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Abstract
The group Ham(M, ω) of all Hamiltonian diffeomorphisms of a symplecticmanifold (M, ω)

plays a central role in symplectic geometry. This group is endowed with the Hofer metric.
In this paper we study two aspects of the geometry of Ham(M, ω), in the case where M
is a closed surface of genus 2 or 3. First, we prove that there exist diffeomorphisms in
Ham(M, ω) arbitrarily far from being a k-th power, with respect to the metric, for any
k ≥ 2. This part generalizes previous work by Polterovich and Shelukhin. Second, we show
that the free group on two generators embeds into the asymptotic cone of Ham(M, ω). This
part extends previous work by Alvarez-Gavela et al. Both extensions are based on two results
from geometric group theory regarding incompressibility of surface embeddings.

Résumé
Le groupe Ham(M, ω) de tous les difféomorphismes hamiltoniens d’une variété symplec-
tique (M, ω) joue un rôle central en géométrie symplectique. Ce groupe est muni par
la métrique de Hofer. Dans cet article, nous étudions deux aspects de la géométrie de
Ham(M, ω), dans le cas où M est une surface fermée de genre 2 ou 3. Premièrement, nous
démontrons qu’il existe des difféomorphismes dans Ham(M, ω) arbitrairement loin d’être
une puissance k, par rapport à la métrique, pour tout k ≥ 2. Cette partie généralise les travaux
précédents de Polterovich et de Shelukhin. Deuxièmement, nousmontrons que le groupe libre
à deux générateurs admet un plongement dans le cône asymptotique de Ham(M, ω). Cette
partie étend les travaux précédents d’Alvarez-Gavela et al. Les deux extensions sont basées
sur deux résultats de la théorie géométrique des groupes concernant l’incompressibilité des
plongements de surfaces.
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114 A. Chor

1 Introduction andmain results

1.1 Introduction

Recall that a symplecticmanifold is a smooth even-dimensional manifoldM , equippedwith a
closed non-degenerate differential 2-form ω. Symplectic manifolds serve as models of phase
spaces of classical mechanics. The group of all automorphisms of a symplectic manifold, i.e.
maps M → M which preserve ω, contains a subgroup of all physically possible mechanical
motions. This is the group of Hamiltonian diffeomorphisms, denoted Ham(M, ω), which
plays a central role in symplectic topology and Hamiltonian dynamics.

In 1990 H. Hofer introduced a remarkable bi-invariant Finsler metric on Ham (see [6]).
Studying coarse geometry of the metric space Ham is an important problem of modern
symplectic topology and is still far from well-understood. This paper takes a step in this
direction.

Let us briefly outline our main results. Denote by Powersk ⊂ Ham the set of elements
admitting a root of degree k. It has been shown in [11] that for surfaces of genus ≥ 4 the
complement Ham \ Powersk contains an arbitrarily large ball, with respect to the metric
introduced by Hofer. We extend this result to surfaces of genus 2 and 3.

Further, according to [2], any asymptotic cone (in the sense of Gromov, see [5]) of a
group with a bi-invariant metric has a natural group structure. It has been shown in [1] that
for a surface M of genus ≥ 4, any such cone of Ham(M, ω) contains a free group with 2
generators. We extend this result to surfaces of genus 2 and 3.

The proofs of the above-mentioned results on surfaces of genus ≥ 4 involve Floer homol-
ogy of non-contractible closed orbits on the surface and are proved by considering special
elements of Ham, the so-called eggbeater maps (see [4, 11]), which originate in chaotic
dynamics. An algebraic analysis of non-contractible closed orbits of these maps plays an
important role in the proof. This is exactly the place where we had to modify the original
arguments, in order to extend the results to the cases of genera 2 and 3. Our main innovations
are two algebraic results about homomorphisms from a free group into a surface group (see
Lemma 1.3 and Claim 4.1 below).

1.2 Preliminaries

Recall that Hofer’s metric on Ham(M, ω) is defined as

dH ( f , g) = inf
H

∫ 1

0

(
max
M

Ht − min
M

Ht

)
dt,

for f , g ∈ Ham(M, ω), where the infimum is taken over all smooth H : S1 × M → R

that generate f −1g and where Ht = H(t, ·). This is a bi-invariant metric on Ham(M) and
the fact that it is a genuine metric, as opposed to a pseudo-metric, is non-trivial (see [6, 7]).
Hofer’s norm of a diffeomorphism is its Hofer distance to the identity and is denoted

|| · ||H = dH (id, ·).
The focus of this paper is the metric space (Ham(M), dH ). The question whether for

every symplectic manifold Ham(M) has infinite diameter with respect to Hofer’s metric is
an important open problem in this field; it is conjectured (see discussion in 14.2 of [9]) that the
answer to this question is positive for every closed symplectic manifold M . The conjecture
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Eggbeater dynamics on... 115

has been partially confirmed (see [9, 10, 13]).

Rather than asking about the diameter of the group Ham(M), one can ask about the
supremum of distances dH ( f , X) for some subset of interest X ⊂ Ham(M). A natural
set X to ask this question for is Aut(M, ω), the set of autonomous (i.e. "time-independent")
Hamiltonian diffeomorphisms, and another interesting family of sets are the sets Powersk =
{ψk |ψ ∈ Ham(M, ω)} of Hamiltonian diffeomorphisms which admit kth roots, for k ≥ 2
an integer. The quantities queried are the following:

aut(M, ω) = sup
φ∈Ham(M,ω)

dH (φ, Aut(M, ω)),

powersk(M, ω) = sup
φ∈Ham(M,ω)

dH (φ, Powersk(M, ω)).

Note that for a symplectic manifold M , showing that aut(M) = ∞ or that for any k ≥ 2,
powersk(M) = ∞ would answer the Hamiltonian diameter question for M .

L. Polterovich and E. Shelukhin conjectured in [11] that aut(M) = ∞ for all closed sym-
plectic manifolds and made a first step in that direction: they show that symplectic surfaces
M of genus ≥ 4 have powersk(M) = ∞ for all k ≥ 2. One of the results in this paper states
this is also true for symplectic surfaces of genera 2, 3 (see Theorem 1.1 below).

Our second result concerns the coarse structure of the metric space (Ham(M), dH ). To
state it we need the notions of the asymptotic cone of a metric space, which is an important
notion in coarse geometry, and of ultrafilters and ultralimits (see [5]). A filter on a partially
ordered set (P,≤) is a non-empty proper subset F ⊂ P that is upward closed and downward
directed, i.e. if x ∈ F, y ∈ P, x ≤ y then y ∈ F and also ∀x, y ∈ F ∃z ∈ F such that
z ≤ x, y. A non-principal ultrafilter on (P,≤) is a filter F on (P,≤) such that there is no
filter F ′ on P with F ⊂ F ′ ⊂ P and such that F is not of the form {x ∈ P|y ≤ x} for any
y ∈ P . Given a metric space (X , d), an ultrafilter U on the power set of the natural numbers
2N (equipped with the inclusion order) and a sequence of points (xn) in X , a point x ∈ X
is the U-ultralimit of (xn), denoted limU xn , if for any ε > 0, {n|d(xn, x) ≤ ε} ∈ U . The
ultralimit does not necessarily exist, but can be shown to exist if (xn) is bounded.

Let (X , d) be ametric space, fixU a non-principal ultrafilter on 2N, and fix some basepoint
x0 ∈ X . The asymptotic cone of (X , d) is a metric space ConeU (X , d) whose underlying set
is {

(xk)k∈N ∈ XN
∣∣∃C > 0 s.t . ∀k : d(xk, x0)

k
< C

}/
∼,

where (xk) ∼ (yk) if limU d(xk ,yk )
k = 0, and whose metric is

dU ([(xk)], [(yk)]) = lim
U

d(xk, yk)

k
.

Assume additionally that X is a group and that d is a bi-invariant metric. Then
ConeU (X , d) is also a group, with multiplication

[(xk)] · [(yk)] = [(xk · yk)].
Since d is bi-invariant, this multiplication is well defined and dU is also bi-invariant.

Elements of the asymptotic cone represent directions (or rather, velocities) in which one
can go to infinity in the base space X . For example, boundedmetric spaces all have asymptotic
cones which are single points, and on the other hand, the asymptotic cone of the hyperbolic
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116 A. Chor

plane is a tree with uncountably many branches at each point. The asymptotic cone is an
invariant of the coarse structure, or the large-scale properties of a metric space, in the sense
that quasi-isometric spaces have the same asymptotic cones (see [12] for more on coarse
structure, asymptotic cones, and quasi-isometry).

The focus of this paper is the geometry of Ham(M) for (M, ω) a symplectic manifold,
therefore we consider ConeU (Ham(M), dH ) for a non-principal ultrafilter U on 2N. In [1],
D. Alvarez-Gavela et al. show that given a symplectic surface M of genus ≥ 4, there exists
a monomorphism F2 ↪→ ConeU (Ham(M)), where F2 is the free group on two generators,
and therefore ConeU (Ham(M)) has a subgroup isomorphic to F2. The second result in this
paper states this is also true for symplectic surfaces of genera 2,3 (see Theorem 1.2 below).

We turn now to our main results.

1.3 Results

The following results are generalizations of previous theorems appearing in [1, 11]: specif-
ically, Theorem 1.1 is a generalization of Theorem 1.3 in [11] and Theorem 1.2 is a
generalization of Theorem 1.1 in [1]. The original theorems are the same as stated here,
except for their assumptions on the surface�: while the original theorems hold for all closed
symplectic surfaces � of genus ≥ 4, the theorems presented here hold for closed symplectic
surfaces of genera 2 and 3.

Theorem 1.1 Let� be a closed oriented surface of genus 2 or 3, equipped with an area form
σ , and k ≥ 2 an integer. Then powersk(�, σ ) = ∞.

Theorem 1.2 Let � be a closed oriented surface of genus 2 or 3, equipped with an area
form σ . Then for any non-principal ultrafilter U on 2N, there exists a monomorphism F2 ↪→
ConeU (Ham(�), dH ).

We remark that since aut(M) ≥ powersk(M), Theorem 1.1 implies that aut(�, σ ) = ∞
for any closed oriented surface � of genus 2 or 3 with an area form σ . We remark further
that the above results survive stabilization by a closed aspherical symplectic manifold. That
is, if (M, ω) is a symplectic manifold with π2(M) = 0 and � is as above, then the results
also hold for the symplectic manifold (� × M, σ ⊕ ω). This is shown in the same way as in
[1, 11].

In the proofs of our results we closely follow [1, 11]. Specifically, we use the same
construction called eggbeater maps (see [4, 11]). We will outline the proofs of the original
theorems and give an in-depth explanation of the changed parts in Sect. 3. An alternative
proof of the theorems in genus 3 is presented in Sect. 4.

