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Abstract
We consider an automorphism of an arbitrary CAT (0) cube complex. We study its com-
binatorial displacement and we show that either the automorphism has a fixed point or it
preserves some combinatorial axis. It follows that when a f.g. group contains a distorted
cyclic subgroup, it admits no proper action on a discrete space with walls. As an application
Baumslag-Solitar groups and Heisenberg groups provide examples of groups having a proper
action on measured spaces with walls, but no proper action on a discrete space with wall.

Résumé
Nous considérons un automorphismed’un complexe cubiqueCAT (0)général.Nous étudions
son déplacement combinatoire, et nous établissons une dichotomie: ou bien l’automorphisme
fixe un point, ou bien il préserve un axe combinatoire. Il en résulte qu’un groupe de type
fini contenant un sous-groupe cyclique distordu n’agit pas proprement sur un espace à murs
discret. Ainsi les groupes de Baumslag–Solitar ou de Heisenberg fournissent des exemples
de groupes agissant proprement sur un espace à murs mesurés, mais pas sur un espace à murs
discret.
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250 F. Haglund

1 Introduction

A space with walls is a set V together with a collectionH of “separating” objects: the walls.
It is required that two points are separated by finitely many walls (see [7]). Spaces with walls
appear in various classical combinatorial structures, like the Davis-Moussong complex of
a Coxeter group (see [4,8]), simply-connected polygonal complexes all of whose polygons
have an even number of sides or CAT (0) cube complexes.

This notion of “discrete” space with walls was generalized in [3] to that of a space with
measured walls. Here there is a measure on the set of walls such that the measure of the set of
walls separating two given points is finite - this finite measure is called the wall-distance, it is
indeed a (pseudo-)distance. The case of the counting measure on the set of walls corresponds
to a discrete space with walls. At the end of their paper the authors of [3] asked :

Question 1.1 Does a discrete group acting properly on a space with measured walls neces-
sarily admit a proper action on a discrete space with walls ?

The Baumslag-Solitar group BS(m, n) with parameters m, n ∈ N
∗ has the following

presentation:

BS(m, n) := 〈 a, b | bamb−1 = an 〉.
The groups BS(m, n) all act properly on a space with measured walls. We briefly recall such
an action. First we have the action on the (locally finite) Bass-Serre tree Tm,n of BS(m, n)

seen as the HNN -extension of the cyclic group generated by a by the isomorphism b sending
the subgroup 〈am〉 onto the subgroup 〈an〉. This gives an action on a simplicial tree, thus a
discrete space with walls. But this action is not proper since a fixes a vertex. We can also see
a as a unit translation of the real line R, and b as a well-choosen non trivial homothety of R.

For example using matrices we may let A =
(
1 1
0 1

)
, B =

(
eβ 0
0 e−β

)
with (eβ)2 = n

m , then

a �→ A, b �→ B induces a representation of BS(m, n) into PSL(2,R), the isometry group
ofH2. Thus BS(m, n) is represented as a parabolic group of isometries ofH2, in such a way
that the subgroup 〈a〉 acts properly. Now H

2 has a natural PSL(2,R)-invariant structure of
space with measured walls (see section 3 in [3]). The associated wall-distance is the standard
hyperbolic metric. The element a is an horocyclic translation and it is readily seen that the
action of BS(m, n) on the product space with measured walls Tm,n × H

2 is proper (private
communication by A. Valette, see also [5])

In this paper we answer in the negative to Question 1.1 by proving the following:

Theorem 1.2 For m �= n the group BS(m, n) has no proper action on a (discrete) space with
walls.

We want to show that for every action of BS(m, n),m �= n on a space with walls (V ,H),
all orbits of the infinite cyclic group generated by a are bounded. To do so we consider the
CAT (0) cube complex X naturally associated to (V ,H) and the induced action of BS(m, n)

on it. This complex was introduced simultaneously in [2,9], thus generalizing the previous
constructions of [10,12].

Let us review some elementary properties of the CAT (0) cube complex X (see [2,9] for
details). There is an embedding V → X0 which is an isometry when V is equipped with
the wall-distance (so d(v, v′) is the number of walls separating {v, v′}) and X0 is equipped
with the combinatorial distance of the 1-skeleton X1. An automorphism f of the space with
walls (V ,H) extends to an automorphism f̄ of X . The property of having bounded orbits
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Isometries of CAT(0) cube complexes are semi-simple 251

is equivalent for f or for f̄ . And the map f �→ f̄ is an injective extension morphism
Aut(V ,H) → Aut(X). It follows that Theorem 1.2 is a consequence of its analogue for
CAT (0) cube complexes:

Theorem 1.3 For m �= n the group BS(m, n) has no proper action on a C AT (0) cube
complex.

