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Abstract In this paper, B-spline method is developed to find an approximate solution for
singular linear and non-linear higher-order differential equation. Error analysis is presented.
The method is then tested on linear and nonlinear examples. The numerical results reveal
that B-spline method is very efficient and accurate.
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1 Introduction

Accurate and fast numerical solution of two-point boundary value problems for ordinary
differential equations is necessary in many important scientific and engineering applications,
e.g. reactant concentration in a chemical reactor, boundary layer theory, control and opti-
mization theory, and flow networks in biology, areas of astrophysics such as the theory of
stellar interiors, the thermal behavior of a spherical cloud of gas, isothermal gas spheres, and
the theory of thermionic currents.

The aim of this paper is to introduce B-spline method for the numerical solution of the
following class of linear and non-linear singular boundary value problems:
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subject to the boundary conditions

y(0) =y'(0) =0,
YO =a;, j=2,3,...,r—1,
YOy =4, i=01,....,r—1. (1.2)

The singular boundary-value problem has arises in many branches of applied mathematics
and physics such as gas dynamics, nuclear physics, chemical reactions, atomic structures,
atomic calculations, study of positive radial solutions of non-linear elliptic equations etc.
In recent years, seeking numerical solutions of singular differential equations has been the
focus of a number of authors [2,4-6,8-10,13,14,17,18,21,23].

In recent years, a lot of attention has been devoted to the study of B-spline method to
investigate various scientific models. The efficiency of the method has been formally proved
by many researchers [3,11-13,15,16,20,22,24,25]. Spline functions have some attractive
properties. Due to the being piecewise polynomial, they can be integrated and differentiated
easily. Since they have compact support, numerical methods in which spline functions are
used as a basis function lead to matrix systems including band matrices. Such systems have
solution algorithms with low computational cost.

The organization of the paper is as follows. In Sect. 2, we describe the basic formulation
in terms of B-splines functions required for our subsequent development. Error analysis for
the septic B-spline and the nonic B-spline are presented in Sect. 3. In Sect. 4, we introduce
B-splines method and show how the method is used to solve linear singular higher-order
boundary-value problem. Section 5 is devoted to the solution of non-linear singular higher-
order boundary-value problem. Some numerical examples are presented in Sect. 6. Finally,
Sect. 7 provides conclusions of the study.

2 The B-splines of dth degree

The theory of spline functions is a very active field of approximation theory and boundary
value problems, when numerical aspects are considered. In this paper we will be interested
in the septic and nonic B-splines.

Consider equally spaced knots of a partition 2, : 0 = x9 < x; < -+ < x, = 1 with
step h = %, and x; = ih,fori = 0,1,2,...,n. Let S4(€2,) is the space of continuously
differentiable, piecewise, d-degree polynomials on €2,,. That is S;(£2,) is the space of the
d-degree B-spline on €2,,. The ith B-spline basis, B; 4(x), of degree d, i € Z is defined
recursively as follows [8,10]:

‘ L x < xiy,
Biolx) = 0, otherwise. @.1)
and
— X; Xi4d+1 — X
Bia(x) = " Big_1(x) + — By g1 (%), (2.2)
Xi+d — Xi Xit+d+1 — Xi+l

where d > 1. The above relations shown in Egs. (2.1) and (2.2) are usually referred to as the
Cox-de Boor recursion formula, such that B; 4 are compactly supported, Zf’i_oo Bia(x) =

I, forall x € Rand B; 4 > 0. Since By 4(x) at the knot spans (0, ), (h, 2h), ..., (eh, (e +
Dh), ..., (dh, (d+ 1)h), for 0 < e < d, can be determined using the following equation,
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d—e d—e d—e
1 . .
Boa() = oo | 2 lgh—x1 2 ( 37 [gah —x] (x =P | 37 [g3h —x]
: i1=0 ir=i] i3=ip
. d_e .
(x —2h)32 ... z [geh — x] (x — (e — )h)Ie=D (x — eh)'e ,
ie=le—]

where

re=d—e—ie,8e=d+1—i, and jee—1) =ie —i(e—1)-

3 Error analysis
3.1 Error analysis for the septic B-spline

The set of B-spline B (x), j = =7, —6,...,n — 1, form a basis for §7(2,). Thus we can
define our septic B-spline basis in the form:

n—1

S() = > ¢;Bj(x), x€l0,1]. 3.1)

j==1

Denote by S; = S(x;), Si(p) = s (x;) for all p. Table 1 exhibits the coefficients of septic
B-spline B; 7 and their derivatives, at the knots x;,i =0, 1,2, ..., n.
For any function g evaluated at the nodes x;, we define I" by:

gi = gi—7+120g;—¢ + 1191g;—5 + 2416g; 4 + 1191g;_3 + 120g; > + gi—1, (3.2)

then the following recursive relations can be reduced:

