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Abstract
We first recall various formulations and approximations for the motion of an incompressible
fluid, in the well-known setting of the Euler equations. Then, we address incompressible
motions in porous media, through the Muskat system, which is a friction dominated first
order analog of the Euler equations for inhomogeneous incompressible fluids subject to an
external potential.
Résumé
On commence par rappeler plusieurs formulations et approximations décrivant lemouvement
d’un fluide incompressible dans le cadre bien connu des équations d’Euler. On s’intéresse
ensuite aux mouvements incompressibles en milieux poreux, au travers du système de
Muskat, qui est un analogue du premier ordre, dominé par la friction, des équations d’Euler
pour des fluides incompressibles inhomogènes soumis à un potentiel extérieur.

Keywords Partial differential equations · Calculus of variation · Euler’s equations · Fluid
mechanics · Flows in porous media · Multiphasic flows

1 Geometric formulation of the Euler equations, relaxation and
approximations

According to V.I. Arnold 1966 [3,4], the motion of an incompressible fluid, confined in
a compact Riemannian manifold D and moving according to the Euler equations, can be
described as a (constant speed) geodesic curve along the Lie group SDiff(D) of all possible
orientation and volume preserving maps of D, according to the L2 metric on its (formal) Lie
Algebra [23]. In the simple situation of the flat torus D = (R/Z)d or, alternately, a compact
domain D of the Euclidian space Rd , we may identify SDiff(D) as a subset of the Hilbert
space H = L2(D;Rd). Then, a solution of the Euler equations is just a curve

t ∈ R → Xt ∈ SDiff(D)

that minimizes ∫ t1

t0
||dXt

dt
||2Hdt
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196 Y. Brenier

on each short enough time interval [t0, t1], once Xt0 and Xt1 are fixed, which turns out to
mean that there is a function

(t, x) ∈ R × D → p(t, x) ∈ R

such that

d2Xt

dt2
(a) = −(∇ p)(t, Xt (a)), ∀(t, a) ∈ R × D.

Ebin and Marsden proved that the corresponding geodesic flow is well defined in a small
Sobolev neighborhood of the identity map [20]. When D is a contractile domain of Rd , with
d ≥ 3, Shnirelman [30] proved that, as d ≥ 3, the completion of SDiff(D) with respect to
the geodesic distance is the much wider set VPM(D) of all Lebesgue measure preserving
maps T , in the measure-theoretic sense, i.e.∫

D
f (T (a))da =

∫
D

f (a)da, ∀ f ∈ C(Rd).

He also proved the existence of many pairs of maps (X0, X1) in SDiff(D) which admit no
minimizing geodesic between them in SDiff(D) and for which sequences of approximate
minimizing geodesics generate unlimited micro-structures and cannot converge in any strong
sense. It is therefore natural to look for minimizing geodesics in the completion VPM(D),
but this also fails as explained in [10]. The cases d = 2 and d = 1 are also of interest. As
d = 2, VPM(D) is the right completion of SDiff(D) for the L2 metric but, surprisingly
enough, not for the geodesic distance, as a consequence of a theorem of Eliashberg and Ratiu
[21], as also shown by Shnirelman [30]. As d = 1, SDiff(D) is reduced to the identity map,
while VPM(D) is a very large space on which the concept of minimizing geodesics is not
trivial. Anyway, a “better” completion of SDiff(D) for d ≥ 2 and VPM(D) for d ≥ 1, is
definitely obtained through the embedding

T ∈ VPM(D) → μT (dxda) = δ(x − T (a))da ∈ DS(D)

where DS(D) denotes the set of all doubly stochastic Borel measures μ on the product
D× D, doubly stochastic meaning that each projection of μ is just the Lebesgue measure on
D. The completion, through the weak convergence of measures, has been proven by Neretin
in [26] (see also [15]).

1.1 Discrete incompressible flows

From a more concrete (and computational!) viewpoint, it is worth considering the discrete
version of a minimizing geodesic in VPM(D), in the simplest case when D is just the
unit cube [0, 1]d . We perform a dyadic subdivision of D in N = 2nd subcubes Dα , α =
1, . . . , N of equal volume, we denote by xα their center of mass, and we define a discrete
incompressible flow as a succession of M permutations σm , m = 1, . . . , M , in SN . This
type of approximation is crucial in the analysis done by Shnirelman [30]. We may also define
a discrete minimizing geodesic as a finite sequence of permutations that minimize

M−1∑
m=1

N∑
α=1

|x
σm+1

α
− xσm

α
|2,

where | · | denoted the Euclidian norm in R
d and permutations σ 1 and σ M are fixed. At

the numerical level, this idea was already considered in [9]. A natural iteration scheme
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Various formulations and approximations… 197

for this difficult combinatorial optimization problem amounts in updating, for each m =
2, . . . , M − 1, σm by σ̃m where σ = σ̃m minimizes

N∑
α=1

∣∣∣xσα − x
σm−1

α
|2 + |x

σm+1
α

− xσα

∣∣∣2 ,