1.4 Outline of the proofs for genera 2,3

In this subsection we present a short outline of the proofs of the theorems. The full details of
the proofs are given in Sect. 3.

Denote byC = CV
⋃

CH the union of two identical annuli (see Fig. 1) and byC∗ a single
such annulus. Let f : C∗ → C∗ be a piecewise-linear shear map along the axis of C∗, whose
profile consists of two straight lines (see Fig. 2). Applying the map f on CV and CH , one
gets two shear maps fV , fH : C → C with support in CV ,CH respectively. Composing the
maps fV , fH and their inverses several times in some specific order yields a map C → C
called an egg-beater map. Figure 3 depicts the profile of such an egg-beater map fV ◦ fH in
the neighborhood of one of the intersections of CV and CH .
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Eggbeater dynamics on... 117

CV CH

Fig. 1 The manifold C used in the proof

Fig. 2 The profile of the map f : C∗ → C∗

The proofs of both results, Theorem 1.1 and Theorem 1.2, are based on counting the
fixed points of the egg-beater map in C whose orbits belong to some suitably selected free
homotopy classes αk ∈ π0(LC), whereL X is the free loop space of a space X , and studying
the Floer homology of these orbits. Using this tool, it can be shown that if there are not too
many such fixed points and some condition on the actions of their orbits holds, then the
theorems themselves hold. This is all done in [1, 11].

However, in order to get results on a closedoriented surface�g of genus g, this construction
must be embedded in �g , using an embedding denoted i : C ↪→ �g , and a similar analysis
done there. In this step, one might encounter a new problem: consider τi : π0(LC) →
π0(L�g), the mapping induced by i . The mapping τi might not be injective. In this case,
the previous analysis done on C will no longer hold and one must then re-count fixed points
in �g , since the number of fixed points of the egg-beater map on �g in class α ∈ π0(L�g)

is the number of fixed points of the egg-beater map on C in all the classes τ−1
i (α), which

might be too much for these methods to work.
Originally, in genus g ≥ 4, this problem did not arise, since if g ≥ 4 one can find an

embedding i such that τi is injective. In fact, one can also find an embedding i3 into �3 with
τi3 injective; this approach is shown in Sect. 4. It is likely that there also exists an embedding
i2 into �2 with an injective τi2 . However, this isn’t proven in this paper.
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118 A. Chor

CH

CV

1

2

Fig. 3 The neighborhood of an intersection of CV and CH , with the profile of fV ◦ fH pictured. The map
fV ◦ fH is a shear along CH (1) and then a shear along CV (2)

The results for genera 2 and 3 are proven in Sect. 3 by placing bounds on the non-
injectivity of τi , using a wisely chosen i and an algebraic lemma. More precisely, note that
injectivity of τi can be translated to a claim on images of conjugacy classes ofπ1(C) under the
homomorphism i∗ : π1(C) → π1(�2) induced by i . One may choose i such that the induced
homomorphism i∗ : F3 = 〈a, b, c〉 → 〈g1, g2, g3, g4|[g1, g2][g3, g4]〉 is the following:

a �→ g1g3,

b �→ g2g
−1
1 g−1

2 g3,

c �→ g3.

The main novel ingredient of the results of this paper is the following lemma:

Lemma 1.3 Let p ∈ Z≥1. For all 1 ≤ j ≤ p, let k j , l j ∈ Z, u j , v j ∈ {0, 1}, 0 �= m j , n j ∈ Z.
Consider the homomorphism i∗ : F3 → π1(�2) given above. Let δ =  j ak j c−u j bl j cv j ∈ F3
and β =  j am j bn j ∈ F3.

If i∗δ, i∗β are conjugates (in π1(�2)), then so are δ, β (in F3).

This lemma gives bounds on the non-injectivity of τi : different conjugacy classes having
a specific form cannot have the same image under τi . One may show that all orbits of the egg-
beater map have free homotopy classes of this specific form (see Claim 3.13). This allows us
to count fixed points of the egg-beater map in �g whose orbits are in specific free homotopy
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Eggbeater dynamics on... 119

classes αk by counting the corresponding fixed points in C whose orbits are in τ−1
i (αk). This

calculation was carried out in [1, 11] and shows that there are not too many such fixed points
and that the condition on their actions mentioned above holds. Therefore, using the Floer
homology tool, one can prove Theorem 1.1 and Theorem 1.2.

A different approach is shown in Sect. 4. Instead of bounding the non-injectivity of τi , a
different embedding i3 into a surface of genus 3 is defined. The embedding i3 has a restriction
i3 �C that can be shown to induce an injective τi3�C (see Claim 4.1). With this injectivity
in hand, the above discussion yields the desired result on the number of fixed points of the
egg-beater map.

Section 2 contains the proof of Lemma 1.3 and a related result. The proofs of the theorems
for genera 2 and 3, using the lemma, can be found in Sect. 3. Proofs of the theorems for genus
3, using injectivity of the induced map τi3 of the suitably-defined embedding i3, are found in
Sect. 4.

2 Proof of the lemma

Let us recall the notation in chapter IV of [8]. Let G, H be finitely presentable groups,
let A < G, B < H be isomorphic subgroups and let ψ : A

∼−→ B be an isomorphism.
The free product of G, H with respect to ψ (or free product of G, H with amalgamation),
denoted 〈G ∗ H , A = B, ψ〉, is defined as follows. If G = 〈S1|R1〉, H = 〈S2|R2〉 are finite
presentations with S1 ∩ S2 = ∅, then the free product with amalgamation is defined to be

〈G ∗ H , A = B, ψ〉 = 〈S1 ∪ S2|R1, R2, {aψ(a)−1|a ∈ A}〉.
The groups G and H are called the factors of 〈G ∗ H , A = B, ψ〉.

Free products with amalgamation occur naturally in topology: let X be a topological space
with open cover {Y , Z} such that Y ∩ Z is connected and denote G = π1(Y ), H = π1(Z).
Consider A = π1(Y ∩ Z) < G and B = π1(Y ∩ Z) < H . Denote also by ψ : A ∼−→ B the
natural isomorphism. Then by the van Kampen theorem,

π1(X) = 〈G ∗ H , A = B, ψ〉.
Free products with amalgamation have a certain uniqueness property of conjugacy classes,

which will be stated soon. First, we must recall the definition of cyclically reduced elements.

Definition 2.1 A sequence c1, ..., cn (with n ≥ 0) of elements of 〈G ∗H , A = B, φ〉 is called
reduced if:

1. Each ci is in one of the factors G or H .
2. Successive ci , ci+1 come from different factors.
3. If n > 1, no ci is in A or B.
4. If n = 1, c1 �= 1.

A sequence c1, ..., cn of elements of 〈G ∗ H , A = B, φ〉 is called cyclically reduced if all
its cyclic permutations (i.e. c2, ..., cn, c1, etc.) are reduced.

An element u ∈ 〈G ∗ H , A = B, φ〉 is called cyclically reduced if there exists a cyclically
reduced sequence c1, ..., cn such that u = c1 · ... · cn . In this case the sequence (ci )ni=1 is said
to represent u.
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120 A. Chor

We remark that every element of 〈G ∗ H , A = B, φ〉 is conjugate to a cyclically reduced
element, which is not necessarily unique. Recall the following theorem (Theorem 2.8 in
chapter IV of [8]):

Theorem (Conjugacy Theorem for Free Products with Amalgamation) Let P = 〈G ∗
H , A = B, φ〉 be a free product with amalgamation. Let u ∈ P be a cyclically reduced
element and let c1, ..., cn be any cyclically reduced sequence with u = c1 · ... · cn, where
n ≥ 2. Then every cyclically reduced conjugate of u can be obtained by cyclically permuting
c1 · · · cn and then conjugating by an element of the amalgamated part A. That is, if v ∈ P
is cyclically reduced and conjugate to u, then ∃0 ≤ k < n and ∃a ∈ A such that v =
a · ck · ... · cn · c1 · ... · ck−1 · a−1.

Denote the conjugacy relation in a group by ∼. For any group G denote the conjugacy
class of an element x ∈ G by [x]G .

The Conjugacy Theorem implies one can define a length on elements of P = 〈G∗H , A =
B, φ〉 by

len : P → Z≥0,

u �→ n,

where n is the length of a cyclically reduced sequence c1, ..., cn such that u ∼  j c j . This
is well defined by the Conjugacy Theorem and is obviously conjugation-invariant. Note that
len(u) = 0 ⇐⇒ u = 1 and len(u) = 1 if and only if u is conjugate to an element of
G ∪ H ⊂ P .

Let us denote the following groups:

H1 = 〈g1, g2〉 � F2, H2 = 〈g3, g4〉 � F2,

A = 〈[g1, g2]〉 < H1, B = 〈[g3, g4]〉 < H2,

and denote by φ : A → B the isomorphism [g1, g2] �→ [g3, g4]−1. Let F3 = 〈a, b, c〉 be
the free group with three generators and let π1(�2) = 〈g1, g2, g3, g4|[g1, g2][g3, g4]〉 =
〈H1 ∗ H2, A = B, φ〉 be the first homotopy group of a closed oriented surface of genus 2.

Consider the homomorphism ϕ : F3 → π1(�2) defined by

a �→ g1,

b �→ g2g1g
−1
2 ,

c �→ g3.

The next claim gives a restriction on non-injectivity of conjugacy classes by ϕ.

Claim 2.2 Let r , s ∈ F3 and assume that ϕ(r) ∼ ϕ(s) in π1(�2) and r � s in F3. Then
exactly one of the following holds:

• ∃0 �= j ∈ Z such that ϕ(r), ϕ(s) are conjugate to g j
1 (in π1(�2)).

• ∃0 �= j ∈ Z such that ϕ(r), ϕ(s) are conjugate to g j
3 (in π1(�2)).

In other words, the only conjugacy classes in F3 merged by the homomorphism ϕ are
the classes [c j ]F3 which merge with [(ab−1c) j ]F3 and [a j ]F3 which merge with [b j ]F3 (0 �=
j ∈ Z). These correspond to the following conjugacy classes in π1(�2): [g j

3 ]π1(�2) =
[g4g j

3g
−1
4 ]π1(�2) and [g j

1 ]π1(�2) = [g2g j
1g

−1
2 ]π1(�2).
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Eggbeater dynamics on... 121

Proof Note that ϕ(a) and ϕ(b) are both elements in the same factor H1 and ϕ(c) ∈ H2.
Partition r and s into sequences according to the partition {a, b} ∪ {c}, i.e. concatenate
consecutive symbols from 〈a, b〉, then perform the following steps in order on each sequence,
until no steps can be performed:

• If the sequence has length > 1 and has elements of the form (ab−1) j (for some j ∈ Z),
concatenate these elements to the previous and next elements in the sequence; do this
for all occurrences of (ab−1) j . I.e, if the sequence is g′

1, h
′
1, ab

−1, h′
2, (ab

−1)−2, h′
3

(with all g′
i ∈ 〈a, b〉, h′

i ∈ 〈c〉), then the resulting sequence after this step will be
g′
1, h

′
1ab

−1h′
2(ab

−1)−2h′
3.• If the sequence has length> 1 and the first and last elements of the sequence are from the

same factor (in the partition {a, b}, {c}), concatenate them cyclically: i.e, if the sequence
is ab, c, b, the resulting sequence after this step will be bab, c.