7
PSj = [=8i-7 = 5656 — 2455;_s + 24553+ 56512 + S;-1] (3.3)
42
rs/ = n [Si—7 +248i_6 + 1585 — 80S;_4 + 15853 + 2485, > + S;—1]. (34
210
rﬁ”::Z?{—&,7—8&,6+19&,5—19&,y+8&,2+qu, (3.5)

Table 1 The coefficients of B; 7 and its derivatives at the knots points

x Xi Xi+1 Xi4+2 Xi+3 Xi+4 Xi+5 Xi+6 Xi4+7 Xi+8
B; 0 1 120 1191 2416 1191 120 10
hB 0 7 392 1715 0 —1715 —392 -7 0
W2B! 0 42 1008 630 ~3360 630 1008 2 0
BBY 0 210 1680 —3990 0 3990  —1680  —210 0
B 0 840 0 —7560 13440 7560 0 840 0
BB 0 250 —10,080 12,600 0 —12,600 10,080 —2520 0
WB® 0 5040 30240 75600 —100,800 75,600 30,240 5040 0
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840
rs® = —7 (817 =985 + 1654 = 9Si 5 + 81 1] (3.6)
2520
PSP = =5 [=Si7 +4Si6 = 5515+ 553 =452 + S (3.7)
and

5040
IS = = [Si—7 — 6Si_6 + 158i_5 — 208;_4 + 15853 — 6S; 2 + Si-1] . (3.8)

Lemma 3.1 Let S be the septic-spline interpolation of y € C'4[0, 1] defined by (3.1), then
the following relations hold fori =0,1,2,...,n

IS = 5040 y/_, + 1680 h2y.”, +—266h4yfz,+-i?/ﬁy(” +0(r%, (3.9)
TS = 5040y, + 1680 >y, + 266 h*y(?, + 523 Wy® +o R, (3.0
sy = 5040y, + 1680 h%y, +266 h*y, ", 525 Wy 2+ 00, 31
rs® = 5040 y®, + 168042y, +273n%y®, h6 Wh+o0@mY., G2
rs® = 5040y, + 168012y ", +245n*y?, 634 nyM oty (3.13)
rs© = 5040y, + 1260 n2y®), + 14714319 + % oy oY), (314

Proof By substituting with Taylor series expansions of y;_7, vi_g, yi—5, yi—3, yi—2 and
yi—1 about x;_4 in Egs. (3.3)—(3.8), the above relations are obtained. ]

Theorem 3.1 If y € C'*[0, 1] and S is the septic B-spline interpolation of y defined by
(3.1), then we have

$© _ 6 AN O Y12 4o
D= g gm0

®_ o Moo B an 8
87 =y — . +——y  +0(h),

240 3024
SO _y@ M w0 YO+ o nb),
P T 07T T 3004
h4
®_ 0 ) 8
! o),
©= F g ToW)

h6
S/ =y — ® 1L 0n),
R TR ")

S/ =yl +0(h%).

Proof Consider any function g € C'#[0, 1], T'g is defined as shown in Eq. (3.2). It can be
easily proved that

80
Tgi = 5040 g4 + 1680 h%g] , +266 h*g™®, + 3 he® +ond).  (3.15)

If we assume that

4 6
6 R AN N AT
8 =i T ¥ Tt T oag Vi
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B-spline and singular higher-order boundary value problems 291
then using Eq. (3.15) yields:
Fgi = 5040 @ +126012y® + 1470y 4 33—2 Wy +o(rY).  (3.16)
Let
doi = S — (5040y}6) +1260 1%y + 147 0%y 10 + 333 h6_yl.(12)) ,
subtracting Eq. (3.16) from Eq. (3.14) yields:
Tds; =0 (h® || y™ ). (3.17)
If we assume that
gi =y — % W+ % i,
then using Eq. (3.15) yields:
Tg = 5040y + 1680 h%y 7 + 245 1%y + 6?4 ryM o Ry,  (3.18)
Let
ds; =8> — (5040 v + 1680 n%y(" + 245ty + 63—4 ROy, ”) :
subtracting Eq. (3.18) from Eq. (3.13) yields:
Tds; = O (h® | y™1)). (3.19)
If we assume that
&= y,-(4) + 71170 y[(8) - %24 yl.(lo),
then using Eq. (3.15) yields:
Fg = 5040y + 1680 1%y + 273 1*y® + % ry19 o). (3.20)
Let
dy; =SY - (5040 v 1168002y + 273 1%y + 83—2 h® y,.“"’) ,
subtracting Eq. (3.20) from Eq. (3.12) yields:
Tdy; = O (h® || y™11). (3.21)
If we assume that
then using Eq. (3.15) yields:
Fgi = 5040y + 168012y + 266 1ty + % Wy +o(r%). (322
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Let

l

5
d3; =S - (5040 w” + 1680 A%y + 266 Wy + 2 h6y.(9)) :

subtracting Eq. (3.22) from Eq. (3.11) yields:

Tds; =0 (h* ||y ). (3.23)

If we assume that
h6
=y ®)

8=V 730240

then using Eq. (3.15) yields:
53
g = 5040y) + 1680 h2y® + 266 h*y(© + 5 hey® 10 (n¥). (3.24)

Let
53
dyi =S — (5040 y'i + 1680 2y + 266 h*y© + > n® yfg)) ,

subtracting Eq. (3.24) from Eq. (3.10) yields:

Tdy;i =0 (K | y" ). (3.25)
If we assume that g; = y/, then using equation (3.15) yields:
80

g = 5040y + 16802y + 266 h*y® + 3 hey " + 0 (nd). (3.26)

Let dy; = (Slf’ - (5040y’i + 1680h2yl.(3) + 266h4yi(5) + %—0h6yi(7))), subtracting Eq.

(3.26) from Eq. (3.9) yields:
Tdi; =0 (h® || y™ ). (3.27)

Since the coefficient matrices of the systems of equations (3.17), (3.19), (3.21), (3.23), (3.25)
and ( 3.27) are diagonally dominant and their inverses are bounded then dy ; = O (hg) , k=
1,2,...,6,i = 0,1,2,...,n, hence; the proof of all relations of the above theorem is
completed. O

3.2 Error analysis for the nonic B-spline

The set of B-spline B (x), j = =9, -8, ..., n — 1, form a basis for S9(£2,,). Thus we can
define our nonic B-spline basis in the form:

n—1
Sy =D ¢Bi(x), xel0,1]. (3.28)
j=-9

Table 2 exhibits the coefficients of nonic B-spline B, ¢ and their derivatives, at the knots
xi,i =0,1,2,...,n.
For any function g evaluated at the nodes x;, we define I" by:
Igi = gi—9+502g;_g+ 14,608 g;—7 + 88,234 g;_¢ + 156,190 g;_5
+ 88,234 g4+ 14,608 g;—3 + 502 g;—» + gi—1, (3.29)
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Table 2 The coefficients of B; g and its derivatives at the knots points
X Xi Xi+1 Xi+2 Xi+3 Xi+4 Xit+5
B; 0 1 502 14,608 88,234 156,190
hB] 0 9 2214 36,414 101,934 0
W2B]! 0 7 8496 68,544 11,088 ~176,400
n3B" 0 504 27,216 67,536 —218,736 0
B 0 3024 66,528 96,768 260,064 574,560
W5 B> 0 15,120 90,720  —514,080 695,520 0
nsB® 0 60,480 120,960  —483,840 2,056,320  —3,024,000
B 0 181,440  —1,088,640 2540,160  —2,540,160 0
n$B® 0 362,880  —2,903,040 10,160,640  —20,321,280 25,401,600
X Xi+6 Xi4+7 Xi+8 Xi+9 Xi4+10
B; 88,234 14,608 502 1 0
hB] 101,934 ~36,414 2214 9 0
h?B/ 11,088 68,544 8496 ) 0
W B 218,736 ~67,536 27216 ~504 0
nB® 260,064 96,768 66,528 3024 0
1S BY 695,520 514,080 ~90,720 ~15,120 0
hoB® 2,056,320 —483,840 ~120,960 60,480 0
1’ B 2,540,160  —2,540,160 1,088,640  —181,440 0
WB® 20321280 10,160,640  —2,903,040 362,880 0
Then the following recursive relations can be reduced:
, 9
rs) = E[ — Si_g — 246 S;_g — 4046 S;_7 — 11,326 Sj_¢ + 11,326 S; _4
+ 40,468, _3 + 246S5;_» + Si_1], (3.30)
L, 12
rs; = ﬁ[si_g + 118S8;_g +952S; 7 + 1548; _¢ — 24,508; _5 + 154S; _4
+9528;_3 + 118852 + Si_1], (3.31)
3 504
P8 = S5 [ = Sico — 54Si-s — 1345;7 + 43451 ¢ — 434Si_ + 13453
+ 548, + Sifl], (3.32)
4) 3024
rs;” = 7[&'79 + 18S8;_g — 32S8;_7 — 86S;_6¢ + 190S;_5 — 86S;_4 — 325;_3
+ 1882 + Si—1] (3.33)
s 15,120
rs” = 3 [ — Sico — 6Si_g 4+ 34S;_7 — 46S;_¢ + 46S;_4 — 34S;_3
+ 682+ Si—1], (3.34)
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6) 60,480
S = T[S,'_g —28;_g —8S;_74+34S;_¢ — 50S;_5 + 34S,_4 — 8S;_3
—28i 2+ Si—1l, (3.35)
@ 181,440
rs;” = X [—=Si—9g +6S;_g — 1485, 7+ 14S;_¢ — 14S;_4 + 14S; 3
—68;—2 + Si-1l, (3.36)