Here is a short argument establishing Theorem 1.3 when the cube complex is finite dimen-
sional. In that case the element a either fixes a point or preserves a CAT (0) geodesic on
which it has a positive translation length L . But this latter case is impossible ifm �= n because
the Baumslag-Solitar relation imposes mL = nL .

In order to handle the general case we establish a classification of automorphisms of
arbitrary CAT (0) cube complexes. We say an automorphism of a cube complex is com-
binatorially elliptic if it fixes a vertex. We say an automorphism f of a cube complex is
combinatorially hyperbolic if f preserves a combinatorial geodesic on which it has a positive
translation length δ, and for any vertex v in the cube complex we have d(v, f (v)) ≥ δ. Recall
the cubical subdivision of a cube complex is obtained by decomposing each n-dimensional
cube in the 2n subcubes determined by the n (centered) hypercubes. Our main result is:

Theorem 1.4 Every automorphism of a C AT (0) cube complex is either combinatorially
elliptic or combinatorially hyperbolic (on the cubical subdivision).

An automorphism acts stably without inversion if every power of the automorphism acts
without inversion.Any automorphism acts stablywithout inversion on the cubical subdivision
(see Lemma 4.2). Thus we deduce Theorem 1.4 from the following more precise result:

Theorem 1.5 Every automorphism of a C AT (0) cube complex acting stably without inver-
sion is either combinatorially elliptic or combinatorially hyperbolic.

As was suggested to us by C. Druţu, using the fact that am
k = ban

k
b−1 in BS(m, n) we

see that the subgroup 〈a〉 is distorted (for m �= n). So we can deduce Theorem 1.3 from the
following:

Theorem 1.6 Let � denote a finitely generated group containing an element a such that the
subgroup 〈a〉 is distorted in �. Then the infinite subgroup 〈a〉 has a fixed point in every action
of � on a C AT (0) cube complex. Consequently � has no proper action on a discrete space
with walls.

For example we deduce:

Corollary 1.7 Let H = 〈a, b, c | [a, c] = [a, b] = 1, [b, c] = a〉 denote the (discrete)
Heisenberg group and let H → G denote a morphism which is injective on the distorted
subgroup 〈a〉. Then G has no proper action on a discrete space with walls.

Note that since the Heisenberg group H is nilpotent it is amenable and thus acts properly
on a space with measured walls (see [3, Theorem 1 (5)]). So H itself is an other negative
answer to Question 1.1.

InSect. 2we review someclassical facts about the geometry ofCAT (0) cube complex, first
considered as combinatorial objects by Gromov in [6]. Thus people familiar with CAT (0)
cube complexes may skip it. We concentrate on the combinatorial distance between vertices
and insist on the role of hyperplanes. All results here are classical, except that no assumption
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of finite dimension is made. For this reason we use cubing instead of CAT (0) cube complex
in the core of the text.

In Sect. 3wedefine the translation lengths of an automorphismof aCAT (0) cube complex,
and we give the two (combinatorial) types we are interested in: (combinatorially) elliptic or
(combinatorially) hyperbolic.

In Sect. 4 we generalize to arbitraryCAT (0) cube complexes the notion of action without
inversion that occurs in the study of groups acting on trees (see [11]). In particular we show
that a group acting on a CAT (0) cube complex has no inversion on the cubical subdivision
(see Lemma 4.2).

In Sect. 5 we prove that if an automorphism of a CAT (0) cube complex preserves a
combinatorial geodesic then its minimal (combinatorial) displacement in the complex is the
same as on the geodesic.

In Sect. 6 we prove Theorem 1.5. So we show that an automorphism acting stably without
inversion and without fixed point preserves a combinatorial geodesic (Theorem 6.3 in the
text). We then deduce Theorem 1.6.

I would like to thank Estelle Souche, Yves Stalder, Alain Valette, Tomasz Elsner, Cornelia
Druţu and Dani Wise for helpful discussions on this subject, as well as the referee for his
efficiency.

2 Geometry of CAT(0) cube complexes

2.1 Cube complexes and non-positive curvature conditions

The following notion of cube complexes is equivalent to the notion of cubical complexes
introduced in [1, Definition 7.32 p 112].

Definition 2.1 (Cube complexes) Let X denote some set. A parametrized cube of X is an
injective map f : C → X , where C is some euclidean cube. A face of a parametrized
cube f : C → X is a restriction of f to one of the faces of C . Two parametrized cubes
f : C → X , f ′ : C ′ → X are isometric whenever there is an isometry ϕ : C → C ′ such
that f ϕ = f ′.

