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Abstract In this paper, a computational method for solving a class of fuzzy fractional dif-
ferential equations is presented. The proposed method is based on a generalized differential
transform method in the sense of the Caputo fractional derivative. The advantage of the dif-
ferential transform method is that the derivatives are calculated in an iterative way instead
of evaluating symbolically. Furthermore, a convergence theorem is derived with a different
perspective. Some numerical examples are also given to illustrate the accuracy and efficiency
of the method.
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1 Introduction

The interest in the study of differential equations of fractional order lies in the fact that
fractional derivatives provide an excellent tool for the description of memory and hereditary
properties of various materials and processes such as control [4], signal processing [17],
viscoelastic [11], electrolyte-electrolyte polarization [9] and etc. More precisely, when one
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intends to analyze a real world phenomenon, it is also necessary to deal with uncertain factors.
In this case, the theory of fuzzy sets is one of the best non-statistical or non-probabilistic
approach, which leads us to investigate fuzzy fractional models.

So far, a few papers have been published about the topic of fuzzy fractional differential
equations for instance, authors of [ 1] have presented a method based on tau method with Jacobi
polynomials for the solution of fuzzy linear fractional differential equations of order 0 <
o < 1. The existence and uniqueness of solutions of fuzzy fractional differential equations
(FFDEs) under Caputo’s H-differentiability have been studied in [16] by Salahshore et al.
Also, Salahshour have solved fuzzy fractional differential equations by using fuzzy Laplace
transforms in the sense of the Riemann-Liouville H-derivative. Recently Mazandarani and
Vahidian have used the modified fractional Euler method to solve fuzzy fractional initial value
problems in [12]. Also, a variational iteration method have been used for approximating the
solutions of fractional differential equations with a fuzzy initial condition by Khodadadi and
Celik in [10].

In this study we intend to apply the generalized differential method for solving the fuzzy
fractional differential equations (FFDE). The differential transform method was first intro-
duced by Zhou [18]. Then it was applied by many researchers for the ordinary and partial
differential equations, the integro-differential equations and several special equations. Also,
Arikoglu and Ozkol extended it to ordinary differential equations of fractional order [3]. Later,
a new technique has been presented and called generalized differential transform method by
Odibat [13].

The present paper is organized as follows: in Sect. 2, some preliminary concepts of fuzzy
calculus are introduced and are reviewed. In Sect. 3, as well as introducing the fractional
integral and derivative, the generalized Taylors series and give its convergent theorems are
stated. In Sect. 4, definitions of the fuzzy fractional integral and derivative are given. In
the rest of the paper, first the generalized differential transform method is described, then
the fuzzy fractional differential equations are proposed. Finally, some different numerical
examples are presented to confirm the efficiency and simplicity of the method.

2 Basic concepts

In this section we give some necessary definitions and theorems of fuzzy theory which are
used in the paper.

We denote the set of all real numbers by R and the set of all fuzzy numbers on R is
indicated by R &z. A fuzzy number is a mapping u : R — [0, 1] with the following properties
[6]:

(i) u is upper semi-continuous,
(i1) u is fuzzy convex, i.e., Vx,y € R, A € [0, 1], u(Ax + (1 — A)y) > min{u(x), u(y)},
(iii) u is normal, i.e., 3 xo € R for which u(xg) = 1,
@iv) supp u = {x € Rlu(x) > 0} is the support of the u, and its closure cl/(supp u) is
compact.

The r-cut set of a fuzzy number u(x) € R4 denoted by [u(x)]", is defined as

{x eRlux)>r} O0<r=<l

@) = ’ cl(supp u(x)) r=0.

An equivalent parametric definition for fuzzy numbers is as follows:
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Definition 1 [2] A fuzzy number u in parametric forms is a pair (u(r), u(r)) of functions
u(r),u(r), 0 <r <1, which satisfy the following requirements:

(i) u(r)isabounded non-decreasing left continuous function in (0, 1], and right continuous
at0,
(i1) u(r)is abounded non-increasing left continuous function in (0, 1], and right continuous
at0,
(i) u(r) <u@),0<r <1.

