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Abstract In this paper we introduce a secure and efficient public key cryptosystem using
generalized Mersenne primes based on two hard problems: the cubic root extraction mod-
ulo a composite integer and the discrete logarithm problem (DLP). These two problems
are combined during the key generation, encryption and decryption phases. To break the
scheme, an attacker has to solve the cubic root computation and the DLP separately which
is computationally infeasible.
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1 Introduction

Diffie and Hellman [4] introduced the concept of public key cryptography, a new direction
in cryptosystem through one of their seminal papers. This cryptography is widely used in
e-commerce for authentication and secure communication. Diffie and Hellman [2] described
a two-key cryptosystem in which two parties could engage in a secure communication over
a non-secure communications channel without having to share a secret key. After that many
public key cryptography were introduced based on tricky mathematical problems. Among
these, RSA is one of the famous cryptosystems based on the factorization of a large integer was
developed by Rivest et al. [15] in 1978. After a year, Rabin [14] proposed an RSA look alike
cryptosystem based on the difficulty of extracting the square root modulo a large composite
integer. On the other hand, El Gamal [5] proposed a proficient and simple cryptosystem based
on discrete logarithmic problem (DLP). Elliptic curve cryptosystem (ECC) is another widely
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used cryptosystem based on the problem of Discrete Logarithm. This Discrete Logarithmic
Problem is computationally very hard to solve over a prime field or when considering the
group of rational points of an elliptic curve defined over a finite field. Integer factorization and
discrete logarithm problem are only believed to be hard but no proof is known for their NP-
completeness or NP-hardness. Improvements in factorisation algorithms and computation
power demand larger bit size in RSA key which makes RSA less efficient for practical
applications. Although RSA and ECC have some drawbacks, they are still not broken. In 1999,
Shor [16] discovered the polynomial time algorithm for integer factorization and computation
of discrete logarithm on quantum computers. Thus once we have quantum computers in the
range of 1000 bits, the cryptosystems based on these problems can no longer be considered
secure. So, there is a strong motivation to develop public key cryptosystems based on problems
which are secure on both conventional and quantum computers.

The composite discrete logarithm problem (CDLP) is a generalization of DLP which is
used to design public key cryptosystems and certain protocols. It deals with the computa-
tion of g¥mod n for some well chosen integers n and g. Hastad et al. [7] established, under
the assumption of intractability of factoring a Blum integer n, that each bit of g*mod n is
computationally very hard. They [7] also showed that the function f, , = g*mod n can be
used for efficient pseudorandom bits generators and multi-bit commitment schemes. Bach
[1] established that solving the CDLP for composite moduli 7 is as hard as factoring n and
solving it modulo primes. McCurley [12] proposed an alternative Diffie-Hellman key distri-
bution protocol. He [12] also proposed an El Gamal signature scheme based on the CDLP.
Pointcheval [13] developed an efficient authentication scheme based on the CDLP which
is more secure than factorization. On the other hand, Ismail and Hijazi [10] believed that
an efficient cryptographic scheme for a long term security can be designed by combining
many cryptographic assumptions. With this conviction, they [10] proposed an efficient cryp-
tographic scheme based on both the square root extraction and the CDLP. Since this scheme
is based on two problems, they [10] claimed that it is more secure against the three common
algebraic attacks using heuristic security technique.

Designing secure and efficient public key cryptosystems continues to be a challenging
area of research in recent years. In this paper, we propose, by using generalized Meresenne
primes, an efficient and strongly secure public key cryptographic scheme based on the cubic
root extraction and the CDLP. This scheme is quite simple and has some advantages over
similar scheme based on square root problem.

2 Generalized Mersenne primes

The concept of generalized Mersenne prime (GMP) was introduced by Hoque and Saikia
[8]. They defined GMP as a prime number of the form:

My,=p!—p+1

where p and ¢ are some positive integers.

Hoque and Saikia [8,9] used these primes in study of class number problem of quadratic
fields and cyclotomic fields. In this paper, we present another application of generalized
Mersenne primes in construction of cryptosystems.

Throughout this article we consider the GMPs, M, , with the following restrictions:

(i) pisa prime.
(ii) g is an odd positive integer.