A cube complex is a set X together with a family ( fi )i∈I of parametrized cubes fi : Ci →
X such that

1. (Covering) Each point of X belongs to the range of some fi
2. (Compatibility) For any two maps fi , f j either fi (Ci ) ∩ f j (C j ) = ∅ or fi , f j have

isometric faces fi j : Ci j ⊂ Ci → X , f j i : C ji ⊂ C j → X such that fi (Ci j ) =
f j (C ji ) = fi (Ci ) ∩ f j (C j )

(We will require that the edges of all cubesCi have the same length, for example unit length.)
The cube associated to the parametrized cube fi : Ci → X is the image fi (Ci ). Note that

if two parametrized cubes fi : Ci → X , f j : C j → X have the same image, then by the
compatibility condition above the cubesCi ,C j are isometric, in particular they have the same
dimension. This dimension, say k, will be called the dimension of the cube fi (Ci ) = f j (C j ):
we will say for short that the cube is a k-cube. The 0-cubes are the vertices, the 1-cubes are
the edges, the 2-cubes are the squares ... We say X has dimension ≤ k when every cube has
dimension ≤ k. If there are cubes of arbitrarily dimension we say X has infinite dimension.

The interior of a cube fi (Ci ) of X is the image under fi of the interior of Ci (independant
of the parametrized cube f j : C j → X such that f j (C j ) = fi (Ci ) again by the compatibility
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condition). Note that by the covering condition each point p of X is contained in the interior
of some cube, and by the compatibility this cube is unique.

When only one family ( fi )i∈I is considered on X we will say by abuse of langage that
X is a cube complex, and we will denote by Xk the union of all k-cubes of X . This is the
k-skeleton of X . A subcomplex of X is an arbitrary union of cubes of X . Each subcomplex
inherits a natural structure of cube complex.

Let X , Y be two cube complexes. Amap f : X → Y is said to be combinatorialwhenever
for each parametrized cube fi : Ci → X , the composite f fi is isometric to a parametrized
cube of Y . In particular such a map sends vertices to vertices, edges to edges ... Observe
that the natural inclusions of subcomplexes are combinatorial. Note also that a combinatorial
map f : X → Y sends the interior of a cube C ⊂ X bijectively onto the interior of f (C).

The automorphism group of a cube complex X is the set of combinatorial bijections
X → X (this is indeed a subgroup of the permutation group of X ).

Example 2.2 Assume that H is a Hilbert space and that C is a collection of unit euclidean
cubes of H, such that for two cubes of C, their intersection is either empty or a cube of C.
Then the union X of all cubes C ∈ C has a natural structure of cube complex where the
parametrized cubes are the inclusion C → X ,C ∈ C.

Definition 2.3 (Subdivisions) Let C denote some euclidean cube. For short we will call
barycenter of C the barycenter of the set of vertices of C (with equal unit weights). A vertex
of the barycentric subdivision of C is the barycenter bF of some face F of C . A simplex of
the barycentric subdivision of C is the simplex affinely generated by vertices bF0 , . . . , bFk ,
where the faces Fi satisfy F0 ⊂ · · · ⊂ Fk . This defines a simplicial complexC ′

simpl called the
simplicial barycentric subdivision of C , whose geometric realization is identical withC . Note
that any isometryC → D of unit euclidean cubes induces an isomorphismC ′

simpl → D′
simpl.

Let X denote a cube complex. The simplicial barycentric subdivision of X is the simplicial
complex X ′

simpl whose cells are restrictions of the fi : Ci → X to the simplices of Ci
′
simpl.

Given two comparable faces F ⊂ G ⊂ C of a eulidean cube, the union of simplices
{bF0 , . . . , bFk } of C ′ satisfying F ⊂ F0, Fk ⊂ G is in fact a eulidean cube, which we call
a cube of the barycentric subdivision of C . This decomposition of the cube C into smaller
cubes endows C with a structure of cube complex, which we call the cubical subdivision of
C , denoted by C ′. Observe the edges of C are twice as long as the edges of C ′. An isometry
C → D induces an isomorphism C ′ → D′.

Let X denote a cube complex. The cubical subdivision of X is the cube complex X ′ whose
parametrized cubes are restrictions of the fi : Ci → X to the cubes of the cubical subdivision
of Ci .

Definition 2.4 (Links of vertices) Let X denote a cube complex, and let v denote some vertex.
The collection of cubes of X properly containing v is an abstract simplicial complex, whose
set of vertices is the set of edges of X containing v. We will denote this simplicial complex
by link(v, X) (the link of v in X ).

The cube complex X is combinatorially non positively curved if each vertex link is flag
(that is each complete subgraph is the 1-skeleton of a simplex). We say that X is combinato-
rially CAT (0) whenever X is combinatorially non positively curved and simply-connected.
Following Sageev we will rather use the word cubing instead of the expression: combinato-
rially CAT (0) cube complex.

