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Abstract
In this paper,we develop an integral refinement of the Perrin-Riou theory of exponentialmaps.
We also formulate the Perrin-Riou theory for anticyclotomic deformation of modular forms
in terms of the theory of the Serre–Tate local moduli and interpolate generalized Heegner
cycles p-adically.

Résumé
Dans cet article, nous développons un raffinement entier de la théorie des applications expo-
nentielles de Perrin- Riou. Nous formulons également la théorie de Perrin-Riou pour les
déformations anticyclotomiques de formes modulaires en utilisant la théorie des modules
locaux de Serre- Tate et nous interpolons p-adiquement les cycles de Heegner généralisés.

Mathematics Subject Classification Primary 11R23; Secondary 11G40 · 11F11 · 11G15 ·
11F67 · 11F85

1 Introduction

The Perrin-Riou theory of the big exponential map is the fundamental theory in the local
Iwasawa theory for the cyclotomic deformation of Galois representations, and it continues
to be a source of development of new p-adic theories beyond the Iwasawa theory. The
purpose of the paper is twofold. First, we give a generalization of the Soulé twist on Galois
cohomology groups inspired by the Perrin-Riou theory and Amice-Velu–Vishik theory of the
p-adic distribution. Though the original Perrin-Riou theory is a local theory, our twist theory
works in fairly general Galois representations even for global fields with torsion coefficients
similar to the Soulé twist. Such a theory is essential when we twist Euler systems that are
not norm-compatible in the p-power direction. Second, we describe a geometric interaction
between the Perrin-Riou theory and the theory of the Serre–Tate local moduli of ordinary
elliptic curves. Since Katz, the fruitful relationship between the local moduli and Iwasawa
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theory is known. Our description is also not essentially new, and it is a reformulation of
known results such as [2] in terms of the Perrin-Riou theory. However, we think that the
theory is naturally described in terms of the Perrin-Riou theory, which is also crucial for
applications in the non-ordinary case.

Our motivation comes from the Euler system of generalized Heegner cycles defined by
Bertolini–Darmon–Prasanna [2], for which the Soulé twist does not work because it is not
norm compatible in the p-power direction, and torsion coefficients are also crucial. In the
sequel [24] of this paper, we give an example of the Coates–Wiles–Kolyvagin type result for
elliptic cusp forms twisted by anticyclotomic Hecke characters of imaginary quadratic fields
satisfying the classical Heegner hypothesis as application of our theory. More precisely, if
the special value of the associated L-function does not vanish at a critical value, then we
show that the corresponding p-primary Selmer group is finite for almost all p. (There are
similar results proved by different methods. cf. [3, 19, 28].) The key to our result is our twist
theory and a p-adic interpolation of generalized Heegner cycles by a power series (Theorem
6.11), which is considered as a Coleman power series interpolating “zeta elements". Based
on the theory developed in this paper, we also prove a one-side divisibility of the Iwasawa
main conjecture in this setting in [25].

The organization of the paper is as follows. In Sect. 2, we develop our theory of the integral
Perrin-Riou twist. In Sect. 3, we recall generalized Heegner cycles by Bertolini–Darmon–
Prasanna, and in Sect. 4, we prove a certain horizontal congruence for generalized Heegner
cycles which is the key ingredient of the application of our twist theory. In Sect. 5, we explain
the relation between the Serre–Tate local moduli and anticyclotomic extensions. In Sect. 6,
we construct the logarithmic Coleman power series interpolating generalizedHeegner cycles.
See also the beginning of Sect. 6 as an introduction to our formulation. In the appendix, we
summarize the theory of the Perrin-Riou exponential map for crystalline representations over
the division tower of a relative Lubin–Tate group of height 1.

2 The integral Perrin-Riou twist

In this section, we give a generalization of the Soulé twist. The idea goes back to the work of
Amice-Vélu and Vishik for the construction of the cyclotomic p-adic L-function of higher
weight elliptic modular forms at non-ordinary primes. The same idea has been already used
in Perrin-Riou [33, 35] and see also [8, 26, 28]. Our generalization is integral and works even
in torsion coefficients.

Lemma 2.1 Let R be a commutative ring and M an R-module. Let (an)n=0,1,... be a sequence
in M and put

bn :=
n∑

i=0

(−1)i
(
n

i

)
an−i =

n∑

i=0

(−1)n−i
(
n

i

)
ai .

Then for u ∈ R, we have

n∑

i=1

(−1)i
(
n

i

)
(ui − 1)an−i =

n∑

i=1

(−1)i
(
n

i

)
(u − 1)i bn−i . (2.1)

Proof By considering the universal case, it suffices to show this in the case R = Z[Y ],
M = R[X , Y1, . . . , Yi , . . . ], u = X , ai = Yi for indeterminate X and (Yi )i . Let R〈〈t〉〉
be the formal power series ring consisting of elements

∑∞
n=0 cn

tn
n! for cn ∈ R. If we put
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f (t) = ∑∞
n=0 an

tn
n! and g(t) = ∑∞

n=0 bn
tn
n! , we have g(t) = e−t f (t) in R〈〈t〉〉. Then we have

the identity by looking the coefficients of tn of both sides of

e−ut f (t) − e−t f (t) = e(1−u)t g(t) − g(t).

We consider a triple (�, γ, ρ) where � is a profinite group isomorphic to Zp with a
topological generator γ of � and ρ is an embedding of topological groups � ↪→ 1 + pZp .
Let �n be the open subgroup of � of index pn generated by γn := γ pn . Let Zp(ρ) be a rank
one Zp-representation of � with a basis eρ with the action geρ = ρ(g)eρ . For a continuous
p-adic representation T of� and an integer i , we let T (i)ρ be the representations of� defined

by the tensor product of T and Zp(ρ)
⊗i . We put Trm+n/n := ∑pm−1

a=0 γ pna ∈ Z[�]. Note
that Trm+n/n = Trn+1/nTrm+n/n+1.

Theorem 2.2 Let h be a natural number and letα be an element ofCp such that |ph/α|p < 1.
Let M be a p-adically complete Zp[α]-module with a continuous action of �. For 0 ≤ i ≤
h − 1, suppose that we have a sequence (c(i)n )n∈N in M(i)ρ and (rn,i )n∈N in M satisfying the
following conditions:

(a) The projection of c(i)n to the free part M/Mtor is fixed by �n.
(b) Trn+1/nc

(i)
n+1 = αc(i)n .

(c) For an element d(i)
n := c(i)n ⊗ e⊗−i

ρ ∈ M, we have

i∑

j=0

(−1) j
(
i

j

)
d( j)
n = pi(n−1)rn,i .

Then there exists a functorial way to extend c(i)n for arbitrary integer i and extend rn,i to
rn,i,k ∈ M (k ∈ Z, i ∈ Z

≥0) with rn,i,0 = rn,i , so that they satisfy (a), (b) and

i∑

j=0

(−1) j
(
i

j

)
d( j+k)
n = pi(n−1)rn,i,k (2.2)

for any non-negative integer i .Here, a functorialwaymeans the compatibilitywithmorphisms
(�, γ, ρ) → (�′, γ ′, ρ′) and M ′ → M in the obvious sense. Furthermore, if M is torsion-
free, the extensions c(i)n andrn,i,k are characterized by (a), (b) and (2.2), and independent ofγ .

Proof First, we construct (c(h)n )n . For x ∈ M , we put x(h) := x ⊗ e⊗h
ρ ∈ M(h). We let

c̃(h)n := −
h∑

i=1

(−1)i
(
h

i

)
d(h−i)
n (h).

For g ∈ G, applying Lemma 2.1 for an = d(n)
k+1(h), we have

gc̃(h)k+1 = −
h∑

i=1

(−1)i
(
h

i

)
gd(h−i)

k+1 (h)

= −
h∑

i=1

(−1)i
(
h

i

)
ρ(g)−i gd(h−i)

k+1 (h) +
h∑

i=1

(−1)i
(
h

i

)
(ρ(g)−1 − 1)i pk(h−i)g · rk+1,h−i (h)

= −
h∑

i=1

(−1)i
(
h

i

)
(gc(h−i)

k+1 ) ⊗ e(i)ρ +
h∑

i=1

(−1)i
(
h

i

)
(ρ(g)−1 − 1)i pk(h−i)g · rk+1,h−i (h).

(2.3)
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Hence by the condition (b), we have

Trk+1/k c̃
(h)
k+1 − αc̃(h)k =

p−1∑

a=0

h∑

i=1

(−1)i
(
h

i

)
(ρ(γ−pka) − 1)i pk(h−i)γ pka · rk+1,h−i (h).

We put

xk :=
p−1∑

a=0

h∑

i=1

(−1)i
(
h

i

)
(ρ(γ−pka) − 1)i

pki
· γ pka · rk+1,h−i (h).

and yk :=
(
ph

α

)k
xk . Then we define

c(h)n := c̃(h)n + αn−1
∞∑

i=0

Trn+i/n yn+i .

(Note that limk→∞ yk = 0 by our assumption on α.) Since αn yn = Trn+1/nc̃
(h)
n+1 − αc̃(h)n ,

we have Trn+1/nc
(h)
n+1 = αc(h)n . By construction,

h∑

i=0

(−1)h−i
(
h

i

)
d(i)
n (h) = c(h)n − c̃(h)n = p(n−1)h

∞∑

i=0

(
ph

α

)i+1

Trn+i/nxn+i .

Hence define rn,h,0 by

rn,h,0 := (−1)h
∞∑

i=0

(
ph

α

)i+1

Trn+i/nxn+i ⊗ e⊗−h
ρ .

To show the property (a), we may assume M is torsion-free. By (2.3), we have γk c̃
(h)
k ≡ c̃(h)k

mod pkhM . Hence

γnTrn+m/nc̃
(h)
m+n =

pm−1∑

a=0

γ (a+1)pn c̃(h)m+n = γ pn+m
c̃(h)m+n +

pm−1∑

a=1

γ apn c̃(h)m+n

≡ Trn+m/nc̃
(h)
m+n mod p(n+m)hM .

The property a) then follows from

c(h)n = lim
m→∞α−mTrn+m/nc̃

(h)
n+m .

By induction for h, we have (c(i)n )n and rn,i,0 for any non-negative i satisfies (a), (b) and (c).
Since

(i+1
j+1

) = ( i
j+1

) + (i
j

)
, we have

i∑

j=0

(−1) j
(
i

j

)
d( j+k+1)
n = −

i+1∑

j=0

(−1) j
(
i + 1

j

)
d( j+k)
n +

i∑

j=0

(−1) j
(
i

j

)
d( j+k)
n .

Using this, rn,i,k is defined inductively for k ≥ 1. In the negative direction, we put ιρ = ρ−1

and let ιM be the module M but the action of G is by ιρ. We define ιc(i)n := c(h−1−i)
n and

apply our theorem for i, k ≥ 0 and (ιM)(1 − h) as M . Then

ιd(i)
n := ιc(i)n ⊗ e(−i)

ιρ = c(h−i−1)
n ⊗ e(i)ρ ∈ M(h − 1).
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We have

i∑

j=0

(−1) j
(
i

j

)
ιd( j)

n =
i∑

j=0

(−1) j
(
i

j

)
c(h− j−1)
n ⊗ e( j)ρ

= (−1)i
i∑

j=0

(−1) j
(
i

j

)
c(h−i+ j−1)
n ⊗ e(i− j)

ρ

= (−1)i
i∑

j=0

(−1) j
(
i

j

)
d(h−i+ j−1)
n ⊗ e(h−1)

ρ

= (−1)i pi(n−1)rn,i,h−i−1 ⊗ e(h−1)
ρ .

Hence by putting ιrn,i = (−1)i rn,i,h−i−1 ⊗ e(h−1)
ρ , and our theorem can be applied for this

system. Then ιc(i)n and ιrn,i,k are extended to any i, k ≥ 1.
For the last assertion, suppose that Mtor = {0}. First, by the condition (a), the trace of c(i)n

in condition (b) is independent of the choice of γ . Hence, the independence of γ follows if
we show the uniqueness of the extensions of c(i)n and rn,i,k . Consider (c

(i)
n )i∈Z,n∈N satisfying

(a), (b), (2.2) and c(i)n = 0 for i such that 0 ≤ i < h. Then c(h)n ≡ 0 mod ph(n−1) by (2.2)
for all n. By b), we have c(h)n = α−mTrm+nc

(h)
m+n , and hence c(h)n = 0. Inductively, we have

c(i)n = 0 for all i ≥ 0. For a negative i , the proof is similar. Thus, the extension of c(i)n is
unique. Since Mtor = {0}, the relation (2.2) and (c(i)n )i determine rn,i,k uniquely.

We consider a 4-tuple (G,G∞, ρ, γ )whereG is a profinite groupwith a normal subgroup
G∞ such that � := G/G∞ is isomorphic toZp , γ is a topological generator of �, and ρ is an
embedding of topological groups � ↪→ 1+ pZp . Let �n be the open subgroup of � of index
pn andGn the inverse image of�n by ρ inG. LetZp(ρ) be a rank oneZp-representation ofG
with a basis eρ with the action geρ = ρ(g)eρ . For a continuous p-adic representation T of G
and an integer i , we denote by T (i)ρ the tensor product of T and Zp(ρ)

⊗i as representations
of G.

Corollary 2.3 Let h be a natural number and let α be an element of Cp such that |ph/α|p <

1. Let T be a finitely generated Zp[α]-module with continuous action of G. Assume that
H0(G∞, T ) = {0} and pn0H1(G∞, T )tor = {0}. Suppose that for 0 ≤ i ≤ h − 1, we have
a system (c(i)n )n ∈ ∏

n∈N
H1(Gn, T (i)ρ) satisfying the following two conditions:

(a) Corn+1/nc
(i)
n+1 = αc(i)n

(b) We identify c(i)n and its imageby thenatural inclusion H1(Gn, T (i)ρ) → H1(G∞, T (i)ρ).

Elements d(i)
n := c(i)n ⊗ e⊗−i

ρ ∈ H1(G∞, T ) satisfy the congruence relation

i∑

j=0

(−1) j
(
i

j

)
d( j)
n ≡ 0 mod pin H1(G∞, T ).

Then d( j)
n can be extended for any integer j such that

i∑

j=0

(−1) j
(
i

j

)
d( j+k)
n ≡ 0 mod pin H1(G∞, T ) (2.4)
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78 S. Kobayashi

for any natural number i and any integer k, and pn0c(i)n = pn0d(i)
n ⊗e⊗i

ρ satisfies the α-norm

compatible relation a). Furthermore, pn0c(i)n does not depend on the choice of an extension
of d( j)

n .

Remark 2.4

(i) If lim←−n
H1(Gn, T ) is a finitely generated�-module, as in [35, Proposition 1.8], we have

an element z ofH∞(�)⊗Zp��� lim←−n
H1(Gn, T ) interpolating α−nc(i)n (0 ≤ i ≤ h − 1).

By the projection of z to H1(Gn, V (i)) for any integer i , we have a system (Pn,i )n . Then
the image of our twist (c(i)n ) after inverting p is equal to (αn Pn,i )n by the characterization
of ours and that in [35, Proposition 1.8].

(ii) In [25], we give a slightly different generalization of the Perrin-Riou twist that works not
only for algebraic twists as in this paper but also for any continuous characters. However,
in [25], we do not directly consider the twist on l-local cohomology groups.

3 Generalized Heegner cycles and the p-adic Abel–Jacobi map

In this section, following [2, §2], we introduce generalized Heegner cycles and their p-adic
Abel–Jacobi images.

3.1 Kuga–Sato variety

Let N be a natural number. For themoment, we assume that N > 4 and consider the universal
generalized elliptic curve π : E → X1(N ) over Z[1/N ] with �1(N )-level structure (a point
of order N ) and the universal elliptic curve π : E → Y1(N ). For a non-negative integer m,
let Wm be the Kuga–Sato variety with �1(N )-level structure, that is, Wm is the canonical
desingularization of

E
(m) := E ×X1(N ) · · · ×X1(N ) E (m-times).

By the construction of Wm , we have naturally

E (m) := E ×Y1(N ) · · · ×Y1(N ) E ⊂ Wm .

The group ((Z/NZ) � {±1})m � Sm (Sm : the m-th symmetric group) acts on E (m) by the
translation by the level structure, ±1-multiplication of each component and by the permuta-
tion of components. This action is canonically extended onWr by a property of the canonical
desingularization. Let εWm be the idempotent in the group algebra of ((Z/NZ)�{±1})m�Sm

with coefficients in Z[1/2(m!)] corresponding the character that sends Z/NZ to the identity,
{±1} identically to {±1} and Sm to {±1} as the sign character. We also regard εWm as an
element of Q[Aut(Wm)]. For details, see [2, Appendix].

