viscosity jump situation when a less
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viscous fluid pushes a more viscous one. This case was studied in [48], where the contour
dynamic equation is proved to be ill-possed. In the density jump case (μ2 = μ1), the unstable
regime holds when the more dense fluid lies above the interface and the less dense fluid lies
below it. The contour dynamics equation is shown to be ill-posed in this scenario [21]. On the
other hand, the lost of derivative in the contour equation is of order one, so that it is possible
to find solutions of the system with analytic initial data even in the unstable case [12,32]. At
the linear level this fact can be checked using Eq. (18) and the theory of the Fourier transform
for analytic functions.

Besides gravity, the evolutionMuskat problem can be driven by capillary force. In that case
surface tension effects are considered, and the discontinuity of the pressure on the interface
is proportional to its curvature as follows:

p2(z(α, t), t) − p1(z(α, t), t) = −τ
∂2αz(α, t) · ∂⊥

α z(α, t)

|∂αz(α, t)|3 , (20)

where τ > 0 is the surface tension coefficient. In this case Eq. (14) is replaced by

ω(α, t) + 2
μ2 − μ1

μ2 + μ1 BR(z, ω)(α, t) · ∂αz(α, t)

= −2gκ
ρ2 − ρ1

μ2 + μ1 ∂αz2(α, t) − τ∂α

(
∂2αz · ∂⊥

α z

|∂αz|3
)

(α, t). (21)

The linearization of the system in this case is given by

f Lτ
t (α, t) = −(μ2 + μ1)−1RT L� f Lτ (α, t) + τ�∂2α f Lτ (α, t), (22)

showing a high parabolic regularizing effect for the graph (α, f Lτ (α, t)). The local-in-time
existence for the nonlinear problemwithout gravity and surface tension (g = 0 and RT L = 0
in above linear interpretation) and in the one fluid case (μ2 = 0 = ρ2) was given in [33].
See also [29] for the boundary value problem. Same type of results for the two fluids case
were given in [35]. Besides this surface tension regularizing mechanism, Rayleigh-Taylor
instabilities still play a crucial role considering the force of gravity. In [40] initial small
perturbation are shown to be unstable under small time evolution for low order norms. In
[34] finger shaped stationary-states are found using bifurcation theory which are unstable.
On the other hand, when the Rayleigh-Taylor condition is satisfied initially, surface tension
solutions approach to solutions without surface tension effects as the coefficient τ vanishes
[3].

Without surface tension (τ = 0), the positivity of the nonlinear Rayleigh-Taylor function
have been shown to be crucial to disclose a local-in-time existence result [1,51]. The system
is proved to be well-posed in the case of equal viscosityμ1 = μ2 = μ for the stable case [21]
by using energy estimates on the contour dynamics equation through the chain of Sobolev
norms. In this situation, the Rayleigh-Taylor condition is satisfied only if the free boundary
is represented by the graph of a function (α, f (α, t)) and ρ2 > ρ1. The contour evolution
equation is given in this situation by

ft (α, t) = g(ρ2 − ρ1)

2μπ

∫
β(∂α f (α, t) − ∂α f (α − β, t))

β2 + ( f (α, t) − f (α − β, t))2
dβ, (23)

and RT (α, t) = g(ρ2 − ρ1) due to ∂αz1(α, t) = 1. The case with different viscosities and
densities was shown to be well-posed in [19]. In that proof it is crucial to get control of
the norm of the implicit operator given in (14) involved in the definition of the amplitude
of the vorticity ω. The arguments rely upon quantitative bounds of Hilbert transforms in
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28 F. Gancedo

variable domains in the plane. It requires a harmonic analysis approach involving the Hopf
maximum principle, conformal mappings and Harnack inequalities. A local-in-time control
of the positivity of the Rayleigh-Taylor sign condition is indispensable to reach legitimate
energy estimates, as for a general parametrization RT (α, t) does not need to be positive.
Finally we would like to quote some recent articles where local-in-time existence is shown
of classical solution for large and low regular initial data. For the one fluid case (μ1 = ρ1 = 0)
see [30] and [17] for the density jump case.