Under these restrictions, we obtain that M, , = 1(mod 3).
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We now have the following immediate result.

Proposition 2.1 Let My 4 be a generalized Mersenne prime. Then the function Zy,,, —>
Zm,, given by x — x3(mod M p,q) IS a one—one correspondence with the inverse function

1 p—1
x — x3(mod My 4) = xIT(mod M, o).

3 The proposed public key cryptosystem

In this section, we present the proposed public key cryptosystem which will work in any
arbitrary finite field of the form Z My

3.1 Key generation

In this subsection, we describe the key generation of the proposed cryptosystem. Both public
and private keys are used in this cryptographic scheme. These keys are generated as follows:

(i) Choose two generalized Mersenne primes M, ,, and M, 4,.
(ii) Compute N = Mp, ¢y Mp, 4.
(iii) Take an element ¢ € Z%, = {z : gcd(z, N) = 1} such that O (), the order of ¢, is high.
(iv) Choose a number (randomly) k < O(?).
(v) Compute T = tk(mod N).

The finite field elements (N, ¢, T) and (N, ¢, k) are respectively the public keys and private
keys.

3.2 Encryption

If Bob wants to send a message M to Alice, then he does the following steps to convert the
plain text (message) P into the cipher text C.

(i) He transforms the plain text (message) into its numerical equivalent m € Zy.
(i) He chooses an integer (randomly) / < N such that |/| < %.
(iii) He computes ¢; = (mT*)3(mod N) and ¢3 = t' (mod N).

Finally he sends ¢ and ¢; to Alice.

3.3 Decryption

Alice uses both ¢; and ¢, to recover the original message M from the cipher text C. The
following Lemma plays a vital to retrieve the original message M from the couple c¢; and c;.

, 1
Lemma 3.3.1 m =c¢ x cz_k (mod N) = m(mod N).
Proof. We have

, 1
m =cj x cz_k(mod N) = mt'* x t7*(mod N) = m(mod N)
By Proposition 2.1, the congruence

x3 = ci(mod N) (3.1
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has a unique solution modulo M, 4, and has a unique solution modulo M, 4,. Thus using
the Chinese Remainder theorem, we retrieve the unique solution modulo N to the congruence
(3.1). The fact of unique solution to the cubic congruence is a great advantage over the Rabin
[14] scheme where one can get four solutions to the quadratic congruence.

Example 3.3.2 Here is a toy example for our cryptosystem. Suppose we want to send a
message M whose numerical value is m = 5 using our proposed cryptosystem.

Let us consider My, 4, = 7and M, 4, = 73. Then N = M, 4, M, 4, = 511.

Let us choose + = 11 and k = 5. Then the public key is given by 7, T = t*(mod N) =
86(mod 511) and N. Also the private key is given by ¢, k and N.

We now encrypt the message m = 5 by considering [ = 5. We compute ¢; =
(mT")*(mod N) = 97(mod 511) and ¢; = t' (mod N) = 309(mod 511).

For the decryption, we solve

x> =97(mod 511) (3.2)

The congruence (3.2) can be re-written as the following system of congruence’s:
x3 = 6(mod 7) (3.3)
x? = 24(mod 73) (3.4)

Using Proposition 2.1, the solution of the congruence (3.3) is given by x = 5(mod 7).
Similarly the solution of the congruence (3.4) is given by x = 35(mod 73). By the Chinese
Remainder Theorem, the solution of the congruence (3.2) is x = 327(mod 511) and hence

1
¢i =327(mod 511).

Also we compute c{k = 055 = 386(mod 511).

Finally we obtain m =327 x 386(mod 511) = 5(mod 511) = m.

