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Abstract

In this paper, we develop an integral refinement of the Perrin-Riou theory of exponential maps.
We also formulate the Perrin-Riou theory for anticyclotomic deformation of modular forms
in terms of the theory of the Serre-Tate local moduli and interpolate generalized Heegner
cycles p-adically.

Résumé

Dans cet article, nous développons un raffinement entier de la théorie des applications expo-
nentielles de Perrin- Riou. Nous formulons également la théorie de Perrin-Riou pour les
déformations anticyclotomiques de formes modulaires en utilisant la théorie des modules
locaux de Serre- Tate et nous interpolons p-adiquement les cycles de Heegner généralisés.

Mathematics Subject Classification Primary 11R23; Secondary 11G40 - 11F11 - 11GI5 -
11F67 - 11F85

1 Introduction

The Perrin-Riou theory of the big exponential map is the fundamental theory in the local
Iwasawa theory for the cyclotomic deformation of Galois representations, and it continues
to be a source of development of new p-adic theories beyond the Iwasawa theory. The
purpose of the paper is twofold. First, we give a generalization of the Soulé twist on Galois
cohomology groups inspired by the Perrin-Riou theory and Amice-Velu—Vishik theory of the
p-adic distribution. Though the original Perrin-Riou theory is a local theory, our twist theory
works in fairly general Galois representations even for global fields with torsion coefficients
similar to the Soulé twist. Such a theory is essential when we twist Euler systems that are
not norm-compatible in the p-power direction. Second, we describe a geometric interaction
between the Perrin-Riou theory and the theory of the Serre—Tate local moduli of ordinary
elliptic curves. Since Katz, the fruitful relationship between the local moduli and Iwasawa
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theory is known. Our description is also not essentially new, and it is a reformulation of
known results such as [2] in terms of the Perrin-Riou theory. However, we think that the
theory is naturally described in terms of the Perrin-Riou theory, which is also crucial for
applications in the non-ordinary case.

Our motivation comes from the Euler system of generalized Heegner cycles defined by
Bertolini-Darmon—Prasanna [2], for which the Soulé twist does not work because it is not
norm compatible in the p-power direction, and torsion coefficients are also crucial. In the
sequel [24] of this paper, we give an example of the Coates—Wiles—Kolyvagin type result for
elliptic cusp forms twisted by anticyclotomic Hecke characters of imaginary quadratic fields
satisfying the classical Heegner hypothesis as application of our theory. More precisely, if
the special value of the associated L-function does not vanish at a critical value, then we
show that the corresponding p-primary Selmer group is finite for almost all p. (There are
similar results proved by different methods. cf. [3, 19, 28].) The key to our result is our twist
theory and a p-adic interpolation of generalized Heegner cycles by a power series (Theorem
6.11), which is considered as a Coleman power series interpolating “zeta elements". Based
on the theory developed in this paper, we also prove a one-side divisibility of the Iwasawa
main conjecture in this setting in [25].

The organization of the paper is as follows. In Sect. 2, we develop our theory of the integral
Perrin-Riou twist. In Sect. 3, we recall generalized Heegner cycles by Bertolini-Darmon—
Prasanna, and in Sect. 4, we prove a certain horizontal congruence for generalized Heegner
cycles which is the key ingredient of the application of our twist theory. In Sect. 5, we explain
the relation between the Serre—Tate local moduli and anticyclotomic extensions. In Sect. 6,
we construct the logarithmic Coleman power series interpolating generalized Heegner cycles.
See also the beginning of Sect. 6 as an introduction to our formulation. In the appendix, we
summarize the theory of the Perrin-Riou exponential map for crystalline representations over
the division tower of a relative Lubin—Tate group of height 1.

2 The integral Perrin-Riou twist

In this section, we give a generalization of the Soulé twist. The idea goes back to the work of
Amice-Vélu and Vishik for the construction of the cyclotomic p-adic L-function of higher
weight elliptic modular forms at non-ordinary primes. The same idea has been already used
in Perrin-Riou [33, 35] and see also [8, 26, 28]. Our generalization is integral and works even
in torsion coefficients.

Lemma 2.1 Let R be a commutative ring and M an R-module. Let (an)n=0.1.... be a sequence
in M and put

b, = Z(—l)i <’;>an7i = Z(-l)”ﬂl <?>Cli.

i=0 i=0

Then for u € R, we have

n l n l n l n l
2—1) (i)(” — Dap— =§(—1) (,->(”‘1) Bo—i. @.1)

Proof By considering the universal case, it suffices to show this in the case R = Z[Y],
M = R[X,Yy,....,Y,...]1,u = X, a; = Y; for indeterminate X and (Y;);. Let R((t))
be the formal power series ring consisting of elements Z?,io Cp ;—, for ¢, € R. If we put
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F@6) =302 antsand g(1) = Y0° by, we have g(1) = e~" f () in R((t)). Then we have
the identity by looking the coefficients of " of both sides of
e f) — e (1) =T g (1) — g ).
We consider a triple (I, y, p) where I" is a profinite group isomorphic to Z, with a
topological generator y of I' and p is an embedding of topological groups I' < 1 + pZ,,.
Let I, be the open subgroup of I' of index p” generated by y, := y?". Let Zp(p) be arank

one Zp-representation of I" with a basis e, with the action ge, = p(g)e,. For a continuous
p-adic representation 7' of I and an integer i, we let T'(i) , be the representations of I defined

by the tensor product of 7" and Zp(p)‘g’i. We put Tryyp/n = p 0 y" 4 ¢ Z[TI']. Note
that Trm+n/n = Trn+1/nTrm+n/n+1~

Theorem 2.2 Let h be a natural number and let a be an element of C,, such that |p" Ja lp <L
Let M be a p-adically complete Z.,[a]-module with a continuous action of T'. For 0 < i <

h — 1, suppose that we have a sequence (c,(,i)),,eN in M(i), and (rp i )neN in M satisfying the
following conditions:

(a) The projection ofc(l) to the free part M | Moy is fixed by T'y,.

(b) Trn+1/nc,(,4)rl = acr(tl)-
(1)

(c) Foran elementd(l) =c, ®e® " e M, we have

Z( 1)]< )d(J) t(nfl)rnl

Then there exists a functorial way to extend c(’) for arbitrary integer i and extend ry ; to
ik€M(kelZic Z>0) With 1y i 0 = I'y,i, SO that they satisfy (a), (b) and

Z( 1)f< )d””‘) PO ik 2.2)

forany non-negative integer i. Here, a functorial way means the compatibility with morphisms
T, y,p) = T,y p") and M' — M in the obvious sense. Furthermore, if M is torsion-
free, the extensions c,(f) andry ; i are characterized by (a), (b) and (2.2), and independent of y .

Proof First, we construct (cf,h)),,. Forx e M,weputx(h) :=x® ef?h € M(h). We let

! h
~(h) ._ _ 1\ (h—i)
&= .§=( 1) <i>d" (h).

For g € G, applying Lemma 2.1 for a,, = d(")

h
~(h) _ i (h—i)
== 0 () )ealiso
i=l1

h h
(1 i ifh - i k(h—i
=—Z<—1)’<i>p<grlgd£ﬁ1)<h)+Z(—1> <i><p(g) P )iph Dy i ()

i=1 i=1

h h
i (h h—i i i(h - i k(h—i
=—Z<—1)l< )(g o )>®e“+§(—1> (l.)(,o(g) P R i ().

i=l1
2.3)

41 (), we have
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Hence by the condition (), we have

p—1 h

h _ ; ok
Trepiuéiy) —od” =y ) (=1 ( )(p(y Phay 1y pH=Dy P ().

a=0 i=1

We put

p=1 h play _ 1yi
o=y Yy (=1 ( )W Y i ().

a=0 i=1 p

k
and y; := (%h) xx. Then we define

o0
e =& + 0" Tr iy
i=0

(h) ~(h)

(Note that limg_, o0 yx = 0 by our assumption on «.) Since «"y, = Trn+l/n5n+1 —acy

(h)l = acy, (k) . By construction,

h i+1
Z(_l)h—l (l) (l)(h) (h) — p(n l)h Z < > Tl'n+l'/nxn+j~
i=0

Hence define r,, 5,0 by

we have Try,41/,¢

o0

e i+l
p
Yn,h,0 = (_l)h Z (;) Trn+t/nxn+t ® €® h-

i=0
To show the property (a), we may assume M is torsion-free. By (2.3), we have ykc( ) = c(h)
mod p*" M. Hence

-1
~(h 1 n_(h n+m _(h ~(h
VnTrn+m/nC;(nln = Z y(a+ P Cr(nin = p r(nJ)rn + Z yap r(nJ)rn

~(h
= Tr,,+m/,,c,(nln mod p"+mhag.
The property a) then follows from

h ~(h)
( ) = mh_}moocx Trn+m/ncn+m.
By induction for &, we have (c,(,i))n and r,, ; o for any non-negative i satisfies (a), (b) and (c).

Since (;f]) = (ji]) + (;), we have

i+1

i () gt — 1,(1 +1>d<;+k> 1,( >d(/+k>
Z()() Z() . +Z<),

Using this, 7, ;  is defined inductively for k > 1. In the negative direction, we put‘p = p~
and let ‘M be the module M but the action of G is by ‘p. We define ‘c, (l) = ,(,h_l_l) and
apply our theorem for i, k > 0 and (‘M) (1 — h) as M. Then

1

td’(li) = Lcr(li) ® el(;i) — Cﬁlh—i—l) ® e;ll) c M(h — 1)
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We have

Z( 1)]( )d(]) Z( 1)]( ) (h—j—1) ®€§)j)
= (=1 Z( 1>f< ) § D @ eli=D)
_( 1) Z( 1)]( )d(h i+j— 1)®e£)h71)

=(-D'p - Drpin—io1 ® e,

Hence by putting ‘r, ; = (=1)! Tnih—i—1 @ e(h_]) and our theorem can be applied for this

(e and ¢ Fn.i.k are extended to any i, k > 1.

system. Then ‘c

For the last assertion, suppose that M, = {0}. First, by the condition (a), the trace of c,(,i)
in condition (b) is independent of the choice of y. Hence, the independence of y follows if
we show the uniqueness of the extensions of c,(f) and ry, ; k. Consider (Cfli))iez,neN satisfying
(@), (b), (2.2) and ¢\ = 0 for i such that 0 < i < /. Then c\” = 0 mod p""=D by (2.2)

m a’mTrm+nc(h) and hence c(h) = 0. Inductively, we have

for all n. By b), we have ¢, mn>

ff) = 0 for all i > 0. For a negative i, the proof is similar. Thus, the extension of cﬁ,i) is

unique. Since M, = {0}, the relation (2.2) and (ci,i))i determine r,, ; x uniquely.

We consider a 4-tuple (G, G, p, ¥) Where G is a profinite group with a normal subgroup
GoosuchthatI' := G /G isisomorphic to Z, y is a topological generator of I', and p is an
embedding of topological groups I' < 1+ pZ,. Let I';, be the open subgroup of I of index
p" and G, the inverse image of I', by p in G. Let Z, (o) be arank one Z ,-representation of G
with a basis e, with the action ge, = p(g)e,. For a continuous p-adic representation 7 of G
and an integer i, we denote by T (i), the tensor product of T and Z, (p)®' as representations
of G.

Corollary 2.3 Let h be a natural number and let o be an element of C,, such that |p" o [p <
L. Let T be a finitely generated Zy|a]-module with continuous action of G. Assume that
H%Goo, T) = {0} and p" H' (Goo, T)ior = {0}. Suppose that for 0 < i < h — 1, we have
a system (c,(,l)),, € [1en HY(G,, T (i),) satisfying the following two conditions:

(a) C0r11+l/n nj—l = acr(zl)

(b) We ldentlf_'yc(l) and its image by the natural inclusion HY(G,, T(i)p) — HY(G o, T(@i)p).

Elements d( n._ c,(f) ® e?’i € H' (G, T) satisfy the congruence relation

Z( 1)/( )d(” =0 mod p""H (Goo, T).
Then d,gj ) can be extended for any integer j such that

Z( 1)/( )d(”") =0 mod p""H (G, T) 2.4)
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78 S. Kobayashi

for any natural number i and any integer k, and p"° cff) = p”od,gi) ® e?i satisfies the a-norm

compatible relation a). Furthermore, p”oc,(,l) does not depend on the choice of an extension
of d(j)
)

Remark 2.4

@G) If l(ir_nn HYG,, T)isa finitely generated A-module, as in [35, Proposition 1.8], we have
an element z of 7%, (I") ®z,[r] 1(11_11” HYG,, T) interpolating a—”c}(j) O<i<h-1.
By the projection of z to HY(G,, V(i)) for any integer i, we have a system (P, ;),. Then
the image of our twist (cfl’)) after inverting p is equal to («” P, ;) by the characterization
of ours and that in [35, Proposition 1.8].

(i) In[25], we give a slightly different generalization of the Perrin-Riou twist that works not
only for algebraic twists as in this paper but also for any continuous characters. However,
in [25], we do not directly consider the twist on /-local cohomology groups.

3 Generalized Heegner cycles and the p-adic Abel-Jacobi map

In this section, following [2, §2], we introduce generalized Heegner cycles and their p-adic
Abel-Jacobi images.

3.1 Kuga-Sato variety

Let N be a natural number. For the moment, we assume that N > 4 and consider the universal
generalized elliptic curve @ : & — X{(N) over Z[1/N] with I'{ (N)-level structure (a point
of order N) and the universal elliptic curve w : & — Y;(N). For a non-negative integer m,
let W, be the Kuga—Sato variety with I'{ (N)-level structure, that is, W, is the canonical
desingularization of

" = F xx v xx & (m-times).

By the construction of W,,, we have naturally
M =& xywy - Xy € C W

The group ((Z/NZ) x {£1})" x &,, (&,,: the m-th symmetric group) acts on &m by the
translation by the level structure, +1-multiplication of each component and by the permuta-
tion of components. This action is canonically extended on W, by a property of the canonical
desingularization. Let ey, be the idempotent in the group algebra of (Z/NZ) x{£1})" x&,,
with coefficients in Z[1/2(m!)] corresponding the character that sends Z/ N Z to the identity,
{%1} identically to {1} and &,, to {£1} as the sign character. We also regard ey, as an
element of Q[Aut(W,,)]. For details, see [2, Appendix].

