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Abstract In this paper we provide criteria for the insolvability of the Diophantine equation
x2 + D = yn . This result is then used to determine the class number of the quadratic
field Q(

√−D). We also determine some criteria for the divisibility of the class number of
the quadratic field Q(

√−D) and this result is then used to discuss the solvability of the
Diophantine equation x2 + D = yn .
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1 Introduction

The class number problem of quadratic fields is one of the most intriguing unsolved problems
in Number Theory and it has been the object of attention for many years of researchers.
Ankeny et al. [1], Chakraborty et al. [5], Kishi et al. [14], Nagel [20], Soundararajan [25],
Weinberger [26] and Yu [29] studied the class number problem of quadratic fields. It was
proved by Nagel [20] that there are infinitely many quadratic number fields each with class
number divisible by a given positive integer. Weinberger [26] showed that for all positive
integers n, there are infinitely many real quadratic fields each with class number divisible by
n. In [11], we have proved that there exist infinitely many imaginary quadratic fields whose
class numbers are divisible by 3. Recently in [10–13], we have found some useful results on
the divisibility of class numbers of real and imaginary quadratic fields. The class numbers of
quadratic fields can be used in study of Diophantine equations. On the other hand, the class
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numbers of quadratic fields can be determined by the solvability of Diophantine equations.
Thus there has been considerable attention given to the investigation of relationship between
the solvability of Diophantine equations and the class numbers of related quadratic fields.
The journey to this investigation has been started in 1853 by Lebesgue [15] in which he
discussed the solvability of the Diophatine equation x2 + D = yn . He proved, using an
elementary factorization argument, that this equation has no solution for D = 1, except
x = 0 and y = 1. Many special cases of this equation have been considered over the several
years, but most of the outcomes for general values of n are of honestly recent origin. Fermat
showed, a proof is given in [9], that for D = 2 and n = 3, this equation has only one
solution, that is, x = 5, y = 3. In 1943, Ljunggren [16] generalised Fermat’s result and
proved that this equation has no solution when D = 2 and x �= 5. In 1954, this result was
alternatively established by Nagell [22]. In 1923, Nagell [21] proved that this equation has
no solutions when D = 3. This result was duplicated by Brown [4] in 1975 and subsequently
by Cohn [7] in 1993. Nagell [21] also proved that this equation has no solution for D = 5.
In 1955, Nagell [23] showed that for D = 4, this equation has only one solution, that is,
x = 2 and y = 11. In 1992, Cohn [6] showed that for D = 19, this equation has only
solution: x = 18, y = 7, n = 3 and x = 22434, y = 55, n = 5. Finally, Cohn [8] published
a historical survey of this equation in 1993. For any positive integer D, Wren [27] in 1973
and Blass [2] in 1976, proved the impossibility of the solutions to this equation when n = 5.
After a couple of year, Blass and Steiner [3] discussed the insolvability of this equation when
n = 7.

The primary objective of this paper is to investigate the relationship between solvability
of the Diophantine equation x2 + D = yn, D > 1 being an integer and the divisibility of
the class number of the imaginary quadratic field Q(

√−D). This type of relationships can
be found in [17–19,24,28].

2 Main results

In this section we discuss and prove our main results. Throughout this section we consider
K = Q(

√−D) and by h(K ) we denote the class number of the quadratic field K .

Theorem 2.1 Let D ≡ 1, 2 (mod 4) be a square-free positive integer and n > 1 be an odd
integer satisfying nan−1 �≡ ±1 (modD), for some integer a. If gcd(n, h(K )) = 1, then the
Diophantine equation

x2 + D = yn (1)

has no solutions.

Proof Let y be an even integer. Then yn ≡ 0(mod 4) and thusEq. (1) gives x2 ≡ 2, 3(mod 4).
If D ≡ 1 (mod 4), then Eq. (1) implies x is odd and thus x2 ≡ 1 (mod 4). This is a

contradiction.
Again if D ≡ 2 (mod 4), then Eq. (1) implies x is even and thus x2 ≡ 0 (mod 4). This is

again a contradiction.
Thus y must be an odd integer.
Suppose p be a prime number such that p|gcd(x, y), then byEq. (1), p|D and thus p = D.

Therefore Eq. (1) implies D2|D. This is a contradiction. Thus gcd(x, y) = 1.
Suppose (x0, y0) be an integral solution to the Eq. (1). Then by the above discussion, y0

is odd and gcd(x0, y0) = 1.
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Consider the following factorization in the ring of integersZ
[√−D

]
of the quadratic field

K :
(x0 + √−D)(x0 − √−D) = yn0 (2)

If P is a prime ideal in Z
[√−D

]
such that P is a common divisor of the ideals (x0 + √−D)

and (x0 − √−D), then P|(2x0).
Also Eq. (2) gives P|(y0). This implies P � (2) as y0 is odd, and thus P|(x0). This contra-

dicts to the fact that gcd(x0, y0) = 1. Therefore the ideals (x0 + √−D) and (x0 − √−D)

are coprime to each other. Thus we can write

(x0 + √−D) = an

(x0 − √−D) = bn

for some ideals a and b in Z
[√−D

]
.