It is well known that the r-cut set of fuzzy numbers is a closed and bounded interval
[(x; r), u(x; r)], where u(x; r) denotes the left-hand endpoint of [u(x)]" and u(x; r) the
right-hand endpoint [u(x)]".

A triangular fuzzy number denoted by u = (a, b, c) suchthata < b < c,a,b,c € R
where u(r) =a +r(b —a) ,u(r) = c — r(c — b) are the endpoint of the r-cut set, for all
0<r<l.

Addition and subtractions and scalar multiplication are defined as [6]:

[u+v]" =[u@) +v@), u@) +v()]
[u—v]" =[u@) —v@), ul) —v@)]
lkul = [ku(r), ku(r)] k=0

| ku@), ku(r)] k <O0.

Definition 2 [6] Let u, v € Rg. If there exists w € Rg such that u = v + w, then w is
called the Hukuhara difference (H-difference) of u, v, and it is denoted by u © v. Note that
uov#u+ (=1

The hausdorff distance between fuzzy numbers given by D : R x Rz — R* U {0},

D(u,v) = sup max{|u(r) —v(r)|, [u(r) —v(r)|}
ref0,1]
where r-cut sets of u and v are [u]” = (u(r), u(r)) and [v]" = (v(r), v(r)) respectively.
It is easy to see that D is a metric in R # and (D, R) is a complete metric space [5].
Note that the r-cut of fuzzy-valued functions f : A € R — R, can be expressed by
[fOF =[f(x;r), fx;r)],x e ACRand0 <r < 1.

Theorem 1 [15] Let f be a fuzzy function on [a, 00) represented by r-cut set ( Sxr),
f(x;1)). For any fixed r € [0, 1], assume f(x;r) and f(x;r) are Riemann-integrable on
[a, b] for every b > a, and assume there are two positive functions M (r) and M (r) such that
fah [f(x;r)ldx < M(r) and fah | f(x;r)dx < M(r) for every b > a. Then f(x) is fuzzy
improper Riemann-integrable on [a, 00) and the fuzzy improper Riemann-integral is a fuzzy
number. Furthermore, we have

/00 fx;r)ydx = [/wi(x; r)dx,/oo?(x; r)dx] .

We denote CF[a, b] as the space of all continuous fuzzy-valued functions on [a, b]. Also,
we denote the space of all Lebesque integrable fuzzy valued functions on the bounded interval
la, b] C Rby LF[a, b].

Definition 3 [5] Let f : (a, b) — Rz be a fuzzy function and xo € (a, b), we say that f is
strongly generalized differential at xo, if there exists an element f”(xo) € R, such that
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(i) forall & > O sufficiently small, 3 f (xo + 1) © f(x0), f(x0) © f(xo — h) and the limits
(in the metric D)

i Fo+h)© flxo) .. fx0)© flxo—h
im = lim

)
h—0 h h—0 h o f (xO)’

or
(ii) for all & > O sufficiently small, 3 f(x0) © f(x0 + h), f(xo —h) © f(x0) and the limits

i S (x0) © fxo+h) . flxo—h)6e fxo)
im = lim

i (—h) s —h) = fx0),

or
(iii) for all & > O sufficiently small, 3 f (xo + 7) © f(x0), f(x0 —h) © f(x0) and the limits

. fo+h)© flxo) .. flxo—h)© f(xo)
im = lim

h—0 h h—0 (—=h) = o),

or
(iv) for all & > O sufficiently small, 3 f (x9) © f(xo + h), f(x0) © f(xo — h) and the limits

fx0)© flxo+h) lim f(x0) © f(xo—h)
h—0 (—h) ) h

= f(x0).