3.2 Generalized Heegner cycles

Let E be an elliptic curve with a I (V)-structure Lv defined over a number field F. We
put Xg, = E™ x W,,. Following [2], we define a cycle on X, for an isogeny ¢ :
E — E’ with (Ker¢) N E[N] = {0}. By our condition on ¢, there exists a natural level
structure on E’ compatible with ¢ and Lv. If E’ and ¢ is defined a finite extension F’ of
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A p-adic interpolation of generalized Heegner... 79

F, it defines a point zgr € X(N)(F’) and E’ is the fiber of & over zgs. In particular,
E™ x (E"Y™ C E™ x W,y = XEg . Hence the m-th power of the graph T', C E x E’ of t may
beregardedasacycleon Xg ,,. Letegm be anidempotentin Z[1/2(m!)][{£1} % &,,] similarly
defined as ey, . We also regard egn as an element of Q[Aut(E™)], and put ex = egmew,, €
Q[Aut(XEg »)]. Then we let A, := exI")", which may be regarded as an element of the
Chow group CH" (X ,) ® Q. Let CH" ! (X £ )0 ® Q be the subset of CH”" ! (X ¢ ,) ®
Q consisting of homologically trivial elements. The cycle A, is homologically trivial if
m > 0 because then exHB%mH(XE,m, @) = 0. ([2, Proposition 2.7]) If E has complex
multiplication, A, is called a generalized Heegner cycle associated with ¢ and Lv.

We fix an embedding (o, : Q@ <> C. Let K be an imaginary quadratic field with dis-
criminant Dk such that Oy = {#£1}. Let A be a CM elliptic curve defined over the Hilbert
class field H of K, and let yy be the Grossencharacter H * \A:[ — C* associatedto A/H.
We denote X 4, by X, if we fixed A. (Sect. 5.13, we will choose A more precisely.) We
fix an invariant differential w4 of A and an embedding [ ] : K — End A ® Q so that
[a]*®wa = too(@)wa. Then consider the complex uniformization 74 : C/A4 = A(C) such
that i (wa) = dz. By replacing A by its conjugate by Gal(H/K) if necessary, we may
assume that the lattice A 4 is written in the form Ok Qk for a complex number Q. For a
natural number ¢, we let O, be the order of K of conductor c, thatis, O, = Z + cOg. Then
%OCQ k defines a subgroup C of A[c] and the theory of complex multiplication shows that C
is defined over the ring class field H. = K (j(O,)) of conductor c. We let A, be the quotient
A/C and . : A — A, the canonical projection. Then the complex uniformization of A,
with respect to (77:)swa is C/A, for the lattice A, = O.Qk and 7. is identified with the
isogeny C/Ox Qx — C/A¢, z +— cz.

Now we assume the classical Heegner hypothesis, that is

(Heeg) all prime factors of N splits in K.

Choose an ideal 91 of Ok such that Og /M = 7Z/NZ. Then the pair (A, A[D1]) defines
a point z4 in Xo(N)(H) so-called a Heegner point (of conductor 1). Take a point z/A of
X1(N) above z4 with respect to the natural projection 71 : X1(N) — Xo(N). Suppose that
(¢, N) = 1. Then (Ker ) N A[N] = {0} and hence we have the generalized Heegner cycle
An.z = Ag, associated with 7, and 7. Let A, be the cycle de;m > An.2, where the
sum runs through all points z/, (counting multiplicity) over z4 by 71. Then A, is defined
over H.. We call it the generalized Heegner cycle of conductor c.

3.3 The p-adic Abel-Jacobi map

Let p be a prime number such that p  Dx N. Suppose that p splits in K and write (p) = pp*
as an ideal of Og. We fix an embedding ¢, : Q — C p which is compatible with p. We
denote K4 by the completion of K at a prime ideal q of O . For q|p, we regard as Kq = Q,,
by the natural inclusion map Q, — K. Define the Serre-Tate character e A}, — K~
by 1/71.1 (x) := ¥y (xy) where xy is the finite part of x € Ay, namely, it is obtained from
x by replacing the component of the archimedean places by 1. Let N, be the norm map
(H ®p Qp)* — (K ®p Qp)™, and consider the homomorphism

Yy Af = (K®gQp*. x> (@) ® DN, (xp)~!

where x, is the component of x in (H ®g Q,)*. Then ¥y, is trivial on H* and kills the
connected component of idele class group, it induces a Galois representation Gal(H /H) —
(K ®g Qp)*. This is equal to the Galois representation Gal(H /H) — AutK®QQp (VpA) =
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80 S. Kobayashi

(K ®qg Qp)* on the Tate module of A. Composing with the projections on (K ®qg Q,)* =
(Ky x Kp+)* to each factors and with the natural identification Q, = K, and Q, = Ky,
we obtain characters ¥4 p, ¥4, p* : Gal(H/H) — Q;. The Galois action on V, A and V= A
are given by ¥4 p, ¥a,p+, which are also denoted by ¥y, v+ for simplicity.

Let f be a normalized eigen newform for I'g(N) of weight kK > 2. We consider the map
to Bloch—Kato Selmer groups

CH''(Xi2 ® He)o —> H{ (He, H 7 (Xi-2)g, Qpk — 1))

— H{ (He, Vs ® [Sym* ?Hj(Ag, @)1k — 1))
k—1

= [ H He. vewivs.

i=1

Here the first map is the p-adic Abel-Jacobi map and the second is obtained by the isomor-
phism

ex Hy 7 (Xi2)g Qp) Z ew, Hy ™ (Wi2)g Qp) ® a2 Hi (A2 Q)
= Hy(X1(N)g, j»R'7Q,) ® Sym* *Hj (A5, Q,) (3.

(j is the inclusion Y{(N) — X{(N). cf. [39, 1.2.1]) and the projection to the f-part. We
consider the image of the homologically trivial cycle A, for k > 2 or A, — (00) for k = 2
by this map. We denote it by (zé’)) ;. For the Euler system argument later, it is important that
the denominator of zgl) is bounded independent of c. In fact, the Abel-Jacobi map is defined
integrally and the denominator comes from €y, deg 1, the isomorphism (3.1), the projector
of taking f-part and the order of Héztk_z((Xk_z)@, Zp)ior to be A, homologically trivial.
These are all independent of c. Note that the isomorphism (3.1) is also defined integrally. (cf.
[29, Proposition 2.1].)

We call zgl) the i-th Abel-Jacobi image of generalized Heegner cycle of conductor ¢, or
just for simplicity, the generalized Heegner cycle of conductor c. It is known that the system
(zi"))c forms an Euler system (cf. [6, Chapter 4, 7]).

So far, we have assumed N > 4, but as in [31, Chapter II, (3.7), (3.8)], we can eliminate

this assumption to define zgi).

4 Congruences on generalized Heegner cycles

In this section, we prove a key congruence relation for applying Theorem 2.2 and Corollary
2.3 with h = k — 1. (k is the weight of a modular form we apply for.) If k = 2 (h = 1),
the congruence relation is trivial. Hence we assume k& > 2 in the below. As before, first,
we assume N > 4. Let A, be the generalized Heegner cycle associated to an isogeny ¢ :
(A,Lv) — (A’, LV') defined over a number field F with compatible I'j (N)-level structures.
Let P be the point of X (N) corresponding to (A’, Lv'). Let X be the generalized Kuga—Sato
variety Xx_p associated to (A,Lv) and let ¥ : X — X{(N) be the canonical map. Then
the fiber Xp := 7! (P) is the product (A x A’ Y¥=2 Then by the Kiinneth formula and the
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A p-adic interpolation of generalized Heegner... 81

definition of €x, we have
Vp i =exH** 2 ((Xp)5, Qp)k —2)
= [Sym* 2 H'(AF Qp) ®q, Sym* 2 H' (A, Q,)1(k —2)
= Homg, (Sym* 2 H' (A%, Q,), Sym* > H' (A7, Q)
= Homg, (Sym* 2V, (4), Sym* 2V, (4")).
As acycle on X p, the image of A, by the étale cycle map
clp : CH2(Xp) —> VIF

is the natural map Symk_sz (A) —> Symk_sz (A”) induced by .
We interpret the Abel-Jacobi image of the generalized Heegner cycle as an extension of
Galois representations. Put

Vx = ex H* 3 ((Xp-2)7 Qpk — 1)), Wx = exH* 3 ((Xs—2 — Xp) 7 Qp(k — 1)).

Then we have a diagram

0 Vx Wa, Qp 0 4.1
\L \L \LCIP(AJ
0 Vx Wx Vp 0.

The bottom exact sequence is obtained by the localization sequence and purity, and the
surjectivity comes from k > 2 (A, is homologically trivial). The upper exact sequence is the
pull-back of the bottom one by the Galois equivariant map Q, — Vp sending 1 to clp(A,).
Then the cohomology class of the upper extension gives the Abel-Jacobi image of A, in
H\(F, Vy).

Now we assume A is the CM elliptic curve defined over H in Sect. 3.2 and consider a
base change of A to a field F where H C F' C Hp~ for a natural number c. (Later, we

will take ¢ as pn and F = Hepn) Let Q, (Y s ) := (Vo A)® ®q, (Vpr A) . Ttis a

1-dimensional Galois representation of G  over Q,, with the character wfa W{;; ! For a Galois

representation U of G r, we write U ®q, Q p(lﬁf) 1/}15*_ 1y simply by U (W{; 1//15*_ ’). We have
k=2

Sym* 2H'(Az, Q) (k —2) = [ [Qp(yj vy > 7).

i=0
By pushing the upper sequence in (4.1) by the canonical projection

k—1

Vx — Vy@ISym* 2H (A7, QI — 1) = [ | Vel — Vewhvsh.
i=1

we obtain an extension

0 —— V(i) Wy, Q, 0. 4.2)

This extension class corresponds to the element zgf)[t] e HY(F, Vs (Wé wéf i)) defined by
the generalized Heegner cycle A,. We may also construct (4.2) as follows. Put that

Vx = H' (X1 (N), juSym" 2 R'7,Q,), Wx = H' (X1 (N) — P), juSym* 2R'7,Q,)

@ Springer



82 S. Kobayashi

where m : £ — Y[ () is the universal elliptic curve and j is the inclusion map Y (N) —
X1(N). Then as in [31, II, Proposition 2.4], we have an exact sequence

0 Vy Wx [SymF—2H! (A7, QpI(=1) —=0 4.3)

By taking the tensor product with Sym*—2 H'! (A%, Qp)(k—1), we have the bottom sequence
of (4.1). Similarly, for 1 <i < k — 1, by taking the tensor product with Q,, (w{; wg:i), we
have

0 —— Vx Wy ) —= Wx(Wjs) ——= Vp ;i —0 (4.4)

where
Vp.i :=Homg, (Q, (¥, "), Sym* 2V, (A)).

The natural Galois equivariant map (T, A)® ®q, (Tp=A)®* " — Sym*~2V,(A’) induced
by ¢ corresponds to a map of Galois representations clp(A,); : Q, — ng C Vp,i. Then
the pull-back of (4.4) by clp(A,); gives an extension

0——= Vx(Wivs W; Qp 0 (4.5)
and its push-forward induced by the quotient Vy — Vr gives (4.2). There is also the integral
version of (4.4). We put
Tx = H' (X\(N)7, juSym' R, Z,), Uy = H'(X1(N) — P)F, jxSym* >R 7. Z,,)
and

Tr: :=H 7 k—1—i ;i—1 S k—2 Al
p.i 1= Homg, (Z, (yf =" ~yich), Sym 27, (4").

Then, we have an exact sequence
0 —— Tx (g ) ——= Ux(Whvae) — Tp,;
and hence as the push-forward,
0 —— Tr (i) —= Ux (W) — Tp.;. (4.6)

Here the cokernel of the last map is finite whose order is bounded independent of P. (cf. [31,
IL. (1.10), (5.5)].) Therefore, there exists a natural integer C depending only on N, k, p such
that pC kills the cokernel.

Let w be abasis of Og-module H; (A(C), Z) of rank 1. We take abasisu € Tp A, v € Ty« A
so that

u—ve pr C TpA = H] (A((C)v Zp)

Putthate = u ® v®~! € T, A ® (Ty»A)®~!. Note that e does not depend on the choice of
u, v, and w. In Sect. 5 below, we see that for H.poe = Uy, Hepn, the Galois group G Hepoo fixes

the element e. (cf. (5.1) and Proposition 5.8.) We write Z(;)[t] by z@[cp™] and let w [ep™]
be the image of z(f':) [cp™] by the morphism
H' (Hepr, V(Wi W) = H' (Hepoo, V(Wb yrgs ) = H' (Hepoe, Vi (p ¥ )

where the last map is given by tensoring ¢® (D,
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Proposition 4.1 Suppose that « : A — Acpn is the natural projection over Hg,n whose
complex uniformizations with respect to wa and t,w4 give

C/0kQk —> C/OpmQk, z +—> cp'z.

(i) We have t(u —v) € p"TpApn.
(i) We put

g :Qp — Tpy, 1 +— <u®k_2F9 Ku)®k—2—i(t(u v)) ).
’ p n

Then by (4.6), the map pcg,- defines an element ri[cp”] € H! (Hepoe, Tr(Yrp wg;l)) such
that
CZ( 1)'( ) Dep™ = p"rilep"]. (4.7)

Proof For simplicity, we put Foo 1= H,p. Let f; be the Q,-linear map
it Qp — Vpi1, 1 +— <u®k_2 — L(u)®k_2_it(v)®i).

Since u® 271 @ v® = u® 2 @ ¢®7, this is a morphism of G, -modules. Then the
extension corresponding to w}l) [cp™] is the pull-back of

0 —— Vx(Wp¥ps ) ——= Wx (¥ ) —= Vo1 —=0

by f;. (cf. (4.4).) Hence the element
Y= (;)w}”[cp"] € H'(Foo, Vi (Wpykh)
j=0

corresponds to the extension by the pull-back of (4.4) by Z —o(=1)J ( )£
The image of ZQx C H(A(C),Z) by v in Hi(Acpn ((C) 7) is d1V1Slble by cp”. Hence
by our choice of u, v, we have t(u — v) € p"T,Acpn. Therefore,

Z( 1)/< )t(u)®k I )® = ()® 2w — v)® e pMSymF? TpAcpr.

Hence, by (4.6), the map pC g defines the element r;[cp™] € H' (Hepoo, Tr(Yry w’;;l)), and
(4.7) holds.

