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Abstract
Let p be a rational prime, let F denote a finite, unramified extension of Qp , let K be the
completion of the maximal unramified extension of Qp , and let K be some fixed algebraic
closure of K . Let A be an abelian variety defined over F , with good reduction, letA denote the
Néron model of A over Spec(OF ), and let ̂A be the formal completion ofA along the identity
of its special fiber, i.e. the formal group of A. In thiswork, we prove two results concerning the
ramification of p-power torsion points on ̂A. One of our main results describes conditions on
̂A, base changed to Spf(OK ), for which the field K ( ̂A[p])/K i s a tamely ramified extension
where ̂A[p] denotes the group of p-torsion points of ̂A over OK . This result generalizes
previous work when A is 1-dimensional and work of Arias-de-Reyna when A is the Jacobian
of certain genus 2 hyperelliptic curves.
Résumé
Soit p un entier premier, F une extension finie, non-ramifiée de Qp , K le complété de
l’extension maximale non-ramifiée de Qp et on note K une cloture algébrique fixée de K .
Soit A une variété abélienne définie sur F , à bonne réduction, on noteA sonmodèle de Néron
sur Spec(OF ) et soit Â le complété formel de A le long de l’identité de sa fibre spéciale,
i.e. le groupe formel de A. Dans cette note on prouve deux résultats sur la ramification des
points de puissance de p-torsion de Â. Un de ces résultats donnent des conditions sur Â,
vue sur Spec(OK ), telle que l’extension K (Â)[p])/K soit modérément ramifiée, ou Â[p]
est le groupe de points de p-torsions de Â surOK . Ce résultat généralise des résultats connus
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quand A a dimension 1 et les résultats de Arias-de-Reyna quand A est le Jacobien de certaines
courbes hyperelliptiques de genre 2.
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1 Introduction

In this work, we are interested in studying the ramification behaviour of the p-torsion points
of the formal group associated to an abelian variety over an unramified local field.

Let p be a rational prime, let F denote a finite, unramified extension of Qp , let K be the
completion of themaximal unramified extension ofQp , let K be some fixed algebraic closure
of K , and let O := OK . Let A be an abelian variety defined over F , with good reduction,
letA denote the Néron model of A over Spec(OF ), and let ̂A be the formal completion ofA
along the identity of its special fiber, i.e. the formal group of A.

To state these results, we need the following definitions. In [7], Fontaine studied the O-
module � := �1

O/OK
∼= �1

O/OF
of Kähler differentials of O over OK , or over OF . The

O-module � is a torsion and p-divisible O-module, with a semi-linear action of GF . Let
d : O → �denote the canonical derivation,which is surjective.Wedenote byO(1) := ker(d),
the kernel of d , which is an OK -sub-algebra of O. Membership of an element x of O inside
of O(1) reflects ramification properties of x (see e.g., Definition 2.2 and Lemma 2.3).

By using previous work of the authors [9], we are able to prove that theO(1)-points of the
Tate module of A are trivial, which implies that following theorem.

Theorem A Let A be an abelian variety over F with good reduction. Then there is n0 ≥ 1
such that for every m ≥ n0 and 0 �= P ∈ ̂A[pm](O)\ ̂A[pn0−1](O), we have P /∈ ̂A(O(1)).

For a more concretely description of what this means in terms of the coordinates of the
torsion point P , we refer the reader to Remark 3.6.

Our second result gives conditions on ̂A for which one may take n0 = 1 in Theorem 1.
More precisely, we describe a condition on a formal groupF of dimension g over Spf(OK )

which implies that 0 �= P = (x1, . . . , xg) ∈ F [p](O), the field of definition K (P)/K is
tamely ramified. The condition is discussed in Sect. 4 and is related to a symmetric formal
group law from [5].

Theorem B Let F be a strict (Definition 4.1) formal group of dimension g over Spf(OK ).
For 0 �= P = (x1, . . . , xg) ∈ F [p](O), the field of definition K (P)/K is tamely ramified
and OK (P)

∼= OK [x1, . . . , xg]. Moreover, K (F [p])/K is tamely ramified.

1.1 Related results

In [12, Section 1], Serre showed that for E/Qp an elliptic curve with good supersingular
reduction, the field extension Qp(E[p])/Qp is tamely ramified, and his proof relies on a
detailed study of the formal group attached to E . In particular, Serre explicitly determined
the p-adic valuation of the points on E[p] (note that when E/Qp has good supersingular
reduction we have that E[p] ∼= ̂E[p] where ̂E is the formal group of the Néron model of
E), which allowed him to embed E[p] into a certain vector space on which the wild inertia
group acts trivially.
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Ramification of p-power torsion points of formal groups 363

In her thesis, Arias-de-Reyna generalized this approach, and in [5, Theorem 3.3], she
showed that if there exists a positive rational number such that for all 0 �= P = (x1, . . . , xg) ∈
̂A[p](O), the minimum of p-adic valuation of the coordinates of P equals α, then the action
of wild inertia on ̂A[p] is trivial, and so K ( ̂A[p])/K is tamely ramified. She goes on to define
the notion of a symmetric formal group law on a formal group of dimension 2, and then proves
[5, Theorem 4.15] that if formal group of dimension 2 has a symmetric formal group law
and height 4, then the above statement about the p-adic valuation of the p-torsion points
holds. Later in [5, Theorem 5.9], she identifies a family of genus 2 curves whose Jacobians
have associated formal groups with a symmetric formal group law and height 4, and hence
their p-torsion defines a tamely ramified extension. We also mention work of Rosen and
Zimmerman [11], in which the authors study the Galois group of K (F [pn]) where F is a
generic commutative formal group of dimension 1 and height h.

In the global setting i.e., when working over a number field F/Q, Coleman [1] studied
the ramification properties of torsion points on abelian varieties in relation to the Manin–
Mumford conjecture.More precisely, he conjectured (loc. cit.ConjectureB) that for a smooth,
projective, geometrically integral curveC/F and anyGalois stable torsion packet T inC(F),
the field F(T )/F is unramified at a certain prime p of F . Coleman proved this conjecture
when p is large enough, and using work of Bogomolov, he provided a new proof of the
Manin–Mumford conjecture.

We conclude by noting that our Theorem 1 generalizes [5, Theorem 4.15].

1.2 Outline of paper

In Sect. 2, we recall the definition of the Fontaine integral, our previous work on the kernel
of the Fontaine integral [9], and a different perspective on the Fontaine integral via work of
Wintenberger. In Sect. 3, we prove Theorem 1. We conclude in Sect. 4 with the definition of
a strict formal group and our proof of Theorem 1.

1.3 Conventions

We establish the following notations and conventions throughout the paper.