Since gcd(n, h(K )) = 1, therefore ch(K ) is a principal ideal for any ideal c in Z
[√−D

]
,

and moreover an and bn are principal ideals, so that the ideals a and b are principal. Further-
more, since 1 and −1 are the only units in Z

[√−D
]
, thus we have

(x0 + √−D) = (a + b
√−D)n

for some a, b ∈ Z.
Comparing imaginary part, we see that

1 =
(
n
1

)
an−1b −

(
n
3

)
an−3b3D + · · · + (−1)

n−1
2 bnD

n−1
2 (3)

Thus b|1 and hence b = ±1.

NowEq. (3) implies±1 =
(
n
1

)
an−1−

(
n
3

)
an−3D+· · ·+(−1)

n−1
2 D

n−1
2 . This implies

nan−1 ≡ ±1(modD). This contradicts to the hypothesis.
This completes the proof. ��

As a consequence we have the following result.

Corollary 2.2 Let D ≡ 1, 2 (mod 4) be a square-free positive integer and p be an odd prime
satisfying pa p−1 �≡ ±1 (modD), for some integer a. If x2 + D = y p is has integral solution
then p|h(K ).

We now fix y as a prime, that is consider the Diophantine equation

x2 + D = pn (4)

where p is a prime and n > 1 is an odd integer. Then the following cases arise:

(a) D ≡ 0 (mod 4) if one of the following conditions is satisfied:

(i) x is odd and p ≡ 1 (mod 4).
(ii) x is even and p = 2

(b) D ≡ 1 (mod 4) if x is even and p ≡ 1 (mod 4).
(c) D ≡ 2 (mod 4) if x is odd and p ≡ 3 (mod 4).
(d) D ≡ 3 (mod 4) if one of the following conditions is satisfied:

(i) x is even and p ≡ 3 (mod 4)
(ii) x is odd and p = 2
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We are now in a position to state and prove the following result.

Theorem 2.3 Let n > 1 be an odd integer, D be a square-free positive integer and p be a
prime number satisfying the Eq. (4). The ideal class group of the imaginary quadratic field
Q(

√−D) has an element of order n if one of the following conditions is satisfied:

(I) x is an integer and satisfying x2 < pn

2 .
(II) x is an odd integer and p = 2 satisfying x2 < 2n−1.
(III) x is an even integer and p ≡ 1(mod 4) satisfying x2 < pn

p−1 .

Proof Let us first consider the conditions given in (I). Then by condition (c) and condition
(i) of (d), we see that either D ≡ 2 (mod 4) or D ≡ 3 (mod 4) according as x is odd or even.
In either cases, the ring of integers of Q(

√−D) is Z
[√−D

]
.

Consider the following factorization in Z
[√−D

]
:

(x + √−D)(x − √−D) = pn (5)

Since (x + √−D) and (x − √−D) are coprime as ideals inZ
[√−D

]
, we have (x + √−D)

= an and (x − √−D) = bn for some ideals a and b in Z
[√−D

]
with ab = (p). Thus the

order of a in the ideal class group of Q(
√−D) is a divisor of n.

Let am = (u + v
√−D) for some u, v ∈ Z. Then

pm = u2 + v2D (6)

If v = 0, then pm = u2. This contradicts to the fact that n is odd. Thus v �= 0 and hence Eq.
(6) implies pm ≥ D.

Again, x2 <
pn

2 implies D >
pn

2 . Thus pm ≥ D >
pn

2 . This leads to a contradiction if
m < n. Hence an = (u + v

√−D) and am is not principal for any m < n. Thus there is an
element of order n in the ideal class group of Q(

√−D).
Similarly the result holds if we consider the conditions given in (II).
Finally we consider the conditions given in (III). Then by condition (b), we see that

D ≡ 1(mod 4). Thus the ring of integers ofQ(
√−D) isZ

[
1+√−D

2

]
. In the ringZ

[
1+√−D

2

]
,

we consider the factorization as given in the Eq. (5). However in this case the ideals a and

b must be in Z

[
1+√−D

2

]
.

Let am = ( u+v
√−D
2 ) for some u, v ∈ Z. Then

4pm = u2 + v2D (7)

If v = 0, then 4pm = u2. This contradicts to the fact that n is odd. Thus v �= 0 and hence
Eq. (7) implies 4pm ≥ D.

Again, x2 <
pn

p−1 implies D > pn( p−2
p−1 ). Thus 4p

m ≥ D > pn( p−2
p−1 ). This leads to a

contradiction if m < n. Thus an = ( u+v
√−D
2 ) and am is not principal for any m < n. Hence

there is an element of order n in the ideal class group of Q(
√−D).