3.2 Generalized Heegner cycles

Let E be an elliptic curve with a �1(N )-structure Lv defined over a number field F . We
put XE,m := Em × Wm . Following [2], we define a cycle on XE,m for an isogeny ι :
E → E ′ with (Ker ι) ∩ E[N ] = {0}. By our condition on ι, there exists a natural level
structure on E ′ compatible with ι and Lv. If E ′ and ι is defined a finite extension F ′ of
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A p-adic interpolation of generalized Heegner… 79

F , it defines a point zE ′ ∈ X1(N )(F ′) and E ′ is the fiber of E over zE ′ . In particular,
Em × (E ′)m ⊂ Em ×Wm = XE,m . Hence them-th power of the graph �ι ⊂ E× E ′ of ιmay
be regarded as a cycle on XE,m . Let εEm be an idempotent inZ[1/2(m!)][{±1}�Sm] similarly
defined as εWm . We also regard εEm as an element of Q[Aut(Em)], and put εX = εEm εWm ∈
Q[Aut(XE,m)]. Then we let �ι := εX�

m
ι , which may be regarded as an element of the

Chow group CHm+1(XE,m)⊗Q. Let CHm+1(XE,m)0⊗Q be the subset of CHm+1(XE,m)⊗
Q consisting of homologically trivial elements. The cycle �ι is homologically trivial if
m > 0 because then εX H

2m+2
B (XE,m,Q) = 0. ([2, Proposition 2.7]) If E has complex

multiplication, �ι is called a generalized Heegner cycle associated with ι and Lv.
We fix an embedding ι∞ : Q ↪→ C. Let K be an imaginary quadratic field with dis-

criminant DK such that O×
K = {±1}. Let A be a CM elliptic curve defined over the Hilbert

class field H of K , and let ψH be the Grössencharacter H×\A
×
H → C

× associated to A/H .
We denote XA,m by Xm if we fixed A. (Sect. 5.13, we will choose A more precisely.) We
fix an invariant differential ωA of A and an embedding [ ] : K → End A ⊗ Q so that
[a]∗ωA = ι∞(a)ωA. Then consider the complex uniformization πA : C/�A ∼= A(C) such
that π∗

A(ωA) = dz. By replacing A by its conjugate by Gal(H/K ) if necessary, we may
assume that the lattice �A is written in the form OK�K for a complex number �K . For a
natural number c, we let Oc be the order of K of conductor c, that is, Oc = Z + cOK . Then
1
cOc�K defines a subgroupC of A[c] and the theory of complex multiplication shows thatC
is defined over the ring class field Hc = K ( j(Oc)) of conductor c. We let Ac be the quotient
A/C and πc : A → Ac the canonical projection. Then the complex uniformization of Ac

with respect to (πc)∗ωA is C/�c for the lattice �c = Oc�K and πc is identified with the
isogeny C/OK�K → C/�c, z �→ cz.

Now we assume the classical Heegner hypothesis, that is

(Heeg) all prime factors of N splits in K .

Choose an ideal N of OK such that OK /N ∼= Z/NZ. Then the pair (A, A[N]) defines
a point zA in X0(N )(H) so-called a Heegner point (of conductor 1). Take a point z′A of
X1(N ) above zA with respect to the natural projection π1 : X1(N ) → X0(N ). Suppose that
(c, N ) = 1. Then (Ker πc) ∩ A[N ] = {0} and hence we have the generalized Heegner cycle
�πc,z′A := �πc associated with z′A and πc. Let �c be the cycle 1

degπ1

∑
�πc,z′A where the

sum runs through all points z′A (counting multiplicity) over zA by π1. Then �c is defined
over Hc. We call it the generalized Heegner cycle of conductor c.

3.3 The p-adic Abel–Jacobi map

Let p be a prime number such that p � DK N . Suppose that p splits in K and write (p) = pp∗
as an ideal of OK . We fix an embedding ιp : Q ↪→ Cp which is compatible with p. We
denote Kq by the completion of K at a prime ideal q of OK . For q|p, we regard as Kq = Qp

by the natural inclusion map Qp ↪→ Kq. Define the Serre–Tate character ψ̃H : A
×
H → K×

by ψ̃H (x) := ψH (x f ) where x f is the finite part of x ∈ AH , namely, it is obtained from
x by replacing the component of the archimedean places by 1. Let Np be the norm map
(H ⊗Q Qp)

× → (K ⊗Q Qp)
×, and consider the homomorphism

ψH ,p : A×
H → (K ⊗Q Qp)

×, x �→ (ψ̃H (x) ⊗ 1)Np(xp)
−1

where xp is the component of x in (H ⊗Q Qp)
×. Then ψH ,p is trivial on H× and kills the

connected component of idèle class group, it induces a Galois representation Gal(H/H) →
(K ⊗Q Qp)

×. This is equal to the Galois representation Gal(H/H) → AutK⊗QQp (Vp A) =
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80 S. Kobayashi

(K ⊗Q Qp)
× on the Tate module of A. Composing with the projections on (K ⊗Q Qp)

× =
(Kp × Kp∗)× to each factors and with the natural identification Qp ∼= Kp and Qp ∼= Kp∗ ,
we obtain characters ψA,p, ψA,p∗ : Gal(H/H) → Q

×
p . The Galois action on VpA and Vp∗ A

are given by ψA,p, ψA,p∗ , which are also denoted by ψp, ψp∗ for simplicity.
Let f be a normalized eigen newform for �0(N ) of weight k ≥ 2. We consider the map

to Bloch–Kato Selmer groups

CHk−1(Xk−2 ⊗ Hc)0 −→ H1
f (Hc, H

2k−3
ét ((Xk−2)Q,Qp(k − 1)))

−→ H1
f (Hc, V f ⊗ [Symk−2H1

ét(AQ
,Qp)](k − 1))

=
k−1∏

i=1

H1
f (Hc, V f (ψ

i
pψ

k−i
p∗ )).

Here the first map is the p-adic Abel–Jacobi map and the second is obtained by the isomor-
phism

εX H
2k−3
ét ((Xk−2)Q,Qp) ∼= εWk−2H

k−1
ét ((Wk−2)Q,Qp) ⊗ εAk−2Hk−2

ét (Ak−2
Q

,Qp)

∼= H1
ét(X1(N )

Q
, j∗R1πQp) ⊗ Symk−2H1

ét(AQ
,Qp) (3.1)

( j is the inclusion Y1(N ) ↪→ X1(N ). cf. [39, 1.2.1]) and the projection to the f -part. We
consider the image of the homologically trivial cycle �c for k > 2 or �c − (∞) for k = 2
by this map. We denote it by (z(i)c )i . For the Euler system argument later, it is important that
the denominator of z(i)c is bounded independent of c. In fact, the Abel–Jacobi map is defined
integrally and the denominator comes from εX , degπ1, the isomorphism (3.1), the projector
of taking f -part and the order of H2k−2

ét ((Xk−2)Q,Zp)tor to be �c homologically trivial.
These are all independent of c. Note that the isomorphism (3.1) is also defined integrally. (cf.
[29, Proposition 2.1].)

We call z(i)c the i-th Abel–Jacobi image of generalized Heegner cycle of conductor c, or
just for simplicity, the generalized Heegner cycle of conductor c. It is known that the system
(z(i)c )c forms an Euler system (cf. [6, Chapter 4, 7]).

So far, we have assumed N > 4, but as in [31, Chapter II, (3.7), (3.8)], we can eliminate
this assumption to define z(i)c .

4 Congruences on generalized Heegner cycles

In this section, we prove a key congruence relation for applying Theorem 2.2 and Corollary
2.3 with h = k − 1. (k is the weight of a modular form we apply for.) If k = 2 (h = 1),
the congruence relation is trivial. Hence we assume k > 2 in the below. As before, first,
we assume N > 4. Let �ι be the generalized Heegner cycle associated to an isogeny ι :
(A,Lv) → (A′,Lv′) defined over a number field F with compatible �1(N )-level structures.
Let P be the point of X1(N ) corresponding to (A′,Lv′). Let X be the generalized Kuga–Sato
variety Xk−2 associated to (A,Lv) and let π : X → X1(N ) be the canonical map. Then
the fiber XP := π−1(P) is the product (A × A′)k−2. Then by the Künneth formula and the
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definition of εX , we have

VP : = εX H
2(k−2)((XP )F ,Qp)(k − 2)

= [Symk−2H1(AF ,Qp) ⊗Qp Sym
k−2H1(A′

F
,Qp)](k − 2)

= HomQp (Sym
k−2H1(A′

F
,Qp),Sym

k−2H1(AF ,Qp))

= HomQp (Sym
k−2Vp(A),Sym

k−2Vp(A
′)).

As a cycle on XP , the image of �ι by the étale cycle map

clP : CHk−2(XP ) −→ VGF
P

is the natural map Symk−2Vp(A) → Symk−2Vp(A′) induced by ι.
We interpret the Abel–Jacobi image of the generalized Heegner cycle as an extension of

Galois representations. Put

VX = εX H
2k−3((Xk−2)F ,Qp(k − 1)), WX = εX H

2k−3((Xk−2 − XP )F ,Qp(k − 1)).

Then we have a diagram

0 VX W�ι Qp

clP (�ι)

0

0 VX WX VP 0.

(4.1)

The bottom exact sequence is obtained by the localization sequence and purity, and the
surjectivity comes from k > 2 (�ι is homologically trivial). The upper exact sequence is the
pull-back of the bottom one by the Galois equivariant map Qp → VP sending 1 to clP (�ι).
Then the cohomology class of the upper extension gives the Abel–Jacobi image of �ι in
H1(F, VX ).

Now we assume A is the CM elliptic curve defined over H in Sect. 3.2 and consider a
base change of A to a field F where H ⊂ F ⊂ Hcp∞ for a natural number c. (Later, we
will take ι as πcpn and F = Hcpn .) Let Qp(ψ

i
pψ

k−i
p∗ ) := (VpA)⊗i ⊗Qp (Vp∗ A)⊗k−i . It is a

1-dimensional Galois representation ofGF overQp with the characterψ i
pψ

k−i
p∗ . For a Galois

representation U of GF , we write U ⊗Qp Qp(ψ
i
pψ

k−i
p∗ ) simply by U (ψ i

pψ
k−i
p∗ ). We have

Symk−2H1(AF ,Qp)(k − 2) =
k−2∏

i=0

Qp(ψ
i
pψ

k−2−i
p∗ ).

By pushing the upper sequence in (4.1) by the canonical projection

VX −→ V f ⊗ [Symk−2H1(AF ,Qp)](k − 1) =
k−1∏

i=1

V f (ψ
i
pψ

k−i
p∗ ) → V f (ψ

i
pψ

k−i
p∗ ),

we obtain an extension

0 V f (ψ
i
pψ

k−i
p∗ ) W f ,i Qp 0. (4.2)

This extension class corresponds to the element z(i)f [ι] ∈ H1(F, V f (ψ
i
pψ

k−i
p∗ )) defined by

the generalized Heegner cycle �ι. We may also construct (4.2) as follows. Put that

ṼX = H1(X1(N )F , j∗Sym
k−2R1π∗Qp), W̃X = H1((X1(N ) − P)F , j∗Sym

k−2R1π∗Qp)

123



82 S. Kobayashi

where π : E → Y1(N ) is the universal elliptic curve and j is the inclusion map Y1(N ) →
X1(N ). Then as in [31, II, Proposition 2.4], we have an exact sequence

0 ṼX W̃X [Symk−2H1(A′
F
,Qp)](−1) 0 (4.3)

By taking the tensor product with Symk−2H1(AF ,Qp)(k−1), we have the bottom sequence
of (4.1). Similarly, for 1 ≤ i ≤ k − 1, by taking the tensor product with Qp(ψ

i
pψ

k−i
p∗ ), we

have
0 ṼX (ψ

i
pψ

k−i
p∗ ) W̃X (ψ

i
pψ

k−i
p∗ ) VP,i 0 (4.4)

where

VP,i := HomQp (Qp(ψ
k−1−i
p ψ i−1

p∗ ),Symk−2Vp(A
′)).

The natural Galois equivariant map (TpA)⊗i ⊗Qp (Tp∗ A)⊗k−i → Symk−2Vp(A′) induced
by ι corresponds to a map of Galois representations clP (�ι)i : Qp → VGF

P,i ⊂ VP,i . Then
the pull-back of (4.4) by clP (�ι)i gives an extension

0 ṼX (ψ
i
pψ

k−i
p∗ ) Wi Qp 0 (4.5)

and its push-forward induced by the quotient ṼX → V f gives (4.2). There is also the integral
version of (4.4). We put

T̃X = H1(X1(N )F , j∗Sym
k−2R1π∗Zp), ŨX = H1((X1(N ) − P)F , j∗Sym

k−2R1π∗Zp)

and

TP,i := HomZp (Zp(ψ
k−1−i
p ψ i−1

p∗ ),Symk−2Tp(A
′)).

Then, we have an exact sequence

0 T̃X (ψ i
pψ

k−i
p∗ ) ŨX (ψ

i
pψ

k−i
p∗ ) TP,i

and hence as the push-forward,

0 T f (ψ
i
pψ

k−i
p∗ ) UX (ψ

i
pψ

k−i
p∗ ) TP,i . (4.6)

Here the cokernel of the last map is finite whose order is bounded independent of P . (cf. [31,
II. (1.10), (5.5)].) Therefore, there exists a natural integer C depending only on N , k, p such
that pC kills the cokernel.

Letw be a basis ofOK -module H1(A(C),Z) of rank 1.We take a basis u ∈ TpA, v ∈ Tp∗ A
so that

u − v ∈ Zpw ⊂ Tp A = H1(A(C),Zp).

Put that e = u ⊗ v⊗−1 ∈ TpA ⊗ (Tp∗ A)⊗−1. Note that e does not depend on the choice of
u, v, andw. In Sect. 5 below, we see that for Hcp∞ = ∪nHcpn , the Galois group GHcp∞ fixes

the element e. (cf. (5.1) and Proposition 5.8.) We write z(i)f [ι] by z(i)[cpn] and let w(i)[cpn]
be the image of z(i)f [cpn] by the morphism

H1(Hcpn , V f (ψ
i
pψ

k−i
p∗ )) → H1(Hcp∞ , V f (ψ

i
pψ

k−i
p∗ )) ∼= H1(Hcp∞ , V f (ψpψ

k−1
p∗ ))

where the last map is given by tensoring e⊗−(i−1).
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Proposition 4.1 Suppose that ι : A → Acpn is the natural projection over Hcpn whose
complex uniformizations with respect to ωA and ι∗ωA give

C/OK�K −→ C/Ocpn�K , z �−→ cpnz.

(i) We have ι(u − v) ∈ pnTp Acpn .
(ii) We put

gi : Qp −→ TP,1, 1 �−→
(
u⊗k−2 �→ ι(u)⊗k−2−i

(
ι(u − v)

pn

)⊗i
)
.

Then by (4.6), the map pCgi defines an element ri [cpn] ∈ H1(Hcp∞ , T f (ψpψ
k−1
p∗ )) such

that

pC
i∑

j=0

(−1) j
(
i

j

)
w( j)[cpn] = pniri [cpn]. (4.7)

Proof For simplicity, we put F∞ := Hcp∞ . Let fi be the Qp-linear map

fi : Qp −→ VP,1, 1 �−→
(
u⊗k−2 �→ ι(u)⊗k−2−i ι(v)⊗i

)
.

Since u⊗k−2−i ⊗ v⊗i = u⊗k−2 ⊗ e⊗−i , this is a morphism of GF∞ -modules. Then the
extension corresponding to w

(i)
f [cpn] is the pull-back of

0 ṼX (ψpψ
k−1
p∗ ) W̃X (ψpψ

k−1
p∗ ) VP,1 0

by fi . (cf. (4.4).) Hence the element

i∑

j=0

(−1) j
(
i

j

)
w

( j)
f [cpn] ∈ H1(F∞, V f (ψpψ

k−1
p∗ ))

corresponds to the extension by the pull-back of (4.4) by
∑i

j=0(−1) j
(i
j

)
f j .

The image of Z�K ⊂ H1(A(C),Z) by ι in H1(Acpn (C),Z) is divisible by cpn . Hence
by our choice of u, v, we have ι(u − v) ∈ pnTp Acpn . Therefore,

i∑

j=0

(−1) j
(
i

j

)
ι(u)⊗k−2− j ι(v)⊗ j = ι(u)⊗k−2−i ι(u − v)⊗i ∈ pniSymk−2 Tp Acpn .

Hence, by (4.6), the map pCgi defines the element ri [cpn] ∈ H1(Hcp∞ , T f (ψpψ
k−1
p∗ )), and

(4.7) holds.

Next, we prove a Frobenius relation for ri [cpn], which we use in the proof of the main
theorem of the sequel [24].