Fields

Fix a rational prime p > 2. Let K denote the completion of maximal unramified extension
of Qp , let K be a fixed algebraic closure of K , and let Cp denote the completion of K
with respect to the unique extension v of the p-adic valuation on Qp (normalized such that
v(p) = 1). For a tower of field extensions Qp ⊂ F ⊂ K , we denote by GK and respectively
GF the absolute Galois groups of K and F respectively. We denote O := OK .

Abelian varieties

We will consider an abelian variety A defined over some subfield F ⊂ K such that [F :
Qp] < ∞, with good reduction over F . Let A denote the Néron model of A over Spec(OF )

and also denote by ̂A the formal completion ofA along the identity of its special fiber, i.e. the
formal group of A. We note that the formation of Néron models commutes with unramified
base change. We will denote the Tate module of A (resp. the Néron modelA of A) by Tp(A)

(resp. Tp(A)). We note that Tp(A) ∼= Tp(A) as GF -modules.
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364 A. Iovita et al.

Formal groups

We will let F denote a formal group over Spf(OK ). Recall that ̂A is a formal group of
dimension dim(A) and of height h which satisfies dim(A) ≤ h ≤ 2 dim(A). We refer the
reader to [8] for an extensive treatment of formal groups and to [4, Chapter 4.2 and Chapter
5] for a more concise treatment.

2 Fontaine integration for abelian varieties with good reduction

In this section, we recall the construction of the Fontaine integration as well as our previous
work concerning the kernel of the Fontaine integral.

The differentials of the algebraic integers

First, we recall for the reader’s convenience the notation established above. Let K denote
the maximal unramified extension of Qp , let K be a fixed algebraic closure of K , and let
Cp denote the completion of K . Let GK denote the absolute Galois group of K . We denote
O := OK . Fix a finite extension F of Qp in K . For a GK -representation V , the n-th Tate
twist of V is denoted by V (n), which is just the tensor product of V with the n-fold product
of the p-adic cylcotomic character Qp(1).

In [7], Fontaine studied a fundamental object related to these choices, namely the O-
module � := �1

O/OK
∼= �1

O/OF
of Kähler differentials of O over OK , or over OF . The

O-module � is a torsion and p-divisible O-module, with a semi-linear action of GF . Let
d : O → � denote the canonical derivation, which is surjective.

Important examples of algebraic differentials arise as follows: Let (εn)denote a compatible
sequence of primitive pth roots of unity in K . Then

dεn

εn
= d(log εn) ∈ � and p

(

dεn+1

εn+I

)

= dεn

εn
.

Next, we recall a theorem of Fontaine.

Theorem 2.1 ([7, Théorème 1’])Let (εn) denote a compatible sequence of primitive pth roots
of unity in K . For α ∈ K, write α = a/pr for some a ∈ O. The morphism ξ : K (1) → �

defined by

ξ(α ⊗ (εn)n) = a
dεr

εr

is surjective and GK -equivariant with kernel

ker(ξ) = aK :=
{

x ∈ K : v(x) ≥ − 1

p − 1

}

.

Moreover, � ∼= K (1)/aK (1) ∼= (K/aK )(1) and Vp(�) = HomZp (Qp,�) ∼= Cp(1).

Theorem 2.1 implies the following:

Tp(�) ⊗Zp Qp :=
(

lim←−
n

�[pn]
)

⊗Zp Qp ∼=
(

lim←−
(

�
p← �

p← · · · p← � · · ·
))

⊗Zp Qp ∼= Cp(1)
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Ramification of p-power torsion points of formal groups 365

as GF -modules.
We denote by O(1) := ker(d), the kernel of d , which is an OK -sub-algebra of O. Indeed,

if a, b ∈ O(1), then d(ab) = ad(b) + bd(a) = 0, and so ab ∈ O(1). In order to better
understand O(1), we recall a construction from the first and last author [10].

Definition 2.2 Let a ∈ O. Let L/K be a finite extension which contains a, let π be a
uniformizer of L , and let f ∈ OK [x] be such that a = f (π). Then, define

δ(a) := min

(

v

(

f ′(π)

DL/K

)

, 0

)

where DL/K denotes the different ideal of L/K . Note that δ does not depend on π , f , or F ,
and so it defines a function δ : O → (−∞, 0].
Lemma 2.3 (Properties of δ) The function δ from Definition 2.2 satisfies the following prop-
erties.

(1) If a, b ∈ O, then δ(a + b) ≥ min(δ(a), δ(b)), and if δ(a) �= δ(b), then we have equality.
(2) If a, b ∈ O, then δ(ab) ≥ min(δ(a) + v(b), δ(b) + v(a)).
(3) If f ∈ OK [x] and α ∈ O, then δ( f (α)) = min(v( f ′(θ)) + δ(θ), 0).
(4) If x, y ∈, then xdy = 0 if and only if v(x) + δ(y) ≥ 0.
(5) For a ∈ O, δ(a) = 0 if and only if a ∈ O(1).
(6) The formula δ(adb) := min(v(a) + δ(b), 0) is well-defined and give a map δ : � →

(−∞, 0], which makes the obvious diagram commutative.

We will use the follow properties of δ in our study of the Fontaine integral.

Lemma 2.4 ([10, Lemma 2.2]) Let a, b ∈ O be such that δ(a) ≤ δ(b). Then there exists
c ∈ OK [a,b] such that cda = db.

Proposition 2.5 ([10, Theorem 2.2]) Let L/K be an algebraic extension. Then L is deeply
ramified (loc. cit. Definition 1.1) if and only if δ(OL) is unbounded.

The definition of Fontaine’s integration

We are now ready to define Fontaine’s integration. Let H0(A,�1
A/OF

) and respectively
Lie(A)(OF ) denote the OF -modules of invariant differentials on A and respectively its
Lie algebra. Note that ω ∈ H0(A,�1

A/OF
) being invariant implies that (x ⊕A y)∗(ω) =

x∗(ω) + y∗(ω) and [p]∗(ω) = pω where ⊕A is the group law in A(K ).

Definition 2.6 Let u = (un)n∈N ∈ Tp(A) and ω ∈ H0(A,�1
A/OF

). Each un ∈ A(O)

corresponds to a morphism un : Spec(O) → A, and hence we can pullback ω along this
map giving us a Kähler differential u∗

n(ω) ∈ �. The sequence
(

u∗
n(ω)

)

n≥0 is a sequence of
differentials in � satisfying pu∗

n+1(ω) = u∗
n(ω), and hence defines an element in Vp(�) ∼=

Cp(1).
The Fontaine integrationmap

ϕA : Tp(A) → Lie(A)(OF ) ⊗OF Cp(1)

is a non-zero GF -equivariant map defined by

ϕA(u)(ω) := (

u∗
n(ω)

)

n≥0 ∈ Vp(�) ∼= Cp(1).
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366 A. Iovita et al.