362,880
rS® = =22 [Si o — 885 + 285j_7 — 56S;_6 + 70Si_5 — 565;_4 + 28S;_3

—8Si_0+ Si_1]. (3.37)

Lemma 3.2 Let S be the nonic B-spline interpolation of y € C'9[0, 1] defined by (3.28),
then the following relations hold fori =0,1,2,...,n

TS = 362,880y, s + 151,200 2y 430,240 h*y® + 3870 h®y 7 +

1 1

o), (.39
IS/ = 362,880y) 5 + 151,200 A%y, + 30,240 h*y ), + 3870 0y ™+

léﬁ ry"% + o (n'%), (3.39)
rs® = 362,880y + 1,151,200 12y + 30,240 h*y " + 3870 h°y) s+

%72 rey" 4o (n'Y), (3.40)
rs® = 362,880y + 151,200 h2y . + 30,240 h*y®) + 3858 n0y 1Vt

%gghsy;{? +0(n'%, (3.41)
rs® = 362,880y + 151,200 h2y ", + 30,240 h*y?; + 3930 n0y 'V 4

37108y + 0 (1Y), (3.42)

rs® = 362,880y, + 151,200 n2y ™, + 30,744 h*y ") 43960 0y 2+
35988y + 0 (h19). (3.43)

s = 362,880y, + 151,200 1%y " + 28,728 h*y" + 3360 ny" Y +

1371
R o). (3.44)
rs® = 362,880 y V5 + 120,960 A2y"%) + 19,152 h*y"% + 1920 h0y D+
1371
0 rEy!Y + 0 (h'?). (3.45)

Proof By substituting with Taylor series expansions of y;_9, yi—8, Yi—7, Yi—6, Yi—4,
vi—3, yi—2 and y;_1 about x;_5 in equations (3.30)—(3.45), the above relations are obtained.
O
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Theorem 3.2 If y € C'°[0, 1] and S is the nonic B-spline interpolation of y defined by
(3.28), then we have

@ ® " o, Bty B g 16 4 o (10
i =Y T Y T oatt T Goag” 1728000 T (7).
6 8
@ _ M oan B gy h 309 10
ST T T se00ts O
®_ " a0 1 14 4 (!
i =Y et TR0t Tagseo”i T (n"%).
ROJNC) R an A 313 4o (110
i =Y T easi T 3ase0t T (7).

SO oo 100 B 12+ 0(n'),
P77 302407 T 57,6007

8
3 _ 0 h yan 10
s =& _ +0(h
i T 172.800° (7).

S-”: " (10) 0 h]o
P =Y T 0060000 T (7).

Si=yi+0(n"),

Proof Consider any function g € C 1610, 1], T'g is defined as shown in Eq. (3.29). It can be
easily proved that

Tg = 362,880g; + 151,200 h%g/ + 30,240 h*g

713
+3870 108, + —= ¥ +0 (1'°).

(3.46)
If we assume that
o=y - oo ey By B g
127 240 7 6048 172,800
then using Eq. (3.46) yields:
Fgi = 362,880 y{”5 + 120,960 h2y"? + 19,152 h*y "% + 1920 'Y
+1igl Ky +0 (n'). (3.47)
Let
dy; = S®, - (362 880 y¥s + 120,960 h2y"%) 4 19,152 n%y 2
+1920 R0y + 1%1]18 ;f’;)
subtracting Eq. (3.47) from Eq. (3.45) yields:
Tds; =0 (h' | y' ). (3.48)
If we assume that
si=y" 240 T %24 - 57?200 7,
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then using Eq. (3.46) yields:
g = 362,880y + 151,200 h%y? + 28,728 h*y ') + 3360 10y Y

1371
o h% 3+ 0 (). (3.49)
Let
dr; =87 - (362 880y + 151,200 12y " 4 28,728 h*y' !
6,03 , 1371 3 as)
+33604°y; 5 + —— 'y )
subtracting Eq. (3.49) from Eq. (3.44) yields:

Tdr; =0 (RO y'e). (3.50)
If we assume that

6 8
6 10 h 12 h 14
gi=yO 4y _ 2 an, T a9

7207 T 30247 345607
then using Eq. (3.46) yields:
Fgi = 362,880 75 + 151,200 h%y > + 30,744 h*y{'Y + 3960 n°y "2
+359h8yY + 0 (n10). (3.51)