Let � be an inert prime of K prime to cDK Np and let λ� be a place of Hc� over �. The
elliptic curve Ac has good reduction at λ� and A�c, too since it is isogenous to Ac. By the
Néron mapping property, the natural isogeny Ac → Ac� of degree � reduces to an isogeny
Ãc → Ãc� of degree � over the residue field F�2 . (Note that � splits completely on Hc

and totally ramified for Hc�/Hc.) Since Ãc is supersingular, there exists an isomorphism
Ãc� ∼= ÃFr�

c and the isogeny Ãc → Ãc� ∼= ÃFr�
c must be the �-th Frobenius map.
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Let Pc (resp. Pc�) be a point of X1(N ) corresponding to Ac (resp. Ac�) with a level
structure. The representation TPc,i is unramified at � and we may identify it with

HomZp (Zp(ψ
k−1−i
p ψ i−1

p∗ ),Symk−2Tp( Ãc))

as a GF
�2
-representation. For a GF

�2
-equivariant map h : Zp → TPc,i , let ch be the

cohomology class corresponding to the extension class obtained by the pull-back of (4.6)
by pCh. By composing pCh and the natural map Tp Ãc → Tp Ãc�, we have a map GF

�2
-

equivariant map Zp → TPc�,i . By the identification Ãc� ∼= ÃFr�
c , this map gives the

cohomology class equal to cFr�h . Applying this for cpn as c, we have

Fr�(p
C loc�(z

(i)[cpn])) = pC loc�(z
(i)[�cpn]), Fr�(loc�(ri [cpn])) = loc�(ri [�cpn])

(4.8)

for 1 ≤ i ≤ k − 1.
So far, we assumed N > 4 but as in [31, Chapter II, (3.7), (3.8)], we can eliminate this

assumption.

5 Serre–Tate local moduli and anticyclotomic extension

In this section, first, we review the theory of Serre–Tate local moduli. We follow Katz’s
article [21] but slightly modify it to work on a finite residue field. (In [21], the residue field
of deformations is assumed to be algebraically closed.) In most proofs, the finite residue
field case is reduced to the algebraically closed residue field case by flat descent arguments.
However, we work directly on finite residue fields for two reasons. First, in the finite residue
field case, the formal group representing the Serre–Tate local moduli of an ordinary elliptic
curve is not isomorphic to the formal multiplicative group. We see that it is the formal group
whose division points produce anticyclotomic extensions. Second, at least in the classical
setting, the Perrin-Riou theory is developed only for a finite unramified extension of Qp

because of the local duality pairing. (cf. [35, p.221, ERRATA].)

5.1 Relative Lubin–Tate formal groups of height 1

We recall relative Lubin–Tate formal groups of height 1. ([12, Chapter 1].) Let k be the finite
field Fq of q-elements. Let W be the ring of Witt vectors W (k) and L = W [1/p] with
the Frobenius σ . For an element ξ ∈ Zp with vp(ξ) = vp(q), we consider a power series
ϕ(T ) ∈ W [[T ]] satisfying the following two conditions:

• ϕ(T ) ≡ πT mod deg 2 for an element π ∈ W such that NL/Qp (π) = ξ .
• ϕ(T ) ≡ T p mod p.

Then there exists a unique one-dimensional formal groupGξ overW that has a “Frobenius”
Gξ → Gσ

ξ induced by ϕ(T ). The isomorphism class of Gξ over W depends only on ξ , and
it is called the relative Lubin–Tate formal group corresponding to ξ . The parameter ξ is
characterized from Gξ as the eigenvalue of the q-th Frobenius on the Dieudonné module of
the special fiber of Gξ . The isomorphism class of a formal group overW is determined by the
isomorphism class associated with weakly admissible filtered ϕ-module. Hence, the relative
Lubin–Tate formal group with parameter ξ is characterized as the formal group over W
associated with the filtered ϕ-module D over L of rank 1 satisfying Fil1D = D,Fil2D = {0}
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and the q-th power Frobenius acts by ξ . (If one chooses π as above, one may define the σ -
semi-linear Frobenius action ϕ on D by putting ϕω = πω on a fixed generator ω of D. The
isomorphism class of the filtered ϕ-module D does not depend on the choice of π and ω.)

5.2 The canonical lift

Let E be an ordinary elliptic curve defined over k. We denote the set-theoretical Tate module
by TpE , which is a free Zp-module of rank 1. Let uq ∈ Z

×
p be the eigenvalue of the q-th

Frobenius ϕq on TpE . We put ξ = qu−1
q and we denote Gξ by GE . The special fiber GE of

GE is isomorphic to the formal group of E since their filtered ϕ-modules are isomorphic.
We regard naturally E[p∞] as an étale p-divisible group over W . We fix an isomorphism
ε between E[p∞] × GE [p∞] and the p-divisible group associated with E . Then by [21,
Theorem 1.2.1], there is an elliptic curve E over W whose p-divisible group is isomorphic
to the p-divisible group E[p∞] × GE [p∞] over W . Since End GE [p∞] ∼= End GE [p∞]
by the natural map, the isomorphism class of the triple (E,GE [p∞], ε) does not depend on
the choice of ε, and End E ∼= End E by the natural map. In particular, E is a CM elliptic
curve. The elliptic curve E/W is called the canonical lift of E/k. The n-times composition
of Frobenius on the p-divisible group induces the Frobenius lift Fpn : E → Eσ n

over W .
Note that for an invariant differential ωE of E , we have F∗

q ωE = ξωE .

5.3 The local moduli functor and Frobenii

We consider themoduli functor M̂E/k that corresponds an artin local ring R with residue field

k to the set of isomorphism classes of lifts of E/k over R. This functor is pro-representable by
a formal scheme M̂E := SpfRE and let E/RE be the universal lift of E/k. For simplicity,
we sometimes write M̂E , RE by M̂, R. The ring R is non-canonically isomorphic to the
one-variable formal power series ring over W . For any W -scheme X , we denote by X (σ n)

the W -scheme obtained from X/W by σ n : W → W as fiber product:

X (σ n) �n
X

SpecW
Spec(σ n)

SpecW .

Similarly, for formal schemes. By corresponding a deformation E/R of E/k to E(σ )/R(σ ) of

E
(σ )

/k, we have a bijection

M̂E/k(R)
∼= M̂

E
(σ )

/k
(R(σ )),

and hence by taking R = RE in the above, the tautological section gives an isomorphism

M̂(σ )

E/k
∼= M̂

E
(σ )

/k
. For a deformation E/R, we denote by E(n) the quotient of E by the

canonical subgroup Ê[pn], and by Fpn the projection E → E(n), which is a lift of the

Frobenius Fpn : E → E
(σ n)

. (Note that the notation is compatible with that in Sect. 5.2.)

Since E(n) is a deformation of E
(σ n)

, this defines a morphism

ϕpn : M̂E/k → M̂
E

(σn )
/k

∼= M̂(σ n)

E/k
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andE
(n) is the pull-back ofE

(σ n) by ϕpn . Hence we have a morphism ofW -algebraR(σ n) →
R, which is also denoted by ϕpn by abuse of notation. We also write ϕpn by ϕ if n = 1.

For ω ∈ �(E,�1
E/R), the invariant differential form ϕ∗

pn�
∗
nω may be regarded as an

invariant form on E
(n) by the identification E

(n) ∼= ϕ∗
pnE

(σ n). We denote F∗
pnϕ

∗
pn�

∗
nω ∈

�(E,�1
E/R) simply by�∗

nω and by�∗ω if n = 1. (Note that in [21], the letter� is used for
ϕ in the above.)

5.4 The group structure on the local moduli

By the (relative) Lubin–Tate theory, the formal group law onR overW is defined in a unique
way so that the Frobenius ϕ is a group homomorphism. However, for our later purpose, we
define it more geometrically. First, we construct a free W -submodule M of rank 1 in �̂1

R/W ,
and then construct the group law so that M is the space of invariant differential forms.

Let ∇ be the Gauss–Manin connection

∇ : H1
dR(E/R) −→ �̂1

R/W ⊗̂RH1
dR(E/R).

By the principal polarization, we regard E ∼= E
∨
and E ∼= E

∨. Then the Kodaira–Spencer
map

KS : �(E,�1
E/R)⊗2 −→ �̂1

R/W

is given by KS(ω ⊗ η) := 〈∇(ω), η〉 where 〈 , 〉 is the Poincaré pairing on H1
dR(E/R).

Proposition 5.1 There exists a functorial map of W-modules

sE : �(E,�1
E/W ) −→ �(E,�1

E/R) ⊂ H1
dR(E/R), ωE �−→ ωE

characterized by the following properties. It is a section of the specialization map
�(E,�1

E/R) → �(E,�1
E/W ) at the origin, and Frobenius compatible, that is, the differ-

ential ωE satisfies

�∗
qωE = ξωE.

The map sE induces isomorphisms of W-modules

�(E,�1
E/W ) ∼= {ω ∈ �(E,�1

E/R) | �∗
qω = ξω}

and

�(E,�1
E/W ) ⊗W R ∼= �(E,�1

E/R).

Proof This is a modification of Corollary 4.1.5 of [21] and the proof is essentially the same.
Let ωE be an invariant differential of E/W . We take a basis v of TpE

∨
. Then v induces

isomorphism ιE : Ê ∼= Ĝm over W (k) and ιE : Ê ∼= Ĝm overR⊗̂WW (k). Then we have the
p-adic period �E,v ∈ W (k)× satisfying ι∗E (dt/(1 + t)) = �E,vωE and σq�E,v = uq�E,v .
We put

ωE = �−1
E,vι

∗
E
(dt/(1 + t)) ∈ �(E,�1

E/R)⊗̂WW (k).

Since the action of σq on TpE
∨ ∼= Hom(Ê, Ĝm) is given by uq , the differential ωE is fixed

by σq . Hence it is defined over W . Note also that ωE does not depend on the choice of v.
Since�∗

pι
∗
E
(dt/(1+ t)) = pι∗

E
(dt/(1+ t)), the Frobenius compatibility holds. Suppose that
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ω ∈ �(E,�1
E/R) satisfies �∗

qω = ξω. Write as ω = gωE with g ∈ R. Then the Frobenius

compatibility implies�∗
qg = g. Hence g is an element ofW and {ω ∈ �(E,�1

E/R) | �∗
qω =

ξω} is a free W -module rank 1 generated by ωE.

LetM be the image of�(E,�1
E/W )⊗2 in �̂1

R/W by the composition of sE and theKodaira–

Spencer map. Let ωE be a generator of W -module �(E,�1
E/W ) and let u p ∈ W× be such

that F∗
p�

∗ωE = pu−1
p ωE . Let ωE be the lift of ωE by Proposition 5.1. Since the Frobenius

action is compatible with Gauss–Manin connection and Poincaré pairing (with Tate twist
“(-1)" on the target), we have

ϕ∗(〈∇(ωE), ωE)〉 = p−1〈∇(�∗ωE),�
∗ωE〉 = pu−2

p 〈∇(ωE), ωE〉.
Hence we naturally have a structure of strongly divisible filtered module on M ⊂ �1

R/W

by Fil1M = M , Fil2M = {0} and ϕωM̂ = pu−2
p ωM̂ where ωM̂ := KS(ω⊗2

E
) =

〈∇(ωE), ωE)〉. If we choose a non-canonical isomorphism R ∼= W �X� such that
ωM̂/dX |X=0 = 1, we can associate the formal group structure on SpfR that makes ωM̂ is
an invariant differential. (The formal group law is given by F(X , Y ) := f −1( f (X)+ f (Y ))

where f is the formal primitive of ωM̂ with f (0) = 0. Note that we have F(X , Y ) ∈
W �X , Y � by the Honda theory (cf. [18]).) Since ϕ(X) = pu−2

p X mod deg 2, the formal
group is the relative Lubin–Tate corresponding to ξ = qu−2

q with uq := NL/Qp u p . The
group structure is also characterized by the property that ϕ becomes a group homomorphism
M̂ → M̂σ . In particular, the group structure does not depend on the choice of ωE and the
isomorphism R ∼= W �X�.

5.5 The Tatemodule ofM̂ and the Serre–Tate coordinate

By definition, Ê is the relative Lubin–Tate group corresponding to the parameter ξ = qu−1
q

with the strongly divisible lattice D(Ê) := �(E,�1
E/W ). By construction, the Kodaira–

Spencer map (composed with the map sE) gives an isomorphism of filtered ϕ-modules,

D(Ê)⊗2(1) ∼= M = D(M̂).

Hence it induces the functorial isomorphism of Galois representations of GL ,

TpM̂ ∼= Tp Ê
⊗2(−1) = HomZp (TpE

⊗2
,Zp(1)). (5.1)

Let κÊ (resp. κcyc) be the relative Lubin–Tate character for Ê (resp. the cyclotomic character).

Then the relative Lubin–Tate character κM̂ for M̂ is κ2
Ê
κ−1
cyc.

For a generator v ∈ TpE , the map (5.1) induces an isomorphism TpM̂ → Zp(1) of
Galois representations over W (k)[1/p]. Hence we have an isomorphism ι : M̂ → Ĝm as
formal groups over W (k).

We explain that the isomorphism ι coincideswith the Serre–Tate coordinate, essentially the
main theorem of [21]. For the reader’s convenience, first, we recall the Serre–Tate coordinate.
Take a generator (v, v∨) ∈ TpE × TpE

∨
. Suppose that a lift E/R of E/k is given. Here

R is an artin local ring with the residue field k. The natural projection TpE∨ → TpE
∨
is

surjective, and the Weil pairing for E gives the isomorphism TpE
∨ ∼= Hom(TpÊ,Zp(1)) =

HomR(Ê, Ĝm). Let ρ be the isomorphism Ê → Ĝm associated to v∨. Write that v = (vn)n
with vn ∈ E[pn]. Since E(R) → E(k) is surjective, we can take a lift vn ∈ E(R) of vn . Then
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pnvn ∈ Ê(R). Since ∩m[pm]Ê(R) = {0}, the limit x := limn→∞ pnvn exists and it is easy
to see the well-definedness. Then ρ(x) ∈ Ĝm(R) is the Serre–Tate coordinate of E/R with
respect to (v, v∨), which is denoted by q(E/R, v, v∨).

As before, we identify E
∨
and E by the principal polarization. Then, for a generator

v ∈ TpE , the Serre–Tate coordinate

q(E/Rs�, v, v) ∈ 1 + mRs�

defines a map of formal schemes M̂ → Ĝm over W (k). Here Rs� := R⊗̂WW (k). (i.e. the
completion of the strict henselizaion.) We call this map the Serre–Tate map. The following
is a reformulation of the main theorem of [21].

Proposition 5.2 The isomorphism ι coincides with the Serre–Tate map, that is, ι sends the
tautological section of M̂(R) to the Serre–Tate parameter. In particular, the Serre–Tate map
is a group isomorphism, and Rs� = W (k)�T � with T = q(E/Rs�, v, v) − 1. The group
structure ofM̂ is the unique structure thatmakes the Serre–Tatemap a group homomorphism.

Proof The element

v ∈ TpE
∨ = HomW (k)(Ê, Ĝm) = HomW (k)(Ê, Ĝm)

defines invariant differential formsωE onE andωE on E by the pull-back by v of the invariant
differential ω

Ĝm
on Ĝm . By the extension of scalars, the map sE is extended overW (k). Then

sE sends ωE to ωE. The main theorem of [21] is that

KS(ω⊗2
E

) = dT

1 + T
. (5.2)

Hence the map

ι∗ : D(Ĝm)
(v⊗2)∗

D(Ê)⊗2(1)
KS ◦ sE

D(M̂)

coincides with the one induced by the Serre–Tate map.

Remark 5.3 In [21], Katz first defined the Serre–Tate coordinate, then computed the Kodaira–
Spencer map in terms of the Serre–Tate coordinate. We took the reverse order, that is, we
first defined the formal group M̂ via the Kodaira–Spencer map and then related it to the
Serre–Tate coordinate. The advantage of our approach is that the formal group structure on
M̂ is directly defined over W and the relation between M̂ and the anticyclotomic extension
becomes apparent in the following.

5.6 Amoduli interpretation

The isomorphism (5.1) recovers the moduli property of M̂ as follows. Let E/R be a defor-
mation of E/k. Then there exists an exact sequence of fppf sheaves on R,

0 Ê[pn] E[pn] E[pn] 0.

From this, we have

0 Hom(E[pn ]⊗2, μpn ) Hom(E[pn ]⊗E[pn ], μpn ) Hom(Ê[pn ]⊗E[pn ], μpn ) 0.

(5.3)
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Here the tensor product ⊗ and the Hom are taken as fppf sheaves. By sending 1 to the Weil
pairing Ê[pn] × E[pn] → μpn , we have a morphism of fppf sheaves

Z/pnZ −→ Hom(Ê[pn] ⊗ E[pn], μpn ).

By the pull-back of (5.3) by this morphism, we obtain an extension of fppf sheaves

0 Hom(E[pn]⊗2, μpn ) E Z/pnZ 0.

By (5.1), the sheafHom(E[pn]⊗2, μpn ) is representable byM̂[pn]. This extension defines an
element in the flat cohomology group H1

fl (Spf R, M̂[pn]), which is isomorphic toM̂(R)/pn

by the Kummer map and the Hilbert theorem 90. (Note that since Hi (k,M̂(Rs�)) = 0
for i > 0 (cf. [5, Proposition 3.9]), the proof of Hilbert 90 in our case is reduced to the
case of the formal multiplicative group.) Hence by taking limit for n, we have an element
x(E/R) ∈ M̂(R).