Remark 2.7 Using Theorem 2.1 and the function δ from Definition 2.2, we can give an
alternative description of the Fontaine integration map. Let u = (un)n≥0 ∈ Tp(A) and
ω ∈ H0(A,�1

A/OF
). Each un ∈ A(O) corresponds to a morphism un : Spec(O) → A, and

hence we can pullback ω along this map giving us a Kähler differential u∗
n(ω) ∈ �.

For every n ≥ 0, there is a maximal m(n) ≥ 0 such that u∗
n(ω) = αn(dεm(n)/εm(n)) with

αn ∈ O where εm(n) is some primitive pm(n)-th root of unity. To see this, we first note that

δ

(

dεr

εr

)

= −r − 1

pr (p − 1)

for any primitive pr -th root of unity. This result follow from the definition of δ and a result
of Tate [14, Proposition 5] on the valuation of the different ideal of K (εr )/K . By taking
m(n) = −[δ(u∗

n(ω))] where [x] denotes the greatest integer of the real number x , we can
use Lemma 2.3.(6) and Lemma 2.4 to deduce the above equality.

Now using Theorem 2.1, we have that

ϕA(u)(ω) = lim
n→∞ pn−m(n)αn ∈ Cp.

Moreover, using the definition of δ and this above interpretation, we can see that if u ∈
Tp(A)GK (i.e., if u is an unramified path), then ϕA(u)(ω) = 0. Indeed, it is clear from the
definition of δ that m(n) = 0.

The kernel of the Fontaine integral

In [9], we studied the kernel of ϕA. As noted in Remark 2.7, we have that Tp(A)GK lies in
ker(ϕA), and in [9, Theorem 4.5, Theorem A.4], we showed that Tp(A)GK = ker(ϕA). In
proving these results, we determined the kernel of the Fontaine integral when restricted to
the Tate module of the formal group of A. This result will play a role later on, and so we
present it below.

Theorem 2.8 ([9, Theorem 5.5]) Let A be an abelian variety over F with good reduction,
let A denote its Néron model, and let ̂A be the formal group of A. The Fontaine integral
restricted to the Tate module of ̂A is injective i.e., ker((ϕA)|Tp( ̂A)) = 0.

Another point of view on the Fontaine integrationmap

In this subsection, we give another perspective on the Fontaine integration map, which will
naturally lead us towards an application of Theorem 2.8.

We keep all the notations from the previous sections and Subsection 1.3. Recall that we let
O := OK andwe have theO-module� := �1

O/OK
with its canonical derivation d : O → �.

Note that d is surjective and � is p-divisible, and let us denote O(1) := ker(d).

Lemma 2.9 Let A(1)
inf denote the p-adic completion of O(1). Then, the exact sequence of

GF-modules

0 → O(1) → O d→ � → 0

induces another exact sequence:

0 → Tp(�) → A(1)
inf

γ→ OCp → 0,
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Ramification of p-power torsion points of formal groups 367

where γ is an OF -algebra homomorphism and Tp(�) is seen as an ideal of A(1)
inf of square

0.

Proof The statement follows from [3, Lemme 3.8] and also from [10, Corollary 1.1], but we
present another proof below.

We consider the diagram

0 O(1) O � 0

0 O(1) O � 0.

pn

d

pn pn

d

The snake lemma gives the exact sequence of GF -modules:

0 → �[pn] → O(1)/pnO(1) → O/pnO → 0.

By taking the projective limit with respect to n of this exact sequence, we obtain the claim.
��

Recall that we have the isomorphism Lie(A)(OF ) ∼= H0(A,�1
A/OF

)∨. By Lemma 2.9,
we have the short exact sequence

0 → Tp(�) → A(1)
inf → OCp → 0,

where Tp(�) is an ideal of A(1)
inf such that (Tp(�))2 = 0.

By definition, we have

Lie(A)(OF ) ⊗OF Tp(�) ∼= ker
(

A(A(1)
inf ) → A(OCp )

)

,

and hence we have the following short exact sequence of abelian groups with GF -action

0 → Lie(A)(OF ) ⊗OF Tp(�) → A(A(1)
inf ) → A(OCp ) → 0.

Consider the following commutative diagram with exact rows

0 Lie(A)(OF ) ⊗OF Tp(�) A(A(1)
inf ) A(OCp ) 0

0 Lie(A)(OF ) ⊗OF Tp(�) A(A(1)
inf ) A(OCp ) 0.

pn

d

pn pn

d

The snake lemma gives a GK -equivariant map

νn : A(OCp )[pn] ∼= A(K )[pn] → Lie(A)(OF ) ⊗OF �[pn]
and by taking the projective limit over n’s, we obtain a map

ν : Tp(A) → Lie(A)(OF ) ⊗OF Tp(�).

Proposition 2.10 The map obtained above

ν : Tp(A) → Lie(A)(OF ) ⊗OF Tp(�) ⊂ Lie(A)(OF ) ⊗OF Cp(1)

coincides with Fontaine’s integral, i.e. we have ν = (ϕA).

Proof In [15, Section 4, page 394], Wintenberger used a generalization of the above con-
struction to obtain an integration pairing which coincides with the Colmez integration pairing
〈·, · 〉Cz. The result now follows from [2, Proposition 6.1]. ��
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368 A. Iovita et al.

3 Consequences of Theorem 2.8: ramification of p-power torsion points
on ̂A

In this section, we use the interpretation of the Fontaine integral from Proposition 2.10 and
Theorem 2.8 to deduce properties concerning the ramification of p-power torsion points on
the formal group of A.

To begin, we recall the diagram

0 Lie(A)(OF ) ⊗OF Tp(�) A(A(1)
inf ) A(OCp ) 0

0 Lie(A)(OF ) ⊗OF Tp(�) A(A(1)
inf ) A(OCp ) 0.

pn

d

pn pn

d

Above, we only wrote a piece of the snake lemma, and by writing more of it, we have an
exact sequence of GK -modules

0 → A(A(1)
inf )[pn] → A(O)[pn] → Lie(A)(OF ) ⊗OF �[pn].

By taking projective limits, we have the exact sequence

0 → Tp(A(A(1)
inf )) → Tp(A)

ϕA→ Lie(A)(OF ) ⊗OF Tp(�) ⊂ Lie(A)(OF ) ⊗OF Cp(1).
(3.1)

Therefore, Theorem 2.8 implies that Tp( ̂A(A(1)
inf )) = 0.

