
SeMA (2015) 67:71–75
DOI 10.1007/s40324-014-0027-4

On generalized Mersenne Primes and class-numbers
of equivalent quadratic fields and cyclotomic fields

Azizul Hoque · Helen K. Saikia

Received: 8 October 2014 / Accepted: 11 November 2014 / Published online: 25 November 2014
© Sociedad Espan̈ola de Matemática Aplicada 2014

Abstract In this paper we define equivalent quadratic fields and prove that generalized
Mersenne primes generate a family of infinitely many equivalent quadratic fields with equiv-
alent index 2 and whose class numbers are divisible by 3. We also prove that the class-number
of the cyclotomic field Q

(
ζm

)
, where m ∈ N and ζm is a primitive m-th root of unity, is divis-

ible by a certain integer g.
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1 Introduction

The class number problem of quadratic field and cyclotomic field is one of the most intriguing
unsolved problems in algebraic number theory and it has been the object of attention of many
years among researchers. It was proved by Nagel [6] that there are infinitely many quadratic
number fields each with class number divisible by a given positive integer. Weinberger [10]
showed that for all positive integers n, there are infinitely many real quadratic fields with
class numbers divisible by n. Ankeny and Chowla [1] proved that there exist infinitely many
imaginary quadratic fields each with class number divisible by g where g is any given
rational integer. Hartung [3] constructed a family of infinitely many imaginary quadratic
fields whose class number is divisible by 3. Ankeny et al.[2], Lang [5], Takeuchi [8] and
Osada [7] independently proved that the class-number of the maximal real subfield of a
cyclotomic field is greater than 1. Osada [7] also proved that this class-number is divisible by

A. Hoque (B) · H. K. Saikia
Department of Mathematics, Gauhati University, Guwahati 781014, India
e-mail: ahoque.ms@gmail.com

H. K. Saikia
e-mail: hsaikia@yahoo.com

123



72 A. Hoque, H. K. Saikia

a certain integer n. Watabe [9] deduced some results on the divisibility of the class-numbers
of certain cyclotomic fields. Recently, we generalized the results of Takeuchi [8] in one of
our papers.

In this paper, we introduce the notion of equivalent quadratic fields. We denote by �F

and rad(F) respectively the discriminant and radicand of the quadratic field F . Two quadartic
fields F1 and F2 are said to be equivalent if there exists an integer n satisfying 1 < n <

min{|rad(F1)|, |rad(F2)|} such that �F1 ≡ �F2(mod n). Such a smallest positive integer n
is called the equivalent index of F1 and F2. We write F1 � F2 to represent F1 is equivalent
to F2 or simply F1 and F2 are equivalent. Also by (F1 : F2) we mean the equivalent index of
F1 � F2. We show that generalized Mersenne primes generate a family of infinitely many
equivalent quadratic fields with equivalent index 2 and whose class numbers are divisible by
3. We also establish that the class-number of the cyclotomic field Q

(
ζm

)
, where m ∈ N and

ζm is a primitive m-th root of unity, is divisible by a certain integer g.

Example Consider the quadratic fields F1 = Q(
√

13), F2 = Q(
√

15) and F3 = Q(
√

21).
Then rad(F1) = 13, rad(F2) = 15, rad(F3) = 21, �F1 = 13, �F2 = 60 and �F3 = 21.
Thus F1 � F3 with (F1 : F3) = 2 and F2 � F3 with (F2 : F3) = 3. But F1 and F2 are not
equivalent.

2 Main results

The concept of generalized Mersenne Prime(GMP) was defined by Hoque and Saikia [4] as
a prime of the form:

Mp,q = pq − p + 1

where p and q are positive integers.
Throughout this paper we consider the GMP, Mp,q with the restrictions: p is odd prime

and q is odd integer.
We see that Mp,q ≡ 1(mod 3) and Mp,q ≡ 1(mod 4).
We consider the following trinomials:

f1(x) = x3 − Mp,q x + p

f2(x) = x3 − px + Mp,q

The discriminants of f1(x) and f2(x) are respectively D( f1) = 4M3
p,q −27p2 and D( f2) =

4p3 − 27M2
p,q . For all odd primes p and odd integers q > 1, we have D( f1) > 0 and

D( f2) < 0. Now

f1(x) ≡ x3 − x ± 1 (mod 3)

f2(x) ≡ x3 ± x + 1 (mod 3)

We see both the trinomials in the right sides are irreducible mod 3. Thus both f1(x) and
f2(x) are irreducible over Q.

Theorem 2.1 The class number of the real quadratic field Q(
√

D( f1)) and the imaginary
quadratic field Q(

√
D( f2)) are divisible by 3.

Proof Let F1(Mp,q) = Q(
√

D( f1)) = Q(
√

4M3
p,q − 27p2) and F2(−Mp,q) = Q(

√
D( f2))

= Q(
√

4p3 − 27M2
p,q). Let Ki be the splitting field of fi (x) and Gi be the Galois group
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of Ki (i = 1, 2) over Q. Since f1(x) and f2(x) are irreducible over Q, G1 and G2 are
isomorphic to S3. Also (2Mp,q , 3p) = 1 and (2p, 3Mp,q) = 1. Thus by Proposition 1 in
[12], Ki over Fi (i = 1, 2) is unramified. Also the Galois group of Ki over Fi (i = 1, 2) is
cubic cyclic group. Thus Ki over Fi (i = 1, 2) is cubic cyclic unramified extension. By class
field theory, the Hilbert class field of Fi contains Ki (i = 1, 2) and thus the class number of
Fi (i = 1, 2) is divisible by 3. ��
Theorem 2.2 There are infinitely many equivalent quadratic fields with index 2 whose class
numbers are divisible by 3.