Next, we prove a Frobenius relation for r;[cp™], which we use in the proof of the main
theorem of the sequel [24].

Let £ be an inert prime of K prime to cDg Np and let ¢ be a place of H.; over £. The
elliptic curve A, has good reduction at A, and Ay, too since it is isogenous to A.. By the
Néron mapping property, the natural isogeny A, — A, of degree £ reduces to an isogeny
A. — A of degree ¢ over the residue field F,2. (Note that £ splits completely on H,
and totally ramified for H,, / H..) Since A, is supersingular, there exists an isomorphism
Ay = Fw and the isogeny A, — Ay = AFW must be the £-th Frobenius map.
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Let P. (resp. P.) be a point of X{(N) corresponding to A, (resp. A.¢) with a level
structure. The representation Tp, ; is unramified at £ and we may identify it with

Homz, (Z,, (Y~ "'y, Sym* 2T, (4,))

as a G z-representatlon For a Gf z-equivariant map h : Z, — Tp.;, let ¢, be the
cohomology class corresponding to the extension class obtalned by the pull-back of (4.6)
by pCh. By composing p€h and the natural map TpA - T, AL[, we have a map G 2"

~

equivariant map Z, — Tp/, By the identification Ay = A ¢, this map gives the
cohomology class equal to ch . Applying this for cp™ as ¢, we have

Fro(pCloce(z[cp™1)) = pCloce(zP[ecp™), Fre(loce(rilcp™)) = loce (rilLep™)
(4.8)

forl <i <k-—1.
So far, we assumed N > 4 but as in [31, Chapter II, (3.7), (3.8)], we can eliminate this
assumption.

5 Serre-Tate local moduli and anticyclotomic extension

In this section, first, we review the theory of Serre-Tate local moduli. We follow Katz’s
article [21] but slightly modify it to work on a finite residue field. (In [21], the residue field
of deformations is assumed to be algebraically closed.) In most proofs, the finite residue
field case is reduced to the algebraically closed residue field case by flat descent arguments.
However, we work directly on finite residue fields for two reasons. First, in the finite residue
field case, the formal group representing the Serre—Tate local moduli of an ordinary elliptic
curve is not isomorphic to the formal multiplicative group. We see that it is the formal group
whose division points produce anticyclotomic extensions. Second, at least in the classical
setting, the Perrin-Riou theory is developed only for a finite unramified extension of Q,
because of the local duality pairing. (cf. [35, p.221, ERRATA].)

5.1 Relative Lubin-Tate formal groups of height 1

We recall relative Lubin—Tate formal groups of height 1. ([12, Chapter 1].) Let k be the finite
field F, of g-elements. Let W be the ring of Witt vectors W (k) and L = W[1/p] with
the Frobenius o. For an element § € Z;, with v,(§) = v,(g), we consider a power series
o(T) € WI[T]] satistying the following two conditions:

e ¢(T) =nT mod deg 2 for an element 7 € W such that N, (r) =¢&.
e o(T)=T"? mod p.

Then there exists a unique one-dimensional formal group Gg over W that has a “Frobenius”
G: — gg induced by ¢(7'). The isomorphism class of G¢ over W depends only on &, and
it is called the relative Lubin-Tate formal group corresponding to &£. The parameter & is
characterized from G as the eigenvalue of the g-th Frobenius on the Dieudonné module of
the special fiber of G¢. The isomorphism class of a formal group over W is determined by the
isomorphism class associated with weakly admissible filtered ¢-module. Hence, the relative
Lubin-Tate formal group with parameter & is characterized as the formal group over W
associated with the filtered ¢-module D over L of rank 1 satisfying Fil' D = D, Fil>D = {0}

@ Springer



A p-adic interpolation of generalized Heegner... 85

and the g-th power Frobenius acts by &. (If one chooses 7 as above, one may define the o-
semi-linear Frobenius action ¢ on D by putting ¢ = mw on a fixed generator w of D. The
isomorphism class of the filtered ¢-module D does not depend on the choice of 7 and w.)

5.2 The canonical lift

Let E be an ordinary elliptic curve defined over k. We denote the set-theoretical Tate module
by T, E, which is a free Z,-module of rank 1. Let u, € Z,, be the eigenvalue of the g-th
Frobenius ¢, on T,E. We put § = qu;l and we denote G¢ by G. The special fiber G of
G is isomorphic to the formal group of E since their filtered ¢-modules are isomorphic.
We regard naturally E[p™°] as an étale p-divisible group over W. We fix an isomorphism
& between E[p™] x Gx[p™] and the p-divisible group associated with E. Then by [21,
Theorem 1.2.1], there is an elliptic curve E over W whose p-divisible group is isomorphic
to the p-divisible group E[p™°] x Gz[p™] over W. Since End Gz[p>°] = End Ef[poo]
by the natural map, the isomorphism class of the triple (E, Gglp™], ¢) does not depend on
the choice of ¢, and End E = End E by the natural map. In particular, E is a CM elliptic
curve. The elliptic curve E/W is called the canonical lift of E/k. The n-times composition
of Frobenius on the p-divisible group induces the Frobenius lift Fpn : E — E°" over W.
Note that for an invariant differential wg of E, we have F ;a)E =¢wg.

5.3 The local moduli functor and Frobenii

We consider the moduli functor (//{AE /i that corresponds an artin local ring R with residue field

k to the set of isomorphism classes of lifts of E /k over R. This functor is pro-representable by
a formal scheme M := Spf Rz and let E/Rg be the universal lift of E/k. For simplicity,
we sometimes write ME, Rz by M, R. The ring R is non-canonically isomorphic to the

one-variable formal power series ring over W. For any W-scheme X, we denote by X ©")
the W-scheme obtained from X /W by " : W — W as fiber product:

X(U”) poM X

l Spec(o™) \L

Spec W ——— = Spec W.

Similarly, for formal schemes. By corresponding a deformation £/R of E /k to £) /R of
E(a)/k, we have a bijection

Mg (R) = e (R,

and hence by taking R = Ry in the above, the tautological section gives an isomorphism

M(Eg/)k = M- 7 . For a deformation £/R, we denote by £ the quotient of £ by the

canonical subgroup Elp™, and by Fp,n the projection £ — EM | which is a lift of the

Frobenius Fyn : : E — 7( (Note that the notation is compatible with that in Sect. 5.2.)

Since £™ is a deformation of E N thlS defines a morphism
(7 Mf/k - ./\A/lf(a ) Mg/k)
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and E™ is the pull-back of E©°") by ¢,n. Hence we have a morphism of W-algebra R®") —
R, which is also denoted by ¢@,» by abuse of notation. We also write g » by ¢ if n = 1.
For w € I'(E, QIIE /ER)’ the invariant differential form (p;‘)n ¥ *w may be regarded as an

invariant form on E® by the identification E® = go;’;n]E(”"). We denote F ¢, X0 €
I'(E, Q]}E/m) simply by ®}w and by ®*w if n = 1. (Note that in [21], the letter ¢ is used for
@ in the above.)

5.4 The group structure on the local moduli

By the (relative) Lubin—Tate theory, the formal group law on R over W is defined in a unique
way so that the Frobenius ¢ is a group homomorphism. However, for our later purpose, we
define it more geometrically. First, we construct a free W-submodule M of rank 1 in fz;R W
and then construct the group law so that M is the space of invariant differential forms.

Let V be the Gauss—Manin connection

V: Hig B/R) — Qg S Hig (B/R).

By the principal polarization, we regard E = E’ and E = EV. Then the Kodaira—Spencer
map

KS: T'(E, Q ;) — Qb
is given by KS(w ® n) := (V(w), n) where (, ) is the Poincaré pairing on Hle(E/ER).
Proposition 5.1 There exists a functorial map of W-modules
sg: T(E, Q) — T(E, Qpp) C Hr(E/R), o — o

characterized by the following properties. It is a section of the specialization map
I'E, QJ%«:/%) — I'(E, QIE/W) at the origin, and Frobenius compatible, that is, the differ-
ential wg satisfies

49260]E =Ewg.
The map sg induces isomorphisms of W-modules
T(E, Qpw) = {w € T(E, Qp) | Pho = Ew}
and

T(E, Qpy) @w R = T(E, Qf o).

Proof This is a modification of Corollary 4.1.5 of [21] and the proof is essentially the same.
Let wg be an invariant differential of E/W. We take a basis v of TPEV‘ Then v induces
isomorphism (g : E =~ ((A}m over W (k) and (g : k=~ Gm over R®w W (k). Then we have the
p-adic period QF , € W(k)* satisfying L’E(dt/(l +1) = Qg and 0y QE .y = ug Qg .
We put

wp = Q5 (d1/(1+ 1) € T(E, Q0 Qw W ().

Since the action of o4 on T,,EV = Hom(I@l, Gm) is given by ug, the differential wg is fixed
by o,. Hence it is defined over W. Note also that wg does not depend on the choice of v.
Since @;LI’E (dt/(1+1)) = pu(dt/(1+1)), the Frobenius compatibility holds. Suppose that
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w e I'E, QL /9%) satisfies d>*a) = £w. Write as w = gwg with g € R. Then the Frobenius

compatibility implies ®7 ¢ = g. Hence g is an element of W and {w € I'(E, QL B/ | Prw =
Ew} is a free W- module rank 1 generated by wg.

Let M be the image of I'(E, 2! E /W)‘X’2 in 525% W by the composition of s and the Kodaira—
Spencer map. Let wg be a generator of W-module I'(E, Q}E /W) and let u, € W> be such
that F SZ*a)E = pu;le. Let wg, be the lift of wg by Proposition 5.1. Since the Frobenius

action is compatible with Gauss—Manin connection and Poincaré pairing (with Tate twist
“(-1)" on the target), we have

¢*((V(wg), wp)) = p~(V(®*wx), P*wr) = pu,*(V(0E), wE).

Hence we naturally have a structure of strongly divisible filtered module on M C Qm W
by Fil'M = M, Fi’M = {0} and Yw . = pu, a)M where @ o = KS(a)]E ) =
(V(wg), wg)). If we choose a non-canonical isomorphism 8 = W][X] such that
w vy /dX|x=0 = 1, we can associate the formal group structure on Spf R that makes w - is
an invariant differential. (The formal group law is given by F(X,Y) := f I fX)+ f(Y))
where f is the formal primitive of @  with f(0) = 0. Note that we have F(X,Y) €
W[X, Y] by the Honda theory (cf. [18]).) Since ¢(X) = pu;zX mod deg 2, the formal
group is the relative Lubin—Tate corresponding to £ = qu‘2 with ug := Npsg,up. The
group structure is also characterized by the property that ¢ becomes a group homomorphism
M — M In particular, the group structure does not depend on the choice of wg and the
isomorphism R = W[X].

5.5 The Tate module of M and the Serre-Tate coordinate

By definition, E is the relative Lubin—Tate group corresponding to the parameter £ = qu;l

with the strongly divisible lattice D(E ) = I'(E, Q}E /W). By construction, the Kodaira—
Spencer map (composed with the map sg) gives an isomorphism of filtered ¢-modules,

D(E)®(1) = M = D(M).
Hence it induces the functorial isomorphism of Galois representations of G,
Ty M = T, E®*(—1) = Homg (T, E=", Z,,(1)). (5.1)

Letk  (resp. kcyc) be the relative Lubin-Tate character for E (resp. the cyclotomic character).

-1
cyc*

Then the relative Lubin-Tate character « ,;, for M is ICEK
For a generator v € TpE , the map (5.1) induces an isomorphism TPM — Zp(1) of
Galois representations over W (k)[1/p]. Hence we have an isomorphism ¢ : M — @m as
formal groups over W (k).
We explain that the isomorphism ¢ coincides with the Serre—Tate coordinate, essentially the
main theorem of [21]. For the reader’s convenience, first, we recall the Serre—Tate coordinate.
Take a generator (U,7") € T,E x T,E . Suppose that a lift £/R of E/k is given. Here

R is an artin local ring with the residue field k. The natural projection 7,&Y — Tpfv is
surjective, and the Weil pairing for £ gives the isomorphism Tpfv = Hom(Tpf, Zp(1)) =
Hom R(é , @m). Let p be the isomorphism E— @m associated to v¥. Write that v = (v,,),,
withv,, € E[p"]. Since £(R) — E (k) is surjective, we can take a lift v, € £(R) of v,,. Then
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p'u, € SA(R)‘ Since ﬁm[pm]é'(R) = {0}, the limit x := lim,,_, », p"'v, exists and it is easy
to see the well-definedness. Then p(x) € @m (R) is the Serre-Tate coordinate of £/R with
respect to (v, v¥), which is denoted by ¢(£/R, v, v").

As before, we identify E' and E by the principal polarization. Then, for a generator
v € T,E, the Serre-Tate coordinate

q(E/R"T,7) € 1 + mgpen

defines a map of formal schemes M — Gm over W (k). Here R* b= RQw W (k). (i.e. the
completion of the strict henselizaion.) We call this map the Serre—Tate map. The following
is a reformulation of the main theorem of [21].

Proposition 5.2 The isomorphism ¢ coincides with the Serre—Tate map, that is, t sends the
tautological section of MR) to the SerreTate parameter. In particular, the Serre—Tate map
is a group isomorphism, and R*" = W (k) [T] with T = q(E/%Sh,E, v) — 1. The group
structure of M is the unique structure that makes the Serre—Tate map a group homomorphism.

Proof The element
_ Y A A A
veT,E = Homw(;)(E, Gp) = HomW(;)(E, Gm)

defines invariant differential forms wg on £ and g on E by the pull-back by v of the invariant
differential w¢ on G, By the extension of scalars, the map sg, is extended over W (k). Then
sg sends wg to wg. The main theorem of [21] is that

KS(0%?) = ar_ (5.2)
E2T 4T '
Hence the map
A p®2)* A KSo. ~
Fe D) — T DY) = DM

coincides with the one induced by the Serre—Tate map.

Remark 5.3 In[21], Katz first defined the Serre—Tate coordinate, then computed the Kodaira—
Spencer map in terms of the Serre—Tate coordinate. We took the reverse order, that is, we
first defined the formal group M via the Kodaira—Spencer map and then related it to the
Serre-Tate coordinate. The advantage of our approach is that the formal group structure on
M is directly defined over W and the relation between M and the anticyclotomic extension
becomes apparent in the following.