If μ2 = μ1 = μ and τ = 0, it is possible to obtain decay of the L∞ norm of the interface
for arbitrary initial data (see [22]). The graph interface evolves by (23) giving∥∥∥∥ f − 1

2π

∫ π

−π

f0dα

∥∥∥∥
L∞

(t) ≤
∥∥∥∥ f0 − 1

2π

∫ π

−π

f0dα

∥∥∥∥
L∞

e−Ct ,

for 2π-periodic f and

‖ f ‖L∞(t) ≤ ‖ f0‖L∞(1 + Ct)−1,

in the asymptotically flat case, where f (α, 0) = f0(α) andC = C( f0) > 0. Thesemaximum
principles are sharp as they provide the same rate of decay as Eq. (18) for f L . On the other
hand, the L2 norm evolution allows to control half a derivative of f L in (18) due to the
identity

∥∥∥ f L
∥∥∥2
L2

(t) + g(ρ2 − ρ1)

μ

∫ t

0

∥∥∥�1/2 f L
∥∥∥2
L2

(s)ds =
∥∥∥ f L0

∥∥∥2
L2

,

or equivalently

∥∥∥ f L
∥∥∥2
L2

(t) + g(ρ2−ρ1)

2μπ

∫ t

0

∫
R

∫
R

(
f L(α, s)− f L(β, s)

α − β

)2

dβdαds = ‖ f0‖2L2 , (24)

using the integral formula (19) and that RT L = g(ρ2 − ρ1). For the nonlinear problem, the
identity

‖ f ‖2L2(t) + g(ρ2−ρ1)

2μπ

∫ t

0

∫
R

∫
R

ln

(
1+

(
f (α, s)− f (β, s)

α−β

)2
)
dαdβds=‖ f0‖2L2 (25)

holds [16], which does not give a chance of gaining any regularity at the level of f (compare
with (17) in the case of viscosity jump). This can be easily shown by the bound

∫
R

∫
R

ln

(
1+

(
f (α, s)− f (β, s)

α−β

)2
)
dαdβ ≤ C‖ f ‖L1(s), (26)

which allows to control the nonlinear term with zero derivatives.
In the case with small initial data, it is possible to use the parabolic character of the

equation in the stable state (see (18) and (22) for the lineal interpretation) to prove global
in time regularity in different situations. For purely surface tension driven fluids (g = 0)
see results in [18,29]. Without surface tension (τ = 0), global existence for the viscosity
jump case was proven in [48] and extended to the density jump case in [21], showing in
both papers instant analyticity of the solutions. For gravity and surface tension interaction
with boundary values see [34]. Those global existence results have been extended in some
situations assuming initial smallness for critical normswith respect to the scaling [16,39], and
showing instant analyticity in [7]. In works [15,16] some results of global in time regularity
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of classical solutions are shown with μ1 = μ2, τ = 0 and medium-size initial slope in the
Wiener algebra, i.e ∫

|ξ || f̂ (ξ)|dξ ≤ c0

with c0 an explicit constant. In particular, the terminology medium-size is used to emphasize
that the constant c0 is of size O(1) and independent of the physical constants g, κ , ρ j , andμ j

( j = 1, 2). Those papers show global existence of Lipschitz weak solutions with initial slope
less than 1 and gradient less than 1/3 in 3D. Using Eq. (23), multiplying by a test function
and integrating by parts, it is possible to find a weak formulation of the system. In fact, we
say that the graph (α, f (α, t)) is a weak solution of the Muskat problem if the following
identity is satisfied

∫ T

0

∫
R

ηt (α, t) f (α, t)dαdt +
∫
R

η(α, 0) f0(α)dα

=
∫ T

0

∫
R

∂αη(α, t)
g(ρ2−ρ1)

2μπ
PV

∫
R

arctan

(
f (α, t) − f (β, t)

α − β

)
dβdαdt, (27)

for any η ∈ C∞
c ([0, T ) × R).

A fascinating behavior of Muskat solution, which can be proved analytically, is finite time
singularity formation starting from regular stable initial data. In [13], it is proved that in the
case μ1 = μ2 and τ = 0 there are solutions of the Muskat equation with initial interfaces
being certain smooth stable graphs, which enter the unstable regime, where the interface is
no longer a graph, in finite time. In particular there exists a time tp in which

lim
t→t+p

‖∂α f ‖L∞(t) = +∞,

for solutions of Eq. (23). In other words, the interface evolves into a non-graph in finite
time (see Fig. 1 for an example). For some contour dynamics problems these “wave-turning”
effects are not dramatic, it is just a breakdown in the parametrization as a graph. But for

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1 An example of wave-turning for Muskat. At (x, y) = (0, 0) the slope of the function is +∞
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30 F. Gancedo

the Muskat problem this is a strong change in the character of the equation. In particular
the significance of a wave-turning is that the Rayleigh-Taylor condition breaks down. At
some branch in theinterface it is possible to localize the heavy fluid on top of the lighter one.
An important reason why this phenomenon arises is that, even for large initial data, Muskat
solutions become instantly analytic [13]. So that, despite the interface is about to reach an
unstable regime, the analyticity remains by the time the wave-turning occurs.

