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Abstract In this paper we introduce some of the main tools to study non-linear boundary
value problems whose simplest model is

{−�p(u) = −div(|∇u|p−2∇u) = f (x), in �;
u = 0, on ∂�

and f (x) belongs to Lm(�),m ≥ 1.
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1 Introduction

The main purpose of these lectures is to introduce some of the main tools to study nonlinear
boundary value problems. In particular, we are concerned with the Dirichlet problem for the
p-Laplace operator which is the simplest example of these ones. To be more precise, given
� a bounded open set in IRN, N ≥ 2, we consider the problem

{−�p(u) = −div(|∇u|p−2∇u) = f (x), in �;
u = 0, on ∂�;
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10 L. Boccardo, L. Moreno-Mérida

or the more general

{
A(u) = −div(a(x)|∇u|p−2∇u) = f (x), in �;
u = 0, on ∂�; (1.1)

where
f ∈ Lm(�), m ≥ 1, (1.2)

1 < p < N , (1.3)

0 < α ≤ a(x) ≤ β, (1.4)

for some constants 0 < α ≤ β.
The classical theory of nonlinear elliptic equations states that W 1,p

0 (�) is the natural
functional space framework to find weak solutions of (1.1), if the function f belongs to the
dual space of W 1,p

0 (�). However, for the model problem (1.1), the existence of W 1,p
0 (�)

solutions fails if the right hand side is a function which does not belong to the dual space of
W 1,p

0 (�). It is possible to find distributional solutions in function spaces larger than W 1,p
0 (�)

but contained in W 1,1
0 (�). Keeping this in mind, these lecture notes are divided into four

sections. After this introductory section, the second one deals with existence and regularity
results when the right hand side belongs to the dual space of W 1,p

0 (�). In this case, the
model problem (1.1) is a variational boundary value problem. In Sects. 3 and 4 we consider
the problem (1.1) when the right hand side is a function which does not belong to the dual
space W 1,p

0 (�). In the former, we study the existence of distributional solutions belonging to a

function space strictly contained in W 1,1
0 (�). On the other hand, in the latter we will prove the

existence of solutions belonging to W 1,1
0 (�) and not belonging to W 1,q

0 (�), 1 < q < p. The

existence of W 1,1
0 (�) solutions, instead of W 1,q

0 (�) or W 1,p
0 (�) solutions, of the boundary

value problem (1.1) is a consequence of the poor summability of the right hand side. We
point out that existence results of W 1,1

0 (�) distributional solutions is not so usual in elliptic
problems.

Note that our approach is “direct” and that there are no regularity assumptions w.r.t. x ∈ �.
We have made an effort to keep these lecture notes self-contained, specifically orientated

to Master and PhD students. For the basic tools of functional analysis and Sobolev spaces we
refer to the book by Brezis [7]. Some similar problems are also studied in the books [1,2].

2 Weak solutions

Theorem 2.1 If f ∈ Lm(�) with m ≥ (p∗)′ = N p
N p+p−N , then there exists a weak solution

u ∈ W 1,p
0 (�) of (1.1), i.e., u satisfies

∫
�

a(x)|∇u|p−2 ∇u ∇ϕ =
∫
�

f ϕ, ∀ϕ ∈ W 1,p
0 (�). (2.1)

Proof This result is deduced using variational methods. We consider the following functional

J (v) = 1

p

∫
�

a(x)|∇v|p −
∫
�

f v, ∀v ∈ W 1,p
0 (�).
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Existence and regularity results for p-Laplacian boundary value problems 11

Since m ≥ (p∗)′, the functional J is well defined. Moreover, using Hölder inequality with
exponents (p∗, (p∗)′) and (1.4), we obtain

J (v) ≥ α

p
||v||p

W 1,p
0 (�)

− || f ||L(p∗)′ (�) ||v||L p∗
(�).

Thus, using Sobolev inequality, we have

J (v) ≥ α

p
||v||p

W 1,p
0 (�)

− S || f ||L(p∗)′ (�) ||v||W 1,p
0 (�)

,

which implies that J is coercive. On the other hand, thanks to the weak lower semiconti-
nuity of the norm ||.||

W 1,p
0 (�)

in W 1,p
0 (�), we deduce that the functional J is weakly lower

semicontinuous. Then, there exists u ∈ W 1,p
0 (�) a minimizer for J and the Euler-Lagrange

equation that u satisfies is the equation of (1.1), in the sense of (2.1). 	

Theorem 2.2 If f ∈ Lm(�) with m ≥ (p∗)′ = N p

pN+p−N , then the weak solution u of (1.1)
is unique.

Proof This fact is due to the strict convexity of the functional J defined above. 	

2.1 Summability of the weak solutions

We make use of the following functions, defined for k > 0 and s ∈ IR,

Tk(s) :=
⎧⎨
⎩

−k, s ≤ −k
s, |s| ≤ k
k, s ≥ k

Gk(s) := s − Tk(s). (2.2)

Theorem 2.3 If f ∈ Lm(�) with (p∗)′ ≤ m < N
p , then the weak solution u of (1.1) given

by Theorem 2.1 belongs to L((p−1)m∗)∗(�).

Proof The idea is to take a suitable power of the weak solution u as a test function (see [6]).
But, it is not possible because the solution is not bounded. In this way, we take as a test
function

ϕ = |Tk(u)|p(γ−1) Tk(u), γ ≥ 1,

which is a bounded function. Hence we have,

(pγ − p + 1)
∫
�

a(x)|∇Tk(u)|p |Tk(u)|p(γ−1)

≤ || f ||Lm (�)

(∫
�

|Tk(u)|(pγ−p+1)m′
) 1

m′
.

Moreover, using Sobolev inequality and (1.4), we have∫
�

a(x)|∇Tk(u)|p |Tk(u)|p(γ−1)

= 1

γ p

∫
�

a(x)|∇(Tk(u))
γ |p ≥ α

(S γ )p

(∫
�

|Tk(u)|γ p∗
) p

p∗
.