Definition 2.5 (The pseudometric of a cube complex, see [1] 7.38 p 114) Let X denote a
cube complex. A piecewise geodesic of X with endpoints x, y is a map c : [a, b] → X
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such that c(a) = x, c(b) = y, there is a subdivision a = t0 ≤ · · · ≤ tn = b, a sequence
of parametrized cubes f1 : C1 → X , . . . , fn : Cn → X and a sequence of isometries
(ci : [ti−1, ti ] → Ci )1≤i≤n satisfying fi ci = c on [ti−1, ti ] for 1 ≤ i ≤ n.

The length of the piecewise geodesic is |b − a|.
We define a pseudometric d on X by setting d(x, y) = the infimum of the lengths of

piecewise geodesics of X with endpoints x, y.

Here are now two results linking the metric and the combinatorial viewpoint on cube
complexes.

Lemma 2.6 The pseudometric d on a cube complex X is a geodesic length metric.

Lemma 2.7 [6] Let X denote some cube complex. Then X is combinatorially non positively
curved if and only if the length metric d on X is locally C AT (0).

In particular a cube complex is metrically C AT (0) if and only if it is combinatorially
C AT (0).

The two previous lemmas have been established for cube complexes whose cubes have all
dimension ≤ n ; see for example [1]. This result is so classical for people working on cube
complexes that they usually identify the metric condition CAT (0) with its combinatorial
analogue. For instance, when Chatterji-Niblo or Nica achieve the geometrization of spaces
with walls [2,9], turning these to CAT (0) cube complexes, they in fact check the combi-
natorial condition, and do not tell us anything about the length metric - although Gromov’s
hypothesis of finite dimensionality usually fails.

We do not insist since in the sequel we will be only concerned with the combinatorial
geometry of CAT (0) cube complexes (or cubings), which we recall in the next section. Our
slogan is: in cubings the combinatorial geometry is as nice as the CAT (0) geometry. In fact
the result of this paper shows that, in some context, it is even nicer.

In the sequel we do not make any restriction on the cubing X : in particular we do not
assume dim X < ∞.

2.2 Hyperplanes, combinatorial distance and convex subcomplexes

Definition 2.8 A combinatorial path of a cube complex X is a sequence γ = (v0, v1, . . . , vn)

of vertices of X such that for each i = 0, . . . , n − 1 either vi+1 = vi or vi+1, vi are the two
(distinct) endpoints of some edge of X . The initial point of γ is v0, the terminal point of γ

is vn and the length of γ is n. If for each i = 0, 1, . . . , n − 1 we have vi+1 �= vi we say γ is
non stuttering.

When γ = (v0, v1, . . . , vn), γ
′ = (w0, w1, . . . , wm) are two combinatorial paths such

that the terminal point of γ is the initial point of γ ′ we define as usual the product γ.γ ′ to be
the path (v0, v1, . . . , vn−1, vn = w0, w1, . . . , wm).

The combinatorial distance between two vertices x, y of a connected cube complex is the
minimal length of a combinatorial path joining x to y. It will be denoted by d(x, y), and
a path of length d(x, y) will be called a (combinatorial) geodesic. We note that d(x, y) is
also the minimal length of a non stuttering combinatorial path joining x to y (in other words
geodesics are non stuttering).

Sequences (pn)n∈Z of vertices of the cube complex such that d(pn, pm) = |m − n| will
also be called (infinite) geodesics.
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Definition 2.9 (Convex subcomplexes) Let X , Y denote cube complexes and let f : X → Y
denote a combinatorial map.We say f is a local isometry if for each vertex v of X the induced
simplicial map fv : link(v, X) → link( f (v), Y ) is injective and has full image (recall that
a subcomplex L ⊂ K of a simplicial complex is full whenever each simplex of K whose
vertices are in L in fact belongs to L).

A subcomplex of a cube complex is locally convex if the inclusion map is a local isometry.
A subcomplex Y of a cube complex X is (combinatorially) convex if it is connected, and

any (combinatorial) geodesic between two vertices of Y has all of its vertices inside Y .

Remark 2.10 (relations between the various convexity notions) Let X be a cubing and let
Y ⊂ X denote a connected subcomplex. The following belong to folklore :

Y is locally convex in the sense of the above definition iff it is geodesically convex for the
CAT (0) metric.

If Y is locally convex then Y is combinatorially convex.
If Y is combinatorially convex and full (in the sense that it contains a cube of X if and

only if it contains its vertices), then Y is locally convex.

Definition 2.11 (Walls, hyperplanes) Let X denote any cube complex.Twoedgesa, b of X are
said to be elementary parallel whenever they are disjoint but contained in some (necessarily
unique) square of X . We call parallelism the equivalence relation on the set of edges of X
which is generated by elementary parallelisms. A wall of X is an equivalence relation for the
parallelism relation. When an edge e belongs to some wall W we say that W passes through
e, or that W is dual to e. We also say that a cube C of X is dual to the wall W when C
contains an edge e to which W is dual.