Proposition 5.4 The element −x(E/R) ∈ M̂(R) corresponds to the deformation E/R.
Proof To show this, we may work over W (k) by scalar extensions. We fix a generator v =
(vn)n of TpE . It suffices to show that −x(E/R) is sent to the Serre–Tate coordinate of E/R
by the Serre–Tate map M̂ → Ĝm . Considering the universal deformation case and then by
(infinitely many) specializations, we may reduce to the case that R = W (k). We identify
TpE ∼= Zp and Ê[pn] ∼= μpn by v. Then the extension class of

0 Ê[pn] E[pn] E[pn] 0

defines an element of H1
fl (Spf R, Ê[pn]) ∼= H1

fl (Spf R, μpn ) = (1+mR)/(1+mR)
pn . This

is the image of x = x(E/R) by the Serre–Tate map. We compute it in

H1
fl (Spf R, Ê[pn]) ↪→ H1

fl (Spec R[1/p], Ê[pn]) = H1
ét(R[1/p], Ê[pn])

where the last cohomology is the Galois (étale) cohomology of the field R[1/p]. (cf. [14,
Lemme 3.6].) Let vn ∈ E(R) be a lift of vn . Then the Serre–Tate coordinate of E/R is the
limit of pnvn ∈ Ê(R) ∼= Ĝm(R). By the definition of the Kummer map, the image of pnvn
in H1

ét(R[1/p], Ê[pn]) is the cocycle class σ �−→ σwn − wn where wn ∈ Ê(R′) such that

pnwn = pnvn ∈ Ê(R) for some finite flat extension of R′ of R. We put zn = vn − wn , then
zn is a pn-torsion point of E and a lift of vn . Hence the element x ∈ H1

ét(R[1/p], Ê[pn])
may be represented by the cocycle

σ �−→ σ zn − zn = −σwn + wn .

(Note that σvn = vn since vn ∈ E(R).)

5.7 Themoduli interpretation of translation by torsion points

We describe the moduli theoretic description of the addition x ⊕ y on M̂ when x or y is a
torsion point.

Let E/R be a deformation of E/k. In the following, for P ∈ E[pn], we consider two kinds
of lifts of P . One is a lift in E[pn] over a finite flat extension of R by using E[pn]/Ê[pn] ∼=
E[pn], which we call a finite order lift and denote by P f though there are several choices of
P f . The other is a lift in E(Rs�) which we call an unramified lift and denote by Pu though
there are several choices of Pu .
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Let x and y be elements of M̂(R), and suppose that x is torsion of order pn and y
corresponds to the elliptic curve E/R. By the isomorphism (5.1), the element x defines an
element of

HomZp (E[pn]⊗2, μpn ) = HomZp (E[pn],Hom(E[pn], μpn )) = HomZp (E[pn], Ê[pn]),
which is also denoted by x by abuse of notation. We put E0 = E/Ê[pn]. For P ∈ E[pn],
let x ′(P) be an element of Ê[p2n] such that [pn]x ′(P) = x(P). We denote the image of the
subgroup of E0 generated by

P f − x ′(P) mod Ê[pn] (P ∈ E[pn])
by Cx,y . Note that it does not depend on the choices of x ′(P) and Pf , and Cx,y can be

defined over R. The reduction of Cx,y is the unique subgroup of order p of E
σ n

. We put
Ex,y := E0/Cx,y and consider the commutative diagram

E

red

E0
red

Ex,y
red

E
Fpn E0 ∼= E

σ n F∨
pn Ex,y ∼= E .

(5.4)

The vertical arrows are the reductionmaps. Hence the elliptic curve Ex,y is also a deformation
of E/k.

Proposition 5.5 (i) Let x and y be as above. The deformation corresponding to the point
x ⊕ y ∈ M̂ is Ex,y .

(ii) Let ωE be an invariant differential for E/W and ωE = sE(ωE ) the lift to the universal
deformation. Letπx,y be the isogeny E → Ex,y in (5.4). LetωE andωEx,y be the pull-back
ofωE to E and Ex,y by the universality. Then we have π∗

x,yωEx,y = pnωE , or equivalently,
ωEx,y = p−n(πx,y)∗ωE .

Proof For v = (vn)n ∈ TpE , we consider the following commutative diagram

Ê

ι

Ê0
ι0

Êx,y
ιx,y

Ĝm
pn

Ĝm Ĝm

(5.5)

where ι, ιx,y are trivializations induced by v and ι0 by σ n(v) ∈ E
σ n [pn]. Let Rs� be the strict

henselization of R. By (5.4), as a lift of vm ∈ Ex,y[pm] to Ex,y(Rs�), wemay takeπx (v
u
m+n) ∈

Ex . Then the Serre–Tate coordinate of Ex,y is given by limm→∞ ιx,y(pmπx,y(v
u
m+n)). On

the other hand, by the definition of Cx,y , the element πx,y(v
f
n ) is equal to πx,y(x ′(vn)). Then

by (vum+n − v
f
m+n), x

′(vn) ∈ Ê and (5.5), we have

ιx,y(p
mπx,y(v

u
m+n)) = ιx,y(p

mπx,y(v
u
m+n − v

f
m+n)) · ιx,y(pmπx,y(v

f
m+n))

= ι(pm+nvum+n) · ιx,y(πx,y(x
′(vn))) = ι(pm+nvum+n) · ι(x(vn)).

The Serre–Tate coordinate of E is limm→∞ ι(pm+nvum+n) and by Proposition 5.2, ι(x(vn)) is
also the Serre–Tate coordinate of the deformation associated with x . The assertion follows.

For (ii), we may assume that ωE = ι∗(ω
Ĝm

) and ωEx,y = ι∗x (ωĜm
). Then by (5.5), we have

π∗
xωEx,y = pnωE . (ii) follows from this. (Note that degπx = p2n .)
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Let x = (xn)n be an element of TpM̂. We have an isomorphism of formal groups ϕ∨
n :

M̂ → M̂σ−n
such that ϕn ◦ ϕ∨

n = [pn]M̂. (cf. [12, Chapter I, Proposition 1.5].) We put

�n = ϕ∨
n (xn) ∈ M̂σ−n [pn]. The system (�n)n satisfies that ϕ(�n+1) = �n , and we call

it the system of ϕ-power torsion points associated to the system of p-power torsion points
x ∈ TpM̂. We give the interpretation of �n as a deformation.

Since E is the canonical lift, we have the splitting s : E[pn] → E[pn] defined by
the decomposition TpE = TpE × Tp Ê , which is compatible with the Galois action over
L = W [1/p]. It may also be described as follows. For P ∈ E[pn], take Pn+m ∈ E[pn+m]
such that pm Pn+m = P . Then consider a lift Pn+m ∈ E(W (k)) of Pn+m . The section s(P)

is defined to be the limit of pm Pn+m when m → ∞. (Note that pn+m Pn+m → 0 since
the Serre–Tate coordinate of the canonical lift is 1, and the limit depends only on Pn since
Ê(W (k)) ∩ E[p∞] = {O}.)

The element xn is regarded as a map

xn ∈ HomZp (E[pn], Ê[pn]).
Let Cn be the étale subgroup

Cn := {s(Pn) − xn(Pn) | Pn ∈ E[pn]} ⊂ E[pn].
Clearly, pCn+1 = Cn and E/Cn is a deformation of E

σ−n

. (The isomorphism on the fiber

is given by F∨
pn : E/E[pn] ∼= E

σ−n

.) For an invariant differential form ωE of E over W ,

let ωEσ−n := �∗−nωE be the twist of ωE by σ−n on Eσ−n
and let ω

Eσ−n be the Frobenius
compatible lift of ωEσ−n on the universal deformation.

Proposition 5.6 Let E ′ be the deformation of Eσ−n

corresponding to �n ∈ M̂σ−n [pn], that
is, E ′ = (Eσ−n

)0/C�n (cf. Proposition 5.5 (i)). Let ω′ be the pull-back of ω
Eσ−n on E ′ by

the universal property. Then there exists a unique isomorphism ι : E ′ → E/Cn such that the
following diagram commutative:

Eσ−n Fpn

πn

E

π

E ′ ι
E/Cn

where πn and π are the canonical projections. In particular, E/Cn is the deformation of

E
σ−n

corresponding to �n. If F∗
pnωE = �nωEσ−n , then π∗ωE = �nι∗ω′.

Proof The map ϕn : TpM̂ → TpM̂σ n
is given by

ϕn : Hom(TpE, Tp Ê) → Hom(TpE
σ n

, Tp Ê
σ n

), x �→
(
P �→ Fpn x(F

−1
pn P)

)
.

Then since ϕn ◦ ϕ∨
n = [pn]M̂, the map corresponding to �n is given by

E
σ−n [pn] −→ Êσ−n [pn], Q �−→ F∨

pn (xn(Fpn Q)).

Hence the image of C�n by Fpn is

{s(Fpn Q) − xn(Fpn Q) | Q ∈ E
σ−n [pn]},

that is, Cn . The assertion follows from this and Proposition 5.5 (ii).
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Let c be a natural number such that (c, p) = 1 and let Ac be the elliptic curve defined in
Sect. 3.2. Let k be the residue field of Hc, and we take E as the reduction of Ac. Then Ac is
the canonical lift of E , and we may take E as Ac. As in Sect. 4, let w be a generator of the
Oc-module H1(Ac,Z) and consider generators of Zp-modules u ∈ TpAc and v ∈ Tp∗ Ac so
that u − v ∈ Zpw ⊂ Tp Ac = H1(Ac,Zp), and put that

e = u ⊗ v⊗−1 ∈ TpAc ⊗ (Tp∗ Ac)
⊗−1 = TpM̂. (5.6)

Let (�n)n be the ϕ-power system associated to e.

Proposition 5.7 The deformation corresponding to �n is Acpn .

Proof The torsion point εn of M̂[pn] = Hom(Ac[pn], Âc[pn]) corresponds to the map

xn ∈ HomZp (Ac[pn], Âc[pn]), vn �−→ un .

Hence by Proposition 5.6, the deformation corresponding to �n is Ac/Cn with

Cn := {s(Pn) − xn(Pn) | Pn ∈ Ac[pn]} = Zwn .

If we identify Ac with C/Oc, then we may take wn = 1
pn ∈ 1

pn Oc/Oc. Therefore, Ac/Cn ∼=
Acpn .

5.8 Local moduli and anticyclotomic extensions

We explain the relation between the localization of anticyclotomic extensions and the torsion
tower for the local moduli.

As before, let K be an imaginary quadratic field, and p splits inOK . We fix an embedding
ιp : Q ↪→ Cp and let p be a prime over p compatible with ιp . We denote the closure of a field
F ⊂ Q in Cp by F̂ . For p � c, let Ac be the elliptic curve with End Ac ∼= Oc as before. For
simplicity, we denote M̂Ac

by M̂c. Let K∞ be the anticyclotomic Zp-extension of K . Since

p splits, K̂∞ is a ramified Zp-extension of Qp . We show that this extension is contained in
the field obtained by adjoining torsion points of M̂c to Ĥc.

Proposition 5.8 The j-invariant j(Ocpn ) is contained in Ĥc(M̂c[pn]). In particular, we have
Ĥcpn ⊂ Ĥc(M̂c[pn]). Furthermore,

[Ĥc(M̂c[pn]) : Ĥcpn ] = [O×
c : O×

cpn ] ≤ �O×
K /2.

In particular, if c �= 1 or K �= Q(
√−1),Q(

√−3), the ring class field tower locally coincides
with the torsion tower of the local moduli M̂c, that is, Ĥcpn = Ĥc(M̂c[pn]).

Proof The first assertion follows from Proposition 5.7. (Note that M̂σ−n

c
∼= M̂c by ϕ∨

n .) It is
known that

[H f : H ] = f [O×
K : O×

f ]
∏

�| f

(
1 −

(
dK
�

)
1

�

)

for the order O f of conductor f . (cf. [10, Theorem 7.24].) We have [Ĥcpn : Ĥc] = [Hcpn :
Hc] = pn−1(p−1)[O×

c : O×
cpn ]. On the other hand, by the theory of formal groups, we have

[Ĥc(M̂c[pn]) : Ĥc] = pn−1(p − 1). The assertion follows from these.
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5.9 Theta operator on local moduli

As before, let E/k be an ordinary elliptic curve over a finite field k = Fq with Endk(E) ∼= Oc

for a natural number c prime to p. Let E be the canonical lift of E over W := W (k) and let
E/R be the universal deformation of E/k.

We fix an invariant differential ωE of E and let ωE be the lift of ωE on E by sE. Let
u p ∈ W× be such that F∗

pωEσ = pu−1
p ωE . As before, let ωM̂ be the invariant differential

of M̂ defined by

KS(ω⊗2
E

) = ωM̂

and ∂M̂ be the differential operator on R associated to ωM̂. That is, dg = ∂M̂(g)ωM̂. We
define ξE ∈ H1

dR(E/R) by

∇(ωE) = ξE⊗ωM̂ ∈ H1
dR(E/R)⊗R �̂1

R/W .

Lemma 5.9 ξE lies in the unit root space, that is, �∗
pξE = u pξE, and 〈ωE, ξE〉 = 1. These

property characterizes ξE. In particular, ωE, ξE become a basis of theR-module H1
dR(E/R).

We also have ∇(ξE) = 0.

Proof Since KS(ω⊗2
E

) = 〈ωE,∇(ωE)〉, we have 〈ωE, ξE〉 = 1. Since ∇ is compatible with
the Frobenius structure and ϕ∗

pωM̂σ = pu−2
p ωM̂, we have �∗

pξE = u pξE. Since the image
of ∇ ◦ (�∗

q)
m is divisible by qm , we have ∇(ξE) = 0.

The quotient by the unit root space generated by ξE defines a splitting

su : H1
dR(E/R) → �(E,�1

E/R)

of the Hodge filtration as R-module. This is also obtained by the pull-back map on the
formal group H1

dR(E/R) → H1
dR(Ê/R) ∼= �(E,�1

E/R). For a natural number n, we put

Ln = Symn
RH1

dR(E/R) and naturally extend the connection ∇ to Ln → Ln⊗R �̂1
R/W . The

splitting su also naturally defines Ln → �(E,�1
E/R)⊗n , which is also denoted by su by

abuse of notation. Then the theta operator ϑ is defined by the composition

ϑ : �(E, �1
E/R)⊗n

Ln
∇

Ln⊗R �̂1
R/W

id⊗KS−1

Ln+2
su

�(E, �1
E/R)⊗(n+2).

Lemma 5.10 For g ∈ R, we have ϑ(gω⊗k
E

) = ∂M̂(g)ω⊗(k+2)
E

.

Proof The assertion follows from ∇(gω⊗k
E

) = dg ⊗ ω⊗k
E

+ kgω⊗(k−1)
E

⊗ ξE ⊗ ωM̂.

Hence if we identify �(E,�1
E/R)⊗n with R by the basis ω⊗n

E
, the operator ϑ is ∂M̂ on

R.

5.10 TheÃ-operator onR

Let ψ be the unique σ−1-semilinear map on R satisfying ψ ◦ ϕ = 1 and

ϕ ◦ ψ(g) = p−1
∑

P∈M̂[ϕ]
t∗Pg

123



94 S. Kobayashi

for g ∈ R, where t∗P is the pull-back by translation by P with respect to the addition on M̂.
(Note that M̂[ϕ] = M̂[p].)

We give the moduli theoretic interpretation of ψ . To give a σ−1-semilinear map on R is
equivalent to give amap fromMor(M̂σ−1

, Ĝa) toMor(M̂, Ĝa)whereMormeansmorphisms
of formal schemes (not group homomorphisms). For f ∈ Mor(M̂σ−1

, Ĝa) and for x ∈ M̂
corresponding to a deformation E/R, we put

ψ̃( f )(x) :=
∑

C

f (E/C) ∈ R′

where C runs through étale subgroups of E of order p, and R′ is a finite flat extension of R.
Then by Proposition 5.5, we have

(ϕ∗(ψ̃)( f ))(x) =
∑

C ′
f (E0/C ′) =

∑

y∈M̂[ϕ]
f (x ⊕ y)

where C ′ runs through étale subgroups of E0 of order p. By the general theory of formal
groups, the right-hand side is of the form pϕ∗(g)(x) for g ∈ Mor(M̂σ−1

(R), Ĝa(R)). Hence
we have ψ̃( f )(x) ∈ pR. The above argument also shows that p−1ψ̃ has the characterization
property of ψ . Hence

Proposition 5.11 The operator ψ is the map that associates f ∈ Mor(M̂σ−1
, Ĝa) to the

map

M̂ → Ĝa, E �→ 1

p

∑

C

f (E/C)

where C runs through étale subgroups of E of order p.

Lemma 5.12 ∂M̂ : Rψ=0 → Rψ=0 is bijective.

Proof The kernel is W ∩ Rψ=0 = {0}. For the surjectivity, it is sufficient to show it after
the scalar extension to W (k) and we may use the Serre–Tate coordinate. We fix a basis
v ∈ TpE and consider the Serre–Tate coordinate q(E/R, v) = 1+ t . ThenRs� = W (k)�t�.
Let ι be the Serre–Tate map M̂ → Ĝm over W (k) associated to v. Take the p-adic period
�M̂,p ∈ W (k)× such that ι∗( dt

1+t ) = �M̂,pωM̂. As operators on W (k)�t�, we have

∂M̂ = �M̂,p(1 + t)
d

dt
, ϕ(t) = (1 + t)p − 1.