Summarizing the last inequalities, we deduce that
(∫

�

|Tk(u)|γ p∗
) p

p∗
≤ (S γ )p

α(pγ − p + 1)
|| f ||Lm (�)

(∫
�

|Tk(u)|(pγ−p+1)m′
) 1

m′
.
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12 L. Boccardo, L. Moreno-Mérida

Now, it is sufficient to choose γ such that γ p∗ = (pγ − p + 1)m′, i.e.,

γ = (p − 1)m′

pm′ − p∗ = ((p − 1)m∗)∗

p∗ .

The fact that (p∗)′ ≤ m < N
p implies that γ ≥ 1 and p

p∗ − 1
m′ > 0. To finish, we apply Fatou

Lemma (as k tends to infinite) to deduce that

(∫
�

|u|γ p∗
) p

p∗ − 1
m′

≤ (S γ )p

α(pγ − p + 1)
|| f ||Lm (�).

That is
(∫

�

|u|((p−1)m∗)∗
) p

p∗ − 1
m′

≤ (S γ )p

α(pγ − p + 1)
|| f ||Lm (�),

which completes the proof. 	

Theorem 2.4 If f ∈ Lm(�) with m > N

p , then the weak solution u of (1.1) given by
Theorem 2.1 belongs to L∞(�).

Proof Following the Stampacchia method (see [10]) for L∞-estimates, we take Gk(u) as a
test function in the weak formulation of (1.1) to obtain, using Hölder inequality and (1.4),
that

α

∫
�

|∇Gk(u)|p ≤ || f ||Lm (�)

(∫
{|un |>k}

|Gk(u)|m′
) 1

m′
. (2.3)

Sobolev inequality and Hölder inequality with exponents p∗
m′ and its Hölder conjugate imply

that

α

S p

(∫
�

|Gk(u)|p∗
) p

p∗
≤ || f ||Lm (�)

(∫
�

|Gk(u)|p∗
) 1

p∗
μ{|un | > k}(1− m′

p∗ ) 1
m′ ,

(where μ is the Lebesgue measure) and thus

(∫
�

|Gk(u)|p∗
) p−1

p∗
≤ S p

α
|| f ||Lm (�) μ{|un | > k} 1

m′ − 1
p∗ .

Therefore, using Hölder inequality again (with exponents p∗ and its Hölder conjugate) we
have (∫

�

|Gk(u)|
)p−1

≤ S p

α
|| f ||Lm (�) μ{|un | > k} 1

m′ − 1
p∗ μ{|un | > k}(1− 1

p∗ )(p−1)
,

and then
∫
�

|Gk(u)| ≤
(

S p

α

) 1
p−1 || f ||1/(p−1)

Lm (�) μ{|un | > k}( 1
m′ − 1

p∗ ) 1
p−1 +1− 1

p∗ .

The fact that m > N
p implies ( 1

m′ − 1
p∗ ) 1

p−1 + 1 − 1
p∗ > 1 and by Lemma 5.2 (see Appendix

A below), we deduce the result.

Remark 2.5 Let f belongs to Lm(�)with m > N
p . If a function u ∈ W 1,p

0 (�), not necessary
a solution of a differential problem, satisfies the inequality (2.3), then u belongs to L∞(�).
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Existence and regularity results for p-Laplacian boundary value problems 13

2.2 Nonlinear b.v.p. with lower order term

We make use of the following well known inequalities.

Lemma 2.6 (See Appendix B below) Let ξ and η be arbitrary vectors of IRN .

• If 2 ≤ p < N, then

(|ξ |p−2ξ − |η|p−2η) (ξ − η) ≥ γp |ξ − η|p, (2.4)

• If 1 < p < 2, then

(|ξ |p−2ξ − |η|p−2η) (ξ − η) ≥ γp
|ξ − η|2

(1 + |ξ | + |η|)2−p
, (2.5)

where γp denotes positive constants depending on p. 	

Next, we study the Dirichlet problem for the p-Laplace operator with a lower order term.

We refer to the paper [8] as a starting point of this type of problems. In particular, we consider
the problem {−div( a(x)|∇u|p−2∇u)+ u |u|r−1 = f (x), in �;

u = 0, on ∂�; (2.6)

where r > 1 and f ∈ Lm(�) with m ≥ (p∗)′.

Theorem 2.7 Assume that r > 1 and f ∈ Lm(�) with m ≥ (p∗)′ = N p
N p+p−N . Then, there

exists a weak solution u ∈ W 1,p
0 (�) of (2.6), i.e., |u|r ∈ L1(�) and u satisfies

∫
�

a(x)|∇u|p−2 ∇u ∇ϕ +
∫
�

|u|r−1 u ϕ =
∫
�

f ϕ, ∀ϕ ∈ W 1,p
0 (�) ∩ L∞(�).

Proof We follow a standard approximation procedure. We fix n ∈ N and define the function

gn(s) := |Tn(s)|r−1 Tn(s), ∀s ∈ IR,

where the function Tn is given by (2.2). Firstly, using again variational methods, we study
existence results for the following approximated problems

{−div( a(x)|∇un |p−2∇un)+ gn(un) = f, in �;
u = 0, on ∂�.

(2.7)

To this aim we consider, for each n ∈ IN , the function

φn(s) :=
∫ s

0
gn(t) dt, ∀s ∈ IR,

and we define the functional

Jn(v) = 1

p

∫
�

a(x)|∇v|p +
∫
�

φn(v)−
∫
�

f v, ∀v ∈ W 1,p
0 (�).