To study consequences of this property, we will use another ring instead of A(1)
inf .

Definition 3.1 ([6]) Let θ : A(1)
inf → OCp denote the projection map. Then, we define D f :=

θ−1(O). In [6, Remark 1.4.7], Fontaine gives the following construction of D f . Let us recall
that

Vp(�) = Tp(�) ⊗Zp Qp = lim←−
(

�
p← �

p← · · · p← � · · ·
)

and that � and Vp(�) are O-modules. We make R := Vp(�) ⊕ O into a commutative ring
by defining multiplication as follows: (u, α)(v, β) = (βu + αv, αβ) for (u, α), (v, β) ∈ R,
i.e. we require that Vp(�) is an ideal of R of square 0. Then we have

D f = {(u = (un)n≥0, α
) ∈ R | d(α) = u0}.

By Definition 3.1, we have an exact sequence of GK -modules

0 → Tp(�) → D f
θ→ O → 0,

where θ(u, α) = α, and the p-adic completion of D f is A
(1)
inf . We note that we may construct

the diagram above in the same way using D f instead of A(1)
inf , which produces the exact

sequence (3.1) with D f instead of A(1)
inf . Instead of the exact sequence (3.1) above, we will

have the following exact sequence

0 → Tp(A(D f )) → Tp(A)
ϕA→ Lie(A)(OF ) ⊗OF Tp(�) ⊂ Lie(A)(OF ) ⊗OF Cp(1).

Again, the Theorem 2.8 implies that Tp
(

̂A(D f )
) = 0.

We will use this observation to deduce that Tp
(

̂A(O(1))
) = 0. In order to do so, we need

to show that ̂A[pn](D f ) ∼= ̂A[pn](O(1)), for all n ≥ 1, which is accomplished through the
following two lemmas.
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Ramification of p-power torsion points of formal groups 369

Lemma 3.2 Let x ∈ A[pn](O(1)), then there is x ′ ∈ A(D f ) with θ(x ′) = x and such that
[pn](x ′) = 0.

Proof Recall that D f := {(

(xn)n, y) ∈ Vp(�) × O | x0 = dy
}

, i.e. we have an exact
sequence

0 → Tp(�) → D f
θ→ O → 0

and this exact sequence splits over O(1) ⊂ O, i.e. the following diagram is cartesian and has
exact rows

0 −→ Tp(�) −→ D f
θ−→ O −→ 0

|| ∪ ∪
0 −→ Tp(�) −→ Tp(�) ⊕ O(1) θ−→ O(1) −→ 0.

In particular, the section s : O(1) −→ D f is defined by s(x) := (0, x). Then s defines a
morphism s : A(O(1)) → A(D f ), and if x ∈ A[pn](O(1)), then s(x) ∈ A[pn](D f ). ��

In the next lemma, we show a converse of Lemma 3.2 at least for the formal group ̂A of
A.

Lemma 3.3 Let ̂A denote the formal group of the abelian schemeA and fix n ≥ 1 an integer.
Let

0 �= P ∈ ̂A(O)[pn]\ ̂A(O(1))

and let Q ∈ ̂A(D f ) be a point such that θ(Q) = P. Then [pm]Q �= 0 for all m ≥ n.

Proof Let m ≥ n and denote by

[pm](X1, . . . , Xg) := (

f1(X1, . . . , Xg), f2(X1, . . . , Xg), . . . , fg(X1, . . . , Xg)
)

themultiplication by pm on ̂A. Let S := OF [[X1, . . . , Xg)]]/I , where I is the ideal generated
by f1, f2, . . . , fg , then we know S is a finite flat OF -algebra, in particular S is a free OF -
module and ̂A[pm] := Spec(S)with the co-multiplication of ̂A, is a finite flat group-scheme,
so ̂A ×OF Spec(F) is an étale, therefore smooth, group-scheme over F . This implies that
the image in S ⊗OF F of the determinant of the matrix:

⎛

⎜

⎜

⎝

∂( f1)
∂(X1)

∂( f1)
∂(X2)

. . .
∂( f1)
∂(Xg)

...
...

. . .
...

∂( fg)
∂(X1)

∂( fg)
∂(X2)

. . .
∂( fg)
∂(Xg)

⎞

⎟

⎟

⎠

is a unit.
Let now P = (x1, x2, . . . , xg) ∈ m

g
O ∈ ̂A[pn](O)\ ̂A[pn](O(1)), i.e. there is 1 ≤ i ≤ g

such that xi is not in O(1). Let P ′ = (y1, y2, . . . , yg) ∈ ̂A(D f ) such that θ(P ′) = P , i.e.
y j = α j + x j , with α j ∈ Vp(�) and d(x j ) = α j,0, for all 1 ≤ j ≤ g. By the above
assumption αi �= 0. As in D f we have α jαk = 0 for all 1 ≤ j, k ≤ g, the Taylor formula
implies that if [pm](P ′) = 0 we must have:

fs(x1, . . . , xg) +
g

∑

j=1

∂( fs)

∂(X j )
(x1, . . . , xg)α j =

g
∑

j=1

∂( fs)

∂(X j )
(x1, . . . , xg)α j = 0
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for every 1 ≤ s ≤ g. But the determinant of the matrix
⎛

⎜

⎜

⎝

∂( f1)
∂(X1)

(x1, . . . , xg)
∂( f1)
∂(X2)

(x1, . . . , xg) . . .
∂( f1)
∂(Xg)

(x1, . . . , xg)
...

...
. . .

...
∂( fg)
∂(X1)

(x1, . . . , xg)
∂( fg)
∂(X2)

(x1, . . . , xg) . . .
∂( fg)
∂(Xg)

(x1, . . . , xg)

⎞

⎟

⎟

⎠

is a unit in K , i.e. it is non-zero and αi �= 0. This is a contradiction. ��
Remark 3.4 We note that the group-scheme ̂A[pm] is not smooth over OF (for example
S/pS could have nilpotents). We also remark that as ̂A[pm] ×OF Spec(F) is smooth, the
map θ ⊗1 : ̂A[pm](D f ⊗OF K ) → ̂A[pm](F) is surjective, but this is clear as D f ⊗OF F =
Vp(�) ⊕ F .

Lemma 3.2 and Proposition 3.3 imply that the map θ gives an isomorphism ̂A[pn](D f ) ∼=
̂A[pn](O(1)), for all n ≥ 1. Combining this with the fact that Tp

(

̂A(D f )
) = 0, we have the

following result.