LetC denote some euclidean cube of dimension n, and letE denote the ambient euclidean
space. For every edge e of C with endpoints p, q we consider the hyperplane of E consisting
in points which are at the same distance of p and q . Then the intersection of this hyperplane
with C is a euclidean cube, whose cubical subdivision is a subcomplex of C ′. We denote this
subcomplex of C ′ by he, and call it the hyperplane of C dual to e. Observe that he = he′ iff
e and e′ are parallel. Note also that the hyperplane of a segment consist in its midpoint.

Now let e denote some edge of a cube complex X , and let W denote the wall through
e. For each parametrized cube f : C → X and each edge a of C such that e ‖ f (a), we
consider the image under the induced combinatorial map f : C ′ → X ′ of the hyperplane ha
of C dual to a. The union of all these f (ha) is called a hyperplane of X , it will be denoted
by He, and we will say that He is dual to e. (Note that a hyperplane of X is a subcomplex of
the subdivision X ′.) Clearly He = He′ iff e and e′ are parallel in X . In other words the set of
edges to which a given hyperplane is dual consists in a wall. Thus walls and hyperplanes are
in one-to-one correspondance. We will say that a cube C of X is dual to some hyperplane H
when C contains an edge e to which H is dual.

Let H denote some hyperplane of a cube complex X . The neighbourhood of H is the
union of all cubes dual to H . We will denote it by NH .

Combining results of Sageev we get the following description of hyperplane neighbour-
hoods:

Theorem 2.12 (see [10]) Let X be a cubing and let H denote some hyperplane of X with
neighbourhood NH .

1. H separates X into two connected components, called the (open) half-spaces delimited
by H
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2. NH is (combinatorially) convex in X
3. NH admits an automorphism σH that fixes pointwise H and exchanges the endpoint of

each edge dual to H

Proof 1. This is Theorem 4.10 in [10].
2. By the separation property above, it follows that the union of all cubes of NH disjoint

of H consists in the disjoint union of two connected subcomplexes, which we call the
boundary components of NH . Then Theorem 4.13 of [10] tells us that each boundary
component of NH is a combinatorially convex subcomplex. The combinatorial convexity
of NH itself follows immediately, using the fact that H disconnects X .

3. We first claim that for each vertex x of NH there exists a unique edge ex dual to H and
containing x . The existence is by definition of NH , and we just have to check uniqueness.
Assume by contradiction that there are two distinct edges e, e′ containing x and dual to
H . Then the endpoints y, y′ of e, e′ distinct from x are contained in the same connected
boundary component of NH . By Theorem 4.13 of [10] this boundary component is
convex. Thus (y, x, y′) is not a geodesic, so that d(y, y′) ≤ 1. The complex X is simply-
connected and its 2-faces are polygons with even length: it follows that the length mod.
2 of paths in X depends only on the endpoints. Thus d(y, y′) is even, and we deduce that
y = y′, so that e = e′, contradiction.
Let Q denote any cube of X dual to H . Then by the previous remark any two edges of

Q dual to H in X are in fact parallel inside Q. Let σQ denote the reflection of Q preserving
each edge of Q dual to H , and exchanging the endpoints of these edges. For Q1 ⊂ Q2 the
restriction of σQ2 to Q1 is σQ1 . Thus the collection of reflections (σQ)Q dual to H defines a
reflection σH : NH → NH with the desired properties. ��
Definition 2.13 (hyperplane crossing a non-stuttering path) Let X be a cube complex, let
γ = (x0, x1, . . . , xn) denote a non stuttering path, let (e1, . . . , en) denote the sequence of
edges of X such that the vertices of ei are vi−1, vi . A hyperplane crosses γ iff it is dual to one
of the edges ei , and the sequence of hyperplanes that γ crosses is the sequence (H1, . . . , Hn)

where Hi is the hyperplane of X dual to ei .

The last part of Theorem 4.13 in [10] gives:

Theorem 2.14 Let X denote a cubing. Then a non stuttering path is a combinatorial geodesic
if and only if the sequence of hyperplanes it crosses has no repetition.

In particular the combinatorial distance between two vertices x, y is equal to the number
of hyperplanes of X that separates x and y.

3 Combinatorial translation length

An automorphism of a cubing is an isometry for the CAT (0) distance, and also for the
combinatorial distance on the set of vertices.

Definition 3.1 Let X be a cubing and let f ∈ Aut(X). For every point x ∈ X we denote
by δ0( f , x) the CAT (0) distance between x and f (x). And for every vertex p ∈ X0 we
denote by δ( f , p) the combinatorial distance between p and f (p). We then set δ0( f ) =
inf x∈X δ0( f , x) and δ( f ) = inf p∈X0 δ( f , p). We call δ0( f ) the CAT (0) translation length
of f , and δ( f ) the combinatorial translation length of f . Clearly translation lengths are
conjugation invariants.
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Lemma 3.2 (comparison between the two translation lengths) Let X be a cubing (where all
edges have unit length). Let f : X → X be an automorphism.