5.6 A moduli interpretation

The isomorphism (5.1) recovers the moduli property of M as follows. Let £/R be a defor-
mation of E/k. Then there exists an exact sequence of fppf sheaves on R,

0 lp" Elp"] E[p"] 0.
From this, we have

0 —— Hom(E[p"1®?, jupn) —> Hom(E[p"IQE[p"], jupn) —> Hom(E[p"IQE[p"], jupn) — 0.

(5.3)
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Here the tensor product ® and the Hom are taken as fppf sheaves. By sending 1 to the Weil
pairing Elp"1 x E[p"] — W pn, we have a morphism of fppf sheaves

Z/p"Z —> Hom(E[p"1® E[p"], ttpm).

By the pull-back of (5.3) by this morphism, we obtain an extension of fppf sheaves

0 —— Hom(E[p"1%2, jum) & Z/p"Z 0.

By (5.1), the sheaf Hom (E[ p”]®2, i pn) is representable by M[ p"]. This extension defines an
element in the flat cohomology group Hé (Spf R, M[p™"]), which is isomorphic to M(R)/ p"
by the Kummer map and the Hilbert theorem 90. (Note that since H i(k, ./\;l(RSh)) =0
for i > 0 (cf. [5, Proposition 3.9]), the proof of Hilbert 90 in our case is reduced to the
case of the formal multiplicative group.) Hence by taking limit for n, we have an element
x(€/R) € M(R).

Proposition 5.4 The element —x(E/R) € M(R) corresponds to the deformation £ /R.

Proof To show this, we may work over W (k) by scalar extensions. We fix a generator v =
(vp), of TPF. It suffices to show that —x(£/R) is sent to the Serre—Tate coordinate of £/R
by the Serre—Tate map M- (f},n. Considering the universal deformation case and then by
(infinitely many) specializations, we may reduce to the case that R = W (k). We identify
Tpf = Zp and é [p"] = ppn by v. Then the extension class of

0 Elp" Elp" E[p"] 0

defines an element of Hﬂ1 (Spf R, f[p”]) = Hﬂ1 (Spf R, ppn) = (1+mg)/(1 +mg)?". This
is the image of x = x(£/R) by the Serre-Tate map. We compute it in

H{ (Spf R, E[p"]) = Hy (Spec R[1/p], E[p")) = HL(R[1/p], E[p"])

where the last cohomology is the Galois (étale) cohomology of the field R[1/p]. (cf. [14,
Lemme 3.6].) Let v, € £ (R) be a lift of v,,. Then the Serre—Tate coordinate of £/R is the
limit of p"v, € 8 (R) =~ Gu(R). By the definition of the Kummer map, the image of p" o,
in Het(R 1/pl, E[p"]) is the cocycle class 0 —> ow, — w, where w, € S(R ) such that
p'w, = ptv, € c‘f(R) for some finite flat extension of R” of R. We put z, = v, — w,, then
Zn is a p"-torsion point of £ and a lift of v,,. Hence the element x € Hélt(R[l/p], f:‘[p”])
may be represented by the cocycle

O > 02y —Zp = —0W; + Wy.

(Note that o v, = v, since v, € £(R).)

5.7 The moduli interpretation of translation by torsion points

We describe the moduli theoretic description of the addition x @ y on M when x or y is a
torsion point.

Let £/R be a deformation of E /k. In the following, for P € E[p"], we consider two kinds
of lifts of P. One is a lift in [ p"] over a finite flat extension of R by using £[p"]/E[p
E[p"], which we call a finite order lift and denote by P/ though there are several ch01ces of
P/ The other is a lift in £(R*") which we call an unramified lift and denote by P* though
there are several choices of P".
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Let x and y be elements of M(R), and suppose that x is torsion of order p” and y
corresponds to the elliptic curve £/R. By the isomorphism (5.1), the element x defines an
element of

Homgz,, (E[p"1%?, pupn) = Homg, (E[p"], Hom(E[p"], ppn)) = Homz, (E[p"], E[p" D),

which is also denoted by x by abuse of notation. We put & = E/E[p"]. For P € E[p"],
let x’(P) be an element of £[ p>"] such that [p"]x’(P) = x(P). We denote the image of the
subgroup of &y generated by

J—x'(P) mod £[p"] (P € E[p"])
by Cy,y. Note that it does not depend on the choices of x ’(P) and Py, and Cy x.y can be

defined over R. The reduction of Cy , is the unique subgroup of order p of E7 . We put
Ex,y :=&0/Cyx,y and consider the commutative diagram

£ & Eny (5.4)

i red \L red l red

Fyn n FY
— — P e
E— " s~ — " g ~FE

The vertical arrows are the reduction maps. Hence the elliptic curve &,y is also a deformation

of E/k.

Proposition 5.5 (i) Let x and y be as above. The deformation corresponding to the point
x®yeMis Ex,y-

(ii) Let wg be an invariant differential for E/W and wr = sg(wg) the lift to the universal
deformation. Let ty y, be the isogeny € — &y y in(5.4). Let wg and g, be the pull-back
of wg to € and &y y by the universality. Then we have 7t YOE, , = p"we, or equivalently,

we, , = p" (”x,y)*a)g-

Proof Forv = (v,), € Tpf, we consider the following commutative diagram

£ & Ey (5.5)
Ll
Gn L~ G, —— G,

where ¢, t, y are trivializations induced by v and ¢ by 0" (v) € E° [p"]. Let R3" be the strict
henselization of R. By (5.4), as aliftof v, € &, ,[p™]to &y, y(RY ), we may take 7y (vy,,,) €
E,. Then the Serre-Tate coordinate of & y is given by hmmaoo L,y (P xy (V1 )). On

the other hand, by the definition of Cy , the element 7, (vn ) is equal to 7y (x"(vy,)). Then
by (pn — m+n) x'(U,) € € and (5.5), we have

[x,y(pmﬂ'x,y(vy’;+n)) = lx, y(pmﬂx y(vfn+n - yj:l-i,-n)) s lx y(pmﬂx y(v;£+n))

= L(pm-&-n ;An+n) lx,y (7ry, }(x Wn))) = l(P’"+n iln+n) “1(x(Vp)).

The Serre-Tate coordinate of £ is lim,, _, o0 t(p™ v vy, 1,) and by Proposition 5.2, ¢ (x (v,,)) is
also the Serre-Tate coordinate of the deformation associated with x. The assertion follows.

For (ii), we may assume that wg = L*(a) ) andwg, , =1 (a) ) Then by (5.5), we have

wy we, , = p"we. (ii) follows from this. (Note that deg Ty = pz”.)

@ Springer



A p-adic interpolation of generalized Heegner... 91

Let x = (x,;), be an element of T, pM. We have an isomorphism of formal groups ¢,/ :
M — M " such that Yn o) = [p”]M. (cf. [12, Chapter I, Proposition 1.5].) We put
wy = @, (x,) € Mo [p"]. The system (z,), satisfies that p(@,+1) = @,, and we call
it the system of ¢-power torsion points associated to the system of p-power torsion points
X € TPM. We give the interpretation of @, as a deformation.

Since E is the canonical lift, we have the splitting s : E[p"] — E[p"] defined by
the decomposition T, E = Tpf X T,,E , which is compatible with the Galois action over
L = W[1/p]. It may also be described as follows. For P € E[p"], take P4, € E[p""]
such that p” P, = P. Then consider a lift P,,, € E(W(k)) of P,. The section s(P)
is defined to be the limit of p™ P,.,, when m — oo. (Note that p"*™ P, ,, — 0 since
the Serre—Tate coordinate of the canonical lift is 1, and the limit depends only on P, since
E(W (k) N E[p™]={0})

The element x,, is regarded as a map

xn € Homg, (E[p"1, E[p"]).
Let C,, be the étale subgroup
Cn :={s(Py) — x2(Py) | Py € E[p"]} C E[p"].
Clearly, pC,4+1 = C, and E/C, is a deformation of Ea_n. (The isomorphism on the fiber

is given by F pvn . E/JE[p"] = fﬁin.) For an invariant differential form wg of E over W,

let wge—n 1= ¥, wE be the twist of wg by ™" on E°" and let wge-n be the Frobenius
compatible lift of w o= ON the universal deformation.

Proposition 5.6 Let E’ be the deformation of E° ’ corresponding to w, € Mo [p"], that
is, E' = (E° ")o/Cu, (cf. Proposition 5.5 (i)). Let ' be the pull-back of wgo—n on E' by
the universal property. Then there exists a unique isomorphismt : E' — E/C,, such that the
following diagram commutative:

E — > E/C,

where 1, and 1w are the canonical projections. In particular, E/C, is the deformation of
—n

E° corresponding to wy,. IfF;,,wE = OnWpgo—n, then mwowp = opts@'.
Proof The map ¢, : T,,M — TPM“" is given by
¢n t Hom(T,E, T, £) — Hom(T, B’ T,E°"), x> (P > Fpnx(F];,lP)> .
Then since ¢, o ¢,/ = [p"] . the map corresponding to @, is given by
E " — ETM 0 — FGa(Fp Q).
Hence the image of Cy;,, by Fpn is
(S(Fp Q) —xa(Fp Q) | Q€ E° [p"]),

that is, C,,. The assertion follows from this and Proposition 5.5 (ii).
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Let ¢ be a natural number such that (¢, p) = 1 and let A, be the elliptic curve defined in
Sect. 3.2. Let k be the residue field of H,, and we take E as the reduction of A.. Then A, is
the canonical lift of E, and we may take E as A.. As in Sect. 4, let w be a generator of the
O.-module H{ (A, Z) and consider generators of Z,-modules u € Ty A and v € Ty« A, so
thatu —v e Z,w C T,A. = H (A, Zp), and put that

e=u®v® ! € ThA. ® (TprA)® ' = T, M. (5.6)
Let (@), be the p-power system associated to e.

Proposition 5.7 The deformation corresponding to @, is Acpn.

Proof The torsion point €, of M[p”] = Hom(A.[p"], Ac[p"]) corresponds to the map
xXp € Homz, (Ac[p"]. Ac[p"]), va +—> un.

Hence by Proposition 5.6, the deformation corresponding to @, is A./C, with
Cn 1= {s(Pn) = Xn(Py) | Py € Ac[p"]} = Zw,.

If we identify A, with C/O,, then we may take w, = ,, €5 Lo ¢/ Oc. Therefore, A./C, =
Acpn.

5.8 Local moduli and anticyclotomic extensions

We explain the relation between the localization of anticyclotomic extensions and the torsion
tower for the local moduli.

As before, let K be an imaginary quadratic field, and p splits in Ok . We fix an embedding
tp : Q< C, and let p be a prime over p compatible with ¢,. We denote the closure of a field
FcQinC p by F. For p 1 ¢, let A, be the elliptic curve with End A, = O, as before. For
simplicity, we denote MXC by M. Let Ko be the anticyclotomic Z ,-extension of K. Since
p splits, K oo is a ramified Z ,-extension of QQ,. We show that this extension is contained in
the field obtained by adjoining torsion points of M, to H,.

Proposition 5.8 The j-invariant j(O¢pn) is contained in H. (MC[P"]). In particular, we have
I:Icpn C I:IC (./\>lc[p"]). Furthermore,

[He(Mc[p"]) : Hopr] = [OF : O] < 05 /2.

Inparticular, ifc # 1or K # Q(+/—1), Q(«/ 3), the ring classﬁeld towerlocally coincides
with the torsion tower of the local moduli /\/lc, that is, Hcpn = H (/\/l [p"D.

Proof The first assertion follows from Proposition 5.7. (Note that /\3137" = Mc by ¢,/.) Itis

known that
dg \ 1
[Hy: Hl = f10% : OF1] | <1 - (%) Z)
of

for the order O of conductor f. (cf. [10, Theorem 7.24].) We have [ I:Icpn cH] = [Hepn :
Hl=p" Y(p— DO - O:p” ]. On the other hand, by the theory of formal groups, we have

[H.(M.[p"]) : H.] = p"~'(p — 1). The assertion follows from these.
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5.9 Theta operator on local moduli

As before, let E /k be an ordinary elliptic curve over a finite field k = F, with EndE(E) =0,
for a natural number ¢ prime to p. Let E be the canonical lift of E over W := W (k) and let
E/R be the universal deformation of E /k.

We fix an invariant differential wg of E and let wg be the lift of wg on E by sg. Let
u, € W* be such that F;‘a)Ea = pu;la)E. As before, let  \ be the invariant differential

of M defined by
KS(@E?) = w
and 9 ,, be the differential operator on R associated to w . That is, dg = 9y (g)w . We
define &g € HJp (E/R) by
V(wg) = E®w v € Hig (B/R)®n Qi -

Lemma 5.9 &g lies in the unit root space, that is, CID;‘,&E = upég, and (wg, &g) = 1. These

property characterizes &g. In particular, wg, &g become a basis of the R-module Hle (E/R).
We also have V (ég) = 0.

Proof Since KS(a)%’Z) = (wg, V(wg)), we have (wg, é&g) = 1. Since V is compatible with
the Frobenius structure and 0 oo = pu;zw x> We have ®76g = upég. Since the image
of Vo (<I>Z)m is divisible by ¢™, we have V(ég) = 0.

The quotient by the unit root space generated by & defines a splitting
su @ Hig (B/R) — I'(E, Q]!E/m)
of the Hodge filtration as 93-module. This is also obtained by the pull-back map on the
formal group H;R E/R) — H(}R (E/R) = I'(E, QIIE /m). For a natural number n, we put
L, = Symgg Hle (E/R) and naturally extend the connection V to L, — L, ®x SAZQ‘ I The

splitting s,, also naturally defines L,, — T'(E, Q]}E /m)®”, which is also denoted by s, by
abuse of notation. Then the theta operator ¥ is defined by the composition

A i -! Su
i DB Qo)® —— Ly — > L,®x Qgri/wd@)KS Ly+2 [ (B, /0" 2.
Lemma 5.10 For g € R, we have ﬁ(gw%’k) =0, (g)a)[?(kﬂ),
3 ®ky _ ®k ®(k—1)
Proof The assertion follows from V(gop") = dg ® wg" + kgwy QEE ® w -

Hence if we identify I'(E, Q]}E /m)®” with fR by the basis w%’”, the operator ¥ is 9, on
R.
5.10 The y-operator on R

1

Let v be the unique o~ " -semilinear map on R satisfying ¢ o ¢ = 1 and

pov@=p" Y ig

PeM[w]
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for g € R, where ¢} is the pull-back by translation by P with respect to the addition on M.
(Note that M[¢] = M([p].)