We observe that Jn is well defined (since the function gn is bounded and m ≥ (p∗)′).
Moreover, using that φn is a positive function, we get

Jn(v) ≥ 1

p

∫
�

a(x)|∇v|p −
∫
�

f v, ∀v ∈ W 1,p
0 (�).
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14 L. Boccardo, L. Moreno-Mérida

Thus, recalling the proof of Theorem 2.1, we deduce that Jn is a coercive and weakly lower
semicontinuous functional. As a consequence, there exists un ∈ W 1,p

0 (�) a minimizer for
Jn and the Euler–Lagrange equation that u satisfies is the equation of (2.7), in the sense∫

�

a(x)|∇un |p−2 ∇un ∇ϕ +
∫
�

gn(un) ϕ =
∫
�

f ϕ, ∀ϕ ∈ W 1,p
0 (�). (2.8)

Next, we find a solution of (2.6) as a limit (in a sense) of the sequence {un}. Keeping this
in mind, we divide the proof into four steps.

Step 1. The sequence {un} is bounded in W 1,p
0 (�) by a positive constant R. Indeed, using

un as a test function in (2.8), we obtain∫
�

a(x)|∇un |p +
∫
�

gn(un) un ≤
∫
�

| f ||un |,
which implies, dropping the positive term

∫
�

gn(un) un and using (1.4), that

α

∫
�

|∇un |p ≤
∫
�

| f ||un |.

Since m ≥ (p∗)′, using Hölder inequality and next Sobolev inequality, we deduce that

α||un ||p

W 1,p
0 (�)

≤ S || f ||L(p∗)′ (�) ||un ||
W 1,p

0 (�)
.

Therefore, if R := ( S
α

|| f ||L(p∗)′ (�))
1

p−1 , we conclude that

‖un‖
W 1,p

0 (�)
≤ R.

As a consequence, there exists a subsequence (not relabeled) such that un converges
weakly in W 1,p

0 (�) and a.e. in � to a function u ∈ W 1,p
0 (�).

Step 2. Strong convergence in L1(�) of the lower order term. Using again un as a test
function in (2.8), we obtain that

0 ≤
∫
�

gn(un) un ≤
∫
�

| f ||un | ≤ S || f ||L(p∗)′ (�) ||un ||
W 1,p

0 (�)
≤ CR, (2.9)

where CR is a positive constant depending on R (which is given by Step 1).
To finish, we want to use Vitali’s Theorem to prove that the sequence {gn(un)} converges

strongly in L1(�) to |u|r−1 u. To this aim, recalling that un(x) converges a.e. in � to u (by
Step 1), we only need to prove that, for every subset measurable E , we have

lim
meas(E)→0

∫
E

|gn(un)| = 0, uniformly with respect to n.

Indeed, for every k > 0, we have, using (2.9), that∫
E

|gn(un)| ≤
∫

{k≤|un |}
|gn(un)| +

∫
E

|k|r ≤ CR

k
+

∫
E

|k|r ,

which implies that

lim
meas(E)→0

∫
E

|gn(un)| ≤ CR

k
.

Therefore, thanks to Vitali’s Theorem, we conclude that

gn(un) −→ u |u|r−1, strongly in L1(�).
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Existence and regularity results for p-Laplacian boundary value problems 15

As a consequence, we have also obtained that |u|r ∈ L1(�).

Step 3. Passing to the limit. In order to pass to the limit in (2.8), we observe that the weak
convergence of un is not sufficient due to the nonlinearity of the principal part. We need to
prove that the sequence {∇un} converges strongly in L p(�) to ∇u. So, we use [un − Tk(u)]
as test function in (2.8). Hence,∫

�

( a(x)|∇un |p−2∇un − a(x)|∇u|p−2∇u)∇(un − u)

+
∫
�

(gn(un)− gn(Tk(u)))[un − Tk(u)]

= −
∫
�

a(x)|∇u|p−2∇u∇(un − u)−
∫
�

a(x)|∇un |p−2∇un∇[u − Tk(u)]

−
∫
�

gn(Tk(u))[un − Tk(u)] +
∫
�

f [un − Tk(u)],

which implies, using that
∫
�

(gn(un)− gn(Tk(u)))[un − Tk(u)] ≥ 0 and (1.4),

α

∫
�

(|∇un |p−2∇un − |∇u|p−2∇u)∇(un − u)

≤ −
∫
�

a(x)|∇u|p−2∇u∇(un − u)−
∫
�

a(x)|∇un |p−2∇un∇[u − Tk(u)]

−
∫
�

gn(Tk(u))[un − Tk(u)] +
∫
�

f [un − Tk(u)]. (2.10)

In order to pass to the limit in the right hand side of (2.10), we observe firstly that

lim
n→∞

∫
�

a(x)|∇u|p−2∇u∇(un − u) = 0.

Moreover, (1.4) and the fact that the sequence {un} is bounded in W 1,p
0 (�) (by Step 1) implies

that the sequence { a(x)|∇un |p−1} is bounded in L
p

p−1 (�) and so
∣∣∣∣
∫
�

a(x)|∇un |p−2∇un∇[u − Tk(u)]
∣∣∣∣ ≤ C1

[∫
�

|∇[u − Tk(u)]|p
] 1

p = ω1(k).

On the other hand,

lim
n→∞

∫
�

f [un − Tk(u)] =
∫
�

f [u − Tk(u)] = ω2(k),

and, using that |gn(Tk(u))| ≤ |Tk(u)|r ≤ kr , we also deduce that

lim
n→∞

∫
�

gn(Tk(u))[un − Tk(u)] =
∫
�

g(Tk(u))[u − Tk(u)] = ω3(k),

where ωi (k), i = 1, 2, 3, goes to 0 when k tends to infinite. Passing to the limit in (2.10), we
obtain that

0 ≤ lim sup
n→∞

∫
�

( |∇un |p−2∇un − |∇u|p−2∇u)∇(un − u) ≤ ω1(k)+ ω2(k)+ ω3(k),

which implies, letting k tends to infinite,

lim
n→∞

∫
�

( |∇un |p−2∇un − |∇u|p−2∇u)∇(un − u) = 0. (2.11)
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16 L. Boccardo, L. Moreno-Mérida

As expected, the cases p ≥ 2 and p < 2 are different. In the case 2 ≤ p < N , recalling
(2.4), we deduce from (2.11) that the sequence ∇un converges strongly in W 1,p