1. We have δ0( f ) ≤ δ( f ).
2. (the finite dimensional case) Assume the cubing X has dimension ≤ d. Then δ( f ) ≤

d δ0( f ).

sketch of proof For any vertex v ∈ X0 the number δ( f , v) is the length of some combinatorial
path from v to f (v). Since edges have length 1, we get δ0( f , v) ≤ δ( f , v). The inequality
δ0( f ) ≤ δ( f ) follows.

Assume now X has dimension≤ d . For vertices v,w ∈ X0 let {H1, . . . , Hn} be the family
of hyperplanes separating v fromw. It can be shown that there exists a subfamily of cardinality
k ≥ n

d of pairwise disjoint separating hyperplanes. Vertices are at CAT (0)-distance ≥ 1
2 of

any hyperplane, and twodisjoint hyperplanes are atCAT (0)-distance at least 1. Consequently
the CAT (0)-distance between p, q is at least k. The inequality δ0( f ) ≥ 1

d δ( f ) follows. ��

Estelle Souche told me the following (it also appears in an exercise of [1]):

Example 3.3 Consider the Hilbert space �2(Z) consisting of maps u : Z → R s.t.∑
n∈Z |u(n)|2 < +∞.
Let (ek)k∈Z denote the Hilbert basis such that ek(n) = 1 if n = k and ek(n) = 0 otherwise.

The set V = Z
(Z) of maps Z → Z with finite support is a subset of �2(Z). We consider the

unit cubes of �2(Z) whose vertices are elements of V , and whose edges are parallel to one
of the ek’s: the union of all these cubes is a cubing X of infinite dimension.

Define an isometry σ of �2(Z) on the Hilbert basis by σ(ek) = ek+1. The map f :
�2(Z) → �2(Z) defined by f (u) = e0 + σ(u) is an affine isometry of �2(Z). Note that
f (V ) = V and σ preserves (ek)k∈Z, thus f induces an isometry of X .
For any p ∈ N we have f p(0) = e1 + · · · + ep , whose norm tends to ∞ with p. Thus f

has no fixed point in �2(Z).
For each k ∈ N define a vector uk ∈ X as follows: uk(n) = 0 if n < 0 or n > k and

uk(n) = 1 − n
k if 0 ≤ n ≤ k. Then δ0( f , uk) =

√
1
k , thus δ0( f ) = 0.

In the terminology of [1] the isometry f of the CAT (0) space X is parabolic.
Note that δ( f ) > 0 since f has no fixed points. Since f (0) = e0 we have δ( f ) =

δ( f , 0) = 1. Ifwe set pn = f n(0) then (pn)n∈Z is a combinatorial infinite geodesic preserved
by f , on which f acts as a unit combinatorial translation length.

Definition 3.4 (Elliptic, hyperbolic) Let f ∈ Aut(X). We say that f is combinatorially
elliptic if f has a fixed point in X0. We say that f is combinatorially hyperbolic if f is not
elliptic and f preserves some infinite combinatorial geodesic γ on which it acts as a non
trivial translation. Any such geodesic γ will be called an axis for f .

Example 3.5 Let X denote a single edge. Then the automorphism of X exchanging the end-
points of the edge is neither elliptic nor hyperbolic.

4 Actions without inversion

In order to get rid of the trouble caused by automorphisms similar to the one described in
Example 3.5 we first introduce the corresponding notion:
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Definition 4.1 (Inversions) Let f denote an automorphism of a cubing X . Let H denote a
hyperplane of X , and let X+, X− denote the two half-spaces delimited by H . We say that f
has an inversion along H whenever f (X+) = X− (and thus f (X−) = X+, f (H) = H ).
We say that f acts without inversion if there is no hyperplane H such that f has an inversion
along H .

We say that the automorphism f acts stably without inversion when f and each power of
f act without inversion.
And we say that a group G of automorphisms of X acts without inversion if all of its

elements act without inversion. Note that if a group acts without inversion, then any of its
elements act stably without inversion.

Just as in the tree case we have:

Lemma 4.2 Let f denote an automorphism of some cubing X. Then f acts without inversion
on the cubical subdivision X ′.

Proof Every edge e of X ′ joins the center of a cube Q(e) of X to the center of one of its
codimension 1 face. For each edge e of X ′, denote by X ′+(e) the half-space of X ′ delimited
by the hyperplane dual to e, so that X ′+(e) contains the center of Q(e) but not the center of
the codimension 1 face that is perpendicular to e.

For any automorphism f of X and any edge e of X ′ we have f (X ′+(e)) = X ′+( f (e)).
If e1, e2 are opposite edges of a square of X ′ then X ′+(e1) = X ′+(e2). The Lemma

follows. ��
Question 4.3 Is there a finitely generated group G acting on a locally compact cubing all of
whose finite index subgroups have an inversion ?