4 The security of the proposed cryptosystem

In this section we discuss the security of the proposed cryptosystem. In general, it is very
difficult to prove the security of a public key as well as private key cryptosystem [11,17]. For
example, if the public modulus of RSA is decomposed into its prime factors then the RSA is
broken. However, it is not proved that breaking RSA is equivalent to factoring its modulus [6].
In this section, we give some security arguments and evidence that the proposed cryptosystem
is highly secure against certain attacks. The security of the proposed cryptosystem partially
depends of the factorization of N, where N is a product of two generalized Mersenne primes
(GMP) M, 4, and M), ,,. However, this factorization problem is equivalent to determine
the values of the primes pp, p» and the odd integers ¢, g» such that they form two distinct
generalized Mersenne primes M, 4, and M,,, 4, having property that congruence to 1 modulo
3. Thus it is not easy to solve this problem. It is noted that a pair of RSA primes may be
generalized Mersenne primes having the above property. Therefore in this context we are not
comparing generalized Mersenne primes with RSA primes. Brown [2] established that if the
encryption function is E (x) = x3(mod N) and if N is aRSA number (or product of two RSA
primes) with RSA public key e = 3, then the breaking of the corresponding cryptosystem
is equivalent to the factorization of N. Thus a cryptosystem with the encryption function
E(x) = x>(mod N) is not secure if Nis a RSA number. In our cryptosystem, we use the
cubic root extraction which is somehow analogous to E(x) = x>(mod N). This method is
used to determine ¢ and its cubic root. This computation depends on the randomly chosen
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integers [ and T (or more precisely on /, ¢ and k). Thus the problem of the computation
of ¢; and its cubic root is not the same as if we use ¢ = 3 in RSA cryptosystem. Even if
c1 and its cubic root are computable, then ¢; and its inverse have to be computed which
is computationally very hard. Thus we claim that our cryptosystem is more secure than
that of RSA alike cryptosystems. We now discuss some attacks developed for the proposed
cryptosystem. We also obtain that this proposed scheme is heuristically secure against these
common attacks. The attacks discuss in this section are Direct attack, Factoring attack and
Discrete Logarithmic attack.

4.1 Direct attack

Suppose an adversary Adv wants to recover all secret keys using all informations available
from the system. Then Adv needs to solve the factorization problem to find the generalized
Mersenne primes M, 4, and Mp, ,,. Moreover, Adv needs to solve the discrete logarithm
problem to find the secret k. Thus the security of the private key k depends on the factorization
of N. Most of the cryptanalysts use trial division, Quadratic Sieve (QS), Multiple Polynomial
Quadratic Sieves (MPQS), Double Large Prime Variation of the MPQS and Number Field
Sieve (NFS) for the factorization. Among these methods, NFS is the faster algorithm for
numbers larger than 110 digits. It was used to factoring the ninetieth Fermat number. All these
methods depend on the size of |N|. In other words, the complexity increases with the size
of |[N|. When the | N| = 1024, these techniques are computationally infeasible. Thus we use
large generalized Mersenne primes M, 4, and M, 4,suchthat | M, 4| = |Mp, 4,| = 1024
to maintain very strong security level.

4.2 Factoring attack

Suppose the attacker successfully factorized N and finds the values of p1, p2, g1 and g>.
Now the attacker knows the values of M, 4, and M, 4,. By using Cube root method and
1

Chinese Remainder Theorem, the attacker computes m” = cf (mod N) = mA!(mod N).
However, to recover the message m from mA!, the attacker needs the value of [ which is
the Computational Diffie-Hellman assumption. He has to solve the DLP modulo primes to
find /. Since M, 4, and M, 4, are two Generalized Mersenne primes of size 1024, the DLP
modulo primes infeasible and the attacker would fail.

4.3 Discrete logarithm attack

Suppose the attacker be able to solve the DLP and recover the private key. Then he can compute
t'% which is a part of the decryption. But it is still insufficient to recover m because he has
1

to compute cf (mod N). Since the factorization of N is not known, it is computationally
infeasible to compute the cubic root of ¢; modulo N. One can say that cubic root of c|
modulo N can be computed by putting e = 3 just as in RSA cryptosystem. However, it is not
possible as the factorization of N depends on four positive integers that form two generalized
Mersenne primes and thus the attacker fails once again.

5 Efficiency

The encryption and decryption algorithm of the proposed cryptosystem have been designed
in a beneficial approach but of course not sacrificing the security issues. It can be successfully
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implemented on the various types of data. We have also tried to benchmark the performance of
the encryption and decryption algorithms against some selected algorithms. The encryption
algorithm is faster and it offers more enhanced security features than the others. Hence these
algorithms are proved to be as a very efficient technique for transferring messages from
sender to the receiver, achieving confidentiality as well as message authentication.