Hence the assertion is reduced to the well-known case.

For g ∈ R, we let

g� = (ψ ◦ ϕ − ϕ ◦ ψ)g = (1 − ϕ ◦ ψ)g.

Then clearly, we have g� ∈ Rψ=0. If we regard g ∈ W (k)�t� with the Serre–Tate coordinate
and μ is the corresponding measure on Zp , then g� is the power series corresponding to the
measure on Zp obtained by the extension of μ |

Z
×
p
by zero.
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5.11 The Galois action on the local moduli

First, we recall the following general fact.

Lemma 5.13 Let ι be an isogeny of elliptic curves A → B over k of degree c prime to p. It
induces an isomorphism ιM̂ : M̂A → M̂B as formal groups characterized by the following
equivalent properties (1), (2):

(1) Let A/R be a deformation of A/k and let B/R be the corresponding deformation of B/k
by ιM̂. Then there exists a unique isogeny A → B over R of degree c compatible with ι

on the special fiber.
(2) Let (v,w) be an element of Tp A × TpB

∨
. Then

q(A/Rs�, v, t ι(w)) = ιR(q(B/Rs�, ι(v), w))

where ιR is the morphism on universal deformation ringsRs�
B

→ Rs�
A
naturally induced

by ιM̂, and t ι is the dual isogeny of ι.

Proof Since c is prime to p, for a deformation A/R of A/k, the reduction map induces an
isomorphism A[c] ∼= A[c]. Hence the kernel C of ι is uniquely lifted to a subgroup of A[c].
We associate A/R to the deformation B as the quotient of A by C and the isomorphism on
the special fiber by B = A/C ∼= B induced by ι. The equivalence (1) and (2) follows from
the following diagram and [21, Theorem 2.1, 4)].

A A/C

�

B

SpfRA SpfRA SpfRB .

(5.7)

By (2), ιM̂ is compatible with the Serre–Tate map, hence it is a homomorphism. By consid-
ering the dual isogeny of ι, it is straightforward to show that ιM̂ is an isomorphism.

Let c be an integer prime to pdK . We let Gcpn := Gal(Hcpn/K ) and�n := Gal(Hcpn/Hc).
(nmay be∞.) Nowwe consider a Galois action of Gcpn on the local moduli. For this purpose,
as in [6], we assume that the discriminant DK is odd or 8 | DK , and take the CM elliptic
curve Ac more precisely. (We can also consider the case 4 ‖ DK in the below if we assume
the existence of a CM elliptic curve A that is Q-curve satisfying the Shimura condition and
good at all places over p. However, in the sequel [24], we only consider the case that DK

is odd or 8 | DK because we use results of [6].) Then by [36], there is a canonical Hecke
character ϕK : IK (f) → C

× of conductor f satisfying

(1) ϕK (a) = ϕK (a) for all a ∈ IK (f).
(2) ϕK (αOK ) = ±α for every α ∈ K× prime to f.
(3) The conductor f is divisible only by primes ramified in K/Q.

Up to an ideal class character of K , there is a unique canonical Hecke character if DK is odd
and there are two if 8 | DK . (If 4 ‖ DK , there is no Hecke character satisfying the above
conditions (especially, (2)) but a variant is considered in [41].) We define the Hecke character
ψH of H by ψH = ϕK ◦ NH/K . We also denote the Grössencharacter H×\A

×
H → C

×
associated to ψH by the same letter. Then the Serre–Tate character ψ̃H has the open kernel
and ψ̃H (α) = NH/Kα for any principal idelé α ∈ H×. Hence there is an elliptic curve Awith
EndC(A) = OK defined over H+ := Q( j(OK )) such that j(A) = j(OK ) and its Serre–Tate
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character is ψ̃H . (cf. [17, Theorem 9.1.3, Theorem 10.1.3].) The elliptic curve A is aQ-curve
in the sense of [17], and by construction, it satisfies the Shimura condition, i.e. H(Ator)/K
is abelian. (cf. [11, Condition (S)].) In particular, the Weil restriction B := ResH/K A is a
CM abelian variety. (cf. [15, §4])

LetP be the prime of Hc compatible with the fixed embedding ιp : Q ↪→ Cp and let k be
the residue field of Hc at P. For τ ∈ Gc, let Rτ be the universal deformation ring for A

τ

c/k.
We let R̃ = ∏

τ∈Gc
Rτ . We define an action of Gcp∞ on R̃.

Let a be an ideal of OK prime to dK and let σa be the element of Gal(K ab/K ) associated
to a by the Artin reciprocity map. Since A satisfies the Shimura condition, we have an
isogeny λ(a) : A → Aσa such that σa(P) = λ(a)(P) for P ∈ A[b] with (a, b) = 1.
Suppose further that (a, c) = 1. Then λ(a)(ker(πc)) = σa(ker(πc)) and hence λ(a) induces
an isogeny Ac → Aσa

c over Hc, which is also denoted by λ(a). Let λa be the composition
λ(a) ◦ πc : A → Aσa

c .
Suppose that σ ∈ Gal(K ab/K ) is represented by an integral ideal a prime to pcDK

as σ = σa. Then by Lemma 5.13, the isogeny λτ (a) : Aτ
c → Aστ

c induces a morphism
of formal groups M̂A

τ
c

→ M̂A
στ
c

over W (k) or in other words, a ring homomorphism
[σa] : Rστ → Rτ . If σa fixes elements of Hc, the action [σa] : Rτ → Rτ coincides with the
relative Lubin–Tate action of M̂A

τ
c
, that is, [σa] = [κτ (σa)] with the Lubin–Tate character

κτ of M̂A
τ
c
. We define the action of Gcp∞ on R̃ as the unique continuous action extending

that of σa for integral ideals a, which are dense in Gcp∞ . Then we have a Galois-compatible
ring isomorphism

R̃ ∼= R ⊗Zp��∞� Zp�Gcp∞�, (xτ )τ �→
∑

τ

[τ̃ ]xτ ⊗ τ̃−1 (5.8)

where τ̃ is any extension of τ to Gcp∞ . We define the action of ϕ,ψ diagonally on R̃, which
corresponds to ϕ ⊗ 1, ψ ⊗ 1 on R ⊗Zp��∞� Zp�Gcp∞�.

We fix a generator v = (v, v∨) of Tp A ⊕ Tp A
∨
, and put

t := q(A/Rs�, v, v∨) − 1.

For a non-zero integral ideal a, we also put

ta := q(Aσa/Rs�
σa

, λa(v),
tλ−1

a (v∨)) − 1. (5.9)

We regard ta as an element of R̃s� = ∏
τ R

s�
τ by putting it in the component Rs�

σa
and 0 in

other components.

Lemma 5.14 (i) Under the ring isomorphism in (5.8), the component Rs�
σa

⊂ R̃s� corre-
sponds to the submodule

Rs� ⊗ σ−1
a ⊂ Rs� ⊗Zp��∞� Zp�Gcp∞�.

Furthermore, the element ta ∈ R̃s� corresponds to t ⊗ σ−1
a .

(ii) If σa fixes elements of Hc, we have

[σa]
(
q(A/Rs�, v, w)

)
= q(A/Rs�, v, w)κr (σa) (5.10)

where κr = κ−1
M̂ . (Note that κr is the local reciprocity map Gal(Hcp∞/Hc) ∼= Z

×
p .)
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Proof By Lemma 5.13, we have

[σa]
(
q(Aσa/Rs�

σa
, λa(v), w)

)
= q(A/Rs�, v, tλa(w)) (5.11)

for (v,w) ∈ Tp A × Tp(A
∨
)σa . Thus, if σa fixes elements of Hc, we have

[σa]
(
q(A/Rs�, v, w)κA(σa)

)
= q(A/Rs�, v, w)κcyc(σa)κA(σa)−1

. (5.12)

The assertion follows from these.

As in the proof of Lemma 5.12, we have ϕ(t) = (1 + t)p − 1. Hence 1 + t ∈ (Rst )ψ=0.
We identify

(1 + t) ⊗ 1 ∈ (Rs�)ψ=0 ⊗Zp��∞� Zp�Gcp∞�

with 1 + t ∈ (Rs�)ψ=0 ⊂ (R̃s�)ψ=0.

Proposition 5.15 Suppose that c > 1. Then R̃ψ=0 is a free W �Gcp∞�-module of rank 1. As
a W (k)�Gcp∞�-module, (R̃s�)ψ=0 is free of rank 1 generated by 1 + t .

Proof By descent theory, it suffices to show the last assertion. We have

W (k)�t�ψ=0 = W (k)�Gal(K̂ ur∞/K̂ ur )�(1 + t)

where K̂ ur∞ = K̂ ur (M̂c[p∞]). (cf. [7, Theorem 3], [16, Theorem 2.6], [23, Proposition
3.11]). Then the assertion follows from Proposition 5.8 and (5.10).

Remark 5.16 The action on Rs� with the Serre–Tate coordinate is the inverse of the
Lubin–Tate character, which is the opposite of classical normalization. For example, in the
cyclotomic setting, γ acts on (1 + t) by the cyclotomic character. In the appendix, we also
use the classical normalization following Perrin-Riou. We writeRs� with our action by ιRs�

if we use the classical normalization.

6 Logarithmic Coleman power series interpolating generalized
Heegner cycles

In this section, we construct the logarithmic Coleman power series interpolating generalized
Heegner cycles.

First, we recall the classical Coleman power series theory and Perrin-Riou theory to
compare them with our theory (cf. [7, 33]). Let Qp,n be the cyclotomic field Qp(ζpn+1) and
Qp,∞ := ∪nQp,n . We put Gcyc∞ := Gal(Qp,∞/Qp). Fix a basis ξ = (ζpn+1)n of Zp(1). Let
Un be the group of the principal units inQp,n , andU∞ = lim←−n

Un . Then for u = (un)n ∈ U∞,
there exists a power series, fξ,u ∈ 1 + pZp�t�, called the Coleman power series associated

to u, such that fξ,u(ζpn+1 − 1) = un . We have
(
1 − ϕ

p

)
log fξ,u ∈ Zp�t�ψ=0. Here ϕ is the

operator defined by ϕ(t) = (1+ t)p − 1 and ψ is the left inverse of ϕ. Then there is an exact
sequence of G∞-modules

0 Zp(1) U∞
log� ◦Col

Zp�t�ψ=0
Zp(1) 0 (6.1)
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where log� ◦Col is the map sending u to
(
1 − ϕ

p

)
log fξ,u . It is known that

Zp�t�
ψ=0 = Zp�G

cyc∞ �(1 + t)

where the action of g ∈ Gcyc∞ is given by g · (1 + t) = (1 + t)κcyc(g) with the cyclotomic
character κcyc. Let η be a non-trivial tame even character ofGcyc∞ and let eη be the idempotent
of Zp�G

cyc∞ � associated to η. Then the image of a system of the η-part of cyclotomic units
by log� ◦Col is L

cyc
p,η · (1 + t) where L

cyc
p,η is the Kubota–Leopoldt p-adic L-function in

eηZp�G
cyc∞ �.

In [33], Perrin-Riou developed a certain integral exponential theory interpolating Bloch–
Kato exponential maps for the cyclotomic deformation of crystalline representations ofGQp .
(The base field may also be taken as a finite unramified extension ofQp .) Her exponential is a
generalization of the inverse of log� ◦Col in (6.1). More precisely, for a crystalline represen-
tation V of GQp , let Dp(V ) be the filtered ϕ-module associated to V . Let h ≥ 1 be a natural

number such that Fil−h Dp(V ) = Dp(V ) and for simplicity, we assume that V
GQp (ζp∞ ) = {0}

and Dp(V )ϕ=p− j = {0} for j ≥ 0. Then for an element g ∈ Dp(V ) ⊗ Zp�t�ψ=0, she con-
structed a family of local points ch,n(g) ∈ H1

f (Qp,n, V ) (n = 0, 1, . . . ) with bounded
denominators for n. More precisely, first, take a (unique by our assumption) solution of
(1−ϕ)G = g in Dp(V )⊗H∞ whereH∞ ⊂ Qp�t� is a certain convergent power series ring
on the open unit disc. (cf. (6.4)). Then for a suitableGalois stable lattice T , it can be shown that
p(n+1)(h−1)G(ζpn+1 −1) is in the image of H1

f (Qp,n, T ) for all n under the Bloch–Kato log-
arithm. Hence there is an element ch,n(g) such that logV ch,n(g) = p(n+1)(h−1)G(ζpn+1 −1),

and G (resp. g) is an analogue of log fξ,u (resp.
(
1 − ϕ

p

)
log fξ,u). (In the appendix, we

write ch,n(g) by ch,n(G).) The system (ch,n(g))n satisfies a certain norm relation related
to the characteristic polynomial of ϕ on Dp(V ). Hence the system (ch,n(g))n is not norm
compatible in general, however, by modifying ch,n(g) possibly admitting denominators (in
non-ordinary cases), she constructed an element

�
ξ
V ,h(g) ∈ H∞(Gcyc∞ ) ⊗

Zp�G
cyc∞ � lim←−

n

H1
f (Qp,n, T )

where H∞(Gcyc∞ ) is a power series ring containing Zp�G
cyc∞ � with huge denominators (cf.

(6.4)). She also defined the map �
ξ

V ( j),h for j ∈ Z. It is not difficult to generalize her theory
not only for the p-power cyclotomic tower but also for the p-power torsion tower of a relative
Lubin–Tate group of height 1. We summarized it in the Appendix. (cf. [43] for Lubin–Tate
groups of height 1 but not for the “relative" Lubin–Tate groups.)

Our purpose is to construct the logarithmicColemanpower series interpolating generalized
Heegner cycles in the following sense. For a natural number c prime to p and −r < i < r
with r = k/2, the localization of the Abel–Jacobi image of the generalized Heegner cycles
of conductor cpn gives a system of local points

z(i+r)
cpn ∈ H1

f (Ĥcpn , V f (ψ
i+r
p ψr−i

p∗ )) (n = 0, 1, . . .)

and this satisfies the norm relation

Corn+1/n z
(i+r)
n+1 − ap( f )z

(i+r)
n + pk−2Resn/n−1 z

(i+r)
n−1 = 0.

(cf. [6, Proposition 4.4].) This is precisely the relation in the Perrin-Riou theory for ch,n(g)
in this context. Hence, it is natural to expect that there is a vector-valued power series gi ∈
Dp(V f (ψ

i+r
p ψr−i

p∗ )) ⊗ Rψ=0 such that cr ,n(gi ) = z(i+r)
cpn . In fact, we show that such gi is
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given in terms of the t-expansion of the Coleman primitive Ff � of the p-depletion f � of
the modular form f , and the solution Gi of (1 − ϕ)Gi = gi is also given in terms of the t-
expansion of the Coleman primitive Ff of f . This strongly connects the Coleman integration
theory and the Perrin-Riou theory. We shall see that identifying

Dp(V f (r)) ⊗ Rψ=0 ∼= Dp(V f (r)) ⊗ O�Gal(Ĥcp∞/Ĥc)�,

the element g0 gives a vector-valued Bertolini–Darmon–Prasanna (BDP) p-adic L-function
in Dp(V f (r)) ⊗ O�Gal(Ĥcp∞/Ĥc)�. (Precisely, we need a semi-local version of the above
argument when the class number of K is greater than 1.) Note that in [2, §3.8], only the
primitive of the p-depleted modular form f � is calculated. Perrin-Riou theory enables us to
calculate the primitive of the original modular form f .

6.1 Coleman primitives of modular forms

Assume that N > 4. Let ω be the invertible sheaf π∗�1
E /Y1(N ) for π : E → Y1(N ) and

let L1 be the relative de Rham cohomology group H1
dR(E /Y1(N )). Then we have an exact

sequence

0 ω L1 ω∨ 0 (6.2)

where ∨ is the dual of OY1(N )-modules. We extend them on X1(N ) using the canonical
differential form and the Gauss–Manin connection on the Tate curve around cusps. (cf. [2,
§1].) For a natural number n, we put Ln := SymnL1. The Hodge filtration on Ln is defined
naturally from (6.2) and the Poincaré duality defines a pairing 〈 , 〉 : Ln ×Ln → OX1(N ). By
construction, we also have the Gauss–Manin connection ∇ : Ln → Ln ⊗ �1

X1(N )(cusps).

Let p be a prime not dividing N . Let S be the subset of X1(N )(Fp) consisting of all
cusps and all supersingular points. Let X be the rigid analytic space over Qp associated

with X1(N ) and Lrig
n denote the rigid analytic coherent sheaf associated with Ln . Let Yord

be the affinoid obtained by subtracting all residue discs over the points in S and let W be a
wide-open neighborhood of Yord. By using the Gauss–Manin connection of Ln on W , we
let

H1
dR(W,Lrig

n ,∇) := �(W,Lrig
n ⊗ �1

W )

∇�(W,Lrig
n )

,

which is known to be independent of the choice of W . By the theory of the canonical
subgroup, the Frobenius ϕ : Yord → Yord is overconvergent, that is, there is a wide-open
neighborhood W ′ such that W ⊃ W ′ ⊃ Yord and ϕ is extended to ϕ : W ′ → W . We also
have the Frobenius structure on the relative de Rham cohomology L1 compatible with the
Gauss–Manin connection and it induces a horizontal morphism Fr : ϕ∗Lrig

n → Lrig
n |W ′ . By

composing these, we have a map

�(W,Lrig
n ⊗ �1

W ) → �(W ′, ϕ∗(Lrig
n ⊗ �1

W )) → �(W ′,Lrig
n ⊗ �1

W ′).