3 Generalized Taylor’s and convergence

As we know, the fractional derivatives have several different kinds of definitions, among
which the Riemann-Liouville fractional derivative and the Caputo fractional derivative are
two of the most important ones in applications. In the both definitions from the Riemann-
Liouville fractional integration and the derivatives of integer order are used. The difference
between the two definitions is in the order of evaluation. The Riemann-Liouville fractional
integration of order « is defined as

Jfﬁ)f(x)=%a)/xo(x—t)a_lf(t)dt, a>0 x>0 (1)
which has the following properties [13]:
JEIL ) = TLIE Hx) =TSP HGx) e, B>0 ()
L'ty +1)
a .y _ y+a _
S X" = Ty tat 1)x , y > —1. 3)

The next two equations define the Riemann-Liouville and Caputo fractional derivative of
order «, in the case crisp, respectively,

m

PLDY f () = T ), "
, d"m
DY) = T f @)

where m — 1 < a« < m and m € N. The Riemann-Liouville fractional derivative first
computes a fractional integral followed by an ordinary derivative to achieve the desired order
of fractional derivative. The Caputo fractional derivative is computed in the reverse order.
The Caputo concept satisfies in the following lemma.
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Lemmal [13]fm —1 <a <m, m €N, then “pe ge f(x) = f(x), and

X0 X0+

m—1

k
X
5 DG N = TgD" () = f(x) = > fOO 7, x>0, ®)
k=0 ’
For the Caputo derivative, we have [7]:

%D?Ok =0  kisaconstant,

€po B _ OF 1 for B € Ng and 8 < [a]; ©)
%0 %xﬁ“ for f € Rand B > ||
where [«] is the ceiling function giving the smallest integer greater than or equal to «, and
Lae] is the floor function giving the biggest integer smaller than or equal to «.

Theorem 2 [13] Suppose that (¢ DZ)" f(x), (¢ DX+ f(x) € (a, b], for 0 < a < 1, then
we have

(3 DY F)0) = I Dy ) = S oy fya), )
(na+1)
where (¢ DY)" = “D2. ¢ D2..CDY. (n-times)

Theorem 3 Assume that 0 < o < 1 and f has continuous Caputo fractional derivative of
order (n + 1)« in some open interval 1 containing a, and define E,(x) for any x in I by the
equation

— (YD) f(ah) -
f)y=) ————(x —a)“+ E,(x), ®)
g(;‘ FGa+1)

where 0 < a < 1. Then E, (x) is also given by the integral

Ey(x) = JU@ DD £ (). ©)
Proof The proof is by induction on n. For n = 1 we have
(“Dg) fah)
— _ +y N HalJ N T _ o
Ey(x)=f(x) — f(a") Fa+) (x —a)

= f() = f@h) = JX D2 fa™)), (10)
according to Theorem 2 J% (% D% f(a™)) = (JZ(Y D2 £))(x) — (J2* (U D2 f))(x),
En(x) = f(x) = f@™) = (JE(T DN H(x) + (J7* (T D f)(x)
= (J2*(" D fH(x), (11)

since (J (%Dj‘)f)(x) = f(x) — f(a¥). Now we assume (9) is true for n and prove it for
n + 1. From (8) we have

%Da n+1 +
Eps1(x) = Ep(x) — (r((n“i%(x —a)rthe, (12)
€ payn+1 +
since M(n—a)(”“)“ — gnthe (%DZ‘)(”*])J‘(X)—JJ"H)Q (U D)D) £ (x),

C((n+ Da+ 1)
E,,_H(x) — Ja(n-&-l)a(‘gth)(n—H)f(x)_J;n+l)a(%Dg)(n+l)f(x)+Ja(n+2)a(‘€D;x)(n+2)f(x)
— Ja(n+2)a (‘ta”th)(n—s—Z)f(x)7 (13)
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and the proof is complete. O

Remark 1 The change of variable t = x + (a — x)u transforms the integral in (9) to the form

I L AR
En(x) = m‘/o u ( Da) f(.x _xu)du, (14)

forall x € [0, A].

Theorem 4 Assume that 0 < « < 1 and f and all its fractional derivatives of multiple of o
are nonnegative on a compact interval [a, a + 1], . > 0. Then, ifa < x < a+ X the Taylor’s
series
i CD TG (e (15)
— D+ Da + 1) ’

converges to f.