Theorem 3.5 (=Theorem 1) Let A be an abelian variety over F with good reduction. Then
there is n0 ≥ 1 such that for every m ≥ n0 and 0 �= P ∈ ̂A[pm](O)\ ̂A[pn0−−1](O), we
have P /∈ ̂A(O(1))

Remark 3.6 We observe that the above is a result regarding ramification properties of the
p-power torsion points of the formal group of our abelian variety with good reduction over F
(c.f. Proposition 2.5). More precisely, let m ≥ n0 and 0 �= P ∈ ̂A[pm](O)\ ̂A[pn0−−1](O)

be as in the theorem above. Let P = (x1, x2, ..., xg) with xi ∈ O for 1 ≤ i ≤ g. Lemma 3.5
says the following: let L = K [P] := K [x1, x2, ..., xg], let π denote a uniformizer of L
and let DL/K denote the different ideal of L/K . For every 1 ≤ i ≤ g let fi (X) ∈ OK [X ]
be polynomials such that fi (π) = xi , for every i . Then there is 1 ≤ j ≤ g such that
v( f ′

j (π)) < v(DL/K ) (i.e. x j /∈ O(1)).

4 A theorem on the ramification type of the field obtained by adjoining
a p-torsion point of a formal group

In this subsection we study the ramification properties of the extension K [P]/K , where P
is a non-zero p-power torsion point of the formal group of A.

We continue to denote by K the completion of the maximal unramified extension ofQp in
an algebraic closure of Qp , which we denote K . LetF denote a formal group of dimension
g over Spf(OK ). For example, F can be the formal group of the Néron model of A over
Spf(OK ).

To begin, we define the notion of a strict formal group.

Definition 4.1 Consider the multiplication-by-p map

[p](X1, . . . ., Xg) = ( f1(X1, . . . ., Xg), f2(X1, . . . ., Xg), . . . , fg(X1, . . . ., Xg))

on F where each fi (X1, . . . ., Xg) is a power series in with coefficients in OK . For each
1 ≤ i ≤ g, define Fi (X1, . . . , Xg) to be the form comprised of monomials of fi which have
unit coefficient and minimal degree, where we consider each monomial X1, . . . , Xg to be of
degree 1.
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Ramification of p-power torsion points of formal groups 371

Let d1, . . . , dg denote the degree of these forms F1(X1, . . . , Xg), . . . , Fg(X1, . . . , Xg),
respectively, which we note are (possibly distinct) powers of p. Let G1(X1, . . . , Xg),

. . . ,Gg(X1, . . . , Xg) denote the reductions modulo p of the forms F1(X1, . . . , Xg), . . . ,

Fg(X1, . . . , Xg).
Consider the system of equations

G1(X1, . . . , Xg) = G2(X1, . . . , Xg) = · · · = Gg(X1, . . . , Xg) = 0, (4.1)

We say that the formal groupF is strict if d1 = d2 = · · · = dg and the only solution to (4.1)
is (0, 0, . . . , 0) ∈ (Fp)

g .

Remark 4.2 If F is a formal group of dimension 1, then it is clear that F is strict since we

will have that F1(X1) = uX ph

1 , where h is the height ofF . Moreover, ifF is the product of
1-dimensional formal groups, then again F is strict.

Remark 4.3 We can given an equivalent characterization of strict as follows. Consider the
g×gmatrix M = (ai j )where the entry ai j consists of the coefficient of Xi in the linear form
G j for each 1 ≤ i, j ≤ g. The condition that F be strict is equivalent to the determinant of
M being non-zero.

We refer the reader to [5, Remark 4.14] for an example of a 2-dimensional formal group
of height 4 where this condition holds, and here we note that the above degrees all equal p2.
Moreover, we remark that the proof from loc. cit. holds for any g-dimensional formal group
of height 2g where the degrees d1 = d2 = · · · = dg all equal p2.

With this definition, we can state our main result.

Theorem 4.4 Let F be a strict formal group of dimension g. For 0 �= P = (x1, . . . , xg) ∈
F [p](O), the field of definition K (P)/K is tamely ramified and OK (P)

∼= OK [x1, . . . , xg].
Moreover, K (F [p])/K is tamely ramified.

Proposition 4.5 Let F be a strict the formal group of dimension g. For every 0 �= P ∈
F [p](O), the coordinates of P are not all in O(1).

Proof Let 0 �= P = (x1, . . . , xg) ∈ F [p](O) be a non-zero p-torsion point. By Theo-
rem 4.4, we know that the extension K (P)/K is tamely ramified and that there exists some
coordinate xi which is a uniformizer for K (P)/K . By [13, Proposition III.6.13], we have
that v(DK (P)/K ) > 0 where DK (P)/K is the different ideal of K (P)/K . Now since xi is a
uniformizer for K (P)/K , we have that

δ(xi ) = −v(DK (P)/K ) < 0,

where δ is the function defined in Definition 2.2. By Lemma 2.3.(5), xi /∈ O(1) as desired.
��

For the remainder of this section, we focus on proving Theorem 4.4. The proof can be
broken down into three steps.

(1) Given a non-zero p-torsion point P = (x1, . . . , xg) ∈ F [p](O), we will carefully
construct linear combinations z∗i of the x1, . . . , xn which satisfy nice properties in terms
of their valuations and distances between their K -conjugates. See Lemma 4.6.

(2) Next, we consider the change of variables (i.e., the isomorphism of formal groups) which
sends the coordinate Xi to the linear combination Z∗

i described above. We use the prop-
erties of the z∗i and the strictness of F to precisely determine the valuation of z∗i and to
estimate the valuation of the difference between them and their K -conjugates.
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(3) Finally, we use Krasner’s lemma to deduce that one of the original coordinates x1, . . . , xg
of P must be a uniformizer for the maximal order of K (P), from which Theorem 4.4
follows.

Lemma 4.6 Let F be a formal group of dimension g over Spf(OK ). Let 0 �= P =
(x1, . . . , xg) ∈ F [p](O). There exist linear combinations z∗1, . . . , z∗g of x1, . . . , xg with
coefficients in (OK )× ∪ {0} which satisfy:

(1) K (z∗i ) ∼= K (P),
(2) v(z∗i ) = min{v(x1), . . . , v(xg)},
(3) v(z∗i − σ(z∗i )) = min{v(x1 − σ(x1)), . . . , v(xg − σ(xg))} for all σ ∈ Gal(K̃ (P)/K )

where K̃ (P) is the Galois closure of K (P),

and such thematrix M representing the changeof coordinates (z∗1, . . . , z∗g)t = M(x1, . . . , xg)t

is invertible. Here the exponent t indicates the transpose of a matrix.