0 (�) to ∇u.
On the other hand, if 1 < p < 2, using (2.5), it follows from (2.11) that

lim
n→∞

∫
�

|∇(un − u)|2
(1 + |∇un | + |∇u|)2−p

≤ 0. (2.12)

But Hölder inequality with exponents ( 2
p ,

2
2−p ) and Step 1 imply that

∫
�

|∇(un − u)|p =
∫
�

|∇(un − u)|p

(1 + |∇un | + |∇u|) p(2−p)
2

(1 + |∇un | + |∇u|) p(2−p)
2

≤
(∫

�

|∇(un − u)|2
(1 + |∇un | + |∇u|)(2−p)

) p
2

(∫
�

(1 + |∇un | + |∇u|)p
) (2−p)

2

≤ C̃R

(∫
�

|∇(un − u)|2
(1 + |∇un | + |∇u|)(2−p)

) p
2

,

that is to say

∫
�

|∇(un − u)|2
(1 + |∇un | + |∇u|)(2−p)

≥ C̄R

(∫
�

|∇(un − u)|p
) 2

p

. (2.13)

Therefore, using (2.12), we deduce that

lim
n→∞

(∫
�

|∇(un − u)|p
) 2

p ≤ 0,

which implies that the sequence {∇un} converges strongly in W 1,p
0 (�) to ∇u.

Finally, summarizing all the steps, we can pass to the limit in (2.8) and we conclude that∫
�

a(x)|∇u|p−2∇u∇ϕ +
∫
�

u |u|r−1ϕ =
∫
�

f ϕ, ∀ϕ ∈ W 1,p
0 (�) ∩ L∞(�).

	

Remark 2.8 We observe that, if u is a solution of (2.6) given by Theorem (2.7), then we can
use Tk(u) as a test function to deduce∫

�

a(x)|∇u|p−2∇u∇Tk(u)+
∫
�

u |u|r−1Tk(u) =
∫
�

f Tk(u).

Therefore, Levi Theorem (as k tends to ∞) gets∫
�

a(x)|∇u|p +
∫
�

|u|r+1 =
∫
�

f u,

which implies that it is possible to use u as test function, despite his unboundedness.

3 Existence results: problems with low summable data

In this section, we study existence results for the problem (1.1) when f belongs to Lm(�)

with 1 < m < (p∗)′. Here we follow [3,4]. Observe that in this case we do not have a
variational formulation.
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Existence and regularity results for p-Laplacian boundary value problems 17

Theorem 3.1 If f ∈ Lm(�) with max(1, N
N (p−1)+1 ) < m < (p∗)′ = N p

pN+p−N , then there

exists a distributional solution u ∈ W 1,(p−1)m∗
0 (�) of (1.1), in the sense that u satisfies

∫
�

a(x)|∇u|p−2 ∇u ∇ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�).

Remark 3.2 Observe that m > N
N (p−1)+1 implies that (p −1)m∗ > 1 and m < (p)′ implies

that (p − 1)m∗ < p.

Proof We work by approximation to prove the existence of distributional solutions. By
Theorem 2.1, there exists un ∈ W 1,p

0 (�) weak solution of the problem
{−div( a(x)|∇un |p−2∇un) = fn(x), in �;

un = 0, on ∂�; (3.1)

where fn is a sequence of function in L∞(�) such that fn → f in Lm(�) and | fn(x)| ≤
| f (x)| a.e. in�, (for example fn = f

1+ 1
n | f | or fn = Tn( f ), with Tn given by (2.2)). Moreover,

by Theorem 2.4, un ∈ L∞(�).
Our aim is to pass to the limit. Keeping this in mind, we split the proof into four steps.
Step 1. The sequence {un} is bounded in L((p−1)m∗)∗(�). Following the same ideas of

the proof of Theorem 2.3, we define θ = (p−1)m′
pm′−p∗ . We observe that pm′ − p∗ > 0, since

m < N
p . Moreover, the fact that m < (p∗)′, implies that θ < 1. Let ε be a strictly positive

real number. The function vε = [(ε + |un |)1−p(1−θ) − ε1−p(1−θ)]sign(un) is bounded since
1 − p(1 − θ) > 0 (which is equivalent to p > 1). Thus, we can use vε as a test function in
the weak formulation of (3.1) to deduce, using (1.4) and Sobolev embedding, that

C1,p

(∫
�

{(ε + |un |)θ − εθ }p∗
) p

p∗
≤ C2,p

∫
�

a(x)|∇un |p

(ε + |un |)p(1−θ)

≤
(∫

�

| f |m
) 1

m
(∫

�

{(ε + |un |)1−p(1−θ) − ε1−p(1−θ)}m′
) 1

m′
, (3.2)

where Ci,p denotes a strictly positive constant. Since, for every n ∈ IN , un belongs to L∞(�),
the limit as ε tends to zero yields, thanks to Lebesgue theorem,

C1,p

(∫
�

|un |θ p∗
) p

p∗
≤

(∫
�

| f |m
) 1

m
(∫

�

|un |[1−p(1−θ)]m′
) 1

m′
. (3.3)

The fact that m < N
p , implies that p

p∗ > 1
m′ . Furthermore, the choice of θ implies that

θ p∗ = [1 − p(1 − θ)]m′ and that θ p∗ = ((p − 1)m∗)∗. As a consequence we have proved
that

C1,p

(∫
�

|un |((p−1)m∗)∗
) 1

m − p
N ≤

(∫
�

| f |m
) 1

m

, (3.4)

which gives us Step 1.

Step 2. The sequence {un} is bounded in W 1,(p−1)m∗
0 (�). Firstly, we observe that Step

1, Fatou Lemma, (1.4) and (3.2) implies the boundedness, with respect to n, of∫
�

|∇un |p

|un |p(1−θ) .
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18 L. Boccardo, L. Moreno-Mérida

Now we can estimate
∫
�

|∇un |q with q = (p − 1)m∗. Indeed we have
∫
�

|∇un |q =
∫
�

|∇un |q
|un |(1−θ) q

|un |(1−θ) q

≤
(∫

�

|∇un |p

|un |p(1−θ)

) q
p
(∫

�

|un |(1−θ) q p
p−q

)1− q
p

.

