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Abstract This article presents the result on existence and stability of mild solutions of
stochastic partial differential equations with infinite delay in the phase spaceBwith non-
lipschitz coefficients. We use the theory of resolvent operator devolopped in Grimmer (Trans
Am Math Soc 273(1):333–349, 1982) to show the existence of mild solutions. An example
is provided to illustrate the results of this work.
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1 Introduction

In this paper, we study the existence of mild solutions for a class of abstract partial impulsive
integrodifferential equations with infinite delays:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) =
[

Ax(t) +
∫ t

0
B(t − s)x(s)ds + F(t, xt )

]

dt + H(t, xt )dw(t), t ∈ J := [0, T ],

�x(tk) = x(t+k ) − x(t−k ) = Ik(x(tk)), k = 1, 2, . . . ,m,

x0 = ϕ ∈ B.

(1.1)
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18 M. A. Diop et al.

Here, the state x(·) takes values in a separable real Hilbert spaces Hwith inner prod-
uct (·, ·)and norm ‖·‖, A is the infinitesimal generator of a strongly continous semigroup of
bounded linear operators S(t), t ≥ 0 on H,with D(A) ⊂ H, and B(t), t ∈ J is a closed
linear operator on H. The history xt : ] − ∞, 0] → H, xt (θ) = x(t + θ), for t ≥ 0,
belongs to some abstract phase space Bwhich will be described axiomatically in Sect. 2.
Let K be another separable Hilbert spaces with inner product 〈·, ·〉K and norm ‖·‖K. Sup-
pose {w(s) : 0 ≤ s ≤ t} is a given K-valued Wiener process with covariance operator
Q ≥ 0 defined on a complete probability space (�,F, {Ft }t≥0,P) equipped with a normal
filtration {Ft }t≥0 which is generated by the Wiener process w. We are also employing the
same notation ‖·‖ for the norm L(H;K), where L(H;K)denotes the space of all bounded
linear operator from K into H. Assume that F : R+ × B → H and H : R+ × B → L0

2 are
two appropriate mappings specified later. Here L0

2 = L2(K0;H) denotes the space of all
Q-Hilbert-Schmidt operators from K0 to Hwich will be defined in Sect. 2.The initial data
ϕ = {ϕ(t) : −∞ < t ≤ 0}is an F0-adapted, B-valued random variable independent of the
Wiener processwwithfinite secondmoment, Ik : B → H, k = 1, 2, . . . ,m are appropriate
functions. The fixed moments of time tk satisfies 0 < t1 < · · · < tm < T, x(t+k ) and x(t−k )

represent the right and left limits of x(t) at t = tk , respectively, �x(tk) represents the jump
in the state x at time tk with Ik determining the size of the jump.

In recent years, stochastic differential equations have received more attention. They have
been applied to model various phenomena in mechanical, electrical, economics, pysics and
several fields in engineering. There have been increasing interest in investigating Impulsive
stochastic differential equations. For instance in [10]nonautonomous and random dynamical
systems perturbed by impulses is investigated. Yang et al. [16], studied the stability analysis
of ISDEs with delays; Yang et al. [26], studied the exponential p-stability of ISDEs with
delays. In [12,23], Sakthivel and Luo the existence and asymptotic stability in p-th moment
of mild solutions to ISDEs with and without infinite delays through fixed point theory.

Motivated by the works of [12,19,20,23], we will generalize the existence and uniqueness
of the solution to impulsive stochastic partial functional integrodifferential equations under
non-Lipschitz condition and Lipschitz condition. Moreover, we study the stability through
the continuous dependence on the initial values by means of Corollary of Bihari’s inequality.
Our main results concerning (1.1), relay essentially on techniques employing a strongly
continous family of operators R(t), t ≥ 0 defined on the Hilbert space H and called their
resolvent (the precise definition will be given below). The paper is organized as follows: in
Sect. 2, we recall some preliminaries which are used throughout this paper. In Sect. 3, we
state the existence and uniqueness of amild solution. In Sect. 4, we study the stability through
the continuous dependence on the initial values. Finally in Sect. 5, an example is given to
illustrate our results.