Doing this results in sequences (ri )ni=1, (si )
m
i=1 such that r ∼ i ri , s ∼ i si (in F3)

and the sequences (ϕ(ri )), (ϕ(si )) are cyclically reduced in π1(�2), since the only way to
generate an element of A or B from images of a, b, c is ϕ(ab−1) j = [g1, g2] j ∈ A; this can
be seen from the definition of ϕ.

For example, if r were the element abcba−1cac−1b ∈ F3, we first partition according to
{a, b}, {c} to get a sequence ab, c, ba−1, c, a, c−1, b, then concatenate powers of ab−1 to get
ab, cba−1c, a, c−1, b, and finally concatenate the first and last elements to get the sequence
(ri )4i=1 = bab, cba−1c, a, c−1. Note that the resulting sequence is not uniquely defined, but
any sequence which is the result of these steps will do for our purposes.

Now (ϕ(ri )) and (ϕ(si )) are cyclically reduced sequences of π1(�2) and m
i=1ϕ(si ) ∼

ϕ(s) ∼ ϕ(r) ∼ n
i=1ϕ(ri ). Assume n ≥ 2, we will reach a contradiction. By the Conjugacy

Theorem for Free Products with Amalgamation, ∃α ∈ A, 0 ≤ k < n such that

iϕ(si ) = α · ϕ(rk)ϕ(rk+1)...ϕ(rn)ϕ(r1)...ϕ(rk−2)ϕ(rk−1) · α−1. (1)

Since A ⊂ Im ϕ, α = ϕ(σ) for some σ ∈ F3. Therefore, pulling back Eq. 1 through ϕ,
we get the following equation in F3:

i si = σ · rkrk+1...rk−2rk−1σ
−1.

Note that this can be done since ϕ is a monomorphism.
Now, it can be seen that s ∼ i si = σrkrk+1...rk−2rk−1σ

−1 ∼ r in F3, contradicting our
assumption. Therefore, n ≤ 1. By symmetry of the above argument with respect to r and s,
we see that m ≤ 1 as well. If m = 0 or n = 0, we get that either r = 1 or s = 1, which is a
contradiction to the assumptions, so m = n = 1.

Since n = m = 1, our sequences from above are (ri ) = (r), (si ) = (s), so by construction
ϕ(r), ϕ(s) are in one of the factors H1, H2. We shall consider the case ϕ(r), ϕ(s) ∈ H1 and
conclude that ∃ j ∈ Z : ϕ(r), ϕ(s) ∼ g j

1 in π1(�2). The other case, where ϕ(r), ϕ(s) ∈ H2

and we conclude that ∃ j ∈ Z : ϕ(r), ϕ(s) ∼ g j
3 in π1(�2)), is analogous.

Since ϕ(r), ϕ(s) ∈ H1, note that r , s ∈ 〈a, b〉. Recall, it was assumed that r � s and
ϕ(r) ∼ ϕ(s), and we want to show that ∃ j ∈ Z : ϕ(r), ϕ(s) ∼ g j

1 . Denote G = 〈a, b〉 and
ψ = ϕ �G : G → H1. Note that the conjugacy classes of G are:

1. [1]G ,
2. [i aki bli ]G for some 0 �= ki , li ∈ Z,
3. [ak]G for some 0 �= k ∈ Z,
4. [bl ]G for some 0 �= l ∈ Z,
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122 A. Chor

where some of the conjugacy classes listed in case 2 above are not distinct (for example
[aba2b2]G = [a2b2ab]G ), but this will not matter to our argument. Define ψ̃ , a function
from the set of conjugacy classes of G to the set of conjugacy classes of H1, by

ψ̃([x]G) = [ψ(x)]H1 .

Our assumptions can be rewritten as [r ]G �= [s]G , ψ̃([r ]G) = ψ̃([s]G) and we want to show
ψ̃([r ]G) = [g j

1 ]H1 for some 0 �= j ∈ Z. Calculate ψ̃ for all the conjugacy classes of G as
listed above:

1. ψ̃([1]G) = [1]H1 ,
2. ψ̃([i aki bli ]G) = [i g

ki
1 g2g

li
1 g

−1
2 ]H1 (∀i : 0 �= ki , li ∈ Z),

3. ψ̃([ak]G) = [gk1]H1 (0 �= k ∈ Z),
4. ψ̃([bl ]G) = [g2gl1g−1

2 ]H1 = [gl1]H1 (0 �= l ∈ Z).

Therefore:

1. If ψ̃([r ]G) = ψ̃([s]G) = [1]H1 then ψ(r) = ψ(s) = 1 and then r = s = 1 (since ψ is a
monomorphism), in contradiction.

2. If ψ̃([r ]G) = ψ̃([s]G) = [i g
ki
1 g2g

li
1 g

−1
2 ]H1 , then [r ]G = [s]G = [i aki bli ]G , in

contradiction.

The only cases which are left are ψ̃([r ]G) = ψ̃([s]G) = [g j
1 ] for some 0 �= j ∈ Z. ��

Remark In exactly the same way, one can prove the following:
Let n ≥ 2 and define

ϕ : F2n−1 = 〈a1, ..., a2n−1〉 → π1(�n) = 〈g1, ..., g2n |[g1, g2][g3, g4]...[g2n−1, g2n]〉,
a2i−1 �→ g2i−1 (∀1 ≤ i ≤ n),

a2i �→ g2i g2i−1g
−1
2i (∀1 ≤ i < n).

Let r , s ∈ F2n−1 and assume that ϕ(r) ∼ ϕ(s) in π1(�n) and r � s in F2n−1. Then
∃1 ≤ i ≤ n, 0 �= j ∈ Z such that ϕ(r), ϕ(s) ∼ g j

2i−1 in π1(�n).

The lemma is a corollary of Claim 2.2.

Proof of Lemma 1.3 Define

A : F3 → F3,

a �→ ac,

b �→ b−1c,

c �→ c.

This is an automorphism of F3. Note that i∗ = ϕ ◦ A (with ϕ as defined above). We want to
use Claim 2.2 with r = A(β), s = A(δ):

A(β) = (ac)m1(b−1c)n1 ...(ac)mp (b−1c)n p ,

A(δ) = (ac)k1c−u1(b−1c)l1cv1 ...(ac)kp c−u p (b−1c)l p cvp .

Assume by contradiction that δ � β in F3. Then A(β) � A(δ) in F3, since A is an
automorphism of F3, and then by Claim 2.2, ∃0 �= j ∈ Z such that one of the following
holds:

• [A(β)]F3 = [c j ]F3 ,
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• [A(β)]F3 = [(ab−1c) j ]F3 ,
• [A(β)]F3 = [b j ]F3 ,
• [A(β)]F3 = [a j ]F3 .
To see that, for example, [A(β)]F3 = [c j ]F3 leads to a contradiction, consider the projec-

tion

pa,b : 〈a, b, c〉 → 〈a, b〉,
a �→ a, b �→ b, c �→ 1.

If [A(β)]F3 = [c j ]F3 , then
[(a)m1(b−1)n1 ...(a)mp (b−1)n p ]〈a,b〉 = [pa,b(A(β))]〈a,b〉

= [pa,b(c
j )]〈a,b〉 = [1]〈a,b〉.

This implies that at least one of the mi , ni is 0, else no cancellation can occur in the word
(a)m1(b−1)n1 ...(a)mp (b−1)n p . This is a contradiction to the assumption ∀i : 0 �= mi , ni .

The other three cases are dealt with similarly: the case [A(β)]F3 = [(ab−1c) j ]F3 using
the projection

pab−1c,c : 〈a, b, c〉 → 〈a, b〉,
ab−1c �→ a, c �→ b, a �→ 1

(note this iswell defined since {ab−1c, a, c} is a basis of F3); and the cases [A(β)]F3 = [b j ]F3 ,
[A(β)]F3 = [a j ]F3 using pa,b defined above.

Since all cases lead to a contradiction we conclude that δ ∼ β in F3, as desired. ��
Recall π1(�2) = 〈H1 ∗ H2, A = B, φ〉 and recall the definition of len : π1(�2) → Z≥0.

We will also make use of the following claim:

Claim 2.3 Let r ∈ N, ki ∈ Z for i ∈ {1, ..., 2r} with |ki | ≥ 2 for all i and consider
π1(�2) = 〈g1, g2, g3, g4|[g1, g2][g3, g4]〉. Then

len
(
r

i=1(g1g3)
k2i−1(g2g

−1
1 g−1

2 g3)
k2i

)
> 1.

Proof Denote εi = sign(ki ) = ki|ki | . Consider

p13 : π1(�2) → F2 = 〈h1, h3〉,
g1 �→ h1,

g3 �→ h3,

g2, g4 �→ 1.

Denote w = r
i=1(g1g3)

k2i−1(g2g
−1
1 g−1

2 g3)k2i . Assume by contradiction len(w) ≤ 1.
Note that p13 preserves factors, i.e. p13(H1) = 〈h1〉, p13(H2) = 〈h3〉. If len(w) = 0, then
w = 1, so p13(w) = 1, and then len(p13(w)) = 0. Else, len(w) = 1, so w ∼ c1 with
c1 ∈ H1 < π1(�2) or c1 ∈ H2 < π1(�2). Without loss of generality, assume c1 ∈ H1.
Then p13(w) ∼ p13(c1) ∈ p13(H1) = 〈h1〉, and then len(p13(w)) ≤ 1. One reaches the
same conclusion in both cases: len(p13(w)) ≤ 1 (note that this is len in F2, which is a free
product of Z = 〈h1〉 with Z = 〈h3〉 and so is trivially a free product with amalgamation). As
a remark, this procedure can be applied for any factor-preserving homomorphism ψ to get
len(g) ≥ len(ψ(g)).
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Consider p13(w):

p13(w) = r
i=1(h1h3)

k2i−1(h−1
1 h3)

k2i .