We observe that (1 − θ) q p
p−q = q∗, so the right hand side is bounded by Step 1. Then, the

sequence {un} is bounded by a positive constant R in W 1,(p−1)m∗
0 (�).

As a consequence, there exists u ∈ W 1,(p−1)m∗
0 (�) such that, up to a subsequence, un

converges weakly to u in W 1,(p−1)m∗
0 (�).

In what follows, CR denotes (different) positive constants depending only on R, given by
Step 2.

Step 3. Passing to the limit. In order to pass to the limit in the weak formulation of (3.1),
the weak convergence of un is not sufficient due to the nonlinearity of the principal part. We
prove that the sequence {∇un} is Cauchy in Lr (�) with a suitable r > 1. To this aim, we

fix 1 < r < min{2, (p − 1)m∗} such that
r

2 − r
(2 − p) < (p − 1)m∗. Observe that it is

possible because, if 1 < p < 2, then 2 − p < 1 < (p − 1)m∗. Next we take Tk(un − um)

as a test function to obtain, using (1.4),

α

∫
{|un−um |≤k}

{|∇un |p−2 ∇un − |∇um |p−2 ∇um} ∇(un − um)

≤
∫

{|un−um |≤k}
{ a(x)|∇un |p−2 ∇un − a(x)|∇um |p−2 ∇um} ∇(un − um)

≤ k
∫
�

| fn − fm |. (3.5)

If 1 < p < 2, using (2.5), we deduce from (3.5) that

α γp

∫
{|un−um |≤k}

|∇(un − um)|2
(1 + |∇un | + |∇um |)2−p

≤ k || fn − fm ||L1(�).

Thanks to Step 2, we have (using Hölder inequality) that∫
{|un−um |≤k}

|∇(un − um)|r

=
∫

{|un−um |≤k}
|∇(un − um)|r

(1 + |∇un | + |∇um |) r(2−p)
2

(1 + |∇un | + |∇um |) r(2−p)
2

≤
(∫

{|un−um |≤k}
|∇(un − um)|2

(1 + |∇un | + |∇um |)(2−p)

) r
2

(∫
�

(1 + |∇un | + |∇um |) r
2−r (2−p)

)1− r
2

≤ CR

(
k

α γp

)r/2

|| fn − fm ||r/2
L1(�)

= ε1
n,m, (3.6)

where ε1
n,m tends to zero as n,m tend to infinite.

On the other hand, i.e., p > 2, using (2.4), we deduce from (3.5) that

α γp

∫
{|un−um |≤k}

|∇(un − um)|p ≤ k || fn − fm ||L1(�).
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Existence and regularity results for p-Laplacian boundary value problems 19

Then, using Hölder inequality, we have

∫
{|un−um |≤k}

|∇(un − um)|r ≤
(∫

{|un−um |≤k}
|∇(un − um)|p

) r
p

μ(�)
1− r

p

≤
(

k

α γp

)r/p

|| fn − fm ||r/p
L1(�)

μ(�)
1− r

p = ε2
n,m,

(3.7)

where ε2
n,m tends to zero as n,m tend to infinite.

In every case (1 < p < 2 or p ≥ 2) we deduce, using (3.6) or (3.7), Hölder inequality
and Step 2, that∫
�

|∇(un − um)|r =
∫

{|un−um |≤k}
|∇(un − um)|r +

∫
{|un−um |>k}

|∇(un − um)|r

≤εi
n,m +

(∫
�

|∇(un −um)|(p−1)m∗
) r
(p−1)m∗

μ({|un − um | > k})1− r
(p−1)m∗

≤ εi
n,m + C̃R μ({|un − um | > k})1− r

(p−1)m∗ .

Using that un converges strongly to u in L(p−1)m∗
(�), by Step 1 and Sobolev’s embedding,

we conclude from the last inequality that {∇un} is a Cauchy sequence in Lr (�) (r > 1) and
consequently, up to a subsequence, converges to ∇u a.e. in �. Since, by Step 1 and (1.4),
{a(x)|∇un |p−1} is bounded in Lm∗

(�)we deduce that a(x)|∇un |p−2∇un strongly converges
to a(x)|∇u|p−2∇u in (Lσ (�))N , 1 ≤ σ < m∗. Therefore, given ϕ ∈ C∞

c (�), we conclude
that

lim
n→∞

∫
�

a(x)|∇un |p−2∇un∇ϕ =
∫
�

a(x)|∇u|p−2∇u∇ϕ.

To finish, we pass to the limit in the weak formulation of (3.1) to deduce that∫
�

a(x)|∇u|p−2 ∇u ∇ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�),

i.e., u is a distributional solution. 	

3.1 Regularizing effect of a power lower order term on the summability of solutions

In this section we are going to study the unexpected regularizing effect on the existence of
finite energy solutions of the problem:{−div( a(x)|∇u|p−2∇u)+ u |u|r−1 = f (x), in �;

u = 0, on ∂�; (3.8)

where f ∈ Lm(�) with

N

N (p − 1)+ 1
< m < (p∗)′ = N p

N p + p − N
.

Specifically we prove the following theorem (see [9]).

Theorem 3.3 Assume that f ∈ Lm(�) with max(1, N
N (p−1)+1 ) < m < (p∗)′ = N p

N p+p−N .

If r > 1
m−1 , then there exists a distributional solution u ∈ W 1,p

0 (�) of (3.8), i.e., |u|r ∈
L1(�) and u satisfies
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20 L. Boccardo, L. Moreno-Mérida

∫
�

a(x)|∇u|p−2 ∇u ∇ϕ +
∫
�

|u|r−1 u ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�).

Remark 3.4 Observe that p > (p − 1)m∗ and compare with the result of Theorem 3.1 to see
the regularizing effect of the lower order term.