2 Preliminaries

2.1 Wiener process

Let (�,F, P,F) with (F = {Ft }t≥0) be a complete filtered probability space satisfying that
F0 contains all P-null sets of F . An H-valued random variable is an F-mesurable function
x(t) : � → H and the collection of random variables S = {x(t, ω) : � → H| t ∈ J } is
called a stochastic process. Generally, we juste write x(t) instead of x(t, ω) and x(t) :
J → H in the space of S. Let {ei }∞i=1 be a complete orthormal basis of K. Suppose that
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Existence and stability results for a partial impulsive stochastic… 19

{ω(t) : t ≥ 0} is a cylindricalK-valuedWiener process with a finite trace nuclear covariance
operator Q ≥ 0, denote Tr(Q) = ∑∞

n=1 λi = λ < ∞, which satisfaies that Qei =
λi ei . So, actually, w(t) = ∑∞

i=1
√

λiωi (t)ei , where {ωi }∞i=1 are mutually independent one-
dimensional standard Wiener processes. We assume that Ft = σ {w(s); 0 ≤ s ≤ t} is the
σ -algebra generated by ω and FT = F . Let L(K;H) denote the space of all bounded linear
operators from K into H. For h1, h2 ∈ L(K;H), we define (h1, h2) = Tr(h1Qh∗

2), where
h∗
2 is the adjoint of the operator h2 and Q is the nuclear operator associated with the Wiener

process, where Q ∈ L+
n (K), the space of positve nuclear operator in K. For ψ ∈ L(K,H)

we define

‖ψ‖2Q = Tr(ψQψ∗) =
∞∑

n=1

∥
∥
∥
√

λn ψen
∥
∥
∥
2

If ‖ψ‖Q < ∞, thenψ is called a Q-Hilbert Schmidt operator. Let LQ(K,H) denote the space
of all Q-Hilbert Schmidt operator ψ . The completion LQ(K,H) of L(K,H) with respect to
the topology induced by the norm ‖·‖Q where ‖ψ‖2Q = (ψ,ψ) is a Hilbert space with the
above norm topology. For more details, we refer the reader to Da Prato and Zabczyk [26]. The
collection of all strongly measurable, square integrable,H-valued random variables, denoted
by L2 (�,F, P;H) ≡ L2(�,H), is a Banach space equiped with norm

‖x(·)‖L2 = (
E ‖x(·, ω)‖2)

1
2 ,

where the expectation,E is defined byEx = ∫

�
x(w)dP . LetC (J, L2(�,H)) be the Banach

space of all continuous maps from J into L2(�,H) satisfying the condition

sup
t∈J

E ‖x(t)‖2 < ∞.

An important subspace is given by L0
2(�,H) = { f ∈ L2(�,H) : f is F0 − measurable}.

We say that a function u : [ν, τ ] → H is a normalized piecewise continuous function on
[ν, τ ] if u is piecewise continuous and left continuous on [ν, τ ]. We denote by PC([ν, τ ];H)

the space formed by the normalized piecewise continuous,Ft -adapted measurable processes
from [ν, τ ] into H. In particular, we introduce the space PC formed by all Ft -adapted mea-
surable,H-valued stochastic processes {u(t) : t ∈ [0, T ]} such that u is continuous at t �= tk ,
u(t−k ) = u(tk) and u(t+k ) exists, for k = 1, . . . ,m. In this paper, we always assume that

PC is endowed with the norm ‖u‖PC = (
sups∈J E ‖u(s)‖2) 1

2 . It is clear that (PC, ‖·‖PC)

is a Banach space. Further, let BT be a Banach space BT ((−∞, T ] , L2), the family of all
Ft -adapted process ϕ(t, ω) with almost surely continuous in t for fixed ω ∈ � with norm
defined for any ϕ ∈ BT

‖ϕ‖BT =
(

sup
0≤t≤T

E ‖ϕ‖2t
) 1

2

.

where ‖ϕ‖t = sup−∞<θ≤0 ‖ϕ‖H.
2.2 Partial integrodifferential equations in Banach spaces

In the present section, we recall some definitions, notations and properties needed in what
follows.Let Z1 and Z2 be Banach spaces. We denote by L(Z1, Z2) the Banch space of
bounded linear operators from Z1 into Z2 endowed with operator norm and we abbreviate
this notation to L(Z1)when Z1 = Z2.
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20 M. A. Diop et al.

In what follows, H is a Banach space, A and B(t) are closed linear operators on H. Y
represents the Banach space D(A) equipped with the graph norm defined by

|y|Y := |Ay| + |y| for y ∈ Y.

The notations C([0,+∞); Y ), L(Y,H) stand for the space of all continuous functions from
[0,+∞) into Y , the set of all bounded linear operators from Y into H, respectively. We
consider the following Cauchy problem

⎧
⎨

⎩

v
′
(t) = Av(t) +

∫ t

0
B(t − s)v(s)ds for t ≥ 0

v(0) = v0 ∈ H.