Let

do; = S, — (362 880 y®, + 151,200 n2y¥5 + 30,744 n*y ")

+3960 10y "% + 359 18 yl(145))

subtracting Eq. (3.51) from Eq. (3.43) yields:
Tde; =0 (h'" | y' ). (3.52)

If we assume that g; = yl(s) + 6048 yl(”) 3115860 yl.(m, then using Eq. (3.46) yields:

Fg = 362,880y + 151,200 %y"" + 30,240 h*y"

+3930h0y"Y £ 371185 + 0 (h¥). (3.53)

Let
ds; = S° — (362,880 v 151,200 1%y 7 430,240 1ty
6,01 8. (13)
+3930 %" +371%{17),
subtracting Eq. (3.53) from Eq. (3.42) yields:
Tds; =0 (h' | y'®). (3.54)

If we assume that

g =y h® (10) h® 32
S 30,240 57,600 ~

)
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then using Eq. (3.46) yields:
g = 362,880 y'Ys + 151,200 %y %, + 30,240 h*y®,

1

1789
+3858 101 + —= ¥y +0 (). (3.55)

Let

dy; =8P — (362,880 v 151,200 2%y 4 30,240 n*y®

1789
+3858 10y + —~ hgyl.(”)) :
subtracting Eq. (3.55) from Eq. (3.41) yields:
Tdy; =0 (R y' ). (3.56)

If we assume that g; = yl.( ) 173200 yl1 ), then using Eq. (3.15) yields:

Mg = 362,880y + 151,200n%y" + 30,2401y

1772

+387010y” + ——=h8y'"V 1 O (n'). (3.57)

Let

& =S - (362,880 v 151,200 1%y 430,240ty
+3870 10y + = heyh )

subtracting Eq. (3.57) from Eq. (3.40) yields:

Pds; =0 (") y' ). (3.58)
If we assume that g; = y;" + % yi(lo), then using Eq. (3.15) yields:

Mg = 362,880y, + 151,200 A2y + 30,240 h*y®
1784
5

+3870 18y + 18y 10 (n'0). (3.59)

Let
dyi =S — (362,880 v/ + 151,200 %y + 30,240 1ty ©
+3870 10y ® + 175ﬁ h® yi(lo)) :
subtracting Eq. (3.59) from Eq. (3.39) yields:
Ty =0 (R | y'0)). (3.60)
If we assume that g; = y/, then using Eq. (3.47) yields:
g = 362,880y, + 151,200 12y + 30,240 h*y®>

71

3
+387010y 7 + —= %7 + 0 (7). (3.61)
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Let
. 713
dij=S|— (362,880y, +151,200h%y 430,240 h*y® 3870 10y + =5 Ry y§9>.),

subtracting Eq. (3.61) from Eq. (3.38) yields:
Pdi; =0 (R y'). (3.62)

Since the coefficient matrices of the systems of Eqs. (3.48), (3.50), (3.52), (3.54), (3.56),
(3.58), (3.60) and (3.62) are diagonally dominant and their inverses are bounded then &k, =
O(hlo), k=1(1)6,i =0,1,2,...,n, hence; the proof of all relations of this theorem is
completed. O

4 Linear singular higher-order boundary-value problems

To overcome the singularity at x = 0, we apply L’Hopital’s rule as x approaches zero to the
terms £y/(x) and % y(x) in Eq. (1.1) as follows [8]:

un%[ @+ Ly + 2y(x)} = lim [ £( (), ¥ 00,y @0
x—
since
.k, 0 ki p
lim —y'(x) = -, = ]1m y "(x) = k1y"(0),
x—0 X 0 x—0
similarly

ks 0 k k
lim —y(x) o= lim 2y”(x) 2y”(O)

So the BVP in Eq. (1.1) is modified at the singular point x = 0 to the following form

ko
Y () + (/q + 3) ¥ = £ (0.50).Y0....y* V). (@.1)
Let the solution y(x) of the problem (1.1)—(4.1) be approximated by
n—1
Y(xi) = D ¢;Bj(x), (42)
j=—d
where c; are unknown real coefficients and B;(x) are the (2r+1)-degree B-spline functions.
Let xo, x1, ..., x, be n+1 grid points in the interval [0, 1] sothatx; = ih,i =0,1,2,...,n
where
1

x0=0, x,=1, and h=;