As a consequence we provide the following criteria on the solvability of the Diophantine
Eq. (4). ��
Corollary 2.4 (x0, y0) is an integral solution of the Eq. (4), where n > 1 is an odd integer
and D is a positive square-free integer if one of the following conditions is satisfied:

(i) x0 is an integer and y0 is a prime ≡ 3 (mod 4) satisfying x20 <
yn0
2 .
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(ii) x0 is an odd integer and y0 = 2 satisfying x20 < 2n−1.

(iii) x0 is an even integer and y0 ≡ 1 (mod 4) is a prime satisfying x0 <
yn0

y0−1 .

Acknowledgments Both Authors acknowledge UGC for financial support.

References

1. Ankeny, N.C., Artin, E., Chowla, S.: The class number of real quadratic fields. Ann. Math. 56, 479–493
(1952)

2. Blass, J.: A note on Diophantine equation y2 + k = x5. Math. Comp. 30, 638–640 (1976)
3. Blass, J., Steiner, R.: On the equation y2 + k = x7. Utilitas Math. 13, 293–297 (1978)
4. Brown, E.: Diophantine equations of the form x2+D = yn . J. Reine Angew. Math. 274, 385–389 (1975)
5. Chakraborty, K., Murty, R.: On the number of real quadratic fields with class number divisible by 3. Proc.

Am. Math. Soc. 131, 41–44 (2002)
6. Cohn, J.H.E.: The diophantine equation x2 + 19 = yn . Acta Arith. 61(2), 193–197 (1992)
7. Cohn, J.H.E.: The Diophantine equation x2 + 3 = yn . Glasgow Math. J. 35, 203–206 (1993)
8. Cohn, J.H.E.: The Diophantine equation x2 + C = yn . Acta Arith. 65(4), 367–381 (1993)
9. Euler, L.: Algebra, vol. 2, 2nd edn. J. Johnson and Co., London (1810)

10. Hoque, A., Saikia, H.K.: A note on quadratic fields with class number divisible by 3, SeMA J., 2015 (in
Press). doi:10.1007/s40324-015-0051-z

11. Hoque, A., Saikia, H.K.: A family of imaginary quadratic fields whose class numbers are multiples of
three. J. Taibah Univ. Sci. 9, 399–402 (2015)

12. Hoque, A., Saikia, H.K.: On generalized Mersenne primes and class-numbers of equivalent quadratic
fields and cyclotomic fields. SeMA J. 67, 71–75 (2015)

13. Hoque, A., Saikia, H.K.: On generalized Mersenne primes. SeMA J. 66, 1–7 (2014)
14. Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three.

J. Number Theory 80, 209–217 (2000)
15. Lebesgue, V.A.: Sur l’impossibilité en nombres entiers de l’équation xm = y2 + 1. N. Ann. Math. 9, 178

(1850)
16. Ljunggren, W.: Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen

führen, Ark. Mat. Astr. Fys. 29A(13), 1–11 (1943)
17. Mollin, R.A.: Diophantine equations and class numbers. J. Number Theory 24, 7–19 (1986)
18. Mollin, R.A.: Class numbers of quadratic fields determined by solvability ofDiophantine equations.Math.

Comp. 48(177), 233–242 (1987)
19. Mollin, R.A.: Solutions of Diophantine equations and divisibility of class numbers of complex quadratic

fields. Glasgow Math. J. 38, 195–197 (1996)
20. Nagel, T.: Über die Klassenzahl imaginär quadratischer zahlkorper. Abh. Math. Sem. Univ. Hamburg 1,

140–150 (1922)
21. Nagell, T.: Sur l’impossibilité de quelques équations à deux indéterminées. Norsk. Mat. Forensings

Skrifter 13, 65–82 (1923)
22. Nagell, T.: Verallgemeinerung eines Fermatschen Satzes. Arch. Math. 5, 153–159 (1954)
23. Nagell, T.: Contributions to the theory of a category of Diophantine equations of the second degree with

two unknowns. Nova Acta Regiae Soc. Sci. Upsaliensis, 16(2), 1–38 (1955)
24. Pekin, A.: On some solvability results of Diophantine equations and the class number of certain real

quadratic fields. Int. J. Contemp. Math. Sci. 4(32), 1605–1609 (2009)
25. Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61,

681–690 (2000)
26. Weinberger, P.J.: Real quadratic fields with class number divisible by n. J. Number Theory 5, 237–241

(1973)
27. Wren, B.M.E.: y2 + D = x5. Eureka 36, 37–38 (1973)
28. Yokoi, H.: On the Diophantine equation and the class number of real subfields of a cyclotomic field.

Nagoya Math. J. 91, 151–161 (1983)
29. Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97, 35–44

(2002)

123

http://dx.doi.org/10.1007/s40324-015-0051-z

	On the divisibility of class numbers of quadratic fields and the solvability of diophantine equations
	Abstract
	1 Introduction
	2 Main results
	Acknowledgments
	References