(2.1)

Definition 2.1 [3] A resolvent operator for Eq. (2.1) is a bounded linear operator valued
function R(t) ∈ L(H) for t ≥ 0, having the following properties:

(i) R(0) = I and |R(t)| ≤ Neβt for some constants N and β.
(ii) For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.
(iii) For x ∈ Y, R(·)x ∈ C1([0,+∞);H) ∩ C([0,+∞); Y ) and

R′(t)x = AR(t)x +
∫ t

0
B(t − s)R(s)xds

= R(t)Ax +
∫ t

0
R(t − s)B(s)xds for t ≥ 0

For additional details on resolvent operators, we refer the reader to [3,13]. The resolvent
operators plays an important role to study the existence of solutions and to give a variation
of constants formula for non linear systems. We need to know when the linear system (2.1)
has a resolvent operator. Theorem 2.2 gives a satisfactory answer to this problem.

In what follows we suppose the following assumptions:

(H1)A is the generator of a strongly continuous semigroup on H.

(H2) For t ≥ 0, B(t) is closed linear operator from D(A) to H, and B(t) ∈ B(Y,H).
For any y ∈ Y , the map t → B(t)y is bounded, differentiable and the derivative t → B ′(t)y
is bounded uniformly continuous on R

+

Theorem 2.2 [3] Assume that the assumptions (H1) and (H2) hold. Then there existe a
unique resolvent operator of the Cauchy problem Eq. (2.1).

In the following, we give some results on the existence of solutions for the following
integrodifferential equation

⎧
⎨

⎩

v
′
(t) = Av(t) +

∫ t

0
B(t − s)v(s)ds + q(t) for t ≥ 0

v(0) = v0 ∈ H,

(2.2)

where q : [0,+∞[→ H is a continuous function.

Definition 2.3 [3] A continuous function v : [0,+∞) → H is said to be a strict solution of
Eq. (2.2) if
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Existence and stability results for a partial impulsive stochastic… 21

(i) v ∈ C1([0,+∞);H) ∩ C([0,+∞); Y ),

(ii) v satisfies Eq. (2.2) for t ≥ 0.

Remark 2.4 From this definition, we deduce that v(t) ∈ D(A), the function B(t − s)v(s) is
integrable, for all t > 0 and s ∈ [0,+∞).

Theorem 2.5 [3] Assume that (H1)–(H2) hold. If v is a strict solution of Eq. (2.2), then the
following variation of constants formula holds

v(t) = R(t)v0 +
∫ t

0
R(t − s)q(s)ds for t ≥ 0. (2.3)

Accordingly, we make the following definition.

Definition 2.6 [3] For v0 ∈ H. A function v : [0,+∞) → H is called a mild solution of
(2.2) if v satisfies the variation of constants formula (2.3).

The next theorem provides sufficient conditions for the regularity of solutions of Eq. (2.2).

Theorem 2.7 [3] Let q ∈ C1([0,+∞);H) and v be defined by (2.3). If v0 ∈ D(A), then v

is a strict solution of Eq. (2.2).

In the whole of this work, we suppose that the phase space is axiomatically defined, we use
the approach proposed by Hale and Kato in [8]. To establish the axioms of the phase space
B,we follows the terminology used in Hino et al. [7]. The axioms of the phase space B are
established for F0-measurable functions from ] − ∞, 0] into H, endowed with a seminorm
wich satisfies the following axiomns:

Axiom 2.8 (A1) If x : (−∞, T ]→H, T >0 is such that x0 ∈B and x|[0,T ] ∈ PC([ν, τ ];H)

then, for every t ∈ [0, T ], the following conditions hold:

(1) xt ∈ B,
(2) ‖x(t)‖ ≤ L ‖xt‖B,
(3) ‖xt‖B ≤ u(t) sup0≤s≤t |x(s)| + v(t) ‖x0‖B, where L > 0 is a constant ; u(·), v(·) :

[0,+∞) → [1,+∞), u(·) is continuous, v(·) is locally bounded, and L , u(·), v(·) are
independent of x(·)

(A2) The space B is complete.

The next result is a consequence of the phase space axioms.

Lemma 2.9 Let x : (−∞, 0] → H be a Ft -adapted measurable process such that the
F0-adapted process x0 = ϕ ∈ L0

2(�,B) and x|[0,T ] ∈ PC(J,H), then

E ‖xs‖B ≤ vTE ‖φ‖B + uT sup
0≤s≤T

E ‖x(s)‖ (2.4)

where uT = supt∈J {u(t)} and vT = supt∈J {v(t)}.
Remark 2.10 In retarded functional differential equations without impulses, the axioms of
the abstract phase space B include the continuity of the function t → xt ; see for instance [7].
Due to the impulsive effect, this property is not satisfied in impulsive delay systems and, for
this reason, has been eliminated in our abstract description of B.
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22 M. A. Diop et al.