Proof We consider the following approximated problem{−div( a(x)|∇un |p−2∇un)+ un |un |r−1 = fn(x), in �;
u = 0, on ∂�; (3.9)

where fn is a sequence of functions in L∞(�) such that fn → f in Lm(�) and | fn(x)| ≤
| f (x)| a.e. in �. By Theorem 2.7, there exists un ∈ W 1,p

0 (�) such that∫
�

a(x)|∇un |p−2 ∇un ∇ϕ +
∫
�

|un |r−1 un ϕ =
∫
�

fn ϕ, ∀ϕ ∈ W 1,p
0 (�) ∩ L∞(�).

Moreover, for each n ∈ IN fixed, we prove that un belongs to L∞(�). Indeed, consider the
real function ψk defined in IR by

ψk(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, if s < −k − 1,

s + k, if − k − 1 ≤ s < −k,

0, if − k ≤ s ≤ k,

s − k, if k < s ≤ k + 1,

1, if k + 1 < s.

Fixed n ∈ IN , we take ϕ = ψk(un) ∈ W 1,p
0 (�) ∩ L∞(�) as a test function in (3.9) to

deduce, dropping the positive term coming from the principal part, that∫
�

|un |r |ψk(un)| =
∫
�

un |un |r−1 ψk(un) ≤
∫
�

fnψk(un) ≤
∫
�

| fn ||ψk(un)|,
that is ∫

{k≤|un |}
[|un |r − | fn |]|ψk(un)| =

∫
�

[|un |r − | fn |]|ψk(un)| ≤ 0.

Thus, if we take k such that kr = ‖ fn‖L∞(�), then we have

0 ≤
∫

{‖ fn‖L∞(�)≤|un |r }
[|un |r − | fn |]|ψk(un)| ≤ 0.

Therefore

|un | ≤ ‖ fn‖
1
r
L∞(�).

Consequently, it is possible to take powers of un as test function.
Next, we find a solution of (3.8) as a limit of the sequence {un}. We divide the proof into

three steps.

Step 1. The sequence {un} is bounded in W 1,p
0 (�). We use |un | r

m′−1 sign(un) as test function
in (3.9). Firstly, we observe that r > 1

m−1 implies that r
m′−1 > 1 and thus r

m′−1 − 1 > 0.
Hence,

∫
�

a(x)|∇un |p |un |( r
m′−1

−1) +
∫
�

|un |rm ≤ ‖ f ‖Lm (�)

(∫
�

|un |rm
) 1

m′
,
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Existence and regularity results for p-Laplacian boundary value problems 21

which implies, first of all, (∫
�

|un |rm
) 1

m ≤ ‖ f ‖Lm (�) (3.10)

and then

α

∫
�

|∇un |p |un |( r
m′−1

−1) ≤
∫
�

a(x)|∇un |p |un |( r
m′−1

−1) ≤ ‖ f ‖m
Lm (�). (3.11)

Now, we write ∫
�

|∇un |p =
∫

{|un |≤1}
|∇un |p +

∫
{1<|un |}

|∇un |p.

For the first integral of the right hand side we use the estimate∫
{|un |≤1}

|∇un |p ≤ 1

α

∫
�

| f ||T1(un)| ≤ 1

α

∫
�

| f |.

For the second integral of the right hand side we use (3.11) to get∫
{1<|un |}

|∇un |p ≤
∫

{1<|un |}
|∇un |p |un |( r

m′−1
−1)

≤
∫
�

|∇un |p |un |( r
m′−1

−1) ≤ ‖ f ‖m
Lm (�)

α
.

Therefore, summarizing the above two estimates, we conclude

α

∫
�

|∇un |p ≤ ‖ f ‖L1(�) + ‖ f ‖m
Lm (�).

As a consequence, there exists u ∈ W 1,p
0 (�) such that, up to a subsequence, un converges

weakly in W 1,p
0 (�) to u.

Step 2. Convergence of the lower order term. Observe that, by (3.10), the sequence {un} is
bounded in Lrm(�). Moreover, by Step 1 and using Sobolev embedding, un converges (up
to subsequence) to u a.e. in �. Then, since r < rm, we deduce that the sequence {|un |r }
converges strongly to |u|r in Lσ (�), 1 ≤ σ < m. Furthermore |u|r ∈ L1(�).

Step 3. Passing to the limit. We easily check that we can pass to the limit in the principal
part. Indeed, we observe that the use of Tk(un − um) as a test function implies∫

�

( a(x)|∇un |p−2∇un − a(x)|∇um |p−2∇um)∇Tk(un − um)

+
∫
�

(|un |r−1 un − |um |r−1 um)Tk(un − um) ≤ k
∫
�

| fn − fm |.

Hence, dropping the positive term,

α

∫
�

(|∇un |p−2∇un − |∇um |p−2∇um)∇Tk(un − um) ≤ k
∫
�

| fn − fm |,

i.e., we have the inequality (3.5). Following the same arguments of Step 3 of the proof
of Theorem 3.1, we prove that the sequence {∇un} converges to ∇u a.e. in �. By Step

1, the sequence {|∇un |p−1} is bounded in L
p

p−1 (�) and then using the almost everywhere
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22 L. Boccardo, L. Moreno-Mérida

convergence of the gradient we deduce that |∇un |p−2 ∇un strongly converges to |∇u|p−2 ∇u
in (L1(�))N . Therefore,

lim
n→+∞

∫
�

a(x)|∇un |p−2 ∇un ∇ϕ =
∫
�

a(x)|∇u|p−2 ∇u ∇ϕ,

for all ϕ ∈ C∞
c (�).

Using Step 2, we pass to the limit in the lower order term to deduce that

lim
n→+∞

∫
�

|un |r−1 un ϕ =
∫
�

|u|r−1 u ϕ,

for all ϕ ∈ C∞
c (�) and so u ∈ W 1,p

0 (�) satisfies∫
�

a(x)|∇u|p−2 ∇u ∇ϕ +
∫
�

|u|r−1 u ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�),

which gives us the result. 	