It is required that the approximate solution satisfies the differential equation at the points
x = x;, and we can easily deduce the following

n—1 n—1
Y= > ¢ Bix), y )= ¢ B (), r=234,
j=—d j=—d
and d =2r + 1. 4.3)
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Theorem 4.1 If the assumed approximate solution of the problem (1.1)—(4.1) is (4.2) then
the discrete collocation system for the determination of the unknown coefficients {c }';_

j—fd
is given by

n—1
> [B;Z’Rxo + %B}(x» + ]?Bj(xi)} cj = fx), (4.4)
j:—d i xl.
and
n—1 k
> [ (2’)(0)+(k + 2)3”(0)} cj = f0), (4.5)
j=—d

and boundary conditions (1.2) can be written as

n—1

> ¢jBj(0) =0, ZCJBJ(O)_O ZCJB(’)(O)_(X,, i=2,3,...,r—1

j=d j=—d j=—d (4.6)
Z B =g i=0.1....r—1.
j=—d

Proof We replace each term of (1.1)—(4.1) with its corresponding approximation given by
(4.3) and substituting x = x; and applying the collocation to it. O

Then the system in (4.4)—(4.6) takes the matrix form

AC=F, 4.7)
1.€.
C—d
Ao C—d+1 Fo
A}’l Cn—2 n
Cn—1
0 S (xo0) Br_1
0 fx) Br_a
Fo=| %2 |, F=| : |. F.=| : |,
: : ﬂl
- ) Po
B_q(x0) B-g+1(x0) --- B_1(x0) 0 --- 0
B/_d(xo) B/_d_;,_l(xO) B/_l(XO) 0 - 0
Ay = ,
B, ”(x) B<’d+‘i<xo) - BT ”(xo) 0 .- 0
0---0B", ") BY @) - BY Y ()
sl . . |

0---0 Bl_d(xn) B/_d_;,_](xn) BLI(X,,)
0---0 B_g(xp) B_gy1(xy) -+ B_1(xy)
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and
(woo wor - Wod—1) 0 0o ]
0 wi w2 W1(d) 0 0
0 wxn w3 e W2(d+1) 0
A= .
0
0
0 Wy—1(n—1) e Wy—1(n—2) 0
L0 - 0 Wn(—d-tn) Wan—1) |

Notice that, Ag is n + 1 x r dimensional matrix, its coefficients are the coefficients of the
boundary conditions equations at xg, (x = 0), A, is n + 1 x r dimensional matrix, its
coefficients are the coefficients of the boundary conditions equations at x,,, (x = 1) and A is
a (2r+1)-diagonal matrix of order n + 1 x n 4 2r 4+ 1 with d non-zero bands, such that its
elements have the following form:

ko
2 ki ko
wijj = B(,ﬁjj (xi) + ;B/_d_q_jj(xi) + ;deJrjj(xi), for x; #0,
i i
where jj =i,i+1,...,n+d —1,andi = 1,2, ..., n. Now, we have a linear system of
n + 2r + 1 equations of the n 4+ d unknown coefficients, namely, {Cj};f;]_d. ‘We can obtain
the coefficients of the approximate solution by solving this linear system by Q-R method.

5 Non-linear singular higher-order boundary-value problems

In the case of non-linear problems, the quesilinearization technique has been used to linearize
the given non-linear (1.1)—(4.1) to a sequence of a linear differential equations [ 10]. We choose
areasonable initial approximation for the function y(x) in f (x, y(x), y(x), ..., y(z’_ D (x)) ,
call it as y*(x), and expand f (x, y(x), y'(x), ..., y? ~D(x)) around the function y°(x),
then we obtain

f (x,yl, (GO (y(z’*“)l) =f (x, WL on% (y@’*l))o)

.....

or in general, we can write the first two-terms of the expansion form = 0,1,2,...,(m is
the iteration index) as:

m+1
£ (e @, 6, 0P )

= £ (53" @, 00" @, (D) )

0
+ (") = Y™ ) (—f

) (5.1)
Y J (o ). 7 (). (2 =1Y" ()
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Substituting Eq. (5.1) in Egs. (1.1) and (4.1), the non-linear differential equation will be
converted to system of m + 1 linear differential equations written as

m+1 ko a
()" @ +a ~O0" ) + ( - (a—f) )y'"“(x)
Y7 ym (), ()M (@) e, (b2 =1)" (1))

= £ (53", 00" @, (D) )

a
— " )(af) L X #£Q, (52)
YT ey (o 0 e (2 71)" (1)
and
m+1 N m d
(»*) (0>+(k1+ )(y/) 0 -y 0) (a—f)
(0,"(0), ()" (0),.... (¥ =1)" (0))

m

=7 (0.5, )" ... (x> ") @), x=0, (5.3)

subject to the boundary conditions
ym-‘rl(o) — (y/)m+1(0) — 0,

o\ m+1

(y(’)) O)=ca;, i=23....r—1, (5.4)
. +1

(y(’))m =g, i=0,1,. .. r—1

Now, we seek a function y(x) that approximates the solution of Egs. (5.2)—(5.3), which may
be represented at n 4+ 1 knots x;. Hence, y(x;) and its (2r)" derivatives can be written at
(m + 1™ iteration as

n—1 n—1

Y@y = D0 AT B, ) e = D B,

j=—d j=—d
n—1 n—1 (55)
G ) = D0 ¢ Bl ), 0Py = D0 BT (),
j=—d j=—d
where CTH are unknown real coefficients.