5 Automorphisms preserving a geodesic

The following was suggested by Tomasz Elsner:

Proposition 5.1 Let G denote any graph, and let γ denote an infinite combinatorial geodesic
of G. If an automorphism f of G preserves γ then

1. either f has a fixed point in γ

2. or f exchanges two consecutive vertices of γ
3. or there is a number d ∈ Z, d �= 0 such that

for every n ∈ Z,we have f (pn) = pn+d

and furthermore in that case for every n ∈ Z we have δ( f ) = δ( f , pn) = |d|.
Note that the last property shows that for any other f -invariant geodesic γ ′, the translation

length of f on γ ′ is δ( f ) too. Note also that when G is the 1-skeleton of a cubing, the second
possibility in the Lemma above corresponds to an inversion. We thus get:

Corollary 5.2 Let X denote a cubing. Assume that f ∈ Aut(X) is combinatorially hyperbolic
and acts without inversion. Then f has the same translation length d on each axis, and in
fact d = δ( f ). Furthermore for any integer n > 0 the automorphim f n is hyperbolic, each
axis for f being an axis for f n, and we have δ( f n) = nδ( f ).
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Proof of Proposition 5.1 There is a bijection φ : Z → Z such that f (pn) = pφ(n). Since f is
an automorphism we have |φ(n + 1) − φ(n)| = 1. Thus φ(n) = d + εn, with ε ∈ {−1, 1}.

Assume first ε = −1. Either d is even: then f (p d
2
) = p d

2
. Or d is odd: then f exchanges

the adjacent vertices p d−1
2

, p d+1
2
.

Assume now ε = 1. If d = 0 then f fixes each point of γ . Else for every n ∈ Z we have
f (pn) = pn+d . Let us prove in this case that for every n ∈ Zwe have δ( f ) = δ( f , pn) = |d|.
Up to replacing (pn)n∈Z by (p−n)n∈Z, we may and will assume that d > 0.
So f acts on γ as a translation of length d . Let x denote any vertex of G. Then

d(p0, f n(p0)) = nd and by the triangle inequality

nd(x, f (x)) ≥ d(x, f n(x)) ≥ d(p0, f n(p0)) − d(p0, x) − d( f n(p0), f n(x))

= nd − 2d(p0, x).

Divide by n and let n tend to infinity to obtain the desired inequality d(x, f (x)) ≥ d . ��

6 Classification of automorphisms acting stably without inversion

Our main technical result is the following:

Lemma 6.1 Let f denote an automorphism of some cubing X. Let p denote a vertex of X
such that δ( f ) = δ( f , p). If f and each power of f act without inversion then for any integer
n ≥ 0 we have d(p, f n(p)) = nδ( f ).

The condition “without inversion” is necessary in view of Example 3.5. The condition
“stably without inversion” is also necessary: consider an order four rotation of a square.

Proof We may assume δ( f ) > 0. We then argue by contradiction. So assume that there is a
vertex p and a positive integer n such that δ( f ) = d(p, f (p)) and d(p, f n(p)) �= nδ( f ).
Consider a pair (p, n) with the smallest possible integer n. Observe that n ≥ 2.

Fix a combinatorial geodesic γ1 = (p0 = p, p1, . . . , pδ( f ) = f (p)). Set γi = f i (γ1).
The path γ = γ1γ2 . . . γn joins p to f n(p) and has length nδ( f ). By assumption γ is not a
geodesic. Thus d(p, f n(p)) < nδ( f ), and by Theorem 2.14 there exists a hyperplane H of
X crossing at least twice the path γ . For the argument we refer to Fig. 1.

By minimality of n the subpaths γ1γ1 . . . γn−1 and γ2γ3 . . . γn are geodesic. Thus by
Theorem 2.14 the hyperplane H crosses these subpaths of γ only once. This implies that H
crosses γ1 once, H crosses γn once and H does not cross at all the subpath γ2γ3 . . . γn−1.

The path γ contains three maximal subpaths not crossed by H . Two of these subpaths
contain the endpoints of γ and we let γH denote the third one (in the middle). We now choose
the hyperplane H crossing twice γ such that the length of γH is minimal. Then we claim
that the corresponding subpath γH is a geodesic: for else there would be a hyperplane H ′
crossing twice γH , hence also γ , and we would have γH ′ ⊂ γH , γH ′ �= γH , contradicting
the minimality of the length of γH .

Note that by maximality of the subpath γH the endpoints of γH are in NH (and are
not separated by H ). By Theorem 2.122. the neighbourhood NH is convex, thus we have
γH ⊂ NH . Let σH denote the path of NH symmetric to γH with respect to H . The initial
vertex of σH is one of the vertices pi of γ0. Let q ′ denote the vertex of σH adjacent to f (p);
the edge joining q ′ to f (p) is dual to H . We let q denote the vertex adjacent to p such that
f (q) = q ′, and we denote by K the hyperplane dual to the edge a joining q and p.