4 W1,1
0 solutions

In this section we study the problem (1.1) when f belongs to Lm(�)with 1 < m < (p∗)′ and
(p−1)m∗ = 1. Recall Theorem 3.1 where it is proved existence results when (p−1)m∗ > 1.
The main difficulty of this case is due to the lack of compactness of bounded sequences, since
W 1,1

0 (�) is not reflexive. In this section, we follow [5].

Theorem 4.1 Assume that f ∈ Lm(�) with 1 < m = N
N (p−1)+1 , and that 1 < p < 2 − 1

N .

Then, there exists a distributional solution u ∈ W 1,1
0 (�) of (1.1), i.e., u satisfies

∫
�

a(x)|∇u|p−2 ∇u ∇ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�).

Remark 4.2 Observe that m = N
N (p−1)+1 implies that (p − 1)m∗ = 1.

Proof Following the same arguments used in the proof of Theorem 3.1, we consider un ∈
W 1,p

0 (�) ∩ L∞(�), solutions of (3.1). Furthermore, we observe that the use of Tk(un) as a
test function yields, using (1.4), that

α

∫
�

|∇Tk(un)|p ≤ k
∫
�

| f |, (4.1)

i.e., the sequence {Tk(un)} is bounded in W 1,p
0 (�).

As in the proof of Theorem 3.1, we are going to find a solution of (1.1) as a limit of the
sequence {un}. Keeping this in mind, we divide the proof into several steps.

Step 1. The sequence {un} is bounded in L
N

N−1 (�) and in W 1,1
0 (�). This is immediately

deduced following the same arguments of Step 1 and Step 2 of the proof of Theorem 3.1 in
the case (p − 1)m∗ = 1.

As a consequence, there exists a subsequence, not relabelled, such that {un} converges in
Lr (�), with 1 ≤ r < N

N−1 , and almost everywhere in � to a function u in Lr (�).

Step 2. There exists Z such that {∇un} converges to Z in measure.
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We define the function

g(t) = t

1 + |t | , ∀t ∈ IR,

and use g(un − um) as a test function in the weak formulation of (3.1). Hence, we have
∫
�

( a(x)|∇un |p−2 ∇un − a(x)|∇um |p−2 ∇um)∇(un − um) g′(un − um)

≤
∫
�

( fn − fm)g(un − um),

which implies, using (1.4) and (2.5), that

α γp

∫
�

|∇(un − um)|2
(1 + |∇un | + |∇um |)2−p

g′(un − um) ≤
∫
�

| fn − fm |.

Thus, using Hölder inequality, we have∫
�

|∇(un − um)|
1 + |un − um | =

∫
�

|∇(un − um)|
√

g′(un − um)

(1 + |∇un | + |∇um |)1− p
2

(1 + |∇un | + |∇um |)1− p
2

(1 + |un − um |)√g′(un − um)

≤
(∫

�

|∇(un − um)|2g′(un − um)

(1 + |∇un |+ |∇um |)2−p

) 1
2
(∫

�

(1+ |∇un |+ |∇um |)2−p

(1+|un −um |)2g′(un − um)

) 1
2

which implies that

∫
�

|∇(un − um)|
1 + |un − um | ≤

(
1

α γp

∫
�

| fn − fm |
) 1

2
(∫

�

(1 + |∇un | + |∇um |)2−p
) 1

2

.

Since 1
2−p > 1, from the a priori estimates given by Step 1, it follows that the last term is

bounded. Then, using Hölder inequality again,

∫
�

|∇un − ∇um | 1
2 ≤

∫
�

|∇(un − um)| 1
2

(1 + |un − um |) 1
2

(1 + |un − um |) 1
2

≤ CR

(
1

α γp

∫
�

| fn − fm |
) 1

4

.

Therefore, since the metric space (L
1
2 (�), d( f, g) = ∫

�
| f − g| 1

2 ) is complete, there
exists Z such that ∫

�

|∇un − Z | 1
2 → 0

which implies that

∇un(x)converges in measure to Z

and Step 2 is proved.

Step 3. The sequence { ∂un
∂xi

} is equi-integrable. Following the same ideas of Step 1 and Step

2 of the proof of Theorem 3.1, we use (|un |1−p(1−θ)−k1−p(1−θ))+sign(un) as a test function
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24 L. Boccardo, L. Moreno-Mérida

in the weak formulation of (3.1) with θ = (p−1)m′
pm′−p∗ . Thanks to (1.4) and Step 1 (see (3.4)

too), we have that

C3,p

∫
{k≤|un |}

|∇un |p

|un |p(1−θ) ≤
(∫

{k≤|un |}
| f |m

) 1
m

(∫
{k≤|un |}

{|un |1−p(1−θ) − k1−p(1−θ)}m′
) 1

m′

≤
(∫

{k≤|un |}
| f |m

) 1
m

(∫
{k≤|un |}

|un |[1−p(1−θ)]m′
) 1

m′
≤ C4,p

(∫
{k≤|un |}

| f |m
) 1

m

.

Consequently, by Hölder’s inequality we have (using that p′(1 − θ) = N
N−1 )

∫
{k≤|un |}

|∇un | =
∫

{k≤|un |}
|∇un |

|un |(1−θ) |un |(1−θ)

≤
(∫

{k≤|un |}
|∇un |p

|un |p(1−θ)

) 1
p
(∫

�

|un |p′(1−θ)
) 1

p′
≤ C5,p

(∫
{k≤|un |}

| f |m
) 1

m

,

where Ci,p denotes a strictly positive constant. Thus, for every measurable subset E , thanks
to (4.1) and the last inequality we have∫

E

∣∣∣∣∂un

∂xi

∣∣∣∣ ≤
∫

E
|∇un | ≤

∫
E

|∇Tk(un)| +
∫

{k≤|un |}
|∇un |

≤ meas(E)
1
p′

(
k

α
‖ f ‖L1(�)

) 1
p + C5,p

(∫
{k≤|un |}

| f |m
) 1

m

which implies the result.