Theorem 5.1 If the assumed approximate solution of the problem (5.2)—(5.3) is (5.5) then
the discrete collocation system for the determination of the unknown coefficients {c}’;_ j__ d
is given by

n—1
. k (9
c’"“ B(z ) (x )+ B (x )+(2 _ (al) )Bj(xi)
Z : y (x' (), () (7)o (32 1))"1()( ))

]—_d 1 iy L)X,
m
= £y ) O G, (v D) )
af
-y (xl)(8 ) . X #0, (5.6)
Y7 iy ), M (6o (2 1) (1))
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and
n—1 ks f
> B 0) + (k + ) B (xi) — (—) Bj(x;)
= 3/ (0,570, (0), ... (y@=D)" )
= £0.Y"©), )"©), ... ()" O, % =0, 5.7)
Proof We replace each term of (5.2)—(5.3) with its corresponding approximation given by
(5.5) and substituting x = x; and applying the collocation to it. O
Then the system in (5.6)—(5.7) takes the matrix form
Qm Cm+1 — Dm’ (58)
r m+1 N
—d
m-1
C_d+1
A A
Qm — | D" , (59)
n Dy
+1
[ -t
where
0 ,Br—l
0 ,8)‘—2
Dgl = az s DZ’ = N s
: Bi
Ar—1 Bo

£"(0,y™(0), (»")"(0), ..., (y* )" (0))
" (1, Y™ (xn), O™ (1), -, (YD) ()

D" — :
| 8" Cons ¥ )y O ) (VD) () |
[ B—a(x0) B—g+1(x0) -~ B—_i(x0) 0 --- 07
o B/_d(XO) B/_d+](x0) B/,l(XO) 0 ---0
0= : : ; : e
| B o) B o) - BTV o) 0 <o 0
[0 - 0 B, V() B(’dji(m o BTV T
Q' =" : = o o i
0 -0 B_d(xn) B_d+1(x11) B_l(xn)
10 -+ 0 B_glxn) Bgy1(xp) -+ B_i(xp) |
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and
w00 vo1 -+ vow-1) 0 0 ]
0 vigvz - V1(d) 0 0
C 0 v V2(d+1) 0
m_
Q" = 0 )
0
0 Un—l(n-1) Vn—1(=d+n—1)  ***  Up—i@-2) O
L 0o --. 0 Un(—d+n) Un(—d+n+1) Un(n—l)_
where:
m m nm er—n\"
g" x0, y" (x0), ()" (x0), ..., (¥ (x0)

= £, )"0, (¥ D) o). =0,
g (i v G, 0" @, s (v 0) " )
= £ (5" @, 00" @, (v ) )

0
— y"(x;) ( /

7) 5 xi;éO.
Y/ Gy ), 6 (3o (27 1) " (1)

Notice that, Q81 is n + 1 x r dimensional matrix, its coefficients are the coefficients of the
boundary conditions at xg, (x = 0), Q7 is n + 1 x r dimensional matrix, its coefficients
are the coefficients of the boundary conditions equations at x,,, (x = 1) and Q™ is a (2r+1)-
diagonal matrix of order n + 1 x n + 2r + 1 with d non-zero bands, such that its elements
have the following form:

ko
Vizz = B(—Zc;-)i-zz(o) + (kl * E) Zd+zz(o)’

0
- (al) de+zz(0)’ x;i =0,
Y7 (0.ym(0). vy (0).....(y@=D)" (0))

2 ki
a0+ B2 0)
1

ka af
+ (2 - (87) )Bd+zz(xi), xi # 0,
X Y7 (e ym ) ) (1) (YO =DY" (7)

.....

Vizz =B

where zz = i,i +1,....n +d — 1, and i = 1,2,...,n. Now, we have a lin-
ear system of n + 2r + 1 equations of the n + 2r + 1 unknown coefficients, namely,
c’}’,j =—d,...,n—1,m=0,1,... We can obtain the coefficients of the approximate

solution by solving this linear system.

6 Numerical results

We present some test examples constructed so that the analytical solution was known before-
hand. The performance of the B-spline method is measured by the maximum absolute error
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E B—spline which is defined as

EB—spline = |Yexact — )’B—spline|~

All computations were carried out using MATLAB 7.01. For the two first examples, we
use B-spline of gth degree, the coefficients of B; 9 and their derivatives, at the knots
xi,i =0,1,2,...,n are shown in Table 2 and the two last examples, we use B-spline of 7th
degree, the coefficients of B; 7 and their derivatives, at the knots x;,i =0, 1,2, ..., n are

shown in Table 1.