Proof Let e := [K (P) : K ]. Our proof will involve making a series of linear combinations.
To begin, we will construct the element z∗1. First, consider all the linear combinations of the
form

B1 := {z = u1x1 + · · · + ugxg where ui ∈ (OK )× ∪ {0} and u1 �= 0}. (4.2)

By our assumptions on K , the set of ui (mod p) is infinite, with ui as in the above formula,
and hence we may find one linear combination, call it z1 in B1, satisfying the following two
conditions:

(a) v(z) ≥ v(z1) for all other linear combinations z from B1,
(b) K (z1) ∼= K (P).

To show that K (z1) ∼= K (P) holds, consider the following. There are exactly e embeddings
of K (x1, . . . , xg) into the fixed algebraic closure K , call them σ1, . . . , σe. Note that the
vectors w j := (σ j (x1), . . . , σ j (xg)), 1 ≤ j ≤ e, are distinct. Indeed, if for some i �= j
the vectors wi and w j coincide, then σi and σ j will coincide at x1, . . . , xg and so they will
coincide on K (x1, . . . , xg), which is not the case.

Consider now, for each pair (i, j) with 1 ≤ i, j ≤ e and i �= j , the hyperplaneHi, j given
by

Hi, j =
{

(c1, c2, . . . , cg) : c1, . . . , cg ∈ K ,

g
∑

l=1

cl(σi (xl) − σ j (xl)) = 0

}

.

Since the vectors w j , 1 ≤ j ≤ e are distinct, none of Hi, j covers the full space Kg . Denote
by H the union of these finitely many hyperplanes. Choose now any c1, . . . , cg ∈ K such
that the point (c1, c2, . . . , cg) lies outside H. Then we claim that the element

z := c1x1 + · · · + cgxg

satisfies K (z) = K (x1, . . . , xg). Indeed, σ1(z), . . . , σe(z) are distinct. For, if two of them
are equal, say σi (z) = σ j (z) with i �= j , then (c1, c2 . . . , cg) is forced to lie in Hi, j .
Thus σ1(z), . . . , σe(z) are distinct, so z has at least e distinct conjugates over K . Hence
[K (z) : K ] ≥ e and in conclusion K (z) = K (x1, . . . , xg). Moreover, we can find an
element z1 ∈ B1 satisfying conditions (a) and (b) above.

Wepause to note that thematrixM representing the changeof coordinates (z1, x2, . . . , xg)t

= M(x1, x2, . . . , xg)t is invertible. Indeed, the matrix M has units along the diagonal, the
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coefficients of the linear combination z1 in the first row, and zeros elsewhere, hence the
determinant is a unit.

We now look at the distances between these linear combinations and various of their
conjugates over K . Fix σ ∈ Gal(Qp/K ) and consider the infimum of the values v(z − σ(z))
for the linear combinations z as in (4.2), i.e. we look at inf{v (z − σ(z)) | z ∈ B1}. We first
show that this infimumexists and is attainedby some linear combination.Note that ifσ|K (z1) =
id, then since all linear combinations belong to K (x1, . . . , xg), we have that z − σ(z) = 0
for all linear combinations z, i.e. inf{v (z − σ(z)) | z ∈ B1} = ∞ = v(z1 − σ(z1)). If we
consider σ such that σ|K (z1) �= id, then we at least have that v(z−σ(z)) < ∞ for some linear
combinations z, for example for z = z1.We have that the set of possible valuations is discrete,
and the set of values v(z−σ(z)) has a lower bound, namely min{v(x1 −σ(x1)), . . . , v(xn −
σ(xg))}. Thus, the infimum of the set of values v(z − σ(z)) is attained by some linear
combination z from (4.2), but note it need not be obtained by z1.

Let G denote Gal(K̃ (P)/K ) where K̃ (P) is the Galois closure of K (P)/K . For a fixed
σ ∈ G, let zσ ∈ B1 denote one such linear combination attaining the minimum v(zσ −
σ(zσ )) = min{v (z − σ(z)) | z ∈ B1}. We claim that we can find a linear combination of z1
and of all of these zσ where σ ∈ G which simultaneously achieves these minima. To do this,
consider all linear combinations

z∗ = z1 +
∑

σ∈G
uσ zσ where uσ ∈ (OK )× ∪ {0}. (4.3)

We will choose the uσ ’s such that each such z∗ will live in B1.
To achieve our desired simultaneous minima, we start with one σ ∈ G, call it σ1. First, we

let z∗ = z1. This linear combination might work in that it already attains the minimum at σ1;
by this we mean that v(z−σ1(z)) ≥ v(z1 −σ1(z1)) holds for all linear combinations z ∈ B1

from (4.2). If this is the case, then we set y1 := z1. Now suppose that z1 does not attain the
minimum at σ . In this case, we may use any unit u ∈ (OK )× and set z∗ := z1+uzσ1 . Indeed,
for any unit u ∈ (OK )× and z∗ above, we have that

v(z∗ − σ1(z
∗)) = v

(

z1 − σ1(z1) + u(zσ1 − σ1(zσ1)
) = v(zσ1 − σ1(zσ1)),

because v(z1 − σ1(z1)) > v(zσ1 − σ1(zσ1). Let y1 := z1 + uzσ1 with unit u ∈ (OK )× such
that y1 ∈ B1. We have that for such y1 ∈ B1, v(y1 − σ1(y1)) ≤ v(z − σ1(z) for all z ∈ B1

and that the u′s with y1 ∈ B1 have the property that u (mod p) avoids a finite number of
elements in Fp .

For another automorphism σ2 ∈ G, we proceed along the same lines, that is: if y1 has
the property that v(y1 − σ2(y1)) ≤ v(z − σ2(y1)) for all z ∈ B1 we set y2 := y1. If
the above is not true, let z∗ := y1 + uxσ2 , for some u ∈ O×

K . Then as above we have:
v(z∗ − σ2(z∗)) = v

(

xσ2 − σ2(xσ2)
)

therefore z∗ realizes the minimum for σ2, for all u′s for
which z∗ ∈ B1. For σ1, the worst that can happen is that v(y1−σ1(y1)) = v

(

xσ2 − σ1(xσ2)
)

,

i.e. ifwe denote byπ a uniformizer of K̃ (P), we have y1−σ1(y1) = aπα and xσ2−σ1(xσ2) =
bπα , with a, b ∈ O×

K (P). Therefore z∗ − σ1(z∗) = (a + ub)πa . Now the residue field

of OK (P) is k, therefore by choosing u ∈ O×
K such that a + ub( mod π) �= 0 we have

v(z∗ −σ1(z∗)) = v(y1 −σ1(y1)) and therefore y2 := z∗ realizes the minima for both σ1 and
σ2.