Step 4. Passing to the limit. As a consequence of Step 2 and Step 3 and using Vitali’s
Theorem, we deduce that

∇un −→ Z strongly in (L1(�))N .

Since ∂un
∂xi

is the distributional partial derivative of un , we have, for every n ∈ IN ,
∫
�

∂un

∂xi
ϕ = −

∫
�

un
∂ϕ

∂xi
, ∀ϕ ∈ C∞

c (�).

We now pass to the limit in the above identities. We use that ∂i un converges to Zi in L1(�)

and that, by Step 1, un converges to u in L1(�). We obtain∫
�

Zi ϕ = −
∫
�

u ∂iϕ, ∀ϕ ∈ C∞
c (�),

which implies that Zi = ∂i u, and then

∇un −→ ∇u strongly in (L1(�))N .

Finally, summarizing all the steps, we can pass to the limit in the weak formulation of
(3.1) to deduce that u satisfies∫

�

a(x)|∇u|p−2 ∇u ∇ϕ =
∫
�

f ϕ, ∀ϕ ∈ C∞
c (�),

which gives us the result. 	

Acknowledgments These lecture notes are the result of a course given by the first author which took place
at the Fisymat—University of Granada (April 2013).
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Appendix A

For convenience of the reader we have collected in this section all the necessary prerequisites
used (in particular) in Sect. 2.

Given a measurable function f : � → IR, we use the following notation

g(k) :=
∫
�

|Gk( f )| and Ak := {x ∈ � : | f (x)| > k}, k > 0.

Lemma 5.1 If f ∈ L1(�), then the function g is differentiable a.e. and g′(k) =
−μ{|un | > k}.
Proof Firstly, we observe that it is sufficient to prove that the function

g̃(k) =
∫

{ f −k>0}
( f − k), k > 0,

is differentiable a.e. with g̃′(k) = −μ(Ak,+), where Ak,+ = {x ∈ � : f (x)− k > 0}.
We observe that the function g̃ is monotone and then g̃ is differentiable a.e. Next we check

its derivative. Let h be a positive number, then

g̃(k + h)− g̃(k)

h
= 1

h

(∫
Ak+h,+

( f − k − h)−
∫

Ak,+
( f − k)

)

= 1

h

(∫
Ak+h,+

−h −
∫

{k< f ≤k+h}
( f − k)

)

= −
∫
�

χ{ f>k+h} − 1

h

∫
{k< f ≤k+h}

( f − k).

The fact that

0 ≤
∫

{k< f ≤k+h}
( f − k) ≤

∫
{k< f ≤k+h}

h,

implies

0 ≤ 1

h

∫
{k< f ≤k+h}

( f − k) ≤
∫
�

χ{k< f ≤k+h}

and then the term
∫

{k< f ≤k+h}
( f − k) converges to 0 as h → 0+. As a consequence,

lim
h→0

g̃(k + h)− g̃(k)

h
= − lim

h→0

∫
�

χ{ f>k+h} = −μ({ f > k}) = −μ(Ak,+)

which gives us the result. 	

Lemma 5.2 Assume that f ∈ L1(�). If there exist α > 1 and B > 0 such that the function
g satisfies

g(k) ≤ Bμ{|un | > k}α, for every k > 0,

then f ∈ L∞(�). Moreover, there exists a positive constant γ = γ (α,�) such that

‖ f ‖L∞(�) ≤ B γ.
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Proof Using Lemma 5.1 one has

g(k) ≤ B[−g′(k)]α, for every k > 0,

that is,

g′(k)[g(k)]− 1
α ≤ − 1

B
1
α

, for every k > 0. (5.1)

Integrating this inequality on (0, k) we get

−
(

1 − 1

α

)
k

B
1
α

≥ g(k)1− 1
α − g(0)1− 1

α = g(k)1− 1
α − ‖ f ‖1− 1

α

L1(�)
.

Consequently,

g(k)1− 1
α ≤ ‖ f ‖1− 1

α

L1(�)
−

(
1 − 1

α

)
k

B
1
α

, ∀ k > 0. (5.2)

In particular, (5.2) holds true for k0 = B
1
α ‖ f ‖1− 1

α

L1(�)

1− 1
α

. This implies that g(k0) = 0 and as a
consequence

| f (x)| ≤ k0 =
B

1
α ‖ f ‖1− 1

α

L1(�)

1 − 1
α

≤ B
1
α ‖ f ‖1− 1

α

L∞(�)μ(�)
1− 1

α

1 − 1
α

.

Then, we deduce that

‖ f ‖L∞(�) ≤
(

1 − 1

α

)−α
μ(�)α−1 B.

	


Appendix B

Here we give just an idea about the proof of (2.4), (2.5): we only work with the simple case
N = 1; the general case can be found in http://www.uam.es/personal_pdi/ciencias/ireneo/
ALMERIA1.

• If 1 < p < 2, then 1
p−1 > 1; so that the local Lipschitz continuity of the real function

s|s| 1
p−1 −1 says

||a| 1
p−1 −1a − |b| 1

p−1 −1b| ≤ 1

p − 1
|a − b|(|a| + |b|) 2−p

p−1

≤ 1

p − 1
|a − b|2 2−p

p−1

(
|a| 1

p−1 + |b| 1
p−1

)2−p
.

Define x = |a| 1
p−1 −1a, y = |b| 1

p−1 −1b. If a > b, we have

(x − y)2

(1 + |x | + |y|)2−p
≤ 2

2−p
p−1

p − 1
(|x |p−2x − |y|p−2 y)(x − y), x > y.

If a < b, the symmetry implies the same inequality.
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• If p > 2, thanks to the symmetry, we prove the inequality

|x − y|p ≤ (|x |p−2x − |y|p−2 y)(x − y),

in the case

(x − y)p ≤ (x p−1 − y p−1)(x − y), x > y,

which is equivalent to the positivity of

ψ(x) = (x p−1 − y p−1)− (x − y)p−1 ≥ 0, x > y.

The function ψ(x) is positive, since it is increasing and ψ(y) = 0.
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