We compute the computation cost of our cryptosystem using the same method as described
in [3]. The computational cost of the encryption and decryption of the proposed cryptosystem
are respectively (4 |/| + 3)My and (% |N|+ |l|)My, where My is the unity of the complex-
ity, that is, the cost of a multiplication modulo N. On the other hand, the computational
cost of the encryption and decryption of Galindo et al. as recorded in [3] are respectively
(36 |e] +3)My and (% IN|+ 36 |e| + 24)M . Similarly, the computational cost of the
encryption and decryption of El Gamal cryptosystem are respectively (40 |p| + 13) My and
(20| p| 4+ 24)M . Thus we claim that our new cryptosystem is more efficiency than other
RSA alike cryptosystems.

6 Conclusion

We have successfully designed an efficient and secure cryptosystem by combining two cryp-
tographic assumptions namely the cubic root extraction and the discrete logarithm problem
modulo a composite integer. We have also analysed our proposed cryptosystem against all
known attacks and found that it is very secure.

Acknowledgments The corresponding author acknowledges UGC for JRF. The author’s thank to Prof.
H. K. Saikia, Head, Department of Mathematics for her valuable suggestions.

References

1. Bach, E.: Discrete Logarithms and Factoring, Technical Report UCB 84/186. Computer Science Division,
University of California, Berkeley (1984)
2. Brown, D.R.L.: Breaking RSA may be as difficult as factoring. In: Cryptology. ePrint Archive, Report
205/380 (2006)
3. Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic fields quotients. Finite
Field Their Appl. 13, 563-576 (2007)
4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644-654
(1976)
5. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Trans. Inf. Theory 31, 469472 (1985)
6. Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography, 2001 (Online). Available at http://www.cs.
ucsd.edu/users/mihir/papers/gb.html
7. Hastad, J., Schrift, A., Shamir, A.: The discrete logarithm modulo a composite hides O (n) bits. J. Comput.
Syst. Sci. 47(3), 376-404 (1993)
8. Hoque, A., Saikia, H.K.: On generalized Mersenne prime. SeMA J. 66, 1-7 (2014)
9. Hoque, A., Saikia, H.K.: On generalized Mersenne primes and class-numbers of equivalent quadratic
fields and cyclotomic fields. SeMA J. 67, 71-75 (2015)
10. Ismail, E.S., Hijazi, M.S.: New cryptosystem using multiple cryptographic assumptions. J. Comput. Sci.
7(12), 1765-1769 (2011)
11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, New
York (1997)
12. McCurley, K.S.: A key distribution equivalent to factoring. J. Cryptol. 1, 95-105 (1988)
13. Pointcheval, D.: The composite discrete logarithm and a signature scheme based on discrete logarithms.
In: Proceedings of the 2000 International Workshop on Practice and Theory in Public Key Cryptography
(PKC’2000), LNCS 1751, Springer, Berlin, Heidelberg, pp. 113-128 (2000)

@ Springer


http://www.cs.ucsd.edu/users/mihir/papers/gb.html
http://www.cs.ucsd.edu/users/mihir/papers/gb.html

A new cryptosystem using generalized Mersenne primes 83

14. Rabin, M.: Digitalized Signatures and Public-Key Functions as Intractable as Factorization. MIT Labo-
ratory for Computer Science, Technical Report MIT/LCS/TR-212, Cambridge, USA (1979)

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryp-
tosystems. Commun. ACM 21(2), 120-126 (1978)

16. Shor, P.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM J. Sci. Comput. 26, 14-84 (1997)

17. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton (1995)

@ Springer



	A new cryptosystem using generalized Mersenne primes
	Abstract
	1 Introduction
	2 Generalized Mersenne primes
	3 The proposed public key cryptosystem
	3.1 Key generation
	3.2 Encryption
	3.3 Decryption

	4 The security of the proposed cryptosystem
	4.1 Direct attack
	4.2 Factoring attack
	4.3 Discrete logarithm attack

	5 Efficiency
	6 Conclusion
	Acknowledgments
	References