In particular, this induces a map on the space of overconvergent modular forms and actions
on H1

dR(W,Lrig
n ,∇). By abuse of notation, we denote all of these by ϕ. For details, see [2,

§3.5].
Let f be a primitive normalized eigenform for �1(N ) of weight k ≥ 2 with Neben

character ε. Let O be a finite flat Zp-algebra in Cp containing the coefficients of f , roots
α, β of Pf (t) := t2 − ap( f )t + ε(p)pk−1 and a primitive N -th root of unity by the fixed
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embedding ιp : Q ↪→ Cp . If p is ordinary for f , we take α as the unit root. For a Zp-module
M , we write M ⊗Zp O by MO . If there is no fear of confusion, we sometimes write MO
simply by M by abuse of notation. Letω f ∈ �(X1(N ),→⊗k)O be the section corresponding
to f . We may also regard ω f as a section of �(X1(N ),→⊗(k−2) ⊗ �1

X1(N )(cusps))O by

the Kodaira–Spencer isomorphism. Let M f be the O[ϕ]-submodule in H1
dR(W,Lrig

k ,∇)O
generated by the image of ω f . (The action of ϕ on H1

dR(W,Lrig
k ,∇) ⊗Zp O is ϕ ⊗ 1.) Then

we have Pf (ϕ)ω f = 0 in M f . Hence O-module M f is at most of rank 2 and it is of rank 1
if and only if Oω f is closed by the action of ϕ. This happens only when the p-adic Galois
representation associated with f is ordinary and decomposable at all places over p. (cf. [13,
Proposition 4].) There are operators U , V on the space of p-adic modular forms compatible
with ∇ such that

U
(∑

bnq
n
)

=
∑

bnpq
n, V

(∑
bnq

n
)

=
∑

bnq
pn

on q-expansions. The moduli interpolation of U is that it associates a triple (A, ωA,Lv)
of ordinary elliptic curves to the cycle 1

p

∑
C (A/C, ωA/C ,Lv) where C runs through étale

subgroup of A of order p, ωA/C is the invariant differential form on A/C whose pull-back
to A is ωA and the level structure is the natural one. (Note p � N .) Similarly, V associates it
to the triple (A/ Â[p], pωA,

1
pLv). (cf. [2, p. 1085].) Note also that the Frobenius map Fr p

associates it to (A/ Â[p], pωA,Lv). Hence V and ϕ differ by the diamond operator 〈p〉.
Following [2], for p-adic modular form g, we let

g� := (UV − VU )g = (1 − VU )g.

(Note that [2] uses the right action for U and V .) Let ω f � be the section in �(W,→⊗k)

associated to f � for a wide open W of Yord. In this subsection, we consider (Coleman)
primitive functions of ω f and ω f � with respect to ∇. By general theory, primitives are
determined up to horizontal sections of ∇. We eliminate the ambiguity in the following
lemmas.

First, consider the primitive of ω f � . Since Pf (ϕ)ω f = 0 in the rigid cohomology

H1
dR(W,Lrig

n ,∇), there is a rigid analytic function Ff � (a section in �(W,Lrig
k−2)) such

that Pf (ϕ)ω f = P(0)∇Ff � . The following lemma shows that Ff � is a primitive of ω f � .

Lemma 6.1 (i) The q-expansion of f � is
∑

p�n an( f )q
n.

(ii) We have Pf (ϕ)ω f = P(0)ω f � as p-adic modular forms. In particular, F f � is a primitive
of ω f � .

Proof i) follows from the direct calculation of the action of U , V on the q-expansion. The
q-expansion of ω f is given ω f = f (q) dqq ω⊗k−2

can where ωcan is the canonical invariant
differential form of the Tate curve. On the q-expansion of f , the Frobenius acts as ε(p)V .
(cf. [20, §1.3, (1.3.2)]). Hence

Pf (ϕ)ω f = (ε(p)pk−1 − ap( f )ε(p)p
k−1V + ε(p)2 p2k−2V 2) f (q) · dq

q
ω⊗k−2
can

= ε(p)pk−1(1 − ap( f )V + ε(p)pk−1V ) f (q) · dq
q

ω⊗k−2
can = P(0)ω f � .

Lemma 6.2 There is a unique rigid analytic primitive F f � of ω f � such that U (Ff � ) = 0.

Proof Take a rigid analytic primitive and put g = VU (Ff � ). Then g is a horizontal section
of ∇. Then by replacing Ff � by Ff � − g, we have such a primitive. The space of horizontal
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sections is a finite-dimensional vector space, and U defines a linear transform on it having
the right inverse V . HenceU is invertible on it. Hence the conditionU (Ff � ) = 0 characterize
the primitive uniquely.

Actually, there is no algebraic horizontal section when k > 2 and the above lemma has a
meaning only when k = 2. However, such a characterization is important in general. In fact,
the same idea has already been used in [27].

From now on, we denote by Ff � the primitive in the above lemma.
LetOla

X be the sheaf of locally analytic functions onX with values in the fraction field ofO
and Ocol

X the subsheaf consisting of Coleman functions. We put Lcol
k−2 = Lk−2 ⊗OX1(N )

Ocol
X .

By the theory of Coleman integration, we have Ff ∈ Lcol
k−2 such that ∇Ff = ω f . Note that

Ff is determined uniquely up to a horizontal section of Lk−2.

Lemma 6.3 There is a unique Coleman primitive function F f of ω f such that Pf (ϕ)Ff =
Pf (0)Ff � .

Proof Since Pf (1) �= 0, Pf (ϕ) is invertible on the space of horizontal sections of Lk−2. The
assertion follows from Lemma 6.1 (ii).

We fix Ff as the primitive in the above lemma.

6.2 Expansion at the Heegner point

We use the same setting and notations in Sect. 5.9. We fix a �1(N )-level structure Lv :
Z/NZ ↪→ E . Since (N , p) = 1, it is canonically extended to the level structure on E and
E. Then the residue disc of X1(N ) at (E/k,Lv) is identified with the rigid analytic disc
associated with the formal group ME/k . Considering the formal completion of X1(N ) over

W at the closed point corresponding to the isomorphism class of (E/k,Lv), the completion
of the universal elliptic curve on X1(N ) is identified with E. Then we may regard ω f ∈
�(E,�1

E/R)⊗k
O and write ω f = f (E/R, ωE,Lv)ω

⊗k
E

where f (E/R, ωE,Lv) ∈ RO is the
value at (E/R, ωE,Lv) as the Katz modular form associated to f (with coefficients in O).
The operator VU associates a point in the residue disc at (E/k,Lv) to a cycle whose support
is in the same residue disc. By Proposition 5.11, its moduli interpolation coincides with that
of ϕ ◦ ψ . Hence we have VU = ϕ ◦ ψ on the residue disc. In particular,

f �(E/R, ωE,Lv) = ( f (E/R, ωE,Lv))
�.

Let ω∨
E
, ξ∨

E
be the dual basis of ωE, ξE. Then by the identification of the de Rham pairing,

we have ξ∨
E

= −ωE and ω∨
E

= ξE. Hence ∇(ξ∨
E
) = −ω∨

E
⊗ ωM̂ and ∇(ω∨

E
) = 0.

Proposition 6.4 Let F f � (E/R,Lv) ∈ Lk−2 be the formal expansion of F f � at (E,Lv). We
have

〈Ff � (E/R,Lv), (ω∨
E
)k−2− j (ξ∨

E
) j 〉E = (−1) j j !∂−1− j

M̂ f �(E/R, ωE,Lv) ∈ R
ψ=0
O .

Proof The proof is similar to [2, Proposition 3.24]. First, note that by acting VU = ϕ ◦ ψ ,
we have

〈Ff � (E/R,Lv), (ω∨
E
)k−2− j (ξ∨

E
) j 〉E ∈ R

ψ=0
O .

Since ∇(ω∨
E
) = 0, we have

∂M̂〈Ff � (E/R,Lv), (ω∨
E
)k−2〉E = 〈 f �(E/R,Lv), (ω∨

E
)k−2〉E = f �(E/R, ωE,Lv).
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Hence we show the equality in the assertion by operating ∂
j+1

M̂ . For j ≥ 1, we also have

∂M̂〈Ff � (E/R,Lv), (ω∨
E
)k−2− j (ξ∨

E
) j 〉E

= 〈∇Ff � (E/R,Lv), (ω∨
E
)k−2− j (ξ∨

E
) j 〉E + 〈Ff � (E/R,Lv),∇((ω∨

E
)k−2− j (ξ∨

E
) j )〉E

= − j〈Ff � (E/R,Lv), (ω∨
E
)k−2− j (ξ∨

E
) j−1〉E.

Hence the assertion follows by induction.

6.3 The construction of the logarithmic Coleman power series

As before, let f be a normalized cusp form for �0(N ) of weight k. Assume that p � N and
let α, β be roots of x2 − ap( f )x + pk−1 in the fixed algebraic closure Q and the embedding
into Cp . Let O be the integer ring of a finite extension of Qp in Cp including the Hecke field
of f and α. We take α as a unit root if p is ordinary, and any if p is non-ordinary.

The strategy for the construction of gi ∈ M f ⊗ Rψ=0 is that by choosing an appropriate
splitting N f of the Hodge filtration of M f , we construct a map M∨

f → Rψ=0 with the
identification

M f ⊗ Rψ=0 = Hom(M∨
f , Rψ=0).

We put

N f :=
{Oϕω f , if M f is of rank 2

{0}, otherwise,

and let I� : M f → �(W,Lrig
k−2)O be the map defined as the composition

M f −→ M f /N f ∼= O ω f −→ �(W,Lrig
k−2)O, ω f �−→ Ff � .

If M f is of rank 2, define an “integration" map I ∈ HomO(M f , �(W,Lcol
k−2)O) by

I(ω f ) = Ff , I(ϕω f ) = ϕFf .

If M f is of rank 1, define I by I(ω f ) = (1 − α−1ϕ)Ff .
Now we consider the α-stabilized version. We let ω fα = (1 − β−1ϕ)ω f . Then ϕω fα =

αω fα in M f . We put Nα := O[1/p]ω fα . Then we have M f [1/p]/Nα
∼= O[1/p]ω f . (Note

that if M f is of rank 1, we have ω fα = 0 since we choose α to be the unit root.) Then we

define I�
α : M f → �(W,Lrig

k−2)O by

M f −→ M f [1/p]/Nα
∼= O[1/p]ω f −→ �(W,Lrig

k−2)O, ω f �−→ Ff � .

Similarly, define Iα ∈ HomO(M f , �(W,Lcol
k−2)O) by

M f −→ M f [1/p]/Nα
∼= O[1/p]ω f −→ �(W,Lrig

k−2)O, ω f �−→ (1 − α−1ϕ)Ff .

Proposition 6.5 We have (1 − ϕ)I = I� and (1 − ϕ)Iα = I�
α .

Proof The relation (1 − ϕ)I = I� follows from Lemma 6.6 below. Since Iα(ϕω f ) =
βIα(ω f ) and ϕ−1ω f = (αβ)−1(ap( f ) − ϕ)ω f , we have

Iα(ϕ
−1ω f ) = β−1(1 − α−1ϕ)Ff .

Then by Lemma 6.3, we have

(1 − ϕ)Iα(ω f ) = Iα(ω f ) − ϕIα(ϕ
−1ω f ) = Pf (0)

−1Pf (ϕ)Ff = Ff � .
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Let R be a commutative ring with an automorphism σ . Let M, N be R-modules with
σ -semilinear endomorphism ϕ. We assume that ϕ : M → M is bijective and consider the
natural action of ϕ on HomR(M, N ) by ϕ( f )(m) = ϕ f (ϕ−1m). Let R[t]σ be the non-
commutative ring such that the underlying set is the polynomials over R with variable t and
the multiplication is twisted by the rule t ·a = σ(a) · t for a ∈ R. Suppose that M = R[ϕ]σω
and P(ϕ)ω = 0 for ω ∈ M and a monic polynomial P of degree h.

Lemma 6.6 Assume h ≥ 2 and let g : M → N be a morphism of R-modules such that
the kernel contains

∑h−1
i=1 Rϕiω. Suppose that there exists G ∈ HomR(M, N ) such that

(1 − ϕ)G = g. Then G satisfies P(ϕ)(G(ω)) = P(0)g(ω) and G(ϕiω) = ϕi G(ω) for
i = 1, . . . , h − 1. Conversely, if G satisfies these relations, G is a solution of (1− ϕ)G = g.

Proof For η ∈ M , the condition (1 − ϕ)G = g implies that

G(η) − ϕG(ϕ−1η) = g(η).

Since g(ϕiω) = 0 for i = 1, . . . , h − 1, we inductively have G(ϕiω) = ϕi G(ω) for such i .
We also have

G(ϕhω) − ϕhG(ω) = G(ϕhω) − ϕG(ϕh−1ω) = g(ϕhω).

Hence

P(ϕ)G(ω) = P(ϕ)G(ω) − G(P(ϕ)ω) = −g(ϕhω) = P(0)g(ω).

The converse is also clear.

We let DE = H1
dR(E/W ), which has the structure of a strongly divisible module. Since

E is the canonical lift, we have the decomposition DE = DE,p ⊕ DE,p∗ where DE,p is the
filtered ϕ-module associated to the formal group Ê (or the p-adic representation (TpE)∨, the
Zp-dual of TpE) and DE,p∗ is the filtered ϕ-module associated to the p-adic representation
(Tp∗ E)∨ = (TpE)∨. If there is no fear of confusion, we omit E in the notation of DE,p and
DE,p∗ . The module Dp is a W -module of rank 1 generated by an invariant differential form
and Fil1Dp = Dp, Fil2Dp = {0}. The module Dp∗ is a W -module of rank 1 generated by a
unit root vector of ϕ in DE and Fil0Dp = Dp, Fil1Dp = {0}. Then we let

LE,n := Symn DE =
n⊕

i=0

D⊗i
p ⊗W D⊗(n−i)

p∗ .

Now we define the formal completion of I�, I at (E/k,Lv). By the formal completion
at (E/k,Lv), we have the map �(W,Lrig

k−2) → Lk−2 ⊗ Qp . Then we extend the pairing
〈 , 〉E : Lk−2 × L

∨
k−2 → R to

�(W,Lrig
k−2) × L

∨
k−2 −→ R ⊗ Qp.

The lift sE in Proposition 5.1 naturally defines a lift L∨
E,k−2 → L

∨
k−2, which is also denoted

by sE. Then we have a map

I�
E : M f ⊗ L∨

E,k−2 −→ R
ψ=0
O , ξ ⊗ η �−→ 〈I�(ξ), sE(η)〉E.

(By Proposition 6.4, we do not need denominators here.) By definition, it satisfies that

I�
E (ω f ⊗ η∨

E ) = 〈Ff � (E/R,Lv), η∨
E
〉E, I�

E (ϕω f ⊗ η∨
E ) = 0 (6.3)
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where η∨
E
is the Frobenius compatible lift of η∨

E .
We let

Hh(R) :=
{ ∞∑

n=0

ant
n | an ∈ W [1/p], |an |pn−h → 0

}
(6.4)

where t is a generator ofW -modulem/m2 for the idealm ofR corresponding to the canonical
lift E . We put H∞(R) = ∪∞

h=1Hh(R).

Lemma 6.7 The formal completion of �(W,Lcol
k ) at (E/k,Lv) lies in Lk ⊗R H∞(R).

Proof After multiplying by a polynomial of ϕ, Coleman functions become rigid analytic
functions on the closed disc at (E/k,Lv). The formal completion of a rigid analytic function
on the closed disc has bounded denominators. In particular, it is an element ofH∞. Hence the
assertion follows from the general fact that for a given g ∈ H∞, a solution G of P(ϕ)G =
P(0)g where P is a monic polynomial with coefficients in W satisfying P(1) �= 0 lives in
H∞. This is shown by the same argument in the proof of Proposition (ii) of 2.2.1 of [33].
Note that we may change the equation P(ϕ)G = g into the form (1−ϕ)G = g as in [33] by
using Lemma 6.6. In fact, let N be aW [ϕ]σ -module containing g and M = W [ϕ]σ /(P(ϕ)).
(Write 1 ∈ M formally as ω.) Define g̃ : M → N by g̃(1) := g and g̃(ϕi ) := 0 for
i = 1, . . . , h−1. Then by Lemma 6.6, the equation P(ϕ)G = g is equivalent to the equation
(1 − ϕ)G̃ = g̃. See also Proposition 7.2 in the appendix.

Then by the formal completion, we define the map by

IE : M f ⊗ L∨
E,k−2 −→ H∞(R)O, ξ ⊗ η �−→ 〈I(ξ), sE(η)〉E.