Lemma 2.11 (Bihari inequality) [18] Let T > 0 and u0 ≥ 0, u(t), v(t) be continuous
functions on [0, T ]. Let K : R+ → R

+ be a concave, continuous and nondecreasing function
such that K (r) > 0 for r > 0. If

u(t) ≤ u0 +
∫ t

0
v(t)K (u(s)) ds for 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(

G(u0) +
∫ t

0
v(s)ds

)

for all t ∈ [0, T ] such that

G(u0) +
∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) = ∫ r
1

ds
K (s) (r ≥ 0) and G−1 is the inverse function of the G. In particu-

lar,moreover if, u0 = 0 and
∫

0+ ds
K (s) = +∞, then u(t) = 0 for all t ∈ [0, T ].

In order to obtain the stability of solutions, we use the following extended Bihari’s inequality

Lemma 2.12 [17] Let the assumption of Lemma 2.11 hold. If

u(t) ≤ u0 +
∫ T

t
v(t)K (u(s)) ds for 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(

G(u0) +
∫ T

t
v(s)ds

)

for all t ∈ [0, T ]

such that G(u0) +
∫ T

t
v(s)ds ∈ Dom(G−1),

where G(r) = ∫ r
1

ds
K (s) , for r ≥ 0 and G−1 is the inverse function of the G.

Corollary 2.13 [17] Let the assumptions of Lemma 2.11 hold and v(t) ≥ 0 for t ∈ [0, T ].
If for all ε > 0, there exists t1 ≥ 0 such that for 0 ≤ u0 < ε,

∫ T
t1

v(s)ds ≤ ∫ ε

u0
ds
K (s) holds,

then for every t ∈ [t1, T ], the estimate u(t) ≤ ε holds.

Lemma 2.14 (Burkholder-Davis-Gundy inequality) [11], p. 182 For any p ≥ 1 and for
arbitrary L0

2-valued predictable process φ(.),

sup
0≤s≤t

E

∥
∥
∥
∥

∫ s

0
φ(l)dw(l)

∥
∥
∥
∥

2r

H

≤ Cr

(∫ t

0
(E |φ(s)‖2rL0

2
)ds

)r

, (2.5)

where Cr = (r(2r − 1))r .

Before starting and proving the main results, we present the definition of the mild solution
to (1.1).

Definition 2.15 A Stochastic process {x(t) ∈ BT , t ∈ (−∞, T ]} , (0 < T < ∞) is called a
mild solution of the Eq. (1.1).

(i) x(t) ∈ H is Ft -adapted,
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Existence and stability results for a partial impulsive stochastic… 23

(ii) x(t) satisfies the integral equation

Existence and Uuniqueness

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ(t) for t ∈] − ∞, 0],

R(t)ϕ(0) +
∫ t

0
R(t − s)F(s, xs)ds +

∫ t

0
R(t − s)H(s, xs)dw(s)

+
∑

0<tk<t

R(t − tk)Ik(x(tk)) a.s t ∈ [0, T ].
(2.6)

3 Existence and uniqueness of solution for Eq. (1.1)

In this section we discuss the existence and uniqueness of mild solution of the system 1.1.
Now we assume the following assumptions: (H3): the functions F : R+ × B → H and
H : R+ × B → L0

2 satisfy for all t ∈ J,�1,�2 ∈ B

‖F(t,�1) − F(t,�2)‖2 ∨ ‖H(t,�1) − H(t,�2)‖2 ≤ K (‖�1 − �2‖B2),

where K (.) is concave non-decreasing function from R
+ to R

+, K (0) = 0, K (u) > 0 for
u > 0 and

∫

0+ du
K (u)

= ∞. (H4) The function Ik ∈ C (H,H) and there exists some constant

hk such that ‖Ik(�1(tk)) − Ik(�2(tk))‖2 ≤ hk‖�1 − �2‖2B, for each �1,�2 ∈ B, k =
1, 2, . . . ,m. (H5): For all t ∈ J ,F(t, 0), H(t, 0), Ik(0) ∈ L2, for k = 1, 2, . . . ,m and
there exists a positive constant k0, such that

‖ f (t, 0)‖2 ∨ ‖H(t, 0)‖2 ∨ ‖Ik(0)‖2 = k0.