We give the moduli theoretic interpretation of ¥. To give a 6~
equivalent to give amap from Mor (/\31"7I , Ga) to Mor(M, Ga) where Mor means morphisms
of formal schemes (not group homomorphisms). For f € Mor(./\;l"_1 ,G,) and for x € M
corresponding to a deformation £/R, we put

!_semilinear map on R is

F(fHx) =) fE/C) € R
C

where C runs through étale subgroups of £ of order p, and R’ is a finite flat extension of R.
Then by Proposition 5.5, we have

@@ =) fE&/C= Y fxay)
C/

yeMlp]

where C’ runs through étale subgroups of & of order p. By the general theory of formal
groups, the right-hand side is of the form p¢*(g)(x) for g € Mor(/\;l‘f1 (R), @a (R)). Hence
we have ¥ f£)(x) € pR. The above argument also shows that p~! V has the characterization
property of . Hence

Proposition 5.11 The operator  is the map that associates f € Mor(/\%‘f1 , @a) to the
map

M = Gu € %Zf(é’/C)
C

where C runs through étale subgroups of € of order p.
Lemma5.12 4, : RY=0 — MV=0 is bijective.

Proof The kernel is W N ER:”:O = {0}. For the surjectivity, it is sufficient to show it after
the scalar extension to W (k) and we may use the Serre-Tate coordinate. We fix a basis
v € T, E and consider the Serre-Tate coordinate g (E/R, v) = 1 +¢. Then R’ h=w)[t].

Let ¢ be the Serre-Tate map M — Gm over W (k) associated to v. Take the p-adic period

Q€ W (k)* such that L*(ld—J:t) = Q¢ ,® (- As operators on W (k)[t], we have

d
Iy = (1 H)E’ p)=10+0n? -1
Hence the assertion is reduced to the well-known case.

For g € R, we let
=Wop—9poy)g=(1—poyg.

Then clearly, we have g” € R¥=0. If we regard g € W (k) [#] with the Serre-Tate coordinate
and p is the corresponding measure on Z,, then g” is the power series corresponding to the
measure on Z, obtained by the extension of 1 |Z; by zero.
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5.11 The Galois action on the local moduli

First, we recall the following general fact.

Lemma5.13 Let 1 be an isogeny of elliptic curves A — B over k of degree ¢ prime to p. It
induces an isomorphism vy : My — My as formal groups characterized by the following
equivalent properties (1), (2):

(1) Let A/R be a deformation of A/k and let B/ R be the corresponding deformation of B /k
by tyy. Then there exists a unique isogeny A — B over R of degree ¢ compatible with t
on the special fiber:

(2) Let (v, w) be an element of sz X Tpfv. Then

q(A/R T, (@) = v (q(B/RR, (@), W))

where sz is the morphism on universal deformation rings Eﬁ%ﬁ — ﬁ‘i%h naturally induced
by ty, and v is the dual isogeny of L.

Proof Since c is prime to p, for a deformation .A/R of A/k, the reduction map induces an
isomorphism A[c] = Alc]. Hence the kernel C of ¢ is uniquely lifted to a subgroup of A[c].
We associate .A/R to the deformation 5 as the quotient of A by C and the isomorphism on
the special fiber by B = A/C = B induced by ¢. The equivalence (1) and (2) follows from
the following diagram and [21, Theorem 2.1, 4)].

A A/C B (5.7

L e ]

Spf Ry = Spf Ry — Spf Ry

By (2), 1 is compatible with the Serre-Tate map, hence it is a homomorphism. By consid-
ering the dual isogeny of ¢, it is straightforward to show that ¢, is an isomorphism.

Let ¢ be aninteger prime to pdg . We let Gn := Gal(H¢pn /K) and 'y, := Gal(Hepn /H,).
(n may be c0.) Now we consider a Galois action of G¢,n on the local moduli. For this purpose,
as in [6], we assume that the discriminant D is odd or 8 | Dk, and take the CM elliptic
curve A, more precisely. (We can also consider the case 4 || Dk in the below if we assume
the existence of a CM elliptic curve A that is Q-curve satisfying the Shimura condition and
good at all places over p. However, in the sequel [24], we only consider the case that Dg
is odd or 8 | Dk because we use results of [6].) Then by [36], there is a canonical Hecke
character gk : Ix (f) — C* of conductor f satisfying

(1) ¢k (@) = ¢k (a) forall a € Ik (f).
(2) ¢k (@¢Ok) = fa forevery o € K™ prime to f.
(3) The conductor { is divisible only by primes ramified in K /Q.

Up to an ideal class character of K, there is a unique canonical Hecke character if Dg is odd
and there are two if 8 | Dg. (If 4 || D, there is no Hecke character satisfying the above
conditions (especially, (2)) but a variant is considered in [41].) We define the Hecke character
Yg of Hby ¥y = ¢k o Ng/x. We also denote the Grossencharacter HX\AZ — C*
associated to ¥y by the same letter. Then the Serre—Tate character Yy has the open kernel
and 1/~/ 1 (o) = Np ko forany principal idelé o € H . Hence there is an elliptic curve A with
Endc(A) = O defined over H+ := Q(j(Ok)) such that j(A) = j(Ok) and its Serre-Tate
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characteris ¥z . (cf. [17, Theorem 9.1.3, Theorem 10.1.3].) The elliptic curve A is a Q-curve
in the sense of [17], and by construction, it satisfies the Shimura condition, i.e. H(Ay)/K
is abelian. (cf. [11, Condition (S)].) In particular, the Weil restriction B := Resy kA is a
CM abelian variety. (cf. [15, §4])

Let B be the prime of H, compatible with the fixed embedding ¢, : Q < C,, and let k be
the residue field of H, at*B. For t € G, let 2R; be the universal deformation ring for ZZ /k.
We let R = [;cg. Rr. We define an action of Gpe on R.

Let a be an ideal of Ok prime to dg and let o, be the element of Gal(K ab /K) associated
to a by the Artin reciprocity map. Since A satisfies the Shimura condition, we have an
isogeny A(a) : A — A%e such that o64(P) = A(a)(P) for P € A[b] with (a,b) = 1.
Suppose further that (a, ¢) = 1. Then A(a)(ker(r.)) = oq(ker(z.)) and hence A(a) induces
an isogeny A, — AZ® over H,, which is also denoted by A(a). Let A, be the composition
Ma)om. : A — AZe.

Suppose that ¢ € Gal(K?/K) is represented by an integral ideal a prime to pcDg
as 0 = 04. Then by Lemma 5.13, the isogeny A" (a) : A — AZ7 induces a morphism
of formal groups MZ? — szr over W(k) or in other words, a ring homomorphism
[oa] : Ror = R I aLu fixes elelﬁents of H., the action [o4] : R; — *R; coincides with the
relative Lubin—Tate action of /\;tzr, that is, [oq] = [k;(04)] with the Lubin—Tate character
Ky of M . We define the action of Gy on R as the unique continuous action extending
that of o4 for integral ideals a, which are dense in G,. Then we have a Galois-compatible
ring isomorphism

RE=R®z, 1] ZplOopx], (xo)e > Y [Fl @ F! (5.8)
T

where T is any extension of 7 to G.,. We define the action of ¢, ¥ diagonally on R, which
corresponds t0 ¢ @ 1, ¥ ® 1 on R ®z,,[1..] Zp[Gep=]-
We fix a generator v = (v, 0") of T,A @ T,,Zv, and put

t:=qA/R", T, 7)) — 1.
For a non-zero integral ideal a, we also put
ta = q(A% /R Xa(), 271 @) — 1. (5.9)

We regard ¢, as an element of R = I1; E)%m by putting it in the component SR*E and 0 in
other components.

Lemma 5.14 (i) Under the ring isomorphism in (5.8), the component SR;E c R corre-
sponds to the submodule

R @ Ga_l c wsh ®z,[Too] Lp[Gep>]-

Furthermore, the element tq € R*" corresponds to t @ oq !
(i) If oq fixes elements of H., we have

[oal (4(A/R".5.)) = g (4/R", 5.0 (5.10)

where Kk, = KX;:. (Note that k; is the local reciprocity map Gal(Hcp~ /H.) = Z;.)
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Proof By Lemma 5.13, we have
[oal (4(A% /3% (@), ) = q(A/R, T, Aa()) (5.11)
for (v, w) € TPZ x Ty (XV)"“. Thus, if o4 fixes elements of H,, we have
[oa] (g (A/R7, 5, D)4 ) = g (A/RN, T, )0 a o), (5.12)
The assertion follows from these.

As in the proof of Lemma 5.12, we have ¢(1) = (1 4+ )? — 1. Hence 1 + ¢ € (8°")¥=0.
We identify

A+H®1 e RMH=0 ®2, 1] Zo[Ger]
with 1 +te (SR‘YFL)1/I=0 C (ii{Sh)l//:O.

Proposition 5.15 Suppose that ¢ > 1. Then RY=0 is a free WGcpoe]-module of rank 1. As
a W (k)[Gepe]-module, (RYV=0 s free of rank 1 generated by 1 + 1.

Proof By descent theory, it suffices to show the last assertion. We have
W]V~ = WE)[Gal(KX /K" )] (1 + 1)

where I%gg = K (/\;lc[poo]). (cf. [7, Theorem 3], [16, Theorem 2.6], [23, Proposition
3.11]). Then the assertion follows from Proposition 5.8 and (5.10).

Remark 5.16 The action on P°" with the Serre-Tate coordinate is the inverse of the
Lubin-Tate character, which is the opposite of classical normalization. For example, in the
cyclotomic setting, y acts on (1 + t) by the cyclotomic character. In the appendix, we also
use the classical normalization following Perrin-Riou. We write 93*” with our action by ‘R*"
if we use the classical normalization.

6 Logarithmic Coleman power series interpolating generalized
Heegner cycles

In this section, we construct the logarithmic Coleman power series interpolating generalized
Heegner cycles.

First, we recall the classical Coleman power series theory and Perrin-Riou theory to
compare them with our theory (cf. [7, 33]). Let Q, , be the cyclotomic field Q, (¢ pn+1) and
Qp,00 :==U,Qp . We put Gl = Gal(Qp,00/Qp). Fix a basis § = (&pn+1)n Of Zp(1). Let
U, be the group of the principal units in Q, ,, and Us, = l(gln U,.Thenforu = (u,), € Uxo,
there exists a power series, f:, € 1 4 pZ,[t], called the Coleman power series associated

to u, such that f¢ , ({1 — 1) = u,. We have (1 — %) log fzu € Zp[[t]]‘”zo. Here ¢ is the

operator defined by ¢(¢) = (1 +1)? — 1 and y is the left inverse of ¢. Then there is an exact
sequence of G ,-modules

log” oCol
0—Z,(1) Uso —— > 7, [{]*=° Z,(1) 0 (6.1)
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where log” oCol is the map sending u to (1 - %) log f 4. It is known that

Zp[t]V=0 = Z,[GXT (1 + 1)

where the action of g € G is given by g - (1 4+ 1) = (1 + )& with the cyclotomic
character k.y.. Let ) be a non-trivial tame even character of GZ¢ and let e, be the idempotent
of Zj, [[ch;c]] associated to 7. Then the image of a system of the n-part of cyclotomic units
by log” oCol is Ly, y (1 + 1) where fc“‘,; is the Kubota—Leopoldt p-adic L-function in
enZ G

In [33], Perrin-Riou developed a certain integral exponential theory interpolating Bloch—
Kato exponential maps for the cyclotomic deformation of crystalline representations of Gg, .
(The base field may also be taken as a finite unramified extension of QQ,.) Her exponential is a
generalization of the inverse of log” oCol in (6.1). More precisely, for a crystalline represen-
tation V of G@p ,let D, (V) be the filtered ¢-module associated to V. Let 4 > 1 be a natural
number such that Fil =" D, (V) = D, (V) and for simplicity, we assume that VGQT’“F"O) = {0}
and DP(V)W:P_I = {0} for j > 0. Then for an element g € D, (V) ® Z), [[t]]w:(), she con-
structed a family of local points ¢ ,(g) € Hf1 Qpn, V) n = 0,1,...) with bounded
denominators for n. More precisely, first, take a (unique by our assumption) solution of
(1—¢)G = gin D, (V) ® A, where %, C Q,[t] is a certain convergent power series ring
on the open unit disc. (cf. (6.4)). Then for a suitable Galois stable lattice T, it can be shown that
p("+1)(h_1)G(§pn+1 — 1) is in the image of Hf1 (Qp,n, T) for all n under the Bloch—Kato log-
arithm. Hence there is an element ¢, , (g) such thatlogy cj ,(g) = p(”+1)(h_1)G(§pn+1 —-1),

and G (resp. g) is an analogue of log fg , (resp. (1 - %) log fe ). (In the appendix, we

write ¢p ,(8) by ¢, (G).) The system (cj,,(g))n satisfies a certain norm relation related
to the characteristic polynomial of ¢ on D, (V). Hence the system (cp,,(g)), is not norm
compatible in general, however, by modifying ¢, ,(g) possibly admitting denominators (in
non-ordinary cases), she constructed an element

QY 4 (8) € Ho(GE) ® 1gevey lim HY Q. T)
n

where 7, (G&°) is a power series ring containing Z,[G&] with huge denominators (cf.
P

(6.4)). She also defined the map QV Gh for j € Z. It is not difficult to generalize her theory
not only for the p-power cyclotomic tower but also for the p-power torsion tower of a relative
Lubin-Tate group of height 1. We summarized it in the Appendix. (cf. [43] for Lubin-Tate
groups of height 1 but not for the “relative" Lubin—Tate groups.)

Our purpose is to construct the logarithmic Coleman power series interpolating generalized
Heegner cycles in the following sense. For a natural number ¢ prime to p and —r < i < r
with r = k/2, the localization of the Abel-Jacobi image of the generalized Heegner cycles
of conductor c¢p” gives a system of local points

i) € HE (Hop, ViU ) (=01,

and this satisfies the norm relation
Corn+1/n Zn+1) —a (f)Z(l+r) + pk 2Resn/n 1 Z( i+7) =0.