Proof Without loss of generality we can assume that @ = 0. This result is trivial for x = 0
so we assume 0 < x < A. We use Taylor’s formula with reminder and write

DY FOY) 4,
f(x)-é)ﬁ + Ep(x). (16)

We will prove that the error term satisfies the inequalities

)(11-4—1)0(

0< Ey(x) < (; 1. (17)

This implies that E,(x) — 0 as n — oo since (x/)»)’”rl — 0if 0 < x < X. To prove (17)
we use (14) with a = 0 and find

(n+Da 1
_ gD € Hayntl X / (n+1)a (€ pyoayn+l
E,(x)=J D N)=—— u D x —xu)du,
n(x) = Jy (" Dg)"™ f(x) NCESYENY/ (" D))" f( )

(18)
forall x € [0, A]. If x £ O, let
En) (ntDa (€ +1
F, = n o Dot n _ d 19
x) = o ha = NG l)oz D / f(x —xu)du. (19)

The function (%Dg‘ ytl f is monotonic increasing on [0, 1] since its fractional derivative
(i.e. <'9p(D8‘ )"*1 £) is nonnegative. Therefore we have

DY fx —xu) = (CDH"T Fx(1 —w) = CDHT F(l—u)), 0<u<l,
(20)
and this implies F,(x) < F,(A) if 0 < x < A. In other words, E,,(x)/x("+1)"‘ <
E,(x)/20+De or

(n+1)a
E,(x) < (%) En(3). @1)

putting x = A in (16), we see that E,(A) < f(X) since each term in the sum is nonnegative.
Using this in (21), we obtain (17) which, in turn, completes the proof. ]

According to Theorem 4, a few functions satisfy the conditions of the theorem. Now based
on the generalized Taylor in [13] we state the conditions which the generalized Taylor series
generated by f converges to f.
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Theorem 5 [13] Suppose that © DE* f (x) € C(0,al fork =0, 1, ....,n+1, where 0 < & <
1. Then we have

R T PR A G o' S 01 PR
f(x)—gr(ia+1)( DY HOY + Fi s Da s ™ :

with0) < & <x,Vx € (0, al.

(22)

Hence a necessary and sufficient condition for generalized Taylor’s series to converge to
f(x) is that for each x € (0, a]
<€ H(n+Da
ODTTINE) e
n—oo I'((n + Da + 1)
Theorem 6 Assume that(”ﬂDg“f(x) € C(0, a] and there is a neighborhood B(0T) = (0, y)

and a constant M such that | D" f(x)| < M" for every x in B(OT) N (0, a] and any
n =1,2,.... Then for each x in B(OY) N (0, a], we have

o0 %Dia 0+
fo =3 RO

=0. (23)

Mia+n O @4

Proof We have .
e O oy < ST 25)
since > 07 % = E41(x%) is absolutely convergence where Eq g(f) = > 1o
F(#Zﬂ)’ o, B > 0,a, B € R is mittag function. Hence, lim,,_, o, % = 0, thus the
proof complete. O

4 Fuzzy fractional derivatives

Definition 4 [15] Let f(x) € C Fla, b1N LF¥[a, b]. The fuzzy Riemann-Liouville integral of
fuzzy-valued function f is defined as the following

T f(x) = ﬁ/x:(x -0 fydt, 0<a<1, x>0. (26)

Let us consider the r-cut representation of fuzzy-valued function f as f(x;r) =
[ i (x;7), f(x;r)],for0 < r < 1, then we can indicate the fuzzy Riemann-Liouville integral
of fuzzy-valued function f based on the lower and upper functions as follows

Theorem 7 [15] Let f € CFla, b]N LF[a, b] is a fuzzy-valued function. The fuzzy Riemann-
Liowville integral of a fuzzy-valued function f can be expressed as follows:

Jo fsr) =g fosr), Jy fasnl, relo, 1] 27)
where | .
a . _ _ pnoa—1
o fxsr) = T @ /XO (x =) f)dt, (28)
(LA _ L * _ na—17r
o fr) = F@ /xo (x =) f(t)dt. 29)
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If in the definition of Riemann-Liouville fractional derivative and that of Caputo, we
use the fuzzy generalized derivatives instead of the ordinary derivatives and the fuzzy
Riemann-Liouville integration instead of the Riemann-Liouville integration, we obtain the
fuzzy fractional derivative definitions. Hence, we will consider the fuzzy Caputo’s fractional
derivative as the following:

Definition 5 [15] Let f € CF N LF be a fuzzy-valued function and 0 < o < 1. Then f is
said to be Caputo’s H-differentiable at x when

1

EC o - * _ —a p/
(DD = 1 / (= 07 f(dr. (30)

Note that later we indicate “ D§ £ () by © D* £ ().
We have the following result for fuzzy Caputo’s fractional derivatives:

Theorem 8 [15] Let f € CF¥[a, b1 N LF[a, b], x¢ € (a,b) and 0 < o < 1. Then
(i) if f is (i)-differentiable fuzzy-valued function, then
€ . _ (¢ . € Flre
(7 DR, s ) = 1" D) fGer), (“Dy)f(x;m], 0<r <1, (31)

(ii) if f is (ii)-differentiable fuzzy-valued function, then
@D Hsr) =D Fesr, (DY) fxsm], 0<r=1. (32

0 0 0

Remark 2 Note that if f is (iii) or (iv) differentiable in Definition 3 then (¢ D™ Hx) eR.

Remark 3 We say f is ¢[(i) — «]-differentiable while f is (i)-differentiable in equation
(30), and f is (g[(i i) — a]-differentiable while f is (ii)-differentiable in Eq. (30).

For 1 < o < 2 we have the following theorem:

Theorem 9 [12] Let f(x) € CF10, b1 N LF[0, b] be a Sfuzzy function and [f(x)]" =
[i(x; r), f(x; )], forr € [0, 1], and x € (0, b). Then

(i) if ?Di‘o f be the (i)-Caputo type fuzzy fractional differentiable, then for 1 < a <2
(5D f()]" =[CD% f(xir), D F(x:n)], (33)
(ii) if ;ngfO [ be the (ii)-Caputo type fuzzy fractional differentiable, then for 1 <o <2
(5D fO) = [7D% Fx;r), “D f(x:m)], (34)
(iii) iffofOf be the (i)-Caputo type fuzzy fractional differentiable, then for 1 < o <2
[7:D% fO1 = [7DY Flx:r), “D f(xim)], (35)
(iv) if ;‘j&D;‘O f be the (ii)-Caputo type fuzzy fractional differentiable, then for 1 < a <2
[7: D% fOT =[7D2 f(xir), “DE Flxir)l. (36)

Lemma 2 Suppose thatn — 1 <a <n, f=a—n—-1),0<B<1),neNcag BeR
and the fuzzy valued function f(t) is such that ¢ pe f(t) exists. Then

“p* = “DPD N f(1).
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Proof
D f(=JL"D" f(1) = DND T f) = “DED (). (3T)
O

Remark 4 Notice that « — (n — 1) is a real number between O and 1. Hence, studying the
behavior of the Caputo derivative of order 8 € (0, 1) is sufficient for finding the Caputo
derivatives of arbitrary order.

5 Generalized differential transform method

In this section, we apply the fractional generalized differential transform method to obtain the
approximate analytical solutions of fuzzy fractional differential equations. The differential
transform method evaluates the approximate solution by the Taylor series. But, the derivative
is not computed directly; instead, the related derivatives are calculated by an iteration pro-
cedure. The generalized differential transform is also based on generalized Taylor’s formula
and the Caputo fractional derivative.