This element is made of blocks: (h1h3)k j or (h−1
1 h3)k j . Each of these blocks is reduced, so

the only cancellations in the form of p13(w) given above can happen between two blocks.
These are the options for cancellations between two blocks:

• If the first block is (h1h3)ki and the second is (h−1
1 h3)ki+1 , one of the following holds:

* εi = εi+1 = 1: in this case, (h1h3)ki (h
−1
1 h3)ki+1 = (h1h3)|ki |(h−1

1 h3)|ki+1| and we
can see there is no cancellation between the two blocks.
* εi = −εi+1 = 1: in this case, we have cancellation. Indeed, (h1h3)ki (h

−1
1 h3)ki+1

= (h1h3)|ki |−1h1h1(h
−1
1 h3)−|ki+1|+1 (∗).

* −εi = εi+1 = 1: in this case, (h1h3)ki (h
−1
1 h3)ki+1 = (h1h3)−|ki |(h−1

1 h3)|ki+1| and
we can see there is no cancellation between the two blocks.
* εi = εi+1 = −1: in this case, (h1h3)ki (h

−1
1 h3)ki+1 = (h1h3)−|ki |(h−1

1 h3)−|ki+1|
and we can see there is no cancellation between the two blocks.

Every cancellation of type (∗) results in a reduced block starting and ending with h1.
Before it comes either h3 or h1 (since (h−1

1 h3)ki−1 ends with one of these symbols) and
after it comes either h1 or h

−1
3 (for similar reasons). Thus after a cancellation of this type,

none of the two ends of the resulting reduced block can be cancelled any further.

• If the first block is (h−1
1 h3)ki and the second is (h1h3)ki+1 , one of the following holds:

* εi = εi+1 = 1: in this case, (h−1
1 h3)ki (h1h3)ki+1 = (h−1

1 h3)|ki |(h1h3)|ki+1| and we
can see there is no cancellation between the two blocks.
* εi = −εi+1 = 1: in this case, we have cancellation. Indeed, (h−1

1 h3)ki (h1h3)ki+1

= (h−1
1 h3)|ki |−1h−1

1 h−1
1 (h1h3)−|ki+1|+1 (∗∗).

* −εi = εi+1 = 1: in this case, (h−1
1 h3)ki (h1h3)ki+1 = (h−1

1 h3)−|ki |(h1h3)|ki+1| and
we can see there is no cancellation between the two blocks.
* εi = εi+1 = −1: in this case, (h−1

1 h3)ki (h1h3)ki+1 = (h−1
1 h3)−|ki |(h1h3)−|ki+1|

and we can see there is no cancellation between the two blocks.

Every cancellation of type (∗∗) results in a reduced block starting and ending with h−1
1 .

Before it comes either h3 or h
−1
1 and after it comes either h−1

1 or h−1
3 (for reasons similar

to above). Thus after a cancellation of this type, none of the two ends of the resulting
reduced block can be cancelled any further.

Therefore, after at most 2r − 1 cancellations one reaches a reduced word. If it is not
cyclically reduced, conjugate by the first block and perform one more reduction to get a
cyclically reduced word v, conjugate to p13(w). Since every reduced block (∗) or (∗∗)

above has length at least 2 and these are inserted without cancellations to our word v, we
have len(p13(w)) = len(v) ≥ 2 > 1. This is a contradiction, so the initial assumption
len(w) ≤ 1 is false. ��

3 Proof of the theorems

3.1 Additional definitions

In the proofs of the results, we shall use the following definitions.
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Definition 3.1 A continuous map between two manifolds f : M → N induces a map
τ f : π0(L M) → π0(L N ) by τ f ([γ ]) = [ f ◦ γ ], for γ : S1 → M .

For any manifold M and point x ∈ M , define the map

ηM,x : π1(M, x) → π0(L M),

[γ̃ ]π1(M,x) �→ [γ̃ ]π0(L M).

where γ̃ : S1 → M is a loop.

Note that the following diagram commutes for any continuous map f : M → N :

π1(M, x) π1(N , f (x))

π0(L M) π0(L N )

f∗

ηM,x ηN , f (x)

τ f

Note additionally that for α, β ∈ π1(M, x), ηM,x (α) = ηM,x (β) if and only if α and β are
conjugate in π1(M, x).

Definition 3.2 A word w ∈ F2 = 〈V , H〉 is called balanced if it is of the form w =
V N1HM1 ...V Nr HMr for some r ∈ N, N j , Mj ∈ Z \ {0}.
Note that any balanced word is cyclically reduced.

Definition 3.3 Let ϕ : M → M be a diffeomorphism. A fixed point x of ϕ is called non-
degenerate if dϕx does not have 1 as an eigenvalue.

The egg-beater construction uses dynamics on a space C which is then embedded into
a surface of genus 2. Thus we shall use the following definitions of pushing forward the
dynamics along the embedding.

Let X , Y be compact topological spaces and i : X ↪→ Y a continuous embedding. Let
f : X → R be a continuous map on X and assume the following condition holds:

for any path-component C of Y \ i(X), f �i−1(∂C) is constant. (2)

Let Cy be the path-component of Y that contains y ∈ Y and denote Di = ⋃
y∈Im(i) Cy ⊆

Y . For all y ∈ Di let γi,y : [0, 1] → Cy be a continuous path with γi,y(0) = y, γi,y(1) ∈
Im(i), and such that if γi,y(t) ∈ Im(i) for some t ∈ [0, 1], then γi,y �[t,1] is constant. Note
that if y ∈ Im(i), then γi,y ≡ y.

Denote the following, not necessarily continuous, map:

bi : Di → Im(i),

y �→ γi,y(1).

Define the following map, the pushforward of f through i :

i∗ f : Di → R,

y �→ f ◦ i−1 ◦ bi (y).

By Condition 2, this is a continuous map Di → R which is constant on Y \ i(X) and doesn’t
depend on the choice of the γi,ys. Note also that if f is smooth and constant in a neighborhood
of i−1(∂ i(X)) then i∗ f is also smooth.

Assume additionally that X , Y are symplectic manifolds, i is a symplectomorphism, and
f : S1 × X → R is a Hamiltonian function. Then f induces the time-one-map of its flow;
let it be denoted F : X → X . The pushforward of F through i is denoted i∗F : Y → Y and
is the time-one-map of the flow induced by i∗ f .
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Claim 3.9 Claim 3.10
]
in C

Proposition 3.7 Proposition 3.8
]
in Σ4

Theorem 3.6

Theorem 3.5 Theorem 3.4

∗ ∗

∗∗

∗∗

Fig. 4 Dependencies between original intermediate results

3.2 Review of the original proofs (genus≥ 4)

3.2.1 Outline of the original proofs and dependencies of claims

First we shall outline the proofs of the original theorems, 1.3 from [11] and 1.1 from [1]. For
concreteness, their statements are given here.

Theorem 3.4 [Theorem 1.3 from [11]] Let �4 be a closed oriented surface of genus ≥ 4,
equipped with an area form σ4, and k ≥ 2 an integer. Then powersk(�4, σ4) = ∞.

Theorem 3.5 [Theorem 1.1 from [1]] Let �4 be a closed oriented surface of genus ≥ 4,
equipped with an area form σ4. Then for any non-principal ultrafilter U on 2N, there exists
a monomorphism F2 ↪→ ConeU (Ham(�4), dH ).

Both their proofs involve several intermediate results. For clarity, Fig. 4 lists the depen-
dencies between these results. The proofs are based on a specific construction of a manifold
C , an embedding i : C ↪→ �4, and some dynamics on C , which induce dynamics on �4.
These constructions are all sketched in Sect. 1.4 and given in detail further in this subsection.
Propositions 3.7, 3.8 (which are Propositions 5.11 of [1] and 5.1 of [11] respectively) are
claims on the dynamics on�4 and Claims 3.9, 3.10 are the respective claims on the dynamics
on C .

The deductions marked ∗∗ use "hard" Floer homology and persistence modules and do
not depend on the genus of�4. Therefore they can be taken as is to the case where the surface
is of genus 2,3. The deductions marked ∗ are a consequence of the fact that i is constructed to
be incompressible, i.e. it induces injections π1(C) ↪→ π1(�4) and π0(LC) ↪→ π0(L�4).
This condition will not hold in the case where � is of genus 2,3 (see Sect. 3.3 below) and
this is exactly where Lemma 1.3 comes into play. Claims 3.9, 3.10 are proved directly by
careful analysis of the dynamics on C .

This subsection details the construction i : C ↪→ �4, the dynamics on C and �4, states
all the above claims and propositions, and outlines their proofs. For full details, see [11] and
[1]; we describe their work bottom-up, with respect to the directions of Fig. 4.

The manifold C mentioned above is the union of two annuli [−1, 1] × R/LZ for some
L > 4, which intersect in two squares, see Fig. 5 below. A special map, called an eggbeater
map, is defined on C (see definition later in this subsection). In order to get results for a
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symplectic surface M , we need an embedding i : C ↪→ M , which will induce eggbeater
dynamics on M .

Since M is symplectic it is orientable and this leaves little choice for its homeomorphism
type: the genus ofM determines it. Topologically, one can always think of i as first embedding
C into the sphere and then adding some handles. The results here use Floer homology, where
basic objects of interest are homotopy classes of free loops in the manifold. Thus we want the
embedding i to have the property that homotopy classes of different orbits of the dynamics
on C will be pushed by i to different homotopy classes in M , so that we will be able to
distinguish between different orbits with Floer homology tools.

Since the only choice in the embedding is how many handles to add and in which com-
ponents of M \ i(C) to attach them, we want every such component to have at least one end
of a handle - otherwise, it will be contractible. There are four such components (consider
Fig. 5), so for this method to work we need M to be of genus at least 2. The original con-
struction, found in [11] and presented later in this subsection, uses a surface of genus at least
4 and adds at least one handle in every such component. This produces results for surfaces
of genus ≥ 4 and has the added benefit that it makes i incompressible, so that different free
homotopy classes of loops in C do not merge under i . However, this is not efficient if we
want to minimize the genus. A slightly more efficient construction is found in Sect. 3.3 and
produces results for surfaces of genus 2,3.

Both of the original proofs of Theorems 3.4 and 3.5 use a construction of a sequence of
homomorphisms�k : F2 → Ham(�4) (indexed by k ∈ N). Every such Hamiltonian diffeo-
morphism �k(w) is generated by a specific Hamiltonian denoted Hk,w and the Hamiltonian
isotopy generated by Hk,w is denoted φk,w(t). All of these are specified exactly later in this
subsection. Note that these homomorphisms depend on the surface �4 - the proofs for the
generalized theorems (in Sect. 3.3) will use similar but different homomorphisms.