(cf. [6, Proposition 4.4].) This is precisely the relation in the Perrin-Riou theory for ¢, (g)
in this context. Hence, it is natural to expect that there is a vector-valued power series g; €
D (Vf(l//'”w ) ® |¥=0 such that ¢, ,(g;) = z(l+r) In fact, we show that such g; is
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given in terms of the 7-expansion of the Coleman primitive F» of the p-depletion f > of
the modular form f, and the solution G; of (1 — ¢)G; = g; is also given in terms of the ¢-
expansion of the Coleman primitive F¢ of f. This strongly connects the Coleman integration
theory and the Perrin-Riou theory. We shall see that identifying

D,(V(r) @ RY=" = D, (V;(r)) ® O[Gal(H,p /H,)],

the element g( gives a vector-valued Bertolini-Darmon—Prasanna (BDP) p-adic L-function
in Dp,(Vy(r)) ® (’)[[Gal(I-AICpoo / ﬁc)ﬂ. (Precisely, we need a semi-local version of the above
argument when the class number of K is greater than 1.) Note that in [2, §3.8], only the
primitive of the p-depleted modular form f* is calculated. Perrin-Riou theory enables us to
calculate the primitive of the original modular form f.

6.1 Coleman primitives of modular forms

Assume that N > 4. Let w be the invertible sheaf 71*(22 V(N form : & — Y1(N) and

let £; be the relative de Rham cohomology group H, le (&/Y1(N)). Then we have an exact
sequence

0 w Ly oY 0 (6.2)

where v is the dual of Oy,(y)-modules. We extend them on X (N) using the canonical
differential form and the Gauss—Manin connection on the Tate curve around cusps. (cf. [2,
§1].) For a natural number n, we put £, := Sym” L. The Hodge filtration on £, is defined
naturally from (6.2) and the Poincaré duality defines a pairing (, ) : £, X £, — Ox,(n). By
construction, we also have the Gauss—Manin connection V : £, — £, ® Q}(I ( N)(cusps).

Let p be a prime not dividing N. Let S be the subset of X (N )(?p) consisting of all
cusps and all supersingular points. Let X" be the rigid analytic space over Q,, associated
with X(N) and £,® denote the rigid analytic coherent sheaf associated with £,. Let Vorq
be the affinoid obtained by subtracting all residue discs over the points in S and let W be a
wide-open neighborhood of V4. By using the Gauss—Manin connection of £, on W, we
let

rowv, L2 @ Q)
VI (W, £5%)

which is known to be independent of the choice of W. By the theory of the canonical
subgroup, the Frobenius ¢ : Yorg — Yora 1S Overconvergent, that is, there is a wide-open
neighborhood W' such that W D W' D Yorq and ¢ is extended to ¢ : W' — W. We also
have the Frobenius structure on the relative de Rham cohomology £ compatible with the

HY OV, L8 V) =

Gauss—Manin connection and it induces a horizontal morphism Fr : ¢*£,® — £,%|}17. By
composing these, we have a map

TV, LhE @ Q) = TOV, o*(LhE @ Q1)) = TV, LRE @ Q).

In particular, this induces a map on the space of overconvergent modular forms and actions
on Hle w, Lﬁ:,lg, V). By abuse of notation, we denote all of these by ¢. For details, see [2,
§3.5].

Let f be a primitive normalized eigenform for I'1 (V) of weight k& > 2 with Neben
character ¢. Let O be a finite flat Z-algebra in C,, containing the coefficients of f, roots
a, B of Pp(t) == 12— ap(fHr+ e(p)p*~" and a primitive N-th root of unity by the fixed
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embedding ¢, : Q—C p- If p is ordinary for f, we take o as the unit root. For a Z ,-module
M, we write M ®z, O by M. If there is no fear of confusion, we sometimes write Mo
simply by M by abuse of notation. Letw s € I'(X1(N), = —®K) 1 be the section corresponding
to f. We may also regard oy as a section of I'(X{(N), —' —8*k-2) & QX N) (cusps))o by

the Kodaira—Spencer isomorphism. Let M s be the O[¢]-submodule in H R(W Lng Vo

generated by the image of w . (The action of ¢ on H(le w, Eng V)®z, Ois ¢ ®1.) Then
we have Pr(¢)wys = 0in My. Hence O-module M is at most of rank 2 and it is of rank 1
if and only if Ow/ is closed by the action of ¢. This happens only when the p-adic Galois
representation associated with f is ordinary and decomposable at all places over p. (cf. [13,
Proposition 4].) There are operators U, V on the space of p-adic modular forms compatible
with V such that

U (anqn> = anpqnv 14 (Z bnqn> = anqpn
on g-expansions. The moduli interpolation of U is that it associates a triple (A, w4, Lv)
of ordinary elliptic curves to the cycle % > c(A/C,wac,Lv) where C runs through étale
subgroup of A of order p, w4,c is the mnvariant differential form on A/C whose pull-back
to A is w4 and the level structure is the natural one. (Note p t N.) Similarly, V associates it
to the triple (A/A[p], pwA, %Lv). (cf. [2, p. 1085].) Note also that the Frobenius map Fr),

associates it to (A/ A[ pl, pwa, Lv). Hence V and ¢ differ by the diamond operator (p).
Following [2], for p-adic modular form g, we let

=UV-VU)g=(10-VU)g.

(Note that [2] uses the right action for U and V.) Let w I be the section in (W, —®F)
associated to f > for a wide open W of Y. In this subsection, we consider (Coleman)
primitive functions of wy and w» with respect to V. By general theory, primitives are
determined up to horizontal sections of V. We eliminate the ambiguity in the following
lemmas.

First, consider the primitive of wy». Since Pr(gp)wy = 0 in the rigid cohomology
HdR(W Cng V), there is a rigid analytic function F b (a section in I"(W, £21§ »)) such
that Pr(p)wys = P(0)VF . The following lemma shows that F» is a primitive of wp.

Lemma 6.1 (i) The g-expansion of [ is Zp*n an(f)q".

(ii) Wehave Py(p)ws = P(0)w s> as p-adic modular forms. In particular, F ¢ is a primitive
Ofa)fb .

Proof i) follows from the direct calculation of the action of U, V on the g-expansion. The

g-expansion of wy is given wy = f (q)d—q @8 =2 where wcyy is the canonical invariant

differential form of the Tate curve. On the g-expansion of f, the Frobenius acts as e(p)V.
(cf. [20, §1.3, (1.3.2)]). Hence

Pr@)os = (e(p)p*" —ap(He(p)p ™V +e(p)*p?* 2V f(q) qq wZh2
=P A —ap(HV +ep)p V) f(g)- q" & =PO)wp.

Lemma 6.2 There is a unique rigid analytic primitive F > of o g» such that U (Fp») = 0.

Proof Take a rigid analytic primitive and put g = VU (F»). Then g is a horizontal section
of V. Then by replacing F» by Fy» — g, we have such a primitive. The space of horizontal
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sections is a finite-dimensional vector space, and U defines a linear transform on it having
the right inverse V. Hence U is invertible on it. Hence the condition U (F ) = 0 characterize
the primitive uniquely.

Actually, there is no algebraic horizontal section when k > 2 and the above lemma has a
meaning only when k = 2. However, such a characterization is important in general. In fact,
the same idea has already been used in [27].

From now on, we denote by F» the primitive in the above lemma.

Let OI;} be the sheaf of locally analytic functions on X with values in the fraction field of O
and OS?I the subsheaf consisting of Coleman functions. We put ll]‘zo_lz =Lr2®o X,V (’)f\?l.

By the theory of Coleman integration, we have Fy € L‘,io_lz such that VFy = w. Note that
Fy is determined uniquely up to a horizontal section of L;_>.

Lemma 6.3 There is a unique Coleman primitive function Fy of wy such that Pr(p)Fy =
Pr(0)Fpo.

Proof Since Py(1) # 0, P (¢) is invertible on the space of horizontal sections of £;_5. The
assertion follows from Lemma 6.1 (ii).

We fix F as the primitive in the above lemma.

6.2 Expansion at the Heegner point

We use the same setting and notations in Sect. 5.9. We fix a I'1(V)-level structure Lv :
Z/NZ — E. Since (N, p) = 1, it is canonically extended to the level structure on E and
E. Then the residue disc of X{(N) at (E/k,Lv) is identified with the rigid analytic disc
associated with the formal group Mz ;.. Considering the formal completion of X (N) over

W at the closed point corresponding to the isomorphism class of (E/k, Lv), the completion
of the universal elliptic curve on X(N) is identified with [E. Then we may regard wy €
I'(E, QIIE/m)%k and write o = f(E/R, wg, Lv)w%’k where f(E/R, wg, Lv) € Ro is the
value at (E/R, wg, Lv) as the Katz modular form associated to f (with coefficients in O).
The operator V U associates a point in the residue disc at (E /k, Lv) to a cycle whose support
is in the same residue disc. By Proposition 5.11, its moduli interpolation coincides with that
of ¢ o ¢. Hence we have VU = ¢ o ¥ on the residue disc. In particular,

P (E/R, wr, Lv) = (f (E/R, wg, Lv))’.

Let a)]E, Sg be the dual basis of wg, &g. Then by the identification of the de Rham pairing,
we have &5 = —wg and wy = &g. Hence V(&) = —wp ® w vy and V(wg) = 0.

Proposition 6.4 Let F > (E/R, Lv) € Li_s be the formal expansion of F s> at (E,Lv). We
have

(Fpo (B/R, L), (@) 27 (&) e = (=17 j10 7 £ (B/R, wg, Lv) € RY™.

Proof The proof is similar to [2, Proposition 3.24]. First, note that by acting VU = ¢ o ¥,
we have

(Fpo (B/R, L), () 27 () )e € RY .
Since V(wy) = 0, we have

3 (Fp (B/R, Lv), (@) ) = (f*(B/R, Lv), (0p) )k = [*(B/R, 0g, Lv).
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Hence we show the equality in the assertion by operating Bj\;lr ' For Jj > 1, we also have

3 o (Fpo B/R, L), () 27 (&) e
= (VFp (B/R, Lv), (o) > &))E + (Fp B/R, L), V(o) > &) ))E
= —j(FpE/R,Lv), (0p)* >/ &) g

Hence the assertion follows by induction.

6.3 The construction of the logarithmic Coleman power series

As before, let f be a normalized cusp form for ['g(N) of weight k. Assume that p ¥ N and
let o, B be roots of x2 —a p(f)x+ =1 in the fixed algebraic closure Q and the embedding
into C,,. Let O be the integer ring of a finite extension of Q, in C,, including the Hecke field
of f and «. We take « as a unit root if p is ordinary, and any if p is non-ordinary.

The strategy for the construction of g; € My ® 9RY=0 is that by choosing an appropriate
splitting Ny of the Hodge filtration of My, we construct a map M]Y — MY=0 with the
identification

My @ RV=" = Hom(My, RV=0).

We put
Ny Opwy, if My isof rank 2
=110}, otherwise,

and let Z” : My — TV, E,rf »)o be the map defined as the composition
My — My/Ny=0w; — TV, L))o, wfr—> Fp.
If M is of rank 2, define an “integration" map Z € Homo (M ¢, 'V, /320,12)0) by

L(wy) = Fy, I(pwy) = @Fy.
If My is of rank 1, define Z by Z(wy) = (1 — oc_lgo)Ff.

Now we consider the a-stabilized version. We let wy, = (1 — B 'o)w 7. Then pwy, =
awy, in My. We put Ny := O[1/plwy,. Then we have M¢[1/p]/Ny = O[1/p]wy. (Note
that if M is of rank 1, we have wy, = 0 since we choose « to be the unit root.) Then we
define Ig My — TV, E,r:%z)@ by

My — My[1/pl/Ny = O[l/ploy — TV, Lif)o.  wfr—> Fp.
Similarly, define Z,, € Homo (M, T (W, £5°),)0) by
My —s Ms[1/pl/Ne Z O[1/ploy — TV, L;%)0, wpr— (1—a '@)Fy.
Proposition 6.5 We have (1 — ¢)Z = I’ and (1 — )T, = To.

Proof The relation (1 — ¢)Z = 7" follows from Lemma 6.6 below. Since Z, (pwy) =
BIy(wy) and o wp = (@B) "' (ap(f) — @)wys, we have

Tu(p ' wp) = B~ (1 —a @) Fy.
Then by Lemma 6.3, we have
(1= 0)To(wy) = Ta(wf) — ¢Za(p wy) = Pr(O) ' Pr(@)Ff = Fpo.
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Let R be a commutative ring with an automorphism . Let M, N be R-modules with
o-semilinear endomorphism ¢. We assume that ¢ : M — M is bijective and consider the
natural action of ¢ on Homg (M, N) by ¢(f)(m) = (pf((p_lm). Let R[t], be the non-
commutative ring such that the underlying set is the polynomials over R with variable ¢ and
the multiplication is twisted by therule t -a = o (a) -t fora € R. Suppose that M = R[¢],®
and P(¢)w = 0 for o € M and a monic polynomial P of degree h.

Lemma 6.6 Assume h > 2 and let g : M — N be a morphism of R-modules such that
the kernel contains Zf’z_ll R¢'w. Suppose that there exists G € Homg (M, N) such that
(1 — )G = g. Then G satisfies P(p)(G(w)) = P(0)g(w) and G(@'w) = ¢' G(w) for
i=1,...,h—1. Conversely, if G satisfies these relations, G is a solution of (1 — ¢)G = g.

Proof For n € M, the condition (1 — ¢)G = g implies that

G — G~ ') = g).

Since g(¢'w) = 0fori =1, ..., h — 1, we inductively have G(¢'w) = ¢' G (w) for suchi.
We also have

G@'w) — p"G(w) = G(¢"w) — G (" 'v) = g(¢"w).
Hence
P(9)G(w) = P(9)G(w) — G(P(9)w) = —g(¢"w) = P(0)g(w).

The converse is also clear.

We let Dg = Hle(E /W), which has the structure of a strongly divisible module. Since
E is the canonical lift, we have the decomposition Dg = Dg , ® Dg p+ Where Dg p is the

filtered ¢-module associated to the formal group E (or the p-adic representation (7, E)", the
Zp-dual of T, E) and Dp -+ is the filtered ¢-module associated to the p-adic representation
(Ty+E)Y = (Tpf)v. If there is no fear of confusion, we omit E in the notation of Dg |, and
Dg p+. The module Dy, is a W-module of rank 1 generated by an invariant differential form
and Fil! Dy = Dy, Filsz = {0}. The module Dy+ is a W-module of rank 1 generated by a
unit root vector of ¢ in Dg and Fil’ D, = Dy, Fil' D, = {0}. Then we let

n
. S(—i
Lg = Sym” Dg = @ D?l RQw Dp*(n l).
i=0

Now we define the formal completion of 7°, T at (E /k, Lv). By the formal completion
at (E/k, Lv), we have the map T'(W, £E§ ») = Lg—2 ® Qp. Then we extend the pairing
(e Lea x L) - Rto

TV, L%) x LY, — R Q,.