Theorem 10 [12] Let f(x) € C¥[0, b1 NLF[0, b] and suppose that (¢ D*)X f e CF[0, b]
fork=0,1,2,3,...n+ 1where0 <a < 1,0 <x9 < xandx € (0,b]. Then we have

[FOT = [f (), F ()],

n 1 € nayn+l gr
r _ x' C oI g1 ( D ) i (XO) (n+1)a
1<x)_§)r(ia+1)( by SO+ ey~ (38)
_ B n xie P — (%Da)nJrlf (x0) (n+1)01
f(x)_g;r(mﬂ)( DS OF Toaras (39)

where € D® f7(0) = € D* f"(x) =0, ¢ D*f" (0) = “ DU f" (x)]x=0.

Now, we describe the generalized differential transform method. As know this method is
based on generalized Taylor’s formula and the generalized differential transform of the kth
derivative of real-value function f(x) in one variable define as follows:

— 1 E Ha
Fy(k) = m [( D ) f0)] |x—x0’ (40)

where 0 < o < 1, (%D?O)k = %D;{o %ch‘o .. fD)‘fO, k-times, and the differential inverse
transform of F,, (k) is defined as the following:

F) =D Folk)(x — x0)*. (41)

k=0
substituting (40) into (41), we get

= N @
;Fa(kxx x0) ZF( . +1)«D o) = f ). 42)

So, (41) is the inverse transform of the generalized differential transform (40). In the
case of @ = 1, the generalized differential transform (40) reduces to the classical differential
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transform. From (40) and (41), some basic properties of the generalized differential transform
are introduced in below[13]:

1. If £(x) = g(x) £ h(x), then Fy(k) = Go(k) £ Hy (k).
2. If f(x) = ag(x), then Fy(k) = aGe(k).
3. If £(x) = g(x)h(x), then Fy(k) = 3*_, Go(l)Ho(k — ).

4. 1f f(x) = D% g(x), then Fy (k) = &I G (k + 1).

5. If f(x) = (x — x0)"*, then F, (k) = §(k — n), where

1 ifk=0
k) = [0 if k # 0.
In general, we know that the fractional calculus does not commute the derivative operation
or even it doesn’t have the exponential property, i.e. ¢ D*( DP f(x)) #
CDP(ODYf(x)) = “D*F f(x)and “D*(YDF f(x)) = “DF(YD*f(x)) # “ DM
f ).
Example If « = % and 8 = % and f(x) = x%, we obtain
) =1

ol

(

“DUCDP () =0 and CDA(CDf() = CDIf () = Ea
or generally for0 < o, B < 1,
CpeEpBa = and €DP Epuy — Cpetpa - T@TD p

r—g+1

In the following theorem, we find precise conditions under which the exponential property
holds for arbitrary fractional operators. This result is very useful on the presented approach
for solving differential equations and also fuzzy differential equations of fractional order.

Theorem 11 [13] Suppose that f (x) = x*g(x), where A > —1 and g(x) has the generalized
power series expansion g(x) = ZZO:O a,.(x — a)™ with radius of convergence R > 0,
O<a <1 Then

DY Dl fx)= DI f(), 43)
forallt € (0, R) if:

(a) B < X+ 1and o arbitrary
or
(b) B> A+ 1,y arbitrary,anday =0fork =0,1,...,m — 1, wherem — 1 < 8 < m.

Theorem 12 [13]1f f(x) = CDPg(x), m — 1 < B < m and the function g(x) satisfies the
condition in Theorem 11, then

_ T(k+p+1)
Fo(k) = TTekrl) Galk+ B/a). 44)

6 Fuzzy fractional differential equations

Consider the following fuzzy fractional differential initial value problem (FFIVP)

“DYy(0) = f(x, ) 45)
y(x0) =yo € Rz, x €lxo,b], a€l0,1]

Using Theorem 8, the FFIVP and the union of the following two systems of fractional
differential equations can be considered equivalent
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TD*y(esr) = flx, y(ir), T,
DY) = fx, y(es ), Y(x: ), (46)
Y(xo) = y,(r) y(xo) = yo(r),

CD%y(xir) = f(x, y(x;r), ¥(x; 1),
CDUY(xir) = f(x, y(xir), y(xir), (47)
Y(xo) = y,(r) y(xo0) = yo(r).