This sequence �k induces a homomorphism

F2 → ConeU (Ham(�), dH ),

w �→ [(�k(w))∞k=1].
To show this is a monomorphism, and so prove Theorem 3.5, for any 1 �= w ∈ F2 one

needs to show that limU dH (�k (w),id�)
k = limU ||�k (w)||H

k > 0. This is done in Theorem 3.6:

Theorem 3.6 [Theorem 2.1 from [1]] Let 1 �= w ∈ F2 = 〈H , V 〉. Then there exist constants
C = C(w) > 0, k0 = k0(w) ∈ N such that for any k > k0:

||�k(w)||H ≥ C · k.

Corollary Theorem 3.6 implies Theorem 3.5.

In addition to the above sequence �k , a collection of free homotopy classes αk,w ∈
π0(LC), indexed by k ∈ N, w ∈ F2; and another collection of free homotopy classes
α′
k ∈ π0(LC), indexed by k ∈ K , are specified, where K ⊂ N is some unbounded subset to

be specified later in this subsection.
To prove Theorems 3.4, 3.6, the following propositions are used:

Proposition 3.7 [Proposition 5.11 from [1]] Let w = r
j=1V

N j HMj ∈ F2 be a bal-

anced word. For large enough k ∈ N, there are 22r non-degenerate fixed points of �k(w)

whose orbits have free homotopy class τi (αk,w) (i.e. [t �→ φk,w(t)(z0)]π0(L �4) = τi (αk,w)

for z0 a non-degenerate fixed point of �k(w)), and these fixed points are indexed by
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CV CH

s0

s1

q1 q2q3 q4

Fig. 5 The paths q1, q2, q3, q4 in C

= (ε0, ..., ε2r−1) ∈ {±1}2r , with the fixed point associated to sign vector denoted z().
The action and Conley-Zehnder index of the point z() are

A(z()) = Lk
r∑
j=1

(
ε2 j−2N j

(
1 − 1

2|N j |
)2

+ ε2 j−1Mj

(
1 − 1

2|Mj |
)2

)
+ O(1), (3)

μCZ (z()) = 1 + 1

2

r∑
j=1

(
ε2 j−2sign(N j ) + ε2 j−1sign(Mj )

)
, (4)

where the action of a fixed point is understood to be that of its orbit under φk,w, the action and
Conley-Zehnder index are with respect to the Hamiltonian Hk,w, and where the O notation
in Eq. 3 is as k → ∞.

Proposition 3.8 [Proposition 5.1 from [11]] Let w = (V H)r ∈ F2 for some r ∈ N. For
large enough k ∈ K, there are 22r non-degenerate fixed points of �k(w) whose orbits have
free homotopy class τi (α

′
k), and fixed points in different orbits have action gaps that grow

linearly with k. That is, for such fixed points in different orbits y, z,

|A(y) − A(z)| ≥ c · k + O(1),

as k → ∞, for some global constant c > 0.

Note that both propositions depend on the definition of the embedding i , which will be
recalled later in this subsection.

GivenProposition 3.8, Theorem3.4 is proven in Sect. 5.1 of [11] and given Proposition 3.7,
Theorem 3.6 is proven in Sect. 5.4 of [1] (the case where w is not conjugate to a power of
V or H requires Proposition 3.7, the case where w is conjugate to a power of V or H
does not use it). The remainder of this subsection is devoted to outlining the construction of
�k, φk,w, αk,w, α′

k and the proof of Propositions 3.7, 3.8, as proven in [11], [1].
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3.2.2 The geometric construction

Let �4 be a surface of genus ≥ 4. Consider the cylinder C∗ = [−1, 1] × R/LZ, for L > 4,
with coordinates x, y and the standard symplectic form dx ∧ dy. Let CV ,CH be two copies
of C∗. Consider the squares

S′
0 = [−1, 1] × [−1, 1]/LZ, S′

1 = [−1, 1] × [L/2 − 1, L/2 + 1]/LZ

in C∗. They give four squares SV ,0, SV ,1 ⊂ CV and SH ,0, SH ,1 ⊂ CH . Define the symplec-
tomorphism V H0,1 : SV ,0

⊔
SV ,1 → SH ,0

⊔
SH ,1 given by V H

⊔
V H ′, where

V H : SV ,0 → SH ,0 : (x, [y]) �→ (−y, [x]),
V H ′ : SV ,1 → SH ,1 : (x, [y]) �→ (y − L/2, [−x + L/2]).

Define

C = CV

⋃
V H0,1

CH .

This is a symplectic manifold with symplectic form ω0 = dx ∧ dy on every copy of the
cylinder C∗. Denote by CV : C∗ ↪→ C, CH : C∗ ↪→ C the two injections induced by the
above union.

Denote by S0, S1 ⊂ C the identification of the squares SV ,0, SH ,0 and SV ,1, SH ,1. In fact,
S0 ∪ S1 = CV ∩ CH . Fix two points s0 ∈ S0, s1 ∈ S1. Define 4 paths: two paths q1, q3 from
s0 to s1 and two paths q2, q4 from s1 to s0 (see Fig. 5), q1, q2 are paths on CV and q3, q4 are
paths on CH .

Note that π1(C, s0) � F3, the free group on 3 generators. The 3 generators a, b, c of
π1(C, s0) are taken to be:

a = [q1#q2]π1(C,s0),

b = [q3#q4]π1(C,s0),

c = [q3#q2]π1(C,s0),

where the # sign is used for path concatenation: q#q ′ is the concatenation of paths q and then
q ′, if q(1) = q ′(0).

Consider the function u0 : [−1, 1] → R, u0(s) = 1 − |s|. Take an even, non-negative,
sufficiently C0-close smoothing u to u0 such that u is supported away from {±1} and both
u−u0 and

∫ t
−1(u(s)−u0(s))ds are supported in a sufficiently small neighborhood of {±1, 0}.

For k ∈ N, define

f = fk : C∗ → C∗,
f (x, [y]) = (x, [y + kL · u(x)]).

This mapping is a Hamiltonian diffeomorphism on C∗ with Hamiltonian

hk(x, [y]) = −k

2
+ k

∫ x

−1
u(s)ds.

Denote fk,V = (cV )∗ fk , fk,H = (cH )∗ fk . Note that these are two Hamiltonian diffeo-
morphisms on C , one supported on CV and the other on CH , both supported away from ∂C .
Define a homomorphism

�k : F2 = 〈V , H〉 → Hamc(C, ω0),
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V �→ fk,V , H �→ fk,H ,

where Hamc(M, ω) denotes the group of Hamiltonian diffeomorphisms of a symplectic
manifold (M, ω) which are supported in the interior of M . Note that the image of a word
w = V N1HM1 ...V Nr HMr ∈ F2 is f Mr

k,H ◦ f Nr
k,V ◦ ... ◦ f M1

k,H ◦ f N1
k,V . These images are called

eggbeater maps.
Pushing forward the flow generated by hk to C , one gets flows on CV and CH whose

time-one-maps are fk,V and fk,H . Concatenating these in the order induced by w (as in the
construction of �k(w)), one gets a flow ψk,w(t) : C → C , whose time-one-map is �k(w).
Denote the Hamiltonian that generates this flow Gk,w : S1 × C → R.

Consider a symplectic embedding i : C ↪→ �4 such that i∗ : π1(C) → π1(�4) and
τi : π0(LC) → π0(L�4) are both injective and such that each component of ∂C separates
�4. For example, one can embed C into R

2, add at least one handle in every connected
component of R

2 \C , and compactify by adding the point at infinity (see the construction in
[11] and [1]). This is the point where Lemma 1.3 is usedwhen generalizing the propositions to
surfaces of genus 2,3 (see Sect. 3.3). Note that the pairs i, fk,V and i, fk,H satisfyCondition 2.

The homomorphisms �k : F2 → Ham(�4) will be defined by �k(w) = i∗�k(w).
The mapping �k(w) is indeed a diffeomorphism, because of the assumptions on u, and is
Hamiltonian, since it is generated by the Hamiltonian Hk,w = i∗Gk,w.

Given k ∈ N, w = V N1HM1 ...V Nr HMr ∈ F2, set the free homotopy classes αk,w to be

αk,w = ηC,s0(βk,w) ∈ π0(LC),

where

βk,w = r
j=1a

k·sign(N j )bk·sign(Mj ) ∈ π1(C, s0)

and sign : Z → {0,±1} is

n �→
{ n

|n| n �= 0
0 n = 0

.

Additionally, choose ν j , μ j ∈ (0, 1) for j = 1, ..., r such that
ν j
L ,

μ j
L ∈ Q for all j and

the values
∑r−1

j=0(ε2 j+1(1− μ j+1)
2 − ε2 j+4(1− ν j+1)

2) are all distinct, for all sign vectors

= (ε0, ..., ε2r−1) ∈ {±1}2r . For these choices, the set K ⊂ N from Proposition 3.8 is taken

to be K =
{
k ∈ N | ∀ j : μ j k

L ,
ν j k
L ∈ Z

}
.

For k ∈ K set

α′
k = ηC,s0(β

′
k) ∈ π0(LC),

where

β ′
k = r

j=1a
ν j k
L b

μ j k
L ∈ π1(C, s0).

From this point on, it is assumed that any index k of α′
k or β ′

k is in the subset K , since
otherwise α′

k, β
′
k are not well-defined. This will also be explicitly stated.

The outline of the proofs of Propositions 3.7, 3.8 is as follows. Since any non-degenerate
fixed point of �k(w) must lie in Im i and in addition i : C → �4, i∗ : π1(C, s0) →
π1(�4, i(s0)) and τi : π0(LC) → π0(L�4) are all injective, it is enough to prove versions
of Propositions 3.7, 3.8 on C , i.e. prove the following claims:
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(C, Gk,w, ψk,w, Ψk(w)) (Σ4, Hk,w = i∗Gk,w, φk,w = i∗ψk,w, Φk(w) = i∗Ψk(w))

(D,Fk,w, ξk,w, Ξk(w)) (Σ, (i2)∗Fk,w, (i2)∗ξk,w, (i2)∗Ξk(w))

e2

i

i2

Fig. 6 The surfaces, Hamiltonians, flows and time-one-maps in the proof

Claim 3.9 Let w = r
j=1V

N j HMj ∈ F2 be balanced. For large enough k ∈ N, there are

22r non-degenerate fixed points of�k(w) whose orbits have free homotopy class αk,w . These
fixed points have actions (with respect to Gk,w) and Conley-Zehnder indices as in Eqs. 3,4.

Claim 3.10 Let w = (V H)r ∈ F2 for some r ∈ N. For large enough k ∈ K, there are 22r

fixed points of�k(w)whose orbits have free homotopy class α′
k . Such fixed points in different

orbits have action gaps (with respect to Gk,w) that grow linearly with k as k → ∞.