Continuing in this fashion, we arrive at the conclusion that there exist linear combinations
of the form

z∗1 = z1 +
∑

σ∈G
uσ zσ (4.4)
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where uσ ∈ (OK )× ∪ {0} which satisfy the following four conditions:

(1) z∗1 ∈ B1,
(2) K (z∗1) ∼= K (P),
(3) v(z∗1) = min{v(x1), . . . , v(xn)},
(4) v(z∗1 − σ(z∗1)) = min{v(x1 − σ(x1)), . . . , v(xg − σ(xg))} for all σ ∈ G,

as desired. Again, we pause to note that the matrix M representing the change of coordinates
(z∗1, x2, . . . , xg)t = M(x1, x2, . . . , xg)t is invertible. Indeed, the matrix M has units along
the diagonal, the coefficients of the linear combination z∗1 in the first row, and zeros elsewhere,
hence the determinant is clearly a unit.

We now wish to iterate this construction as follows. First, consider the set of all linear
combinations

B2 := {z′ = u1z
∗
1 + u2x2 + · · · + ugxg where ui ∈ (OK )× ∪ {0} and u2 �= 0}. (4.5)

Then, we can repeat the above construction to arrive at a linear combination z2 ∈ B2 satisfing:

(a) v(z′) ≥ v(z2) for all other linear combinations z from B2,
(b) K (z2) ∼= K (P).

Furthermore, we can follow the above construction to say that there exist linear combinations
of the form

z∗2 = z2 +
∑

σ∈G
uσ zσ (4.6)

where uσ ∈ (OK )× ∪ {0} which satisfy the following four conditions:

(1) z∗2 ∈ B2,
(2) K (z∗2) ∼= K (P),
(3) v(z∗2) = min{v(x1), . . . , v(xn)},
(4) v(z∗2 − σ(z∗2)) = min{v(x1 − σ(x1)), . . . , v(xg − σ(xg))} for all σ ∈ G,

Note that the matrix M ′ representing the change of coordinates (z∗1, z∗2, . . . , xg)t =
M ′(z∗1, x2, . . . , xg)t is invertible. Indeed, M ′ has units on the diagonal, the coefficients of
the linear combination z∗2 in the second row, and has zeros everywhere else. Although this
matrix is not triangular, we can make it so by switching the second row with the first and
interchanging the first and second columns; these operations will not change the determi-
nant. After these operations, the matrix becomes triangular with units on the diagonal, and
hence the will be invertible. Moreover, we see that the matrix M ′′ representing the change of
coordinates (z∗1, z∗2, . . . , xg)t = M ′′(x1, x2, . . . , xg)t is invertible since M ′′ = M ′ · M .

We continue in this fashion for all of the remaining coordinates x3, . . . , xg and arrive at
our desired claim, namely that there exists linear combinations z∗1, . . . , z∗g of x1, . . . , xg with
coefficients in (OK )× ∪ {0} which satisfy:

(1) K (z∗i ) ∼= K (P),
(2) v(z∗i ) = min{v(x1), . . . , v(xg)},
(3) v(z∗i − σ(z∗i )) = min{v(x1 − σ(x1)), . . . , v(xg − σ(xg))} for all σ ∈ G

and such thematrixM representing the changeof coordinates (z∗1, . . . , z∗g)t = M(x1, . . . , xg)t

is invertible. ��

We now complete the proof of Theorem 4.4.
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Proof of Theorem 4.4 Fix 0 �= P = (x1, . . . , xg) ∈ F [p](O) and let e = [K (P) : K ]. We
first remark that since K is a completion of the maximal unramified extension, we have that
e > 1, and hence the extension [K (P) : K ] is totally ramified. Indeed, this follows from
that fact that the group-scheme F [p] is connected. In Lemma 4.6, we constructed linear
combinations z∗i of x1, . . . , xg satisfying certain properties. Let Z∗

i denote the same linear
combinations of the coordinates X1, . . . , Xg (so if we were to evaluate Z∗

i at (x1, . . . , xg)we
would recover z∗i ). The last condition from Lemma 4.6 implies that the change of variables
(X1, . . . , Xg) �→ (Z∗

1 , . . . , Z
∗
g) is an isomorphism of formal groups.

We claim that the isomorphism of formal groups (X1, . . . , Xg) �→ (Z∗
1 , . . . , Z

∗
g) will

preserve strictness. As each of the Z∗
i are linear combinations of X1, . . . , Xg with coefficients

in (OK )× ∪ {0}, this isomorphism of formal groups will act linearly on terms of minimal
degree, and hence it changes F1, . . . , Fg by a linear transformation, which is invertible. We
note that it also does the same to G1, . . . ,Gg , therefore, it transforms the set of solutions
of the system by an invertible transformation. Moreover, the system having or not having a
single solution (0, . . . , 0) is the same before or after an isomorphism. We pause to note that
it is crucial that the degrees d1, d2, . . . , dg from Definition 4.1 are all equal.

For the remainder of the proof, we work with this isomorphic formal group with coordi-
nates (Z∗

1 , . . . , Z
∗
g). We note that the vector (z∗1, . . . , z∗g) will reduce mod p to the point

(0, . . . , 0) ∈ kg because all z∗i have valuations strictly positive. But the z∗i have the
same valuation so we can divide all of them by one of them, and consider the vector
(z∗1/z∗g, . . . , z∗g−1/z

∗
g, 1), which will not reduce the zero vector over the residue field. Since

F was assumed to be strict, the reduction of (z∗1/z∗g, . . . , z∗g−1/z
∗
g, 1) cannot be a common

root of all of G1, . . . ,Gg . Therefore, there exists an index j for which G j (z∗1/z∗g, . . . , 1) is
not zero in the residue field k, and hence the valuation of Fj (z∗1, . . . , z∗n) equals the valuation
of each of its individual monomials.

We now want to determine the valuation of z∗j , and hence the valuation of every other z∗i
as they have the same valuation. By considering the equation f j (z∗1, . . . , z∗g), we have

0 = pz∗j + p(terms of degree between 2 and d j − 1) + Fj (z
∗
1, . . . , z

∗
n)

+(higher degree terms).

We claim that v(z∗j ) = 1/(d j − 1) where d j is the degree of Fj . To see this choose a unit
u1 in OK that is a representative for the element in the residue field corresponding to z∗1/z∗g ,
and similarly choose u2, . . . , ug−1. Then Fj (u1, . . . , ug−1, 1) is a unit in OK , because its
image in the residue field is nonzero, by the above choice of j . But this is a form (of degree
d j ) so we can divide by u j inside Fj , and re-denoting the u j ’s in consideration, we have that
Fj (u1, . . . , u j−1, 1, u j+1, . . . , ug) is a unit, and moreover,

Fj (z
∗
1, . . . , z

∗
g) = Fj (u1, . . . , 1, . . . , ug)z

∗d j
j + (terms of strictly larger valuation).