Similarly, by using Iα and I�
α instead of I and I�, we define Iα,E and I�

α,E .

Proposition 6.8 We have (1 − ϕ)IE = I�
E and (1 − ϕ)Iα,E = I�

α,E .

Proof This follows from Proposition 6.5 and that sE is Frobenius compatible.

We apply the Perrin-Riou theory in our appendix for G = M̂ and use the same notations.
We identify Dp ⊗ D⊗−1

p∗ with DM̂ by the Kodaira–Spencer map as before. By definition,
we have

ωM̂ = ωE ⊗ ξ∨
E . (6.5)

Let V be V f (r) and put D := Dp(V ) (resp. DQp ) the filtered ϕ-module associated to
representation V of GW [1/p] (resp. GQp ) with coefficients in O. Let D f be the filtered ϕ-
module associated to f with coefficients in O. Note that D f = M f [1/p] if M f is of rank 2,
and M f is the quotient by the unit root space if M f is of rank 1. The module D∨

E,p ⊗ D∨
E,p∗

has a canonical basis ω∨
E ⊗ ξ∨

E , which is independent of the choice of ωE and we denote it
symbolically by ω∨ξ∨. We identify

D(Qp(1)) ∼= D∨
E,p ⊗ D∨

E,p∗

by ω∨ξ∨. Then we have canonically

D = D f (r) = D f ⊗Qp (D∨
E,p ⊗W D∨

E,p∗)⊗r .

We consider the twist associated with M̂:

D〈i〉 := D ⊗ D⊗−i
p ⊗ D⊗i

p∗ = D f ⊗ D⊗−r−i
p ⊗ D⊗−r+i

p∗ .
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A p-adic interpolation of generalized Heegner… 105

Now we construct the desired element gE,0 ∈ D ⊗ Rψ=0 and put

gE,i := di gE,0 ∈ D〈−i〉 ⊗ Rψ=0

such that the associated local points by the Perrin-Riou exponential map are twists of the
Abel–Jacobi image of generalized Heegner cycles. Here d is the canonical derivation

d : R −→ �̂1
R/W = DM̂ ⊗W R = R〈−1〉

and it induces an invertible map

d : D〈−i〉 ⊗ Rψ=0 −→ D〈−i − 1〉 ⊗ Rψ=0.

First we define gE,i for −r < i < r directly. We identify

D〈−i〉 ⊗W Rψ=0 = HomW⊗O(D∨〈i〉, R
ψ=0
O ).

If −r < i < r , we have

D∨〈i〉 = D(−1)〈i〉 = D f ⊗Qp (D∨
E,p)

⊗r−1+i ⊗ (D∨
E,p∗)⊗r−1−i ⊂ D f ⊗ L∨

E,k−2. (6.6)

There is a natural projection D f → M f ⊗ W [1/p]. In fact, D f = M f ⊗ W [1/p] if M f is
of rank 2, and M f is the quotient by the unit root space if M f is of rank 1. By composing it

with I�
E , and restricting it on D∨〈i〉, we have an element

I�
E,i ∈ D〈−i〉 ⊗ Rψ=0.

Similarly, we define I�
E,α,i ∈ D〈−i〉 ⊗ Rψ=0. Note that I�

E,i = α
α−β

I�
E,α,i + β

β−α
I�
E,β,i .

Then we have

I�
E,α,i ∈ Nα〈−i〉 ⊗ Rψ=0 = HomW⊗O(D/Nα〈i〉,Rψ=0

O ) (6.7)

where Nα = Dα ⊗Zp D⊗−r
E,p ⊗ D⊗−r

E,p∗ ⊂ D for the α-eigen space Dα .

Proposition 6.9 For an integer i such that −r < i < r − 1, we have

dI�
E,i = −(r − i − 1)I�

E,i+1, dI�
E,α,i = −(r − i − 1)I�

E,α,i+1.

Proof This follows from (6.3) and Proposition 6.4.

For −r < i < r , we put

gE,i := (−1)r−i−1

(r − i − 1)!I
�
E,i

and then we put

gE,i := di gE,0 ∈ D〈−i〉 ⊗ Rψ=0

for a general integer i . (The notation is consistent for −r < i < r − 1 by Proposition 6.9.)
Similarly, for i ∈ Z, we define

gE,α,i := (−1)r−i−1

(r − i − 1)!I
�
E,α,i ∈ Nα〈−i〉 ⊗ Rψ=0. (6.8)

Lemma 6.10 The operator 1 − ϕ is bijective on D〈−i〉.
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Proof Let n be a natural number such that ϕn is W [1/p]-linear. Then it suffices to show
that ϕn does not have an eigenvalue 1. Eigenvalues must be of the form α′(u/v)m where
α′ is an eigenvalue of ϕn on D, m is an integer, and u, v are the distinct roots of the p-
Euler factor of E/W . This is a product of Weil numbers, and the complex absolute value is
|α′(u/v)m | = |α′| �= 1.

By the above lemma, we have a solution GE,i ∈ D〈−i〉 ⊗ H∞(R) of (1 − ϕ)GE,i = gE,i .
(cf. Proposition 7.2 in the appendix.)

Now we consider the case E = Ac with (c, p) = 1 and gAc . By the Perrin-Riou expo-
nential map, for i > −r , we have a local point

c(i)r ,n(GAc ) = expV 〈i〉(ξ (i)
r ,n(GAc,−i )) ∈ H1

f (Ĥc(�n), V 〈i〉)
associated to gAc with the orientation ε. (cf. 5.6.) Here V 〈i〉 = V⊗TpM̂⊗i

Ac
. Since (c, p) = 1,

the projection πc : A → Ac induces an isomorphism TpM̂A
∼= TpM̂Ac

. We identify V 〈i〉
for Ac with that for A.

Theorem 6.11 (i) For an integer i such that −r < i < r , the local point c(i)r ,n(GAc ) is the

Abel–Jacobi image of the generalized Heegner cycle z(i+r)
cpn .

(ii) The local point c(i)r ,n(GAc,α) is

z(i+r)
cpn ,α = z(i+r)

cpn − pk−2α−1Resn/n−1z
(i+r)
cpn−1 .

In particular, C (i)
r ,n(GAc,α) = α−nz(i+r)

cpn ,α .

Proof (i) By definition and Proposition 6.8,

ξ (i)
r ,n(GAc,α) = p(r−1)n(1 ⊗ ϕ−n ⊗ 1)Iσ−n

Ac,−i (�n).

It suffices to show this after taking the Bloch–Kato logarithm. Let ωAc be an invariant
differential form on Ac and put ωA = π∗

c ωAc . Then (πc)∗ω∨
A = ω∨

Ac
. We put

ω∨
Ac,i := (ω∨

Ac
)⊗r−i−1(ξ∨

Ac
)⊗r+i−1 = (ω∨

Ac
ξ∨
Ac

)⊗r−1ω⊗i
M̂Ac

.

(cf. (6.5).) Then we have ω f (r − 1)⊗ω⊗i
M̂Ac

= ω f ⊗ω∨
Ac,i

, and this is an element in the

first de Rham filtration of D∨〈−i〉 ⊂ D f ⊗ L∨
E,k−2 (cf. (6.6)). Then it suffices to show

that the evaluation of

ξ (i)
r ,n(GAc,α) ∈ D〈i〉/Fil0D〈i〉

= HomW⊗O(Fil1D∨〈−i〉, W [1/p] ⊗ O)

= HomW⊗O((Fil1D f )(r − 1) ⊗ LM̂Ac
,i , W [1/p] ⊗ O)

at ω f (r − 1) ⊗ ω⊗i
M̂Ac

= ω f ⊗ ω∨
Ac,i

is the Abel–Jacobi image of the generalized

Heegner cycle. Let A′ be the deformation of A
σ−n

c associated to �n as in Sect. 5.7. Let
�n be such that ϕnωAc = �nωAσ−n

c
. Then we have ϕnξAc = pn�−1

n ξAσ−n
c

and hence

ϕnωM̂Ac
= �2n p

−nωM̂
Aσ

−n
c

. By Proposition 5.6, for the isomorphism ι : A′ → Acpn

and the projection π : Ac → Acpn , we have

ι∗ωA′ = �−1
n π∗ωAc , ι∗ξA′ = p−n�nπ∗ωAc .
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Then by Proposition 5.7 and Proposition 6.8, we have

p(r−1)n(1 ⊗ ϕ−n ⊗ 1)Iσ−n

Ac,−i (�n)

(
ω f (r − 1) ⊗ ω⊗i

M̂Ac

)

= p(r−1)nIAσ−n
c ,−i (�n)

(
ω f (r − 1) ⊗ ϕnω⊗i

M̂Ac

)

= p(r−i−1)n�2in IAσ−n
c ,−i (�n)

(
ω f (r − 1) ⊗ ω⊗i

M̂
Aσ

−n
c

)

= p(r−i−1)n�2in 〈Ff (A
′/Hcpn ,Lv), (ω

∨
A′)⊗r−i−1(ξ∨

A′)⊗r+i−1〉A′

= 〈Ff (Acpn/Hcpn ,Lv), π∗ω∨
Ac,i 〉Ac

= 〈π∗
cpn F f (Acpn/Hcpn ,Lv), ω

∨
A,i 〉A.

Hence the assertion follows from [2, Proposition 3.21].
(ii) follows from Iα(ω f ) = (1 − α−1ϕ)Ff and i). The last assertion follows from that the

difference between (7.2) and (7.3) is prnφ−1
n on Nα ⊂ Dp(V ).

Remark 6.12 By using results in Sects. 2 and 4, we can extend z(i+r)
cpn for an arbitrary integer

i > −r (even as a global cohomology class controlling denominators). On the other hand,
c(i)r ,n(GAc ) is also defined for i > −r by the Perrin-Riou theory. They coincidewith each other
since they do for −r < i < r by Theorem 6.11 and satisfy the same congruence relation by
Proposition 7.9 in the Appendix and the uniqueness of our twist theory.

7 Appendix: Perrin-Riou theory for a relative Lubin–Tate extension

We explain the Perrin-Riou theory for a relative Lubin–Tate extension following [33] and
[35].

7.1 Notations and setting

Let k be a finite field and W = W (k) the Witt vector with Frobenius σ . In this appendix,
let H be the fraction field of W and Cp the completion of the algebraic closure of H . Let
G = Spf RG be a relative Lubin–Tate formal group over W of height 1. Though RG is
isomorphic to the one-variable formal power series ring W �X�, we prefer a coordinate-free
description for our application to the local moduli. We sometimes write RG simply by R. For
an automorphism τ ∈ Gal(H/Qp), let Gτ be the base change of G by τ . Hence RGτ = R as
a ring but a ∈ W acts by τ−1(a). For simplicity, we denote RGτ by R(n) if τ = σ−n .

We denote the space of invariant differentials of G by DG , which is a W -module of rank
1, and put LG,i = D⊗i

G for i ≥ 0 and LG,i = (D∨
G )

⊗−i for i < 0. We let LG,i = LG,i ⊗W R.
Let H∞(G) = ∪hHh(G) be the Perrin-Riou ring associated to G where

Hh(G) :=
{ ∞∑

n=0

an X
n | an ∈ W [1/p], |an |pn−h → 0

}

and X is a coordinate of R. We also write H∞(G) simply by H∞ if there is no fear of
confusion. We put LG,i = LG,i ⊗W H∞(G). We also put LG = ∏

i∈Z
LG,i and LG =∏

i∈Z
LG,i .
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Let φ be the Frobenius map φ : G → Gσ . We denote by ϕ the σ -semilinear ring homo-
morphism ϕ : R → R associated to φ, and by ψ the σ−1-semilinear map R → R such that
ψ ◦ ϕ = 1 and

ϕ ◦ ψ(g) = p−1
∑

x∈G[φ]
t∗x g

where tx is the translation onG by x . Since the height ofG is 1, the space LG,1 is theDieudonné
module of the special fiber of G and hence the Frobenius act on it, which is denoted by ϕ.
Then the action of ϕ on LG,i = LG,i ⊗W H∞(G) are defined diagonally.

Let d be the formal derivation R → �̂1
R/W , g �→ dg. Since �̂1

R/W = R ⊗W LG,1, the
derivation d is extended to LG,i → LG,i+1, and its horizontal section is LG,i . The derivation
d is also compatible with ϕ. We denote by Ld=1

G the set of elements in LG fixed by d, and
similarly for L d=1

G . We fix an invariant differential form ωG of G, and let ∂ : R → R
be the differential operator such that d(g) = ∂(g)ωG . Let λG ∈ H∞(G) be the logarithm
associated with ωG . Let � be a uniformizer of W such that φ∗ωGσ = �ωG or in other
words, ϕωG = �ωG . In particular, ϕλG = �λG . Note that� depends on the choice of ωG .
By the compatibility of d and φ, we have �(ϕ ◦ ∂) = ∂ ◦ ϕ on R.

7.2 The p-adic period ofG

Let x be a point of G(OCp ), which corresponds to a continuous ring homomorphism R →
OCp over W . This morphism is uniquely extended to H∞(G) → Cp . For f ∈ H∞(G), we
write the image of f by this morphism by f (x). In particular, if x corresponds to the origin
of G, we denote it by f (0). Similarly, for a point x̃ ∈ G(Ainf ), we can define f (x̃) ∈ B+

cris.
Let θ : Ainf → OCp be the canonical map defined by Fontaine.

Lemma 7.1 For an element w = (wn) ∈ lim←−n
G(OCp ), there is a unique lift w̃ = (w̃n) ∈

lim←−n
G(Ainf ) of w with respect to θ : G(Ainf ) → G(OCp ). Here the transition map is the

multiplication [p]G of G. We have ϕ(w̃) = ϕ̃(w) = ϕ(X)|X=w̃ where ϕ on the left-hand side
is the Frobenius on Ainf and ϕ on the middle and right-hand side is that of G.

Proof Suppose that all w̃n are in Ker θ . Then w̃n ∈ ∩m[pm]G(Ker θ). Hence the uniqueness
follows from the fact that Ainf is separated with respect to the topology induced by the ideal
(p) + Ker θ . We fix n. For a natural number m, we take any lift w̃′

n+m of wn+m to Ainf by
θ . Then put w̃n := limk→∞[pm]Gw̃′

n+m . It is straightforward to check that it is well-defined
and has the desired property. (The last property follows from the uniqueness. Note also that
lim←−n

G(OCp ) = lim←−n
G(OCp/p) by the canonical projection.)

For a generator ε = (εn)n ∈ TpG, we take the lift ε̃ = (ε̃n)n ∈ lim←−n
G(Ainf ) in the above

lemma, and define the p-adic period of G by

tε = λG(ε̃0) ∈ B+
cris.

By Lemma 7.1, we have

ϕ(tε) = (ϕλG)(X)|X=ε̃0 = �λG(ε̃0) = � tε .

For a Galois representation V of GH , we let Dp(V ) = (Bcris ⊗Qp V )GH . Then we have

e := ε ⊗ t−1
ε ∈ (VpG ⊗Qp Bcris)

GH = Dp(VpG).
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The element e depends only on the choice of ωG . We denote e⊗k by ek . We also denote by
ϕ the Frobenius on Dp(VpG) coming from the Frobenius on Bcris and the identity on VpG.
Then ϕe = �−1e and the map

H1
dR(G/W ) = DG −→ Dp(VpG)⊗−1 = Dp(H

1
et (G)), ωG �−→ e⊗−1

is an isomorphism of filtered ϕ-modules. We sometimes identify ωG and e⊗−1. We put
V 〈k〉 = V ⊗Qp VpG⊗k . Suppose V is crystalline. Then the morphism

Dp(V 〈k〉) = Dp(V ) ⊗H Hek −→ Dp(V ) ⊗H Bcris, d ⊗ ek �−→ d ⊗ t−k
ε (7.1)

is an embedding of filtered ϕ-modules, and we regard

Dp(V 〈k〉) = Dp(V ) ⊗ LG,−k ⊂ Dp(V ) ⊗H Bcris.

7.3 Solution of (1−8)G = g

Let D be a finite-dimensional vector space over H with a semi-linear action of ϕ. Let � be
the action ϕ ⊗ ϕ on D ⊗W LG . The derivation d is extended on D ⊗W LG by 1⊗ d . Let M
beW -lattice of D and suppose that there exist a natural number h and a non-negative integer
c0 satisfying pnhϕnM ⊂ p−c0M for all n.

Proposition 7.2 Assume that 1−� is invertible on D⊗ LG . For g ∈ D⊗L d=1
G , there exists

a unique solution G ∈ D ⊗ L d=1
G of (1 − �)G = g.

Proof This is similarly proven in [35, §2].

Proposition 7.3 There exists an integer c such that

pn(h+i−1)(τ − 1)G−i (ε̃n) ∈ p−cM ⊗ Ld=1
G,−i ⊗ Acris

for all τ ∈ GH(εn), all i such that h + i − 1 ≥ 0 and a solution of (1 − �)G = g for
g ∈ Ld=1

G ⊗ M.

Proof This is similarly proven in [33, §2.2.1].