Remark 5 Note that in above, we only consider «th order of the fuzzy Caputo derivative
for 0 < o < 1, however for | < o < 2 we can obtain a union of four systems which is
equivalent with the given FFIVP.

Using Theorem 12 and applying the generalized differential transform method for real
valued functions f(x) and f(x), we solve the systems (47) and (46). In this regard, we will
approximate two functions y(x) and y(x) by two finite series as

Y@ =D Y00 —x)®, and T =D Ve (x —x0)™. (48)

k=0 k=0

7 Numerical examples

Example 1 Consider the linear fuzzy fractional differential equation from

“D%y(x) = —y(x),

y(0) = (0.5, 1, 1.5). (49)

This equation under C[(ii) — o] differentiation equivalent with
€ no . _ .
D¥y(x;r) = —y(x;r),

CDYY(x;r) = —y(x; 1), 50
y(0) =0.5+0.5r,

y(0) = 1.5 —10.5r,
and its exact solution is

Y1=(0.5+0.5r)Eq1((—1)%),
[ D

Y2=(1.5-0.5r)Ey1((—)%).

Applying the generalized differential transform to both sides of system (50), it transforms
to

Lle(kt1)+1
Frn Yok +1) = =Y, (k).

Cak+D+D 7 _ Vv
%TmYa(k+1) =—Yq(k), (52)

Y, (0) =0.5+0.5r,

Yo(©) =1.5-0.5r.
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that is oD
o
Yotk + D = —rearneiLa®).
Valk +1) = — i Ya k), .
Y, (0) = 0.5+ 0.5r,

Y (0) =1.5-0.5r.

The recurrence relation (53) yields the approximations up to O (x3%) for y and y which
are the solutions of the Eq. (49), as (Tables 1, 2 and Fig. 1):

Fe+1) , TQa+1) ,, TGa+1) 5 Tla+1) 4

X(x):(0'5+O'5r)(1_r(2a+1)x FGa+1l) T@atD TGatl)
rGa+1) 5, TO6a+1) o TAa+1) 5, Tax+1) Sa)

- X X = X+ X
'6a+1) F'Ta+1) rGa+1) I'Oa+1)

y(x) = (1.5-0.5r) (1 - ChY x“ [+ 1)x2"‘ - MG+ 1)x3°‘ (e + 1)x4°‘
FQa+1) FGa+1) T(da+1) T(5a+ 1)
PGa+1) 5, TOa+1) o TOa+1) 4 F(Sa—i—l)xga)

— X X X
I'(6a+1) FTa+1) F'Ga+1) F'OQa+1)

Example 2 Consider the nonlinear fuzzy fractional logistic differential equation

“DPy =0.5y(1—y), s
y(0) = (0440.2r,09—-03r), 0<r<l.

Equation (54) under [(ii) — B] derivative is equivalent with

CDPy(t;r) =05yt r)(1 — y(t; 1)),
CDPY(t;r) = 0.59(t; ) (1 — ¥ (15 1)),
y(0) =0.4+40.2r,
3(0) = 0.9 — 0.3r.

(55)

The system (55) is transformed by using property (3) of the differential transform as follows

0.5I'(B(k) + 1)

— k — — J—
Yok + 1) = foot s [Zho Y6k —0 — Yy —1))], B
_ C0STBI+D) [ N
Vot D= po [Zho Va6t =0 = Vpk = 1]

Tables 3 and 4 show the numerical results for approximation solutions of y and y for some
r € [0, 1] (Figs. 2, 3).