This is proven in two steps. First, one proves these claims with respect to a piecewise-
linear version ψ ′

k,w(t) of the isotopy ψk,w(t). This is done in Sect. 5.1 of [1] and in Sect. 5
of [11], by analysis of the dynamics on C . Then, one shows that the non-degenerate fixed
points of �k(w) are exactly those of ψ ′

k,w(1), for k large enough. This is done in Sect. 5.3
of [1].

3.3 Proof of the new theorems (genera 2,3)

The new proofs are very similar to the original ones, with the following changes. The inter-
esting dynamics, which we want to keep, is the eggbeater dynamics, but we will need to
change our construction of i,C, ψk,w a bit to accommodate for the fact that the genus of the
surface is now 2 or 3.

More concretely, let � be a surface of genus 2 or 3 with area form σ . The following data
will be defined:

• a symplectic surface (D, ω) that containsC from the original construction (i.e. e2 : C ↪→
D is a symplectic embedding that induces an embedding τe2 : π0(LC) ↪→ π0(L D)),

• an injection i2 : D ↪→ �, and
• homomorphisms �k : F2 → Hamc(D, ω) indexed by k ∈ N, with �k(w) the time-one-

map of the flow ξk,w(t) : D → D, such that for all k ∈ N, w ∈ F2: ξk,w(t) �C= ψk,w(t).

The Hamiltonian generating ξk,w(t) will be denoted Fk,w : S1 × D → R. These data will
specify the dynamics on D. In order to work on �, the dynamics will be pushed forward by
i2. This will result in a Hamiltonian (i2)∗Fk,w : S1×� → R and the flow and time-one-map
it generates, denoted (i2)∗ξk,w(t) : � → � and (i2)∗�k(w) : � → �.

The confused reader may consult the diagram in Fig. 6, which indicates the different
surfaces mentioned till now and the injections between them, together with the Hamiltonians
on them, the flows these Hamiltonians generate, and their time-one-maps.

All these data will be explicitly defined in Sect. 3.3.1.
With these constructions in hand we will prove new versions of Propositions 3.7, 3.8

and these will imply the generalized Theorems 1.1, 1.2. These dependencies are depicted in
Fig. 7. The deductions marked ∗∗ can be taken as is from the proofs for surfaces of genus≥ 4
in [11], [1]. The deductions marked ∗ will now require justification, since i2 will no longer
be incompressible. Since Claims 3.9, 3.10 were already established (see proof in [11], [1] or
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Claim 3.9 Claim 3.10
]
in C

Proposition 3.11 Proposition 3.12
]
in Σ

Theorem 1.2 Theorem 1.1

∗ ∗

∗∗ ∗∗

Fig. 7 Dependencies between generalized intermediate results

sketch in Sect. 3.2), we have to show why they imply Propositions 3.11, 3.12. This is done
in Sect. 3.3.2 and uses Lemma 1.3.

Propositions 3.11, 3.12, which by the above discussion imply the main theorems of this
paper, are stated here.

Proposition 3.11 Let w = r
j=1V

N j HMj ∈ F2 = 〈H , V 〉 be balanced. For large enough
k ∈ N, there are 22r non-degenerate fixed points of (i2)∗�k(w) in � whose orbits have free
homotopy class τi2(αk,w). Such fixed points have actions and Conley-Zehnder indices as in
Eqs. 3,4.

Proposition 3.12 Let w = (V H)r ∈ F2 for some r ∈ N. For large enough k ∈ K, there
are 22r fixed points of (i2)∗�k(w) in � whose orbits have free homotopy class τi2(α

′
k). Such

fixed points in different orbits have action gaps that grow linearly with k, that is, for such
fixed points y, z in different orbits:

|A(y) − A(z)| ≥ c · k + O(1),

as k → ∞, for some global constant c > 0. The set K ⊂ N is as defined in Sect. 3.2.

Note that since π0(LC) ⊂ π0(L D), the expressions τi2(αk,w) and τi2(α
′
k) are well-

defined.

3.3.1 The construction

In a sense, the proof for � of genus 2 is harder than for genus 3. In the following, we will
show the proof for � of genus 2 and comment on the differences to the proof for genus 3
surfaces when they arise.

Consider C , defined in Sect. 3.2.2, and two additional copies of the cylinder C∗, C1 and
C2. Our manifold D will be D = C

⊔
C1

⊔
C2, equipped with the standard symplectic

formω0 = dx∧dy on every component. Denote the symplectic inclusionsC∗ ↪→ C1,C2 by
c1, c2 respectively. Note that the additional annuli, C1 and C2, are needed to make sure that
i2 and Fk,w satisfy Condition 2; that is, to enable Fk,w ◦ i−1

2 : Im(i2) → R to be extended
by a locally constant function to a function on all of �.

The symplectic embedding i2 : (D, ω0) ↪→ (�, σ ) is built in stages. First define i2 on
C : embed C symplectically into R

2, embed the plane R
2 into S2, and then add 2 handles as

shown in Fig. 8. That is, C separates the sphere into 4 connected components, each having
two neighbors; connect any two non-neighboring components with a handle. In the case of
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i2(CV ) i2(CH)

i2(C1)

i2(C2)

i2(s0)

Fig. 8 adding handles on S2 after embedding C : this whole figure is in S2

genus 3, add a handle inside the ’outside’ component to obtain a surface of genus 3 (we
will refer to this handle as the extra handle). This defines i2 �C . Define i2 on C1

⊔
C2 by

embedding each of them symplectically into one of the non-extra handles (withC1 andC2 on
different handles), such that the images i2(C1), i2(C2) are not contractible. The orientation of
the embeddings i2 �C1 , i2 �C2 and which goes on which handle, will be defined immediately.
The embedding i2 can be seen in Fig. 8.

Recall s0 ∈ C and a, b, c, the generators of π1(C, s0). Fix some s′
k ∈ Ck for k = 1, 2.

The generators of π1(Ck, s′
k) = Z are denoted dk . These are positively oriented, i.e. dk =

[t �→ (0, Lt) ∈ Ck] as elements in π1(Ck, s′
k). Denote the generators of π1(�, i2(s0))

by g1, .., g4, such that π1(�, i2(s0)) = 〈
g1, g2, g3, g4

∣∣[g1, g2][g3, g4]〉 and the loops g1
and g3 go around the two handles (see Fig. 9). In the case where � is of genus 3, denote
π1(�, i2(s0)) = 〈g1, ..., g6|[g1, g2][g3, g4][g5, g6]〉, such that the loops g1 and g3 still go
around the two non-extra handles (the same as in Fig. 9) and such that g5 goes around the
extra handle. The loops gk+1 go along the handle that the loops gk go around (for k = 1, 3, 5),
oriented such that [g1, g2][g3, g4][g5, g6] = 1 in π1(�, i2(s0)).

Choose the image ofC1 to be contained in the handle that the loop g1 ∈ π1(�, i2(s0)) goes
around (in Figs. 8 and 9 this is the upper handle), and so i2(C2) is contained in the handle that
the loop g3 goes around. Since the image of C1 is located on a handle, is non-contractible,
and i2 is an embedding, one can choose how to orient the image of C1:

τi2 ◦ ηC1,s′1(d1) = η�,i2(s0)(g1) or τi2 ◦ ηC1,s′1(d1) = η�,i2(s0)(g
−1
1 ),

and similarly one can choose the orientation of i2(C2):

τi2 ◦ ηC2,s′2(d2) = η�,i2(s0)(g3) or τi2 ◦ ηC2,s′2(d2) = η�,i2(s0)(g
−1
3 ).
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i2(s0)

g1

g2

g3

g4

Fig. 9 the generators of π1(�, i2(s0)), dashed lines only for readability

Choose the orientation of the embeddings i2 �C1 , i2 �C2 to be such that the elements d1, d2
map to η�,i2(s0)(g1) and η�,i2(s0)(g

−1
3 ) respectively under τi2 ◦ ηCk ,s′k (for k = 1, 2). This

concludes the definition of the embedding i2.

By construction of i2 : D ↪→ �, the pushforward (i2)∗ : π1(D, s0) → π1(�, i2(s0)) acts
on the generators a, b, c of π1(D, s0) so:

a �→ g1g3,

b �→ g2g
−1
1 g−1

2 g3,

c �→ g3.

In order to define the Hamiltonian Fk,w on D, a similar procedure as the one that defines
Gk,w is followed. Recall h = hk : C∗ → R, the Hamiltonian on C∗:

(x, [y]) �→ −k

2
+ k

∫ x

−1
u(s)ds,

defined in Sect. 3.2. Note that the pairs e2 ◦cV , hk and e2 ◦cH , hk satisfy Condition 2. Define
two autonomous Hamiltonians on D:

gk,V : D → R,

gk,V = (e2 ◦ cV )∗hk
⊔

−(c1)∗hk
⊔

(c2)∗hk;
gk,H : D → R,

gk,H = (e2 ◦ cH )∗hk
⊔

(c1)∗hk
⊔

(c2)∗hk .
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Given w ∈ F2 = 〈V , H〉, define ξk,w(t), the flow on D, as the concatenation of the flows
induced by gk,V , gk,H , in the order induced byw. The Hamiltonian which induces this flow is
denoted Fk,w : S1 × D → R and its time-one-map is �k(w) : D → D. Another equivalent
way to define�k(w) is to denote the time-one-maps of gk,V , gk,H by g′

k,V , g′
k,H respectively

and define the homomorphism

�k : F2 → Hamc(D, ω0),

V �→ g′
k,V , H �→ g′

k,H .

Next, note that Fk,w and i2 satisfy Condition 2 for all k, w. Therefore we can define the
pushforwards (i2)∗Fk,w : S1 × � → R, (i2)∗ξk,w : R × � → �, (i2)∗�k(w) : � → �.

3.3.2 Proof of Propositions 3.11, 3.12

First we state a few helper claims and use them to prove Propositions 3.11, 3.12. Then, we
will show the proofs of the claims. For the rest of this subsection, fix some 2 ≤ k ∈ N, w =
V N1HM1 ...V Nr HMr ∈ F2 balanced. Recall that αk,w = ηC,s0(βk,w), α′

k = ηC,s0(β
′
k), and

also note that since the connected component of s0 in D is e2(C). We shall abuse notation
and denote π1(C, s0) = π1(D, s0), ηC,s0 = ηD,s0 , etc.

The first claim characterizes all egg-beater orbits in C in terms of their free homotopy
classes.

Claim 3.13 Let γ̃ : S1 → C be a closed ψk,w-orbit. Then there exist k1, ..., kr , l1, ..., lr ∈ Z,
u1, ..., ur , v1, ..., vr ∈ {0, 1} such that [γ̃ ]π0(L C) = ηC,s0(

r
m=1a

km c−um blm cvm ).

The second claim provides a partial injectivity property of τi2 .