7.4 Evaluation at'-torsion points

As before, let ε = (εn) ∈ TpG be a generator. Let φn : G(n) → G be the pn-th Frobenius
map. We have a morphism of formal groups φ∨

n : G → G(n) such that φn ◦ φ∨
n = [pn]G . We

put �n = φ∨
n (εn) ∈ G(n)[pn]. The system (�n)n satisfies that φ(�n+1) = �n and �1 �= 0.

For an element G ∈ D ⊗ LG , we define the value

G(n)(�n) ∈ D(n) ⊗ LG(n) ⊗ H(�n)

as follows. Here, for aW -module M , we write by M (n) the abelian group M andW -structure
is twisted by σ n , that is a ∈ W acts by σ n(a) on M . As Zp-modules, we have D ⊗ LG =
D(n) ⊗ L

(n)
G = D(n) ⊗ LG(n) and identify G with G(n) ∈ D(n) ⊗ LG(n) . Then G(n)(�n) is

the image of G by the morphism

D(n) ⊗ LG(n) −→ D(n) ⊗ LG(n) ⊗ H(�n)
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induced by�n . Suppose thatϕ is bijective on D.We denote byφn themorphism D → D(n) of
W -modules induced by the semi-linear map ϕn on D. By considering the image of G(n)(�n)

by

φ−1
n ⊗ φ−1

n : D(n) ⊗ LG(n) −→ D ⊗ LG,

we have (φ−1
n ⊗ φ−1

n ⊗ 1)G(n)(�n) ∈ D ⊗ LG ⊗ H(�n).
Suppose that D is defined over Qp , that is, there is a filtered ϕ-module DQp over Qp and

D = H ⊗Qp DQp . Then we have a map

1 ⊗ φ−1
n : D(n) ⊗ LG(n) = DQp ⊗Qp LG(n) −→ DQp ⊗Qp LG = D ⊗H LG .

Hence we have

(1 ⊗ φ−1
n ⊗ 1)G(n)(�n) ∈ D ⊗ LG ⊗ H(�n).

7.5 Norm compatible family of local points

Let V be a crystalline representation of GH . Let h be a natural number such that
Fil−h Dp(V ) = Dp(V ). For simplicity, we assume that 1 − � is invertible on D ⊗ LG .
According to [35, 3.2.1], for an element G = (G j ) j ∈ Dp(V )⊗L d=1

G and an integer i such
that h + i − 1 ≥ 0, we put

$
(i)
h,n(G) = (−1)h+i−1(h + i − 1)!p−n(φ−1

n ⊗ φ−1
n ⊗ 1)G(n)

−i (�n) ∈ Dp(V 〈i〉) ⊗ H(�n).

(7.2)
(Note that in [35],$(i)

h,n(G) is denoted by$
(h)
n,i (G). We change it because of the compatibility

with the notation in Sect. 2.) Then we consider the image of the Bloch–Kato exponential
map

C (i)
h,n(G) = expV 〈i〉($

(i)
h,n(G)) ∈ H1

f (H(�n), V 〈i〉).

Sometimes, we omit the index h or G from C (i)
h,n(G) for simplicity.

Proposition 7.4 Suppose that G is a solution of (1−ϕ)G = g for g ∈ Dp(V )⊗ (Ld=1
G )ψ=0.

For i ≥ 1 − h, the system (C (i)
h,n(G))n is norm compatible for n ≥ 1, that is,

Corn+1/nC
(i)
h,n+1(G) = C (i)

h,n(G).

Proof We write that g = (gi )i with gi ∈ Dp(V ) ⊗ LG,i ⊗ Rψ=0
G and G = (Gi )i with

Gi ∈ Dp(V )⊗ LG,i ⊗H∞(G). Then applying 1⊗ 1⊗ (ϕ ◦ψ) to (1−�)Gi = gi , we have

(1 ⊗ 1 ⊗ ϕ ◦ ψ)Gi = (ϕ ⊗ ϕ ⊗ ϕ)Gi .

Hence we have

Trn+1/n(φ
−1
n+1 ⊗ φ−1

n+1 ⊗ 1)G(n+1)
i (�n+1)

= p(φ−1
n+1 ⊗ φ−1

n+1 ⊗ 1)[(1 ⊗ 1 ⊗ ϕ ◦ ψ)G(n+1)
i ](�n+1)

= p[(φ−1
n+1 ⊗ φ−1

n+1 ⊗ 1)(ϕ ⊗ ϕ ⊗ ϕ)Gσ−n−1

i ](�n+1) = p(φ−1
n ⊗ φ−1

n ⊗ 1)G(n)
i (�n).

The assertion follows from this.
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7.6 Integral family of local points

In this subsection, we assume that V is a crystalline representation of GQp and denote

the associated filtered ϕ-module by Dp(V )Qp = (V ⊗Qp Bcris)
GQp , and put Dp(V ) =

Dp(V )Qp ⊗Qp H . Then for an element G = (Gi )i ∈ Dp(V )⊗L d=1
G , and an integer i such

that h + i − 1 ≥ 0, we put

ξ
(i)
h,n(G) = (−1)h+i−1(h + i − 1)!p(h−1)n(1 ⊗ φ−1

n ⊗ 1)G(n)
−i (�n)

∈ Dp(V )Qp ⊗Qp LG,−i ⊗ H(�n) = Dp(V 〈i〉) ⊗ H(�n). (7.3)

We consider the image of the Bloch–Kato exponential map

c(i)h,n(G) = expV 〈i〉(ξ
(i)
h,n(G)) ∈ H1

f (H(�n), V 〈i〉).
Sometimes, we omit the index h or G from c(i)h,n(G) if there is no fear of confusion.

To show the integral property of c(i)h,n(G), we recall an explicit cocycle representation of it.
The Bloch–Kato exponential map is the connecting map of the fundamental exact sequence

0 V 〈i〉 (V 〈i〉 ⊗ Bcris) ⊕ (V 〈i〉 ⊗ B+
dR) (V 〈i〉 ⊗ Bcris) ⊕ (V 〈i〉 ⊗ BdR) 0

where the second map is diagonal and the third map is given by (x, y) �→ ((1−ϕ)x, x − y).
First, take a lift z̃ ∈ Dp(V 〈i〉) ⊗ Bcris of

z ∈ Dp(V 〈i〉) ⊗ H(�n) ⊂ V 〈i〉 ⊗ BdR

such that z̃ − z ∈ Fil0(Dp(V 〈i〉) ⊗ BdR). Since

1 − ϕ : Fil0(Dp(V 〈i〉) ⊗ Bcris) −→ Dp(V 〈i〉) ⊗ Bcris

is bijective, we find z̃0 ∈ Fil0(Dp(V 〈i〉) ⊗ Bcris) such that (1 − ϕ)z̃ = (1 − ϕ)z̃0. Then the
cocycle is given by

τ ∈ GH(�n) −→ (τ − 1)(z̃ − z̃0) ∈ Fil0(Dp(V 〈i〉) ⊗ Bcris)
ϕ=1 = V 〈i〉. (7.4)

(Note that since (τ −1)z = 0, we have (τ −1)z̃ = (τ −1)(z̃− z) ∈ Fil0(Dp(V 〈i〉)⊗ BdR).)
Now we investigate the integral properties of the local points. Let M be a W -lattice of

Dp(V ) and let T be the Galois stable lattice

T = Fil0(M ⊗ t−b Acris)
ϕ=1 ⊂ Dp(V ) ⊗ t−b Acris.

of V where b is a natural number such that FilbDp(V ) = 0 and t is “2π i" in BdR. Then we
also have

T 〈i〉 = Fil0(M ⊗ LG,−i ⊗ t−b Acris)
ϕ=1.

Note that by the identification (7.1) as filtered ϕ-modules,

T 〈i〉 = Fil0(M ⊗ LG,−i ⊗ t−b Acris)
ϕ=1

= Fil0(M ⊗ t−b+i Acris)
ϕ=1 ⊂ Dp(V ) ⊗ t−b+i Acris.

Then we have T 〈i〉 = T ⊗ Zpt iε in Dp(V ) ⊗ Bcris.
The key of the Perrin-Riou theory is an explicit construction of the lift z̃. For simplicity,

we fix a (non-canonical) isomorphism R ∼= W �X� and an invariant differential ωG such
that ωG/dX |X=0 = 1. We regard the logarithm λG as a convergent power series in H�X�
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and expG the formal power series in H�X� such that expG ◦λG(X) = X . For an integer

m, we put ε(m)
n = ψm(εn) ∈ G(m)[pn] and ε(m) = (ε

(m)
n )n ∈ TpG(m). We take the lift

(ε̃
(m)
n )n ∈ lim←−n

G(m)(Ainf ) by Lemma 7.1 and consider the p-adic period tε(n) = λG(n) (ε̃
(n)
0 ).

Note that if ϕnωG(n) = �(n)ωG , then we have pntε = �(n)tε(n) . The following is the key
formula that describes an explicit lift of �n in BdR.

Lemma 7.5 In BdR , we have

�n = ε̃(n)n ⊕G(n) expG(n)

(
− tε(n)

pn

)
.

Proof The right hand side is an element of G(n)[pn], and its projection to Cp is �n . The
assertion follows from these.

For simplicity, we put tn := − t
ε(n)

pn . We let

G̃(Z) := G(n)(ε̃(n)n ⊕G(n) expG(n) Z) ∈ Dp(V )(n) ⊗W LG(n) ⊗W Ainf 〈〈Z〉〉.
where Ainf 〈〈Z〉〉 = {∑∞

n=0 an
Zn

n! |an ∈ Ainf }. Suppose that G̃(Z) = (G̃i (Z))i where

G̃i (Z) ∈ Dp(V )(n) ⊗W LG(n),i ⊗W Ainf 〈〈Z〉〉.
Let P(Z) be a polynomial in Dp(V )(n)⊗LG(n) ⊗Ainf [Z ] such that the i-th component Pi (Z)
is the polynomial part of the power series G̃i (Z) of degree ≤ h − 1 − i . (If h − 1 − i < 0,
we put Pi (Z) = 0.) We denote P(Z) by P(G)(Z) if we emphasize the dependence of G.
Since Fili LG(n),i = LG(n),i and Fil

−h Dp(V ) = Dp(V ), we have

G(n)(�n) − P(tn) = G̃(tn) − P(tn) (7.5)

∈
∏

i∈Z

LG(n),i ⊗ Dp(V )(n) ⊗ Filh−i BdR ⊂ Fil0
(
Dp(V )(n) ⊗ LG(n) ⊗ BdR

)
.

Lemma 7.6 Suppose that i ≥ 1 − h. We have

P−i (G)(Z) =
h+i−1∑

k=0

(−1)k
∂kG(n)

−i (ε̃
(n)
n )

k! Zk

where ∂ = λ′
G(X)−1 d

dX . (Note that G
(n)
−i ∈ Dp(V 〈i〉)(n)⊗H∞(G) ⊂ Dp(V 〈i〉)(n)⊗H�Z�.)

Proof Put Z = λG(X). Then d
dZ = ∂ . Since λ′

G(X)dX is an invariant differential, we have

∂k(G(n)(ε̃(n)n ⊕G(n) X)) = (∂kG(n))(ε̃(n)n ⊕G(n) X).

The assertion follows from this.

Proposition 7.7 Assume that 1 − � is invertible on D ⊗ LG . Suppose that g ∈ M ⊗ Ld=1
G

and let G be the solution of (1 − ϕ)G = g. Then there is an integer c independent of g and
n such that

(h + i − 1)!p(h+i−1)n(τ − 1)P−i (tn) ∈ p−cM ⊗ LG,−i ⊗ Acris

for i ≥ 1 − h and any τ ∈ GH(�n).
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Proof For a non-negative integer k, we have

∂kG(n)
−i · ω⊗k

G = dkG(n)
−i = G(n)

k−i .

Hence by Proposition 7.3, we have a constant c such that

p(h+i−k−1)n(τ − 1)∂kG(n)
−i (ε̃

(n)
n ) ∈ p−cM (n) ⊗ LG(n),−i ⊗ Acris.

The assertion follows from these and Lemma 7.6.

Theorem 7.8 Suppose that V is a crystalline representation of GQp . With the same notations
and assumptions as Proposition 7.7, there exists an integer c such that

pc c(i)n (G) ∈ H1(H(�n), T 〈i〉)
for all natural number n and all integers i such that i ≥ 1 − h.

Proof By (7.5), as a lift z̃ of z = ξ
(i)
h,n(G) in (7.4), we may take

(−1)h+i−1(h + i − 1)!p(h−1)n(1 ⊗ φ−1
n ⊗ 1)P−i (G)(tn) ∈ Dp(V )Qp ⊗Qp LG,−i ⊗ Bcris.

Note that piϕ is invertible on LG,−i . Then by Proposition 7.7, we have that

(h + i − 1)!p(h−1)n(τ − 1)(1⊗φ−1
n ⊗ 1)P−i (G)(tn) ∈ p−cMQp ⊗Qp LG,−i ⊗ Acris. (7.6)

This gives the desired estimate for (τ − 1)z̃. For the estimate of z̃0, first, note that

(1 − ϕ)P−i (G)(tn) = P−i (g)(tn) ∈ Dp(V )(n) ⊗ LG(n),−i ⊗ Acris. (7.7)

(Here, ϕ is the σ -semi-linear Frobenius, which acts diagonally on Dp(V )(n) ⊗ LG(n),−i ⊗
Acris.) In fact, we have

(∂kG(n)
−i )(ε̃

(n)
n ) · tk

ε(n)
= (dkG(n)

−i )(ε̃
(n)
n ) · ω⊗−k

G(n) · tk
ε(n)

= G(n)
k−i (ε̃

(n)
n )(ω⊗−1

G(n) · tε(n) )k .

Then ω⊗−1
G(n) · tε(n) is fixed by ϕ, and by Lemma 7.1, we have

(1 − ϕ)G(n)
k−i (ε̃

(n)
n ) = (1 − ϕ)G(n)

k−i (X)|
X=ε̃

(n)
n

= g(n)
k−i (ε̃

(n)
n ).

(The Frobenius ϕ of Acris in the left-hand side is replaced by ϕ on R = W �X� of G in the
middle one.) Hence (7.7) follows from Lemma 7.6. Then we have

(1 − ϕ)z̃ = (−1)h+i−1(h + i − 1)!p(h−1)n(1 ⊗ φ−1
n ⊗ 1)P−i (g)(tn)

= (−1)h+i−1(h + i − 1)!
(
1 ⊗ (p−inφ−1

n ) ⊗ 1
) (

p(h+i−1)n P−i (g)(tn)
)

∈ pcM ⊗ LG,−i ⊗ Acris.

Then we have the desired estimate for z̃0 such that (1 − ϕ)z̃ = (1 − ϕ)z̃0 by using the fact
that there exists an integer s such that the image of

1 − ϕ : Fil0(M ⊗ LG,−i ⊗ t−b Acris) −→ Dp(V 〈i〉) ⊗ Bcris

contains psM ⊗ LG,−i ⊗ t−b Acris for all i . (cf. [33, Lemme 2.3.4].)
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Proposition 7.9 Suppose that G is a solution of (1−ϕ)G = g for g ∈ Dp(V )⊗ (Ld=1
G )ψ=0.

Then there is a constant c such that

p−ni+c
i∑

j=0

(−1) j
(
i

j

)
d( j+1−h)
n ∈ H1(H∞, T ) (7.8)

for all n, i ≥ 0. Here d( j)
n is the image of c( j)h,n(G) by the restriction on H∞ twisted by ε⊗− j .

Proof Weuse the cocycle representation for z j = ξ
( j+1−h)
h,n (G) in the proof of Theorem7.8. If

τ ∈ GH∞ , then (τ−1)z̃ j = 0 since the formula (7.6) is identically equal to zero.We calculate
the part coming from (1 − ϕ)z̃ j . Suppose that ϕnωG(n) = �(n)ωG . Then pntε = �(n)tε(n) .
We have

i∑

j=0

(
i

j

)
j ![(1 ⊗ φ−1

n ⊗ 1)Ph−1− j (g)(tn)] ⊗ ω
⊗h+1− j
G th−1− j

ε

=
i∑

j=0

(
i

j

)
(i − j)![(1 ⊗ φ−1

n ⊗ 1)Ph−1−i+ j (g)(tn)] ⊗ ω
⊗i− j+1−h
G th−1−i+ j

ε

= i ![(1 ⊗ φ−1
n ⊗ 1)

i∑

j=0

(−1) j∂ j Ph−1−i (g)(tn)
t jn
j ! ] ⊗ ω⊗i+1−h

G th−1−i
ε

= i ![(1 ⊗ φ−1
n ⊗ 1)Ph−1−i (g)(0)] ⊗ ω⊗i+1−h

G th−1−i
ε .

In the final equation above, we use the Taylor expansion and the fact that the degree of Ph−1−i

is i . We have Ph−1−i (g)(0) = g(n)
h−1−i (ε̃

(n)
n ) ∈ Ainf (cf. Lemma 7.6), and

p−ni
i∑

j=0

(−1) j
(
i

j

)
(1 − ϕ)z̃ j = (1 ⊗ pn(h−1−i)φ−1

n ⊗ 1)Ph−1−i (g)(0)

is bounded. Hence the assertion follows.
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