Plugging this into the the above equation, we arrive at the equation

0 = pz∗j + Fj (u1, . . . , 1, . . . , ug)z
∗d j
j + (terms of strictly larger valuation). (4.7)

The minimum valuation in the equality of (4.7) must be attained in at least two terms, and

these terms are forced to be pz∗j and Fj (u1, . . . , 1, . . . , ug)z∗
d j

j . Our claim now follows since
Fj (u1, . . . , 1, . . . , ug) is a unit in OK .

We nowwant to study the relationship between the valuations v(z∗j −σ(z∗j ))where σ ∈ G.
Let u := Fj (u1, . . . , 1, . . . , ug) which is a unit in OK . For each σ ∈ G, we will consider
(4.7) and

0 = pσ(z∗j ) + uσ(z∗j )d j + (∗ ∗ ∗) (4.8)
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where (∗∗∗) corresponds to terms strictly larger valuation. If we subtract equality (4.8) from
(4.7), we arrive at the following:

0 = p(z∗j − σ(z∗j )) + u(z∗
d j

j − σ(z∗j )d j ) + (interesting terms). (4.9)

By condition (3) of Lemma 4.6, the valuation of the “interesting terms" from (4.9) will be
larger than v(z∗j − σ(z∗j )). Indeed, these interesting terms are in fact monomials of the form

z∗m1
1 z∗m2

2 . . . z∗mg

n where some of the mi could be zero and the total degree is strictly greater
than d j . In any case, we may deal with the difference of such monomials and their conjugates
as follows. Suppose for example, that we have a term of the for z∗m2

2 z∗m3
3 − σ(z∗m2

2 z∗m3
3 ).

Then by adding and subtracting the term z∗m3
2 σ(z∗m3

3 ), the difference we need to deal with
can then be written as (z∗2 − σ(z∗2)) times something of positive valuation, plus (z∗3 − σ(z∗3))
times something of positive valuation, and so we can use property (3) of Lemma 4.6 for this
particular σ to get our desired claim.

We now arrive at the crucial claim of the proof. Recall that G denotes the Galois group of
the Galois closure of K (P)/K . We claim that v(z∗j −σ(z∗j )) = v(z∗j ) for all σ ∈ G. Assume
that v(z∗j − σ(z∗j )) = v(z∗j ) + t where t > 0. By the above discussion and condition (3) of
Lemma 4.6, we can save the value t from each term, and since there must be at least two
terms of equal valuation in (4.9), we have that

v(p(z∗j − σ(z∗j ))) ≥ v(u(z∗
d j

j − σ(z∗j )d j )).

Note that we cannot guarantee the equality of these valuations because there could be other

terms of total minimal degree other than u(z∗
d j

j − σ(z∗j )d j ), but the above inequality will

suffice. Using the above inequality and previous equality v(pz∗j ) = v(uz∗
d j

j ), and letting
w = σ(z∗j )/z∗j , we have that

t = v(z∗j − σ(z∗j )) − v(z∗j ) = v((z∗j − σ(z∗j ))/z∗j ) = v(1 − w) ≥ v(1 − wd j ).

Let y = 1 − w. We have that v(y) = t , which by assumption is strictly greater than 0. We
now arrive at a contradiction by considering the above inequality and the equation

1 − wd j = 1 − (1 − y)d j = d j y + (terms times y2) + yd j ,

and noting that all terms in the above have valuation strictly greater than v(y) = t . Therefore,
we have that t = 0, and hence v(z∗j − σ(z∗j )) = v(z∗j ) for all σ ∈ G.

To conclude our proof, we use Krasner’s lemma [13, Exercise II.2.1] to explicitly describe
the extension K (z∗j )/K and show that [K (z∗j ) : K ] = d j − 1. Recall that our z∗j satisfies the
equation (4.7). Consider the polynomial P(Z) = p+uZd j−1 where u = Fj (u1, ...1, ...un) as
above. Note that z∗j is not a root of P(Z), but it satisfies the following inequality v(P(z∗j )) >

v(pz∗j ) where the right side here is also equal to v(uz∗
d j

j ).
On the other hand, the roots θ1, . . . , θd j−1 of P(Z) each have valuation exactly 1/(d j −1)

since P(Z) is Eisenstein at p. We now compute the valuation of the derivative of P(Z)

evaluated at a root in two different ways. First, P ′(θl) = u
∏

i �=l(θl − θi ) and hence

v(P ′(θl)) =
∑

i �=l

v(θl − θi ) ≥ d j − 2

d j − 1
.
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Second, we directly compute that P ′(θl) = (d j − 1)uθ
d j−2
l , which yields

v(P ′(θl)) = d j − 2

d j − 1
.

The first inequality and the second equality imply that v(θl − θi ) = 1/(d j − 1) for all
1 ≤ i �= j ≤ d j − 1. We also have that P(z∗j ) = u(z∗j − θ1) · · · (z∗j − θd j−1) and hence

v(P(z∗j )) =
d j−1
∑

i=1

v(z∗j − θi ).

There are exactly d j − 1 terms here and since v(P(z∗)) > 1, it follows that at least one
term must be strictly larger than 1/(d j − 1). Without loss of generality, we may assume that
v(z∗j − θ1) > 1/(d j − 1). Now we have the strict inequality

v(z∗j − θ1) > 1/(d j − 1) = v(θ1 − θi )

for all 1 < i ≤ d j − 1, and hence Krasner’s lemma implies that K (θ1) ⊆ K (z∗j ). Recall that
we have just shown that v(z∗j − σ(z∗j )) = v(z∗j ) = 1/(d j − 1) for all σ ∈ G. Moreover, we
can just switch z∗j and θ1 to arrive at the inequality

v(θ1 − z∗j ) > v(z∗j − σ(z∗j )) = 1/(d j − 1),

and so we can apply Krasner’s lemma again to deduce that K (z∗j ) ⊆ K (θ1). Therefore, we
have shown that K (P) ∼= K (z∗j ) ∼= K (θ1) and this extension is totally ramified of degree d j −
1, hence tamely ramified. We also have that z∗j , which is a linear combination of x1, . . . , xg
with unit coefficients, is a uniformizer for K (P) and hence OK (P)

∼= OK [x1, . . . , xg].
Finally, we note that there exists some coordinate xi of P which has valuation v(xi ) = v(z∗j )
by condition (3) of Lemma 4.6 and hence xi is a uniformizer for K (P) as well.

The second statement of Theorem 4.4 follows because K (F [p]) is the compositum of
the fields K (P)/K as P varies over points in F [p] and the compositum of tamely ramified
extensions is again tamely ramified. ��
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