Claim 3.14 Let γ = ηD,s0(
r
m=1a

km c−um blm cvm ) ∈ π0(L D) for some k1, ..., kr , l1, ..., lr ∈
Z, u1, ..., ur , v1, ..., vr ∈ {0, 1} and assume τi2(γ ) = τi2(αk,w). Then γ = αk,w .

Alternatively, if k ∈ K, assume τi2(γ ) = τi2(α
′
k). Then γ = α′

k .

The third claim will allow us to focus our calculations to ξk,w-orbits in D which are in
fact in e2(C).

Claim 3.15 Let k ∈ N be large enough and let z ∈ � be a non-degenerate fixed point of
(i2)∗�k(w) whose (i2)∗ξk,w-orbit is in the class τi2(αk,w), i.e. [(i2)∗ξk,w(t)(z)]π0(L �) =
τi2(αk,w).

Alternatively, let k ∈ K be large enough and let z ∈ � be a non-degenerate fixed point of
(i2)∗�k(w) whose (i2)∗ξk,w-orbit is in the class τi2(α

′
k).

In both cases, z ∈ i2(C).

We now prove Propositions 3.11 and 3.12.

Proof of Propositions 3.11, 3.12 Recall that Claims 3.9, 3.10, proven in [1], [11], are anal-
ogous to these propositions, but set in C . We want to show why they imply that these
propositions hold in�. The proofs for both propositions are very similar, so we present them
simultaneously.

Let γ̃ : S1 → � be a closed orbit of (i2)∗ξk,w(t) in the class τi2(αk,w) (or τi2(α
′
k), in

the case where k ∈ K ) such that z = γ̃ (0) is a non-degenerate fixed point of (i2)∗�k(w).
By Claim 3.15, if k is large enough then z ∈ i2(C) and therefore y = i−1

2 (z) ∈ C is
uniquely defined. Denote by γ̃y : S1 → C the ξk,w(t)-orbit of y. By Claim 3.13, there exist
k1, ..., kr , l1, ..., lr ∈ Z, u1, ..., ur , v1, ..., vr ∈ {0, 1} such that

[γ̃y]π0(L C) = ηC,s0(
r
m=1a

km c−um blm cvm ).
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Since τi2([γ̃y]π0(L C)) = [γ̃ ]π0(L �) = τi2(αk,w) (or τi2(α
′
k)), one has [γ̃y]π0(L C) = αk,w

(or [γ̃y]π0(L C) = α′
k) by Claim 3.14.

Thus non-degenerate fixedpoints of (i2)∗�k(w) in�whose orbits are in the class τi2(αk,w)

correspond in a 1-1 manner to non-degenerate fixed points of �k(w) in D whose orbits are
in the class αk,w (and there is a similar correspondence for the classes τi2(α

′
k) and α′

k). Note
that since Claim 3.14 uses Lemma 1.3, this is the point where the algebraic Lemma 1.3 enters
the proof.

Therefore it is enough to restrict the analysis to the dynamics on D, and further, to the
dynamics on C , since z ∈ i2(C). By Claim 3.9, for large enough k there are 22r non-
degenerate fixed points of �k(w) in the class αk,w , indexed by = (ε0, ..., ε2r−1) ∈ {±1}2r ,
such that their actions and Conley-Zehnder indices are given by Eqs. 3,4. Since i2 preserves
actions and Conley-Zehnder indices by construction, this proves Proposition 3.11.

Similarly, setting w = (V H)r , by Claim 3.10 for large enough k ∈ K there are 22r

non-degenerate fixed points of�k(w) in the class α′
k , such that fixed points in different orbits

have action gaps that grow linearly with k. The injection i2 preserves actions, so this proves
Proposition 3.12. ��

We finish this section with the proofs of the claims.

Proof of Claim 3.13 Denote z = γ̃ (0). Recall that ψ ′
k,w is the piecewise-linear version of

ψk,w defined in Sect. 3.2 and that it is the concatenation of some autonomous Hamiltonian
isotopies f N1t

0,V , f M1t
0,H , ..., while ψk,w is their composition. Thus γ̃ and t �→ ψ ′

k,w(t)(z) are
freely homotopic loops in C .

Therefore it is enough to show there exist some integers k1, ..., kr , l1, ..., lr ∈ Z and
u1, ..., ur , v1, ..., vr ∈ {0, 1} such that [t �→ ψ ′

k,w(t)(z)]π0(L C) = ηC,s0(
r
m=1a

km c−um

blm cvm ), since homotopic loops have the same ηC,s0 -images. This is shown in the proof of
Lemma 4.2 in [1] - in their notation, ψ ′

k,w(t) is denoted φt and kμ, lμ, uμ, vμ are denoted
nμ,mμ, εμ, νμ respectively, for 1 ≤ μ ≤ r (note we do not need the whole statement of
Lemma 4.2). ��
Proof of Claim 3.14 The two assumptions are similar and the proofs for the two cases are the
same. For concreteness, assume τi2(γ ) = τi2(αk,w), the other case is analogous.

Let δ ∈ π1(C, s0) be any element such that γ = ηC,s0(δ). By assumption, τi2(γ ) =
τi2(αk,w). Commutativity implies η�,i2(s0)((i2)∗δ) = η�,i2(s0)((i2)∗βk,w), so one sees that
(i2)∗δ and (i2)∗βk,w are conjugate in π1(�, i2(s0)).

In the case where the genus of � is 2, recall that π1(D, s0) = F3 and that (i2)∗ : F3 →
π1(�, i2(s0)) is exactly the same homomorphism as in the requirements of Lemma 1.3.

In the case where the genus of � is 3, denote

p1234 : π1(�, i2(s0)) → 〈g1, g2, g3, g4|[g1, g2][g3, g4]〉,
g1 �→ g1, g2 �→ g2, g3 �→ g3, g4 �→ g4,

g5, g6 �→ 1,

and note that p1234◦(i2)∗ is exactly the homomorphism as in the requirements of Lemma 1.3.
Since the elements (i2)∗δ, (i2)∗βk,w are conjugate in π1(�, i2(s0)), so are their images
(p1234 ◦ (i2)∗)(δ), (p1234 ◦ (i2)∗)(βk,w) conjugate in 〈g1, g2, g3, g4|[g1, g2][g3, g4]〉.

In both cases, we get by Lemma 1.3 that δ and βk,w are conjugate in π1(D, s0), so
γ = ηD,s0(δ) = ηD,s0(βk,w) = αk,w by definition of ηD,s0 . ��
Proof of Claim 3.15 Under both of the assumptions (that the orbit of z is in the class τi2(αk,w)

or τi2(α
′
k)), the orbit of z is in the class η�,i2(s0)(

r
m=1(g1g3)

k2m−1(g2g
−1
1 g−1

2 g3)k2m ) for
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some sequence k1, ..., k2r ∈ Z, since (i2)∗(a) = g1g3, (i2)∗(b) = g2g
−1
1 g−1

2 g3. Note that
for large enough k, the elements km in this sequence all satisfy |km | ≥ 2.

As noted in Sect. 2, π1(�) is a free product of H1 = 〈g1, g2〉, H2 = 〈g3, g4〉 with
amalgamation of subgroups A = 〈[g1, g2]〉, B = 〈[g3, g4]〉 by the isomorphism

φ : A → B,

[g1, g2] �→ [g3, g4]−1.

In the case where the genus of � is 3, π1(�) is a free product of H1 = 〈g1, g2〉, H2 =
〈g3, g4, g5, g6〉 with amalgamation of subgroups A = 〈[g1, g2]〉, B = 〈[g3, g4][g5, g6]〉 by
the isomorphism

φ : A → B,

[g1, g2] �→ ([g3, g4][g5, g6])−1.

Note that z ∈ i2(D), otherwise z is a degenerate fixed point. Assume by contradiction
z ∈ i2(C1 ∪ C2). Denote the orbit of z under (i2)∗ξk,w(t) by γ̃ : S1 → �.

If z ∈ i2(C1), then γ̃ (t) ∈ i2(C1) for all t , since γ̃ (t) ∈ i2(D) for all t , and C1 is a
connected component of D. This means γ̃ is (freely) homotopic to some loop δ̃ : S1 →
� based in i2(s0) with [δ̃]π1(�,i2(s0)) = gn1 for some n ∈ Z, since by construction τi2 ◦
ηC1,s′1(d1) = η�,i2(s0)(g1) (recall that d1 is the homotopy class of a loop going around i2(C1)

once). Therefore,

η�,i2(s0)

(
r

m=1(g1g3)
k2m−1(g2g

−1
1 g−1

2 g3)
k2m

)
= [γ̃ ]π0(L �) = [δ̃]π0(L �) = η�,i2(s0)(g

n
1 ),

and so r
m=1(g1g3)

k2m−1(g2g
−1
1 g−1

2 g3)k2m ∼ gn1 .
Note that (gn1 ), a sequence with a single element, is a cyclically reduced sequence of

〈H1 ∗ H2, A = B, φ〉, so gn1 is a cyclically reduced element, with len(gn1 ) = 1. Recall that
w is given in cyclically reduced form, thus ∀ 1 ≤ m ≤ r : Mm, Nm �= 0. Since for all m,

|km | ≥ 2, by Claim 2.3 it can be seen that len
(
r

m=1(g1g3)
k2m−1(g2g

−1
1 g−1

2 g3)k2m
)

> 1, in

contradiction. If the genus of � is 3, then note that p1234 (defined in the proof of Claim 3.14)
preserves factors (in the sense of the proof of Claim 2.3), which means that

len(r
m=1(g1g3)

k2m−1(g2g
−1
1 g−1

2 g3)
k2m ) =

= len(p1234(
r
m=1(g1g3)

k2m−1(g2g
−1
1 g−1

2 g3)
k2m )) > 1,

by Claim 2.3. This is again a contradiction. Therefore z /∈ i2(C1).
Likewise, assume z ∈ i2(C2). Similarly to the previous case, there is a conjugacy between

r
m=1(g1g3)

k2m−1(g2g
−1
1 g−1

2 g3)k2m and gn3 in π1(�, i2(s0)) for some n ∈ Z. As before,
len(r

m=1(g1g3)
k2m−1(g2g

−1
1 g−1

2 g3)k2m ) > 1 and len(gn3 ) = 1, but len is conjugation-
invariant, so this is a contradiction.