The lift sg in Proposition 5.1 naturally defines a lift LE k2 = ]L,Z_z, which is also denoted
by sg. Then we have a map

b =0
T, Mp®LYy, — Ry @1 > (I°(), s()E-
(By Proposition 6.4, we do not need denominators here.) By definition, it satisfies that

Ty ®ny) = (FpE/R, Lv), 1)E, Typws @ n¥) =0 (6.3)
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where 7y is the Frobenius compatible lift of 7.
We let

AR = {Zanz" | an € WII/p), lanlpn™ — 0} (6.4)
n=0

where 7 is a generator of W-module m/m? for the ideal m of 94 corresponding to the canonical
lift E. We put 5, (R) = Up2 | ,(R).

Lemma 6.7 The formal completion of T (W, llz(’l) at (E /k, Lv) lies in Ly @ #0 (OR).

Proof After multiplying by a polynomial of ¢, Coleman functions become rigid analytic
functions on the closed disc at (E /k, Lv). The formal completion of a rigid analytic function
on the closed disc has bounded denominators. In particular, it is an element of .7%,. Hence the
assertion follows from the general fact that for a given g € %%, a solution G of P(¢)G =
P(0)g where P is a monic polynomial with coefficients in W satisfying P (1) # 0 lives in
H%o- This is shown by the same argument in the proof of Proposition (ii) of 2.2.1 of [33].
Note that we may change the equation P(¢)G = g into the form (1 — ¢)G = g asin [33] by
using Lemma 6.6. In fact, let N be a W[¢],-module containing g and M = Wlgls /(P (¢)).
(Write 1 € M formally as w.) Define § : M — N by g(1) := g and g(¢') = 0 for
i=1,...,h—1.Then by Lemma 6.6, the equation P(¢)G = g is equivalent to the equation
(1 — ¢)G = g. See also Proposition 7.2 in the appendix.

Then by the formal completion, we define the map by
Ig:My®Lp , — HoRo, E@n — (L), se())E.

Similarly, by using Z, and IZ instead of Z and Z°, we define Zo.E and IZ’ £

Proposition 6.8 We have (1 — )Tp = I, and (1 — 9)Io.p = T, .
Proof This follows from Proposition 6.5 and that sp, is Frobenius compatible.

We apply the Perrin-Riou theory in our appendix for G = M and use the same notations.
We identify D) ® foi_l with D > by the Kodaira-Spencer map as before. By definition,
we have

wM:a)E(X)S;;/. (6.5)

Let V be Vy(r) and put D := D,(V) (resp. DQP) the filtered ¢-module associated to
representation V of Gwyi/p) (resp. Gg,) with coefficients in O. Let Dy be the filtered ¢-
module associated to f with coefficients in O. Note that Dy = M ¢[1/p]if My is of rank 2,
and M is the quotient by the unit root space if My is of rank 1. The module DE’ p ® DE,p*
has a canonical basis wy, ® &)/, which is independent of the choice of wr and we denote it
symbolically by w” &Y. We identify

D(@Qp(1)) = Dy, ® D
by w&Y. Then we have canonically
D =Dy(r) = Dy ®q, (Dg, @w D ,)¥".
We consider the twist associated with M

D(i):=D®Dy " ® Dfﬂf =D; @Dy @ DI
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Now we construct the desired element ggo € D ® RY=0 and put
gei=d'gro € D(—i) @ RV='

such that the associated local points by the Perrin-Riou exponential map are twists of the
Abel-Jacobi image of generalized Heegner cycles. Here d is the canonical derivation

d: R — Q}R/W:DM®W%=%(—1)
and it induces an invertible map
d:D(-i)®@R'=" — D(—i—1) @RV,
First we define gg ; for —r < i < r directly. We identify
D(—i) @w R¥=" = Homwgo (D" (i), RL).
If —r <i < r, we have
DY (i) = D(—=1)(i) = Dy ®q, (D} )® " @ (D , ) ¥ ' CDy® LY, ,. (6.6)

There is a natural projection Dy — My ® W[1/p]. Infact, Dy = My @ W[1/p]if My is
of rank 2, and M ; is the quotient by the unit root space if M is of rank 1. By composing it
with I}b;, and restricting it on DY (i), we have an element
T, € D{~i) @RV,
Similarly, we define 7 D{—i) ® RV=". Note that T}, , = -*.T, L1
arly, we define 7, , ; € (—1) ® - Note that 7, ; = ;=5 E’W.—i-ﬁﬂ E.
Then we have

Bi*
b . = . =0
Ty i € No(—i) ® RY=" = Homweo (D/Ny i), RG ) 6.7)
where Ny = Dy ®7, D?;r ® D%’;Q C D for the a-eigen space D .
Proposition 6.9 For an integer i such that —r < i <r — 1, we have

b . b b . b
dig,=—(r—i—-DIp, .y, dlg,;=——i—=DIp, .

Proof This follows from (6.3) and Proposition 6.4.

For —r <i < r, we put

=t
BEG = i B

and then we put

gei=d'gpo € D(~i) @RV
for a general integer i. (The notation is consistent for —r < i < r — 1 by Proposition 6.9.)
Similarly, for i € Z, we define

(_l)r—i—l b

i DiEei € Na(—i) @ RV=0. (6.8)

8E,a,i ‘=

Lemma 6.10 The operator 1 — ¢ is bijective on D{—i).
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Proof Let n be a natural number such that ¢" is W[1/p]-linear. Then it suffices to show
that ¢" does not have an eigenvalue 1. Eigenvalues must be of the form o’ (u/v)" where
o’ is an eigenvalue of ¢" on D, m is an integer, and u, v are the distinct roots of the p-
Euler factor of E/W. This is a product of Weil numbers, and the complex absolute value is

lo" (u/v)"| = le'| # 1.

By the above lemma, we have a solution Gg ; € D{(—i) ® 5%,(R) of (1 — ¢)GE,; = 8E.i-
(cf. Proposition 7.2 in the appendix.)

Now we consider the case E = A, with (¢, p) = 1 and g4,. By the Perrin-Riou expo-
nential map, for i > —r, we have a local point

¢ (Ga) = expypy () (Ga,.—)) € H (Ho(wy), V(i)

associated to g4, with the orientatione. (cf. 5.6.)Here V(i) = V® Tp./\;l%i. Since (¢, p) =1,

the projection 7, : A — A, induces an isomorphism Tp/\;lx = TPMXC- We identify V (i)
for A, with that for A.

Theorem 6.11 (i) For an integer i such that —r < i < r, the local point c (GA ) is the
Abel-Jacobi lmage of the generalized Heegner cycle z( +r).
(1) The local point c (GAL ) IS

(i+r) (i+r) k=2 —1
Zepng = Zepn . TP Res; /n— 12,

(@ +r)

In particular, Cr(lz, (Gae) = oz_"zg,tf;.

Proof (i) By definition and Proposition 6.8,
£0(Ga) =p" "1 @9 @ DI (w0).

It suffices to show this after taking the Bloch—Kato logarithm. Let wa, be an invariant
differential form on A and put wg = wfwa,. Then (7.).w) = a)X - We put

wy = (g )TN EDOT T = (w) £} )P f;f
(cf. (6.5).) Then we have w s (r — 1) ® w =wf® a)Xmi, and this is an element in the

first de Rham filtration of DY (—i) C D r ® L Ek—2 (cf. (6.6)). Then it suffices to show
that the evaluation of

£ (Ga..o) € DGi)/FI"D(i)
= Homygo (Fil' DY (i), W[1/p]® O)
= Homwgo((Fil'Dp)(r =1 ® Ly ;. WI1/p1® O)

atwr(r — 1) ® w%x = oy ® wy ; is the Abel-Jacobi image of the generalized

Heegner cycle. Let A’ be the deformation of in associated to @y, as in Sect. 5.7. Let

On be such that ¢"ws, = 0pw,,-n. Then we have ¢"§4, = an;lqu—n and hence
oy = Q,zlp_"w ’__, - By Proposition 5.6, for the isomorphism ¢ : A — Agpn

c

and the prOJectlon 7w A — Acpn, we have

— —n
Lwa = 0, ' mewa,,  LEa = p T ouTwa, .
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Then by Proposition 5.7 and Proposition 6.8, we have

pIM1® T ® DIF (@) (w fr=Dew )

Ac

-1 ®i
=p" )”IAg—n,ﬂ.(w”) (“)f(r -D® Qﬂnw/\;L >

Ac

= p(rfi—l)ngiiIAgfn.ﬂ.(w,,) (a)f(r -H® a)% )

A"
pUTITIQIF (A Hepr L), (030 ® T ENE T
Ff(Acp”/Hcp” ,Lv), ”*wXU,ﬁAc

o Er (Acpn [ Hepr, L), a)X’i)A.

=

=
Hence the assertion follows from [2, Proposition 3.21].

(i) follows from Zy(wyr) = (1 — a lo)F s and 1). The last assertion follows from that the
difference between (7.2) and (7.3) is pr”¢n_] on Ny C Dy (V).

Remark 6.12 By using results in Sects. 2 and 4, we can extend zﬁitr) for an arbitrary integer

i > —r (even as a global cohomology class controlling denominators). On the other hand,

cﬁ’ll (Ga,)isalsodefined fori > —r by the Perrin-Riou theory. They coincide with each other

since they do for —r < i < r by Theorem 6.11 and satisfy the same congruence relation by
Proposition 7.9 in the Appendix and the uniqueness of our twist theory.

7 Appendix: Perrin-Riou theory for a relative Lubin-Tate extension

We explain the Perrin-Riou theory for a relative Lubin—Tate extension following [33] and
[35].

7.1 Notations and setting

Let k be a finite field and W = W (k) the Witt vector with Frobenius o. In this appendix,
let H be the fraction field of W and C,, the completion of the algebraic closure of H. Let
G = Spf Rg be a relative Lubin-Tate formal group over W of height 1. Though Rg is
isomorphic to the one-variable formal power series ring W[X], we prefer a coordinate-free
description for our application to the local moduli. We sometimes write Rg simply by R. For
an automorphism t € Gal(H/Q)), let G* be the base change of G by 7. Hence Rgr = R as
aring buta € W acts by 7! (a). For simplicity, we denote Rg- by R™ if 1 = o ~".

We denote the space of invariant differentials of G by Dg, which is a W-module of rank
Landput Lg; = D' fori > 0and Lg; = (DZ)®~ fori < 0. Welet Lg; = Lg,; ®w R.
Let 720(G) = U7 (G) be the Perrin-Riou ring associated to G where

[e.¢]
() =1 " anX" | ay € WI1/pl. lanl,n™" — 0
n=0

and X is a coordinate of R. We also write %, (G) simply by %, if there is no fear of
confusion. We put .45; = Lg,; ®w #2(G). We also put Lg = ]_[iez Lg; and L5 =
l_[ieZ fg,,‘.
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Let ¢ be the Frobenius map ¢ : G — G°. We denote by ¢ the o-semilinear ring homo-
morphism ¢ : R — R associated to ¢, and by ¥ the o ~!-semilinear map R — R such that
Yop=1and

pov()=p' Y g
xeg[o]

where , is the translation on G by x. Since the height of G is 1, the space Lg ; is the Dieudonné
module of the special fiber of G and hence the Frobenius act on it, which is denoted by ¢.
Then the action of ¢ on .25 ; = Lg,; Qw 5 (G) are defined dlagonally

Let d be the formal derivation R — Q}e/w g — dg. Since QR w = = R ®w Lg.1, the
derivation d is extended to L5 ; — Lg.i+1, and its horizontal section is Lg ;. The derivation
d is also compatible with ¢. We denote by [Z‘ézl the set of elements in Lg fixed by d, and
similarly for fgd =l We fix an invariant differential form wgof G,andletd : R - R
be the differential operator such that d(g) = 9(g)wg. Let Ag € #%,(G) be the logarithm
associated with wg. Let @ be a uniformizer of W such that ¢*wge = wwg or in other
words, pwg = @ wg. In particular, pAg = @w Ag. Note that o depends on the choice of wg.
By the compatibility of d and ¢, we have @w (¢ 0 d) = d o ¢ on R.

7.2 The p-adic period of G

Let x be a point of G(Oc,), which corresponds to a continuous ring homomorphism R —
Oc , over W. This morphism is uniquely extended to .#%,(G) — C,,. For f € J5,(G), we
write the image of f by this morphism by f(x). In particular, if x corresponds to the origin
of G, we denote it by f(0). Similarly, for a point X € G(Ajyr), we can define f(X) € Bt
Let 0 : Ajyr — Oc » be the canonical map defined by Fontaine.

cris®

Lemma 7.1 For an element w = (w,) € lim G(Oc,), there is a unique lift w = (wy) €
Liiln G(Aing) of w with respect to 0 : G(Ains) — G(Oc o). Here the transition map is the

multiplication [plg of G. We have ¢(w) = gz)/(\uT) = @(X)|x=g where @ on the left-hand side
is the Frobenius on Ajys and ¢ on the middle and right-hand side is that of G.

Proof Suppose that all w,, are in Ker 6. Then w,, € N,,[p™]g(Ker #). Hence the uniqueness
follows from the fact that A, is separated with respect to the topology induced by the ideal
(p) + Ker 6. We fix n. For a natural number m, we take any lift o/, +m Of Wy to Ajye by
6. Then put W, := limy_, o[ p" g W), 4 m- It is straightforward to check that it is well-defined
and has the desired property. (The last property follows from the uniqueness. Note also that
l(ir_n” G(Oc,) = 1<i11n G(Oc,/p) by the canonical projection.)