Remark 6 Figure 3 reveals that by increasing n we may expect to have an approximate
solution close to the exact solution. In other words, the proposed method is convergent.
However, in the most of the practical cases, the exact solution is not available, hence the
computation of the absolute error is impossible.
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i o Exact solution for =1

- = = Approximated solution o:=1/4
..+ Approximated solution o:=1/2

Approximated solution ¢:=3/4

‘‘‘‘‘ Approximated solution =1

09

08

07—

06—

05—

o-level

04—

03

1 |
0.9 1

Fig. 1 Exact solution for « = 1 and approximated solutions for « = 1/4, 2/4, 3/4, 1 at x = 0.7 with
cg[(ii) — «a] derivative and n = 8 in Example 1

Example 3 Consider the following linear fuzzy fractional differential equation

“DYy(1) =32y (), )
vy(0) = (0.96 + 0.04r, 1.01 — 0.01r).
Equation (57), in the case Cg[(ii) — y] derivative is equivalent by
CDYy(t;r) =3yt r),
C nYYs- 20 (4
DYy(t;r) =3t7y(t;r),
- (58)
¥(0) = 0.96 + 0.04r,
y(0) = 1.01 —0.01r.
which is transformed as follows:
3r(yk+1) v
Y, (k+1)= F(V(ky+1)+1) 08U —2)Y, (k —1D),
v 3r(yk+1)
Vylk+ 1) = mgdinien Xicod =Y, (k=D (59)
Y, =0.96 + 0.04r,
Y, =101 —0.01r.
Tables 5 and 6 show the numerical results for n = 20 and y = 2/3 (Fig. 4).
Example 4 In this example, let us consider the fuzzy Basset equation as follows
1
Y+ a((gDozy(t)) + y() = (0.95,1,1.05)(a > 0,t > 0) (60)
y(0) = (-0.1,0,0.1)

which is equivalent with the following systems

1
Y@ +a (UDg y(1)) + y(1) = 0.95 + 0.05r

() + a‘(%’DO%y(t)) +y(r) = 1.05 - 0.05r (61)
y(0) = —0.1 +0.1r
3(0) = 0.1 —0.1r
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Approximated solution B=1
. ——— Approximated solution B=1/2
0.9 Approximated solution B=1/4
©  Exact solution for p=1
0.8
07
06
K
3 051
1
0.4
03+
02
01+
.
.
’
0 s L 1 1 1 1 1 1 1 |
05 055 06 0.65 07 0.75 08 0.85 09 0.95

Fig. 2 Exact solution for 8 = 1 and approximated solutions for 8 = 1/2, 1/4, 1 attr = 1 with n = 8 for
Example 2 in the sense of Cg[(ii) — B] differentiability

1~

Approximated solution =1 with n=4

09— ©  Approximated solution B=1 with n=8

1 1 1 1 1 1 1 1 |
Q
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Fig. 3 Exact and approximated solutions at + = 1 with n = 4 and n = 8 in Example 2 in the sense of
C(ii) — 1] differentiability

1
Y (1) +a “Dy(t) + y(t) = 1.05 — 0.05r

1
Y@ +a P Dg y) +¥(1) = 0.95 4 0.05r (62)
y(0) = —0.140.1r
¥(0) =0.1-0.1r

Using the proposed differential transform method for the system (62), we have

k3 k

Yi(k+2) = —ar(i 2y k- WE(@ +(0.95 +0.05r)5 k),
2 rG+2) PG +2)

7 rG+3- ré 41

Yi(k+2) = —a—2—2V (k+ 1) — —2—— ¥ (k) + (1.05 — 0.05r)5(k),
J4D = e T D = e 10+ r8 (k)

(63)
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1 o .
Al ©  Exact solution for =1
A0 i
ool X Approximated solution y=1/3
- 2,0 - = - Approximated solution y=2/3
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Fig. 4 Exact solution for y = 1 and approximated solutions for y = 1/3, 2/3, 1 att = 0.04 withn = 20
for Example 3 in the sense of Cg[(i i) — y] differentiability

= Approximated solution
0.9

0 I I
0 0.05 0.1

0.15 0.2 0.25

Fig. 5 Approximated solution for Example 4 at = 0.5 with n = 20 and a = 3 in the sense of C‘Dp[(ii) — o]
differentiability

Figure 5 shows the numerical results.
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