Let us now introduce the successive approximations to Eq. (2.6) as follows

x0(t) =
{

ϕ(t) for t ∈] − ∞, 0],
R(t)ϕ(0) for t ∈ [0, T ], (3.1)

and for n = 1, 2, . . . ,

xn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ(t) for t ∈] − ∞, 0],

R(t)ϕ(0) +
∫ t

0
R(t − s)F(s, xn−1

s )ds +
∫ t

0
R(t − s)H(s, xn−1

s )dw(s)

+
∑

0<tk<t

R(t − tk)Ik(x
n−1(tk)) a.s t ∈ [0, T ],

(3.2)

with an arbitrary non-negative initial approximation x0 ∈ BT .

Theorem 3.1 Assume that (H1)–(H5) hold. Let M = supt∈[0,T ] ‖R(t)‖, then the system
(1.1) has unique mild solution x(t) in BT , provided

M2m
m∑

k=1

hk <
1

4
.
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24 M. A. Diop et al.

Proof Let x0 ∈ BT be a fixed initial approximation to (3.2). Let M = supt∈[0,T ] ‖R(t)‖.
Then for any n ≥ 1, we have,

∥
∥xn(t)

∥
∥2 ≤ 4M2 ‖ϕ(0)‖2 + 8T M2

∫ t

0

[∥
∥F(s, xn−1

s ) − F(s, 0)
∥
∥2 + ‖F(s, 0)‖2

]
ds

+ 8M2
∫ t

0

[∥
∥H(s, xn−1

s ) − H(s, 0)
∥
∥2 + ‖H(s, 0)‖2

]
ds

+ 8M2m
m∑

k=1

[∥
∥Ik(x

n−1(tk)) − I k(0)
∥
∥2 + ‖Ik(0)‖2

]
.

��
Thus,

E

∥
∥xn(t)

∥
∥2
t ≤ 4M2

[

E ‖ϕ(0)‖2 + 2

(

T (T + 1) + M2m
n∑

k=1

hk

)]

k0

︸ ︷︷ ︸
Q1

+ 8M2(T + 1)E
∫ t

0
K
(∥
∥xn−1

∥
∥2
s

)
ds

+ 8M2m
m∑

k=1

hk
{
E

∥
∥xn−1

∥
∥2
t

}
.

Given that K (.) is concave and K (0) = 0, we can find positive constants a and b such that

K (u) ≤ a + bu, for all u ≥ 0.

Then,

E

∥
∥xn(t)

∥
∥2
t ≤ Q1 + 8M2(T + 1)Ta

︸ ︷︷ ︸
Q2

+8M2(T + 1)b
∫ t

0
E

∥
∥xn−1

∥
∥2
s ds

+ 8M2m
m∑

k=1

hk
{
E

∥
∥xn−1

∥
∥2
t

}
n = 1, 2, . . . ,

Since,
E

∥
∥x0(t)

∥
∥2
t ≤ M2 ‖ϕ(0)‖2 = Q3 < ∞. (3.3)

Thus,
E

∥
∥xn(t)

∥
∥2 ≤ Q4 < ∞ for all n = 0, 1, 2, . . . and t ∈ [0, T ] . (3.4)

This proves the boundedness of {xn(t), n ∈ N}.
Let us next show that {xn(t)} is Cauchy ∈ BT . For this, for n, m ≥ 1, we have

∥
∥xn+1(t) − xm+1(t)

∥
∥2 ≤ 3M2(T + 1)

︸ ︷︷ ︸
Q5

∫ t

0
K
(∥
∥xn(s) − xm(s)

∥
∥2
)
ds

+ 3M2m
m∑

k=1

hk

︸ ︷︷ ︸
Q6

(∥
∥xn(t) − xm(t)

∥
∥2
)

.
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Thus,

sup
0≤s≤t

E

∥
∥xn+1 − xm+1

∥
∥2
s ≤ Q5

∫ t

0
K

(

sup
0≤r≤s

E

∥
∥xn − xm

∥
∥2
r

)

ds+Q6 sup
0≤s≤t

E

∥
∥xn − xm

∥
∥2
s

(3.5)
Integrating both sides of Eq. (3.5) and applying Jensen’s inequality gives that

∫ t

0
sup
0≤l≤s

E

∥
∥xn+1 − xm+1

∥
∥2
l ds ≤ Q5

∫ t

0

∫ s

0
K

(

sup
0≤r≤l

E

∥
∥xn − xm

∥
∥2
r

)

dlds (3.6)

+ Q6

∫ t

0
sup
0≤l≤s

E

∥
∥xn − xm

∥
∥2
l ds, (3.7)

≤ Q5

∫ t

0
s
∫ s

0
K

(

sup
0≤r≤l

E

∥
∥xn − xm

∥
∥2
r

)
1

s
dlds (3.8)

+ Q6

∫ t

0
sup
0≤l≤s

E

∥
∥xn − xm

∥
∥2
l ds, (3.9)