All cases lead to a contradiction, therefore z ∈ i2(C). ��

4 Incompressibility in genus 3

This sectiondescribes an embedding i3 of an egg-beater-like surface E = C
⊔

C1
⊔

C2
⊔

C3

to a closed orientable surface �3 of genus 3 such that i3 �C is incompressible, i.e.
(i3 �C )∗ : π1(C) → π1(�3) and τi3�C : π0(LC) → π0(L�3) are both injective. This
incompressibility will imply Theorems 1.1, 1.2 by following the original proofs in [11] and
[1]. Notation from previous sections is used in this section.
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Fig. 10 The embedding i3. This
figure is embedded in S2

i3(CV ) i3(CH)

i3(C2)i3(C1) i3(C3)

i3(s0)

4.1 The egg-beater surface andmap and the embedding

Recall the egg-beater surface D = CV
⋃

V H0,1
CH

⊔
C1

⊔
C2 defined in Sect. 3 and the

cylinderC∗ = [−1, 1]×R/LZ. LetC3 be another copy ofC∗ and define E = D
⊔

C3, with
the symplectic form dx ∧ dy on every component. Denote by c3 : C∗ → E, e3 : D → E
the symplectic inclusions, i.e. e3

⊔
c3 : D ⊔

C∗ → E is the identity.
The embedding i3 : E ↪→ �3 is defined in two parts. First, embed C symplectically

into S2. Note that C separates the sphere into 4 connected components. Choose any one of
these components and connect it with handles to the other 3 components, with one handle
each. The result is a genus 3 surface �3, this defines i3 �C . Define i3 on C1

⊔
C2

⊔
C3 by

symplectically embedding each of them on a different handle. The embedding i3 can be seen
in Fig. 10 and the generators of π1(�3, i3(s0)) = 〈g1, ..., g6|[g1, g2][g3, g4][g5, g6]〉 can be
seen in Fig. 11. The orientations of i3 �C j for j = 1, 2, 3 are chosen such that

τe3◦c1 [t �→ (0, Lt)]π0(L C∗) = η�3,i3(s0)(g1),

τe3◦c2 [t �→ (0, Lt)]π0(L C∗) = η�3,i3(s0)(g3),

τc3 [t �→ (0, Lt)]π0(L C∗) = η�3,i3(s0)(g5).

The various cylinders, egg-beater surfaces and closed surfaces mentioned in this paper
and the embeddings between them are summarized in Fig. 12.

As can be seen in Fig. 11, the induced homomorphism (i3)∗ : F3 → π1(�3, i3(s0)) acts
on the generators a, b, c of F3 so:

a �→ g1g3,

b �→ g3g5,

c �→ g3,

where a, b, c ∈ π1(C, s0) are as defined in Sect. 3.2.
The following claim is key in proving Theorems 1.1, 1.2 in genus 3.
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g1

g3
g5

i3(s0)

g2

g4

g6

Fig. 11 The generators of π1(�3, i3(s0)), dashed lines only for visibility

C Σ4

C∗ D Σ

E Σ3

i

e2cV

cH

c1 c2

c3

i2

e3

i3

Fig. 12 Embeddings between the surfaces

Claim 4.1 The map i3 �C is incompressible, i.e. (i3 �C )∗ and τi3�C are injective.

Define the egg-beater maps on E as follows:

�k : F2 → Hamc(E),

V �→ (e3 ◦ e2 ◦ cV )∗ fk
⊔

−(e3 ◦ c1)∗ fk
⊔

−(e3 ◦ c2)∗ fk
⊔

0 �C3 ,
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H �→ (e3 ◦ e2 ◦ cH )∗ fk
⊔

0 �C1

⊔
−(e3 ◦ c2)∗ fk

⊔
−(c3)∗ fk .

These areHamiltonian diffeomorphisms:�k(V ) can be seen to be generated by theHamil-
tonian

(e3 ◦ e2 ◦ cV )∗hk
⊔

−(e3 ◦ c1)∗hk
⊔

−(e3 ◦ c2)∗hk
⊔

0 �C3 ,

and �k(H) by the Hamiltonian

(e3 ◦ e2 ◦ cH )∗hk
⊔

0 �C1

⊔
−(e3 ◦ c2)∗hk

⊔
−(c3)∗hk .

The egg-beater maps on �3 are (i3)∗�k(w), for w ∈ F2.

4.2 Proof of Claim 4.1

In this proof we will use Dehn’s algorithm for the word problem for one-relator groups, see
[3]. Recall that all surface groups are groups of this type.

Theorem 4.2 [Dehn’s algorithm for the word problem of a one-relator group] Let G = 〈S|r〉
be a finitely generated one-relator group, where S = S−1 = {s1, ..., sn} is a finite symbol set
and r is a freely reduced word of length l on the symbols of S. Let w = k

j=1si j be a freely

reduced word of length k > 0 on the symbol set S, i.e. for any j , si j �= s−1
i j+1

.

If w = 1 in the group G, then w has a subword v of length at least
⌊ l
2

⌋ + 1, which is also
a subword of a cyclic permutation of r or of r−1.

Note that the notion of length of a word w used by Dehn is not exactly the same as the
one introduced in Sect. 2. Dehn’s notion refers to the minimal number of elements of S to be
multiplied in G to get the word w.

We are now ready to prove Claim 4.1.

Proof of Claim 4.1 Consider the automorphism I : F3 → F3 given by

a �→ ac,

b �→ cb,

c �→ c,

and denote by ϕ : F3 → π1(�3, i3(s0)) the following homomorphism:

a �→ g1,

b �→ g5,

c �→ g3.

Note that (i3 �C )∗ = ϕ ◦ I . By this decomposition, one can see that (i3 �C )∗ is injective.
Since I is an isomorphism, it preserves conjugacy classes, and so i3 �C is incompressible if
and only if ϕ preserves conjugacy classes, i.e. if and only if for all x, y ∈ F3 which are not
conjugates, ϕ(x), ϕ(y) ∈ π1(�3, i3(s0)) also are not conjugates.

Recall the definitions and the statement of the Conjugacy Theorem for Free Products with
Amalgamation, given in Sect. 2. The conjugacy relation, in any group, will again be denoted
by ∼. Assume by contradiction that there exist x, y ∈ F3 such that x � y and ϕ(x) ∼ ϕ(y).
In order for the concept of cyclically reduced elements of F3 to be defined, consider F3 =
〈a, b, c〉 as the free product 〈〈R〉 ∗ 〈S〉〉, for some two proper subsets R

⊔
S = {a, b, c}.
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This partition of {a, b, c} gives a well-defined concept of cyclically reduced sequences of
elements of F3 and also a well defined length function len = lenR,S : F3 → Z≥0, defined
in Sect. 2. Without loss of generality assume x, y are cyclically reduced. We will reach a
contradiction.

First, consider the case where for all partitions R, S, lenR,S(x), lenR,S(y) < 2. If
lenR,S(x) = 0 or lenR,S(y) = 0, then x = 1 or y = 1 respectively, and therefore
ϕ(x) = 1 or ϕ(y) = 1 respectively. This implies that ϕ(x) = ϕ(y) = 1 and by injec-
tivity of ϕ, x = y = 1, in contradiction. Therefore in this case we get that for all partitions
R, S, lenR,S(x) = lenR,S(y) = 1. This implies that there exist r , s ∈ {a, b, c} such that
x ∼ rn, y ∼ sm for some m, n ∈ Z. By passing to the abelianization Z

6 of π1(�3), one sees
that in fact rn = sm , so x ∼ y, in contradiction. Therefore there exists a proper partition
R

⊔
S = {a, b, c} such that lenR,S(x) ≥ 2 or lenR,S(y) ≥ 2. By symmetry between x and

y and between a, b, c one may assume that R = {a}, S = {b, c} and lenR,S(x) ≥ 2.
Denote the groups G = 〈g1, g2〉 � F2, H = 〈g3, ..., g6〉 � F4, subgroups A =

〈[g1, g2]〉 < G, B = 〈[g3, g4][g5, g6]〉 < H , and the isomorphism

ψ : A ∼−→ B,

[g1, g2] �→ ([g3, g4][g5, g6])−1.

Note that π1(�3) = 〈G ∗ H , A = B, ψ〉 and that ϕ preserves factors in the sense of Sect. 2.
With respect to this decomposition, ϕ(x), ϕ(y) are also cyclically reduced, since x, y are.
Let (x1, ..., xn) be a cyclically reduced sequence representing x (i.e. x = n

i=1xi ).
Since ϕ(x) ∼ ϕ(y), by the Conjugacy Theorem for Free Products with Amalgamation,

there exist μ ∈ A, 1 ≤ k ≤ n such that

ϕ(y) = μ · k−1
i=k ϕ(xi ) · μ−1 := μ · ϕ(xk) · ... · ϕ(xn) · ϕ(x1) · ... · ϕ(xk−1)μ

−1,

and since A = 〈[g1, g2]〉, we see that ϕ(y) = [g1, g2]l · k−1
i=k ϕ(xi ) · [g1, g2]−l for some

l ∈ Z.
If l = 0, ϕ(y) = k−1

i=k ϕ(xi ). Since ϕ is injective, this equation can be pulled back to F3
to get y = k−1

i=k xi ∼ x , in contradiction. Thus l �= 0. Without loss of generality one can
assume l > 0, the other case is treated in the same manner.

Since Im(ϕ) = 〈g1, g3, g5〉, denote
ϕ(xk) = f1, ϕ(xk+1) = f2, ..., ϕ(xn) = fn−k+1, ϕ(x1) = fn−k+2, ..., ϕ(xk−1) = fn,

with every f j ∈ {g1, g3, g5}±1. Similarly, since Im(ϕ) = 〈g1, g3, g5〉, let ϕ(y) =(
m

j=1 f
′
j

)−1
, with all f ′

j ∈ {g1, g3, g5}±1 and where the word m
j=1 f

′
j is freely reduced.

Our equation now reads

[g1, g2]l · n
j=1 f j · [g1, g2]−l · m

j=1 f
′
j = 1. (5)

Let w be the word on the symbols {g1, ..., g6}±1 that is the free reduction of the LHS
of Eq. 5. Note that n

j=1 f j ,
m
j=1 f

′
j are freely reduced and they contain no elements g±1

2 .

Therefore the subwords [g1, g2]l and [g1, g2]−l haven’t been fully reduced in the reduction
that results in w, i.e. w contains at least one instance of the subword g2g

−1
1 g−1

2 (note that the
g1 at the beginning of the [g1, g2] may have been reduced). Specifically, w is not the empty
word.

Recall that the single relator in the group π1(�3, i3(s0)) is r� = [g1, g2][g3, g4][g5, g6],
of length 12. Sincew doesn’t contain any occurrences of g±1

4 and g±1
6 , one sees thatw cannot

contain a subword a cyclic permutation of r� or its inverse that is of length at least 7, since
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142 A. Chor

every such subword contains either g±1
4 or g±1

6 or both. By Dehn’s algorithm, we now see
that w = 1 in the group π1(�3, i3(s0)) is a contradiction. This concludes the proof. ��
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