Example 1 This is linear BVP

1 1
YO+ oy + Sy =e" (x? +25x7 +172x +336), 0 <x <1,
X X

subject to the boundary conditions:

y(0) =y'(0) =y"(0) =0, y"(0) =6,
y()=e, yY)=4e, y'(1)=13e, y"(1)=34e

whose exact solution is

y(x) = x’e*.

This problem is solved using nonic B-spline Bg(x;),i = 0,1,...,n with n = 20. The
results are tabulated in Table 3. Also, the maximum absolute errors of the results at different

n obtained by our method are tabulated in Table 4.

Example 2 This is linear BVP

1 1
y(8)+,y/+7y:3—4x, 0<x=<1,
X X

Table 3 Exact solution and

B-spline solution at 7 = 20 for X Exact solution B-spline solution
Example | 0.1 0.0011051709 0.0011051713
0.2 0.009771222 0.0097712268
0.3 0.0364461878 0.0364462021
0.4 0.0954767806 0.0954768054
0.5 0.2060901588 0.2060901886
0.6 0.3935776609 0.3935776868
0.7 0.6907171787 0.6907171943
0.8 1.139476955 1.139476961
0.9 1.793050668 1.793050669
Table 4 Maximum absolute .
error in the solutions for Example " Maximum absolute error
! 10 1.1737E—07
15 5.0765E—08
20 2.9801E—08
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Table 5 Exact solution and

B-spline solution at n = 10 for Exact solution B-spline solution
Example 2 0.1 0.0090 0.0090

02 0.0320 0.0320

03 0.0630 0.0630

0.4 0.0960 0.09599999

0.5 0.1250 0.12499999

0.6 0.1440 0.14399999

0.7 0.1470 0.14699999

0.8 0.1280 0.12799999

0.9 0.0810 0.08099999

subject to the boundary conditions
y©0) =0, y(©0)=0, y'(0)=2, y"(0)=-6,
y() =0, Yy =-1, y'(1)=-4, y"(1)=-6,
whose exact solution is
y) =221 —x)

This problem is solved using nonic B-spline By (x;),i =0, 1, ..., n withn = 10. The results
are tabulated in Table 5.

Example 3 Consider the nonlinear boundary value problem

1 1 ’
y©® + =¥+ =y =3¢y —dxtxte (1 —x)? O0<x<l,
x x

subject to the boundary conditions

y(©0) =0, Y'(©0)=0, y"(0) =2,

y()=0, y()=-1, y')=-4,
whose exact solution is

y(x) =x*(1—x)

This problem is solved using septic B-spline B7(x;),i = 0,1,...,n with n = 20 with
m = 2. The results are tabulated in Table 6.
Example 4 This is nonlinear BVP

1 1 y x2(1 —x)
© 4~y = 34y — —~ 7
Y +xy+x2y 1—|—y+ * 14 x2(1 —x)
subject to the boundary conditions
y©0)=0, y(0)=0, y'0)=2,
y1)=0, Yy =-1, y'(l)=-4,

whose exact solution is

, O0<x <1,

y(x) = x*(1 —x).

This problem is solved using septic B-spline B7(x;),i = 0,1,...,n with n = 20 with
m = 2. The results are tabulated in Table 7.
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Table 6 Exact solution and
B-spline solution at
n = 20, m = 2 for Example 3

X Exact solution B-spline solution
atn =20, m =2

0.1 0.00900000 0.00899864
0.2 0.03200000 0.03199285
0.3 0.06300000 0.06298493
0.4 0.09600000 0.09597916
0.5 0.12500000 0.12497830
0.6 0.14400000 0.14398245
0.7 0.14700000 0.14698934
0.8 0.12800000 0.12799577
0.9 0.08100000 0.08099933
Table 7 - Exact solution and X Exact solution B-spline solution

B-spline solution at

n =20, m = 2 for Example 4 atn =20, m =2

0.1 0.00900000 0.00900002
0.2 0.03200000 0.03200001
0.3 0.06300000 0.06300025
0.4 0.09600000 0.09600040
0.5 0.12500000 0.12500045
0.6 0.14400000 0.14400043
0.7 0.14700000 0.14700030
0.8 0.12800000 0.12800013
0.9 0.08100000 0.08100000

7 Conclusion

We presented a method for solving singular linear and nonlinear higher-order boundary value
problem. This method is easy to implement and yields the desired accuracy and numerical
results demonstrate this. We observed that the method works well for non-linear differential
equations. Thus the proposed method is suggested as an efficient method for solving this
problem.
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