In fact, the Muskat curve solution exists and remains analytic for some time after the
turnover, even in the unstable regime. Furthermore, global existence can be false for certain
scenarioswith large initial data. In [10], it is shown that some of these smooth initial interfaces
in the stable regime turn to the unstable regime and later blow-up; i.e. for some time ts > tp
there is a lost of regularity in the interface. ThereforeMuskat develops finite time singularities
starting from well-posed scenarios. This is the first case of singularity formation in contour
dynamics of incompressible fluids in an initially well-posed problem. The pattern of these
initial data is far from trivial: numerical simulations performed in [25] show that there exists
initial datawith steep slopes forwhich a regularizing effect appears. Evenmore, some analytic
unstable solutions can reach a stable regime and some later time become unstable [26]. If
the contour evolution remains regular in the stable regime is not known, but a finite time
singularity formation characterization is given in [17] in terms of the interface slope.

A different kind of singularities which could breakdown the dynamics of incompressible
fluid interfaces is finite time self-intersection. In this scenario two different particles of the
fluid interface collide. For Muskat with density jump (μ1 = μ2) the self-intersection can not
occur along a curve of points if the interface remains regular. This type of collision is called
“squirt” or “splat” singularity (see Fig. 2 below).

The result is given in [24], using extra cancelation of the operators that relates the velocity
and the density in Darcy’s law (5) for constant viscosity. They are given by singular integrals
with even kernels, yielding a velocity in L∞ for regular interfaces (see [8] where the extra
cancelation was found). The lack of squirt singularities was extended to the case of viscosity
jump in [28] showing that the interface becomes instantly analytic.

A less severe type of singularity is given by the collapse at just a single point while the
interface preserves regularity. The term used for this scenario is “splash” singularity. This

Fig. 2 A splat singularity: regular curve with self-intersection along an arc
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type of blow-up can be removed for the case of equal viscosities [36]. The proof is based
on a cancelation in the kernel of the integral in (23), which is of degree zero for bounded
curvature contours. On the other hand, for the dynamics of one fluid (μ1 = ρ1 = 0) it is
possible to prove finite time splash singularity formation for some particular geometries. In
this case the Rayleigh-Taylor condition holds all the way up to the blow-up time.

This result is achieved by two different ideas. First of all, it is possible to convert the
geometry problem with the “splash” singularity into a new contour dynamics equation with
a conformal map P . It transforms the equations with P given by a square root in complex
variables whose discontinuity branch passes through the collision point xs . We denote this
new problem by P(Muskat). The transformation gives P(Muskat) with no self-intersecting
points of the interface. An important point here to have in mind is that before to the “splash”
time Muskat and P(Muskat) are equivalent, but at the “splash” singularity time P(Muskat)
makes sense. For this reason it is possible to find local existence P(Muskat) and go further
in time. We pick an initial contour zl(α, 0) for Muskat with one pointwise collapse as a
splash (see Fig. 3). We transform this initial contour with P and use it as initial datum for
P(Muskat). Next key idea is to obtain a stability result for P(Muskat) which does not depend
on the arc-chord condition for zl(α, 0) but it may depend on the arc-chord condition of the
contour of P(Muskat). We denote this solution by P(zl(α, t)). Due to the transformation,
the arc-chord constant for P(zl(α, t)) is going to be big. Then, the stability reads

‖P(z(α, t)) − P(zl(α, t))‖ ≤ C(t)‖P(z(α, 0)) − P(zl(α, 0))‖
≤ C(t)‖z(α, 0) − zl(α, 0)‖,

where z(α, 0) is a zl(α, 0) perturbation, P(z(α, t)) is the P(Muskat) solution with P(z(α, 0))
as initial datum, C(t) is a controlled constant and ‖ · ‖ is an appropriate norm. It is possible
to show that the velocity for zl(α, 0) gives that the two branches on the interface with the
common intersection point are going to cross as time goes forward. Then we take an initial
datum z(α, 0) which is a small perturbation of zl(α, 0) but without pointwise intersection.
Because the time of existence for P(Muskat) is independent of the smallness of ‖z(α, 0) −

Fig. 3 An appropriate geometry for a splash singularity in Muskat with a dry region
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zl(α, 0)‖ we can conclude that, due to the fact that zl self-intersects at a point, there exists a
finite time such that z has to break down with a splash singularity.

4 The new estimate

This section is devoted to show a new inequality for weak Muskat solutions. This result was
announced at the Special Session “Analysis of free boundary problems” in the 10th AIMS
Conference on Dynamical Systems, Differential Equations and Applications, in Madrid
(Spain), July 2014. Below we provide details.

We define the spaces L∞([0, T ];W 1,∞), L∞([0, T ]; L2) and L2([0, T ]; H1/2) with
norms

‖ f ‖L∞(0,T ;W 1,∞) = ess sup (0,T )(‖ f ‖L∞(t) + ‖∂α f ‖L∞(t)),

‖ f ‖L∞(0,T ;L2) = ess sup (0,T )‖ f ‖L2(t),

‖ f ‖2L2(0,T ;H1/2)
=

∫ T

0

(‖ f ‖2L2(t) + ‖�1/2 f ‖2L2(t)
)
dt,

and C([0, T ] × R) is the space of continuous function with (t, α) ∈ [0, T ] × R.