123



260 F. Haglund

Fig. 1 The vertex p has minimal displacement for the isometry f and for f 2, but not for f 3. We depict a
geodesic γ1 from p to f (p), and its images γ2 = f (γ1), γ3 = f (γ2). We illustrate a hyperplane H that
cuts twice the product path γ = γ1γ2γ3. The preimage hyperplane K = f −1(H) is dual to an edge a from
p to q. We have colored in blue a geodesic path symmetric to the maximal subpath of γ1that travels in the
neighborhood of H , on the same side as f (p) (the f image of this blue path is again in blue)

By symmetry inside NH (see Theorem 2.123.) we see that the vertex f (q) is on a geodesic
from p to f (p). Let γ ′ denote the part of this geodesic from p to f (q): it has length δ( f )−1.
Consider now the path γ ′′ = (q, p)γ ′. The length of this path is δ( f ), and it joins q to f (q).
Thus in fact d(q, f (q)) = δ( f ) and (q, p)γ ′ is a geodesic. In particular the hyperplane K
separates {q, f (q)}.

Consider now the product path γ ′′ f (γ ′′) . . . f n−2(γ ′′) joining q to f n−1(q), and of length
(n−1)δ( f ). Since d(q, f (q)) = δ( f ), byminimality of nwe see that γ ′′ f (γ ′′) . . . f n−2(γ ′′)
has to be a geodesic. In particular the hyperplane K separates {q, f n−1(q)}.

We claim that in fact K separates {q, f n−1(p)}. Otherwise K separates f n−1(p) and
f n−1(q). Thus K is dual to the edge f n−1(a). Since K is also dual to awe get f n−1(K ) = K .
But since K separates {q, f n−1(q)}we see that f n−1 has an inversion along K , contradiction.
Since K separates {q, f n−1(p)}, when we apply f we see that H separates { f (q), f n(p)}.
Thus H does not separate { f (p), f n(p)}. This is a contradiction, because, as we already
noticed, the path γ2γ3 . . . γn is a geodesic, and it is crossed exactly once by H . ��
Corollary 6.2 Assume that f ∈ Aut(X) acts stably without inversion and has no fixed point.
Then f is combinatorially hyperbolic. More precisely f has an axis through each vertex
p minimizing d(p, f (p)). For any integer n ≥ 0, each axis for f is an axis for f n and
δ( f n) = nδ( f ).

Proof Let p denote any of the vertices of X such that d(p, f (p)) = δ( f ). For brevity we
write δ( f ) = d .

Let γ0 = (x0, x1, . . . , xd) denote any combinatorial geodesic from p to f (p) (so that in
particular xd = f (x0)). For any integer k ∈ Z we define pk = f q(xr ) with q, r uniquely
defined by 0 ≤ r < d and k = r + qd . Note that for k = 0, 1, . . . , d we have pk = xk , and
for an arbitrary k we have f (pk) = pk+d . Thus γ = (pk)k∈Z is an infinite path. The map
x �→ d(x, f (x)) achieves its minimal value at p = p0, and thus at each vertex pkd , k ∈ Z.
By Lemma 6.1 it follows that the finite subpath (pk)k1d≤k≤k2d is a geodesic (for any pair
(k1, k2) ∈ Z

2 with k1 ≤ k2). Thus γ is an infinite geodesic, and by construction γ is invariant
under f .

We conclude by applying Corollary 5.2. ��
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We have proved:

Theorem 6.3 Every automorphism of a cubing acting stably without inversion is either com-
binatorially elliptic or combinatorially hyperbolic.

Remark 6.4 Let f denote an automorphism of a cubing X . Assume that f has an inversion
along a hyperplane H of X . Then either f is elliptic on the cubical subdivision X ′ and the
set of its fixed point is contained in the subcomplex H ⊂ X ′, or f is hyperbolic on X ′ and
all the axes of f are inside H .

We now prove Theorem 1.6 of the Introduction :

Proof Since a ∈ � is an infinite order distorted element we have |an |
n → 0. Assume� acts on

a cubing X . Up to passing to the cubical subdivision wemay assume� acts without inversion
on X . We claim that a has a fixed point in X , so that the action of � is not proper.

By Corollary 6.2 we have δ(an) = nδ(a).
Now for any decomposition g = s1 . . . sk we clearly have δ(g) ≤ ∑i=k

i=1 δ(si ). Consider
a word-geodesic decomposition an = s1 . . . skn on the finite set S of generators of �. We
deduce δ(an) ≤ kn maxs∈S δ(s). Since lim kn

n = 0 and δ(an) = nδ(a) we have δ(a) = 0,
which concludes the proof. ��
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