Proof Since D( f1) = 4M3
p,q − 27p2 ≡ 1(mod 4), the discriminant of the real quadratic

field is �F1(Mp,q ) = D( f1).
Also, D( f2) = 4p3 − 27M2

p,q ≡ 1(mod 4) gives the discriminant of the imaginary
quadratic field is �F2(−Mp,q ) = D( f2).
Now

�F1(Mp,q ) − �F2(−Mp,q ) = 4
(

M3
p,q − p3

)
+ 27

(
M2

p,q − p2
)

≡ 0(mod 2)

Thus the quadratic fields F1(Mp,q) � F2(−Mp,q) with (F1(Mp,q) : F2(−Mp,q)) = 2.
Now we count the number of real quadratic fields of the form F1(Mp,q).
Under the truth of the Conjecture 2.1 [4], we can find infinitely many GMPs such

that D( f1)’s are not perfect square and hence infinitely many quadratic fields of the form
F1(Mp,q) = Q(

√
D( f1)). Let S be the set of all D( f1)’s which give rise to same fields more

than once. We fix p. Let q0 be give one member in S. Suppose 4M3
p,q0

− 27p2 = a2d for
some fixed square-free integer d and an integer a. Then if F1(Mp,q0) = F1(Mp,q), there
exists an integer c such that 4M3

p,q −27p2 = c2a2d . Thus (Mp,q , ca) is an integral solution
of

4X3 = dY 2 + 27p2 (1)

By Siegel’s theorem, the algebraic curve given by the Diophantine equation (1) has only
finite numbers of integral solutions. Thus #S is finite and hence there are infinitely many
real quadratic fields of the form F1(Mp,q). Also corresponding to each value of Mp,q that
contributes a real quadratic field of the form F1(Mp,q), we get one imaginary quadratic field
of the form F2(−Mp,q). Thus there are infinitely many imaginary quadratic fields of the form
F2(−Mp,q). By the Theorem 2.1, we complete the proof. ��
Yamaguchi [11] showed the following result.

Lemma 2.3 [11] If φ(m) > 4, then h(Q(
√

m))|H(Q(ζ4m + ζ−1
4m )), where φ stands for the

Euler’s function and m > 0 is an integer.

Now from Theorem 2.1 and this lemma, we obtain the following result.

Theorem 2.4 Let m = D( f1) such that φ(m) > 4. Then 3|H(Q(ζ4m + ζ−1
4m )).

Lemma 2.5 [9] If u ≥ 5 is a prime and v is a prime with v ≡ 1(mod u), then

(i) u
u−3

2 | h(Q(ζuv)).

(ii) 2
u−3

2 | h

(
Q

(√
(−1)

v−1
2 v, ζu

))
.

(iii) 2
u−3

2 | h(Q(ζuv)).
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Applying this lemma we obtain the following result.

Theorem 2.6 For any prime u ≥ 5, the following statements hold:

(i) u
u−3

2 | h(Q(ζuMp,q )).

(ii) 2
u−3

2 | h
(
Q

(√
Mp,q , ζu

))
.

(iii) 2
u−3

2 | h(Q(ζuMp,q )).

We now characterise units and irreducible elements in the real quadratic field F1(Mp,q).

Theorem 2.7 Let D > 1 be an square-free integer such that D ≡ 1(mod 4). Let α = 1 ± u,
where u is a unit in the real quadratic field Q(

√
D). Then the following hold:

(i) If N (u) = −1, then α is irreducible if and only if u is expressible as u = a+b
√

D
2 such

that a is an odd prime and b is an odd integer.

(ii) If N (u) = 1, then α is irreducible if and only if u is expressible as u = a+b
√

D
2 such

that a ± 2 is an odd prime and b is an odd integer.

Proof (i) Since D ≡ 1(mod 4) and u is a unit in Q(
√

D), u is of the form

a + b
√

D

2

where a and b are integers.

Now N (α) = (2±a)2−Db2

4 = N (u) ± a + 1 = ±a.
For α to be irreducible in Q(

√
D), a should be a rational prime.

If a = 2, then N (u) = −1 gives a contradiction to D≡ 1(mod 4).
Thus α to be irreducible in Q(

√
D), a should be a rational odd prime.

Again, N (u) = −1 ⇒ a2 − db2 = −4 ⇒ b ≡ 1(mod 2).
Thus b is a rational odd integer.
The converse part is obvious as N (α) = ±a, a rational odd prime.
Similarly we can prove (ii).
As a consequence we have the following result. ��

Corollary 2.8 Let u be a unit in F1(Mp,n) and α = 1 ± u. Then the following hold:

(i) If N (u) = 1, then α is irreducible if and only if u is expressible as u = a+b
√

D( f1)
2 such

that a is a rational odd prime and b is a rational odd integer.

(ii) If N (u) = 1, then α is irreducible if and only if u is expressible as u = a+b
√

D( f1)
2 such

that a ± 2 is a rational odd prime and b is a rational odd integer.
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