Lemma 4.1 For f0 ∈ L2 and ‖∂α f0‖L∞ < 1, there exist weak solutions of (23) with

f (α, t) ∈ C([0, T ] × R) ∩ L∞(0, T ;W 1,∞), ∀ T > 0,

satisfying the following estimate

‖ f ‖2L2(t) + g(ρ2 − ρ1)

4μπ

∫ t

0

∫
R

∫
R

(
f (α, s) − f (β, s)

α − β

)2

dβdαds ≤ ‖ f0‖2L2 , (28)

for any t ∈ [0, T ].
Remark 4.2 With this estimate we reproduce an analogous feature to the linearized system
(see (24)), giving a solution with f ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1/2).

Proof Using the method in [16], it is easy to find the weak solution of Muskat in the space
C([0, T ]×R)∩ L∞(0, T ;W 1,∞). It is given passing to the limit into the regularized system

f ε
t (α, t) = g(ρ2 − ρ1)

2μπ
∂αPV

∫
R

arctan

(
f (α, t) − f (α − β, t)

β|β|−ε

)
dβ

−εC�1−ε f ε(α, t) + ε f ε
αα(α, t), (29)

where C > 0 is a universal constant, the operator �1−ε f is given by

�1−ε f (α) = c1(ε)
∫
R

f (α) − f (α − β)

|β|2−ε
dβ,

with 0 < cm ≤ c1(ε) ≤ cM , and ε > 0 small enough. The initial data f0 ∈ L2 with
‖∂x f0‖L∞(R) < 1 is regularized with a mollifier to find global-in-time regular solutions of
(29). The convergence as ε → 0+ is, up to a subsequence, strong in L∞ on compact sets
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of [0, T ] × R and weak-start in L∞(0, T ;W 1,∞). Furthermore, it is possible to find (see
discussion in [16] above Remark 4.4 for more details)

d

dt
‖ f ε‖2L2(t) = −g(ρ2 − ρ1)

2μπ

∫
R

∫
R

1 − ε

|α − β|ε ln

(
1 +

(
f ε(α, t)− f ε(β, t)

(α − β)|α − β|−ε

)2
)
dβdα

−2Cε‖�(1−ε)/2 f ε‖2L2(t) − 2ε‖ f ε
α ‖2L2(t).

Therefore, integration in time provides

‖ f ε‖2L2(t) + g(ρ2−ρ1)

2μπ

∫ t

0

∫
R

∫
R

1−ε

|α−β|ε ln

(
1+

(
f ε(α, s)− f ε(β, s)

(α−β)|α−β|−ε

)2
)
dβdαds

≤ ‖ f0‖2L2 .

The strong convergence of a subsequence of ε and Fatou’s lemma allows us to find that
identity (25) is satisfied for the weak Muskat solution in an inequality form

‖ f ‖2L2(t)+ g(ρ2 − ρ1)

2μπ

∫ t

0

∫
R

∫
R

ln

(
1+

(
f (α, s)− f (β, s)

α−β

)2
)
dαdβds≤‖ f0‖2L2 .

In general, this inequality does not yield any gain of regularity as it is disclosed in (26). But
in this case, due to

‖∂α f ‖L∞(t) ≤ ‖∂α f0‖L∞ < 1

it is possible to expand the ln(1 + x2) function, to find

S = ln

(
1 +

(
f (α, s) − f (β, s)

α − β

)2
)

=
∞∑
j=1

(−1) j+1 1

j

(
f (α, s) − f (β, s)

α − β

)2 j

.

In the infinite sum we gather terms so that

S =
∞∑
j=1

[
1

2 j − 1

(
f (α, s) − f (β, s)

α − β

)4 j−2

− 1

2 j

(
f (α, s) − f (β, s)

α − β

)4 j
]

and therefore

S =
∞∑
j=1

1

2 j − 1

(
f (α, s) − f (β, s)

α − β

)4 j−2
[
1 − 2 j − 1

2 j

(
f (α, s) − f (β, s)

α − β

)2
]

. (30)

At this point it is easy to get

1

2 j
≤ 1 − 2 j − 1

2 j
‖∂α f ‖2L∞(s) ≤ 1 − 2 j − 1

2 j

(
f (α, s) − f (β, s)

α − β

)2

and therefore all the addends in S given by (30) are positive. Then

1

2

(
f (α, s) − f (β, s)

α − β

)2

≤ S.

This yields finally

‖ f ‖2L2(t) + g(ρ2 − ρ1)

4μπ

∫ t

0

∫
R

∫
R

(
f (α, s) − f (β, s)

α − β

)2

dαdβds ≤ ‖ f0‖2L2 .

��
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