≤ Q5t
∫ t

0

∫ s

0
K

(

sup
0≤r≤l

E

∥
∥xn − xm

∥
∥2
r

1

s
dl

)

ds (3.10)

+ Q6

∫ t

0
sup
0≤l≤s

E

∥
∥xn − xm

∥
∥2
l ds. (3.11)

Then,

�n+1,m+1(t) ≤ Q5

∫ t

0
K
(
�n,m(s)

)
ds + Q6�n,m(t) (3.12)

where

�n,m(t) =
∫ t
0 sup0≤l≤s E ‖xn − xm‖2l ds

t
,

From (3.5), it is easy to see that

sup
n,m

(t)�n,m(t) < ∞.

So letting �(t) = lim supn,m→∞ �n,m(t) and taking into account the Fatou’s lemma, we
yield that

�(t) = Q̂
∫ t

0
K (�(s)) ds, where Q̂ = Q5

1 − Q6

Now, applying the Lemma2.11, immediately reveals �(t) = 0 for any t ∈ [0, T ]. This
further means {xn(t), n ∈ N} is a Cauchy sequence in BT . So there is an x ∈ BT such that

lim
n→∞

∫ T

0
sup

0≤s≤t
E

∥
∥xn − x

∥
∥2
s dt = 0.

In addition, by (3.4) is easy to follow that E ‖x‖2t ≤ Q4. Thus we claim that x(t) is a mild
solution to (1.1). On the other hand, by (H3) and letting x → ∞, we can also claim that for
t ∈ [0, T ]
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E

∥
∥
∥
∥

∫ t

0
R(t − s)

[
F(s, xn−1

s ) − F(s, x)
]
ds

∥
∥
∥
∥

2

→ 0,

E

∥
∥
∥
∥

∫ t

0
R(t − s)

[
H(s, xn−1

s ) − H(s, x)
]
dw(s)

∥
∥
∥
∥

2

→ 0,

E

∥
∥
∥
∥
∥
∥

∑

0<tk<t

R(t − tk)[Ik(xn−1(tk)) − Ik(x(tk))]
∥
∥
∥
∥
∥
∥

2

→ 0.

Hence, taking limits on both sides of (3.2), we obtain that

x(t) = R(t)ϕ(0) +
∫ t

0
R(t − s)F(s, xs)ds

+
∫ t

0
R(t − s)H(s, xs)dw(s) +

∑

0<tk<t

R(t − tk)Ik(x(tk)).

This certainly demonstrates by the Definition 2.13 that x(t) is a mild solution to (1.1) on the
interval [0, T ] Now, we prove the uniqueness of the solution of (1.1). Let x1, x2 ∈ BT be
two solution of (1.1) on some interval (−∞, T ]. Then, for t ∈ (−∞, T ], we have

E ‖x1 − x2‖2t ≤ Q6E ‖x1 − x2‖2t + Q5

∫ t

0
K
(
E ‖x1 − x2‖2s

)
ds.

Thus,

E ‖x1 − x2‖2t ≤ Q5

1 − Q6

∫ t

0
K
(
E ‖x1 − x2‖2s

)
ds.

Thus, Bihari’s inequality yield that

sup
t∈[0,T ]

E ‖x1 − x2‖2t = 0, 0 ≤ t ≤ T .

Thus, x1(t) = x2(t) for all 0 ≤ t ≤ T . This acheive the proof.

4 Stability

In this section, we study the stability through the continuous dependence on initial values.

Definition 4.1 A mild solution x(t) of the system (1.1) with initial value φ is said to be
stable in the mean square if for all ε > 0, there exist δ > 0 such that

E ‖x − x̂‖2t ≤ ε, whenever E
∥
∥φ − φ̂

∥
∥2
t ≤ δ, for all t ∈ [0, T ]. (4.1)

where x̂(t) is another mild solution of the system (1.1) with initial φ̂.

Theorem 4.2 Let x(t) and y(t) be mild solution of the system (1.1) with initial values ϕ1

and ϕ2 respectively. If the assumption of the Theorem 3.1 are satisfied, then the mild solution
of the system (1.1) is stable in the mean square.
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Proof Let, x(t) and y(t) be two mild solutions of Eq. (1.1) with initial values ϕ1 and ϕ2

respectively. Then for 0 ≤ t ≤ T

x(t) − y(t) = R(t) [ϕ1(0) − ϕ2(0)] +
∫ t

0
R(t − s) [F(s, xs) − F(s, ys)] ds

+
∫ t

0
R(t − s) [H(s, xs) − H(s, ys)] dw(s)

+
∑

0<tk<t

R(t − tk) [Ik(x(tk)) − Ik(x(tk))]

So, estimating as before, we get

E ‖x − y‖2t ≤ 4M2E ‖ϕ1 − ϕ2‖2 + 4M2(T + 1)
∫ t

0
K
(
E ‖x − y‖2s

)
ds

+ 4M2m
m∑

k=1

hk E ‖x − y‖2t .