For a generator € = (¢,), € T,G, we take the lift € = (€,,),, € 1(i£1n G (Ajpf) in the above
lemma, and define the p-adic period of G by

te = Ag(&) € BL,.
By Lemma 7.1, we have

p(te) = (prg)(X)|x=¢, = wAg(€0) = D e.
For a Galois representation V of Gy, we let D, (V) = (Bis ®Q, V)Gt Then we have

e:=€®1' € (VG ®q, Beris) “" = Dp(V,0).
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The element e depends only on the choice of wg. We denote ¢®* by ¢;. We also denote by
¢ the Frobenius on D,(V,G) coming from the Frobenius on B and the identity on V),G.
Then ge = @ ~'e and the map

Hix(G/W)=Dg —> D,(V,$)® ' = D,(H.(©G), wg r— !

is an isomorphism of filtered p-modules. We sometimes identify wg and ¢®~!. We put
Vik) =V ®q, V,,g®’<. Suppose V is crystalline. Then the morphism

Dp(V(k>) = Dp(V) Qu Hep —> Dp(V) ®Hu Beris, dQ@e —> d® te_k (7.1)
is an embedding of filtered ¢p-modules, and we regard

D,(V{k)) = Dp(V)® Lg,—k C Dp(V) ®n Beris.

7.3 Solutionof (1 —®d)G =g

Let D be a finite-dimensional vector space over H with a semi-linear action of ¢. Let ® be
the action ¢ ® ¢ on D @w Lg. The derivation d is extended on D ®w £ by 1 ® d. Let M
be W-lattice of D and suppose that there exist a natural number 4 and a non-negative integer
co satisfying p™ "M C p=c M for all n.

Proposition 7.2 Assume that 1 — ® is invertibleon DQ Lg. Forg € D® fgzl, there exists
a unique solution G € D ® fgzl of 1 -P)G =g.

Proof This is similarly proven in [35, §2].

Proposition 7.3 There exists an integer ¢ such that
P - 1DGLi(E) € pTM @ LE, ® Acis

orall T € Gr,), all i such that h +i — 1 > 0 and a solution of (1 — ®)G = g for
(11)
geﬁé '@ M.

Proof This is similarly proven in [33, §2.2.1].

7.4 Evaluation at @-torsion points

As before, let € = (¢,) € TG be a generator. Let ¢, : G™ — G be the p"-th Frobenius
map. We have a morphism of formal groups ¢, : G — G™ such that ¢, o ¢, =[p"lg. We
put @, = ¢, (,) € G™[p"]. The system (), satisfies that ¢ (w,+1) = @, and @ # 0.
For an element G € D ® %5, we define the value

G (wy) € D™ ® Lgw ® H(wy)

as follows. Here, for a W-module M, we write by M ™ the abelian group M and W -structure
is twisted by o, thatis a € W acts by 0" (a) on M. As Z,-modules, we have D ® Z5 =

DM ® 2" = D ® Ly and identify G with G € D™ ® Ly Then G™ () is
the image of G by the morphism

D(n) ® fg(n) —> D(n) ® Lg(n) ® H(w’,,)
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induced by @;,. Suppose that ¢ is bijective on D. We denote by ¢,, the morphism D — D™ of
W-modules induced by the semi-linear map ¢" on D. By considering the image of G (w,)
by

¢,'®¢,' D" ®Lgw — D®Lg,

we have (¢, ' ® ¢, ® DG (,) € D® Lg ® H(wy).
Suppose that D is defined over Q, that is, there is a filtered ¢-module DQp over Q,, and
D = H ®q, Dg,- Then we have a map

1®¢,"' : D™ ® Lgw = Dy, ®g, Lgw —> Dg, ®q, Lg = D ®p Lg.
Hence we have

1®¢,' @ NG (w,) € DR Lg ® H(w,).

7.5 Norm compatible family of local points

Let V be a crystalline representation of Gy. Let h be a natural number such that
Fil " D, (V) = Dp(V). For simplicity, we assume that 1 — & is invertible on D ® Lg.
According to [35,3.2.1], foran element G = (G;); € Dp(V) ®$_g:1 and an integer i such
thath +i — 1 > 0, we put

Ep 0 (G) = (=) i+ i — )ip 9, @ ¢y @ DG (@) € Dy (Vi) ® H(wy).

(7.2)
(Note that in [35], Sg) (G) is denoted by E(h) (G). We change it because of the compatibility
with the notation in Sect. 2.) Then we con51der the image of the Bloch—Kato exponential
map

Ci(G) = expy (B, (G)) € HY (H (), V(i)).
Sometimes, we omit the index & or G from C,, (’) , (G) for simplicity.

Proposition 7.4 Suppose that G is a solution of (1 —¢)G = gforg € Dp(V)® (Eé:] YW=0,
Fori > 1 — h, the system (C(l) (G))n is norm compatible for n > 1, that is,

Cotnt1/nCyn 1 (G) = C (G).

Proof We write that ¢ = (g); with g € D,(V) ® Lg; ® R and G = (G;); with
Gi € Dp(V)®Lg,i ® #5(G). Then applying L ® 1 @ (p o) to (1 — ®)G; = g;, we have
1®1®¢poY)G; =(p® ¢ ¢)G;.
Hence we have
Truti/n (b, ® bty @ DG (@,11)
=p@, 1 ® 6, @ DII®1®¢ov)G" V(@)
— P4, ®7, @ D@®eROGT " Nwui) = piy' @6, ® DG ().

The assertion follows from this.
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7.6 Integral family of local points

In this subsection, we assume that V' is a crystalline representation of Gg, and denote
the associated filtered ¢g-module by Dy(V)g, = (V Qq, Bms)GQP, and put D,(V) =

DP(V)Qp ®q, H.Then for an element G = (G;); € D,(V) ® ffgd:l, and an integer i such
thath +i — 1 > 0, we put

E0(G) = (D" +i = D" 1@ ¢ @ DG (@)
€ Dp(V)q, ®q, Lg.—i ® H(wy) = Dp(V(i)) ® H(wy). (7.3)
We consider the image of the Bloch—Kato exponential map
e (G) = expy iy (€4 (G)) € H{ (H(wy), V(i)
Sometimes, we omit the index /& or G from c;"’)n (G) if there is no fear of confusion.

To show the integral property of c}(f)n (G), we recall an explicit cocycle representation of it.
The Bloch—Kato exponential map is the connecting map of the fundamental exact sequence

0 ——— V(i) — (V{i) ® Bsis) ® (Vi) ® Bfy) —— (Vi) ® Buris) ® (V (i) ® Bar) —— 0

where the second map is diagonal and the third map is given by (x, y) — ((1 —¢@)x, x —y).
First, take a lift 7 € D, (V (i)) ® Beis of

z € Dp(V(i)) ® H(wy,) C V(i) ® Bar
such that 7 — z € Fil’(D,(V (i)) ® Bgr). Since
1= Fil'(D,(V(i)) ® Beris) —> Dp(V (i) ® Buis

is bijective, we find Zg € FilO(DP(V(i)) ® Beris) such that (1 — ¢)Z = (1 — ¢)Zo. Then the
cocycle is given by

T € G, —> (t—1)E—70) € Fl'(D,(V(i)) ® Beis)?~' = V{i). (7.4)

(Note that since (t — 1)z = 0,wehave (t — 1)Z = (t —1)(Z—2) € FilO(Dp(V(i)) ® Bgr)-)
Now we investigate the integral properties of the local points. Let M be a W-lattice of
D, (V) and let T be the Galois stable lattice

T =Fil®(M @1 " Awis)?= C Dp(V) @17 Acsis.

of V where b is a natural number such that FilbD,,(V) =0andtis “27i" in Bgr. Then we
also have

T(i)=Fil'M @ Lg i ® " Acri)?=".
Note that by the identification (7.1) as filtered ¢-modules,
T() =Fl' M ® Lg._; ® 1% Acyig)?~!
= FIOM @ 777 Ai)?=" € Dp(V) @ 170 A

Then we have T(i) = T ® Zpt! in Dp(V) ® Beis.

The key of the Perrin-Riou theory is an explicit construction of the lift Z. For simplicity,
we fix a (non-canonical) isomorphism R = W/[X] and an invariant differential wg such
that wg /dX|x=0 = 1. We regard the logarithm Ag as a convergent power series in H[X]
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and expg the formal power series in H[X] such that expg oAg(X) = X. For an integer
m, we put " = Yu(ey) € GM[p"] and €™ = (™), € T,G"™. We take the lift
Emy, e lim G (Ains) by Lemma 7.1 and consider the p-adic period .o = Agm (66")).

Note that if " wgm = @ M wg, then we have p"f, = w(”)tém. The following is the key
formula that describes an explicit lift of @, in Bgr.

Lemma7.5 In Bgr , we have

~ 13 (n)
w, = er(l”) @g(n) eXpgm (— ;n > .

Proof The right hand side is an element of G [p"], and its projection to C p is @,. The
assertion follows from these.

For simplicity, we put ¢, := —tfp(—',,z). We let
G(Z) = G<">(€,§”) D expgm Z) € Dp(V)™ @w Ly ®w Aint(Z).
where Ajr (Z {Zn 0Gn T n, Ia,, € Ajnr}. Suppose that G(Z) (Gi(Z)),- where
Gi(Z2) € Dp(V)™ ®@w Lgm ; @w Aint(Z)).

Let P(Z) be apolynomialin D, V)™ g Lgw ® Ajn¢[Z] such that the i -th component P; (Z)
is the polynomial part of the power series G[(Z) ofdegree<h—1—i.Ifth—1—-i <0,
we put P;(Z) = 0.) We denote P(Z) by P(G)(Z) if we emphasize the dependence of G.

Since Fil"Lgm)’,» = Lgw ; and Fil’th(V) = D,(V), we have
G" (@) — P(ty) = G(ty) — Pl(ty) (1.5)
e [[Lgw,; ® Dp(V)™ @Fil"™ By C Fil’ (DP(V)(”) ® Lgm ® BdR) .
i€

Lemma 7.6 Supposethati > 1 — h. We have
h+i—1 akG(”)( (”)) k

P(G)(Z) = Z (D ————
where d = 3.;(X)~' & (Note that G") € D, (V (i))" ® #20(G) C Dp(V (i)™ @ H[Z].)
Proof Put Z = ig(X). Then % = 9. Since )J (X)d X is an invariant differential, we have
(G EM Bgm X)) = (*G™)(EM Bgm X).
The assertion follows from this.

Proposition 7.7 Assume that 1 — ® is invertible on D @ Lg. Suppose that g € M ® E‘ézl
and let G be the solution of (1 — ¢)G = g. Then there is an integer c independent of g and
n such that

(h+i—DpBH=D"@ —)P_(ty) € p°M @ Lg,—i ® Acris

fori>1—handanyt € GH(w,)-
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Proof For a non-negative integer k, we have
k() @k _ gk ~) _ ~(0)
"Gl rog =d"GT] =G,
Hence by Proposition 7.3, we have a constant ¢ such that
pUH=E=n e — kG M) € pTM™ @ Loy ® Acris.
The assertion follows from these and Lemma 7.6.

Theorem 7.8 Suppose that V is a crystalline representation of Gq,,. With the same notations
and assumptions as Proposition 1.7, there exists an integer c¢ such that

“c(G) e H' (H (), T i))

for all natural number n and all integers i such thati > 1 — h.
Proof By (7.5),as aliftz of z = S(’) (G) in (7.4), we may take

D"+ i = DM@ ¢, @ DPi(G)(t) € Dp(V)g, ®g, Lg,—i ® Beris.
Note that p’ ¢ is invertible on Lg,_;. Then by Proposition 7.7, we have that
(h+i—Dp" " —DA®¢, ' ®1P_i(G)(ta) € p~“Mg, ®q, Lg.—i ® Aciis- (1.6)
This gives the desired estimate for (z — 1)Z. For the estimate of Z, first, note that
(1 — @) P_i(G)(ta) = P_j(g)(tn) € Dp(V)™ ® L _; ® Acis. (1.7)

(Here, ¢ is the o-semi-linear Frobenius, which acts diagonally on D p(V)(") & Lgm _; ®
Acris.) In fact, we have

@ GIDEM) -tk = @ GCIHEM) - = G2 @M@ - e

em) — g(n) : €<n>

Then 0® ! - t.m is fixed by ¢, and by Lemma 7.1, we have

g(n)
(1= G @) = (1= )G, (Xl = g E").

(The Frobenius ¢ of A in the left-hand side is replaced by ¢ on R = W[X] of G in the
middle one.) Hence (7.7) follows from Lemma 7.6. Then we have

1—@z= D" h+i-Dp" "1 @¢," @ )P (g)tn)
=0 i =18 (T h @ 1) (PP )
€ pCM ® Lg,—i & Acris~

Then we have the desired estimate for Zg such that (1 — ¢)z = (1 — ¢)Zo by using the fact
that there exists an integer s such that the image of

l-g: FllO(M®LQ it Acrls) — D (V< )) @ Beris

contains pM ® Lg —; ® 170 Agsis for all i. (cf. [33, Lemme 2.3.4].)
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Proposition 7.9 Suppose that G is a solution of (1 —¢)G = gforg € Dp(V)® (Eé:] YW=0,
Then there is a constant ¢ such that

i .
p—ni+c Z(—l)j<l.)dr(lj+l_h) c Hl(Hom T) (7.8)
j=0 /
foralln,i > 0. Here d,(,j) is the image ofcfl{i(G) by the restriction on Hyo twisted by €7/,
Proof We use the cocycle representation for z; = }Ej,j 1=h) (G) in the proof of Theorem 7.8. If
7 € Gp,,,then (t —1)Z; = Osince the formula (7.6) is identically equal to zero. We calculate
the part coming from (1 — ¢)z;. Suppose that ¢" wgm = @ Mwg. Then p'te = @Mt ).
We have
i,
AW - htl—j p—1—j
> (J.)J![(l ®,' ® NP1 (@) ®ag i1

=0
= <;>(i — DA G @ VP14 j ()] @ g /T 11+
=0

J
Iy i+1—h h—1—i
F](X)a)gt-ﬁ- t, i

=ill(1®¢, ' @1 (=137 Pyy_i(8)(tn)

j=0
=ill(1®¢,' ® DPi_1-i()(0)] @ wF k=170,

In the final equation above, we use the Taylor expansion and the fact that the degree of Pj,_1_;
isi. We have P,_1_;(g)(0) = g;l"_)l_i (E,(,”)) € Ajpr (cf. Lemma 7.6), and

i

p Z(_l)j (;)(1 — )i =18 p" "1l @ 1) Py_1_i(2)(0)
Jj=0

is bounded. Hence the assertion follows.
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