Thus,

E ‖x − y‖2t ≤ 4M2

1 − 4M2m
∑m

k=1 hk
‖ϕ1 − ϕ2‖2

+ 4M2(T + 1)

1 − 4M2m
∑m

k=1 hk

∫ t

0
K
(
E ‖x − y‖2s

)
ds.

��
Let K1(u) = 4M2(T+1)

1−4M2m
∑m

k=1 hk
K (u), where K is a concave increasing function fromR

+ to

R
+ such that K (0) = 0, K (u) > 0 for u > 0 and

∫

0+ du
K (u)

= +∞. Then,K1(u) is concave

from R
+ to R

+ such that K1(0) = 0,K1(u) ≥ K (u) for 0 ≤ u ≤ 1 and
∫

0+ du
K1(u)

= +∞.

Now for any ε > 0, ε1 = 1
2ε, we have lims→0

∫ ε1
s

du
K1(u)

= ∞. Then, there is a positive

constant δ < ε1, such that
∫ ε1
δ

du
K1(u)

≥ T .

Let

u0 = 4M2

1 − 4M2m
∑m

k=1 hk
‖ϕ1 − ϕ2‖2 ,

u(t) = E ‖x − y‖2t , v(t) = 1,

when u0 ≤ δ ≤ ε1. Then from corollary 2.10, we deduce that
∫ ε1

u0

du

K1(u)
≥
∫ ε1

δ

du

K1(u)
≥ T =

∫ T

0
v(t)ds.

It follows, for any t ∈ [0, T ], the estimate u(t) ≤ ε1 hold. This completes the proof.

Remark 4.3 If m = 0 in (1.1), then the system behave as stochastic partial functional inte-
grodifferential equation with infinte delay of the form
⎧
⎪⎨

⎪⎩

dx(t) =
[

Ax(t) +
∫ t

0
B(t − s)[x(s)ds + F(t, xt )

]

dt + H(t, xt )dw(t), 0 ≤ t ≤ T,

x(t) = ϕ ∈ Cb
B0

(] − ∞, 0],H) .

(4.2)
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By applying Theorem 3.1 under the hypotheses (H1–H5), the system (4.2) guarantees the
existence and uniquiness of the mild solution.

Remark 4.4 If the system (4.2) satisfies the Definition, 4.1, then by Theorem 4.2, the mild
solution of the system (4.2) is stable in the mean square.

5 Application

We conclude this work with an example of the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t v(t, ξ) = ∂2

∂ξ2
v(t, ξ) + ∫ t

0 b(t − s) ∂2

∂ξ2
v(s, ξ)ds

+ f (t, v(t − τ, ξ))dt + σ(t, v(t − τ, ξ))dw(t) for t

≥ 0 and ξ ∈ [0, π ], τ > 0, t ∈ J := [0, T ],
�v(tk) = v(t+k ) − v(t−k ) = Ik(v(tk)) for t = tk and k = 1, 2, ...,m,

v(t, 0) = v(t, π) = 0 for t ∈ J,

v(θ, ξ) = ϕ(t, ξ) for t ∈] − ∞, 0] and ξ ∈ [0, π],

(5.1)

where w(t)denotes a R-valued Brownian motion, f, h : R
+ × R → R are continuous

functions, b : R+ → R is continuous and v0 : [−r, 0] × [0, π] → R is a given continuous
function such thatv0(.) ∈ L2([0, π ]) is F0-measurable and satisfies E ‖v0‖2 < ∞.

Let H = L2 (0, π) with the norm ‖.‖ and en :=
√

2
π
sin(nx), (n = 1, 2, 3, . . .) denote

the completed orthonormal basis in H.
Let w(t) := ∑∞

n=1
√

λnβn(t)en(λn > 0), where βn(t) are one dimensional stan-
dard Brownian motion mutually independent on a usual complete probability space
(�,F, {Ft }t≥0,P).

Define A : H → H by A = ∂2

∂z2
, with domain D(A) = H2 (0, π) ∩ H1

0 (0, π).

Then Ah = −∑∞
n=1 n

2 < h, en > en, h ∈ D(A), where en, n = 1, 2, 3, . . . ,
is also the orthonormal set of eigenvectors of A. It is well-known that A is the infinitesimal
generator of a strongly continuous semigroup on H, thus (H1) is true.

Let F : D(A) ⊂ H → H be the operator defined by F(t)(z) = b(t)Az for t ≥ 0 and z ∈
D(A).

Let γ > 0 ,define the phase space B = {
ϕ ∈ C((−∞, 0],H) : limθ→−∞ eθγ ϕ(θ)

exists in H
}
and let ‖ϕ‖B = supθ∈(−∞,0]

{
eγ θ‖ϕ‖L2

}
. Then (B, ‖ · ‖B) is a Banach space

and satisfies (A1)–(A2)with L = 1, u(t) = e−γ t , v(t) = max
{
1, e−γ t

}
.Therefore, for

(t, ϕ) ∈ J × B,where ϕ(θ)(ξ) = ϕ(θ, ξ), (θ, ξ) ∈ (−∞, 0] × [0, π], let x(t)(ξ) =
v(t, ξ)and define the functions f : J × B → H and h : J × B → L0

2(H,H) for

the infinite delay as follows: f (t, ψ)(ξ) = ∫ 0
−∞ k2(t, ξ, θ)G1(ψ(θ))dθ, h(t, ψ)(ξ) =

∫ 0
−∞ k3(t, ξ, θ)G2(ψ(θ))dθ, where

(I) the functions k2, k3 are continuous in J × [0, π] × (−∞, 0] and satisfy
∫ 0
−∞

k22(t, ξ, θ)dθ = p2(t, ξ) < ∞,
(∫ π

0 p22(t, ξ)dξ
)

< 1,
∫ 0
−∞ k23(t, ξ, θ)dθ =

p3(t, ξ) < ∞,
(∫ π

0 p23(t, ξ)dξ
)

< 1,
(II) the functions Gi , i = 1, 2 is continuous in J × [0, π] × (−∞, 0)and satisfies 0 ≤

G1(ψ1(θ, ξ)) − G1(ψ2(θ, ξ)) ≤ K
1
2
a (‖ψ1(θ, ·) − ψ2(θ, ·)‖2

L2), 0 ≤ G2(ψ1(θ, ξ)) −
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G2(ψ2(θ, ξ)) ≤ K
1
2
b (‖ψ1(θ, ·) − ψ2(θ, ·)‖2

L2), for (θ, ξ) ∈ (−∞, 0] × [0, π],where
Ka(·), Kb(·), K

1
2
a (·), K

1
2
b (·) : [0,∞[ → (0,∞)are nondecreasing and concave.

Under the above assumptions, we can rewritten Eq. (5.1) as the abstract form of Eq. (1.1).
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t) = Ax(t) +
∫ t

0
B(t − s)x(s)dsdt

+ f (t, xt )dt + h(t, xt )dw(t), t ∈ J := [0, T ],
�x(tk) = x(t+k ) − x(t−k ) = Ik(x(tk)), k = 1, 2, . . . ,m,

x0 = ϕ ∈ B.

(5.2)

Moreover, if b is bounded andC1 function such that b
′
is bounded and uniformly continuous,

then (H2) is satisfied and hence, by Theorem 2.2, Eq. (1.1) has a resolvent operator (R(t))t≥0

on H. By assumption (I) and (II)we have

‖ f (t, ψ1) − f (t, ψ2)‖2H =
∫ π

0

(∫ 0

−∞
k2(t, ξ, θ) (G1(ψ1(θ)) − G1(ψ2(θ))) dθ

)2

dξ

≤
∫ π

0

(∫ 0

−∞
k2(t, ξ, θ)K

1
2
a (‖ψ1(θ, .) − ψ2(θ, ·)‖2L2)dθ

)2

dξ

≤
∫ π

0

(∫ 0

−∞
k2(t, ξ, θ)K

1
2
a (e2αθ‖ψ1(θ, ·) − ψ2(θ, ·)‖2L2)dθ

)2

dξ

≤
(∫ π

0
p22(t, ξ)dξ

)

Ka(‖ψ1 − ψ2‖2B)

≤ Ka(‖ψ1 − ψ2‖2B).

In the same way we obtain the following estimation

‖h(t, φ1) − h(t, ψ2)‖2H ≤ Kb(‖ψ1 − ψ2‖2B).

The next results as consequence of Theorems 3.1and 4.2, respectively.

Proposition 5.1 Assume that the hypothesis (H1)–(H5) hold. Then there exists a mild solu-
tion x of the system (5.1) provided

Q̃ = max {Q1, Q5} < 1.

is satisfied.

Proposition 5.2 Assume that the conditions of Proposition 5.1 hold. Then the mild solution
x of the system (5.1) is stable in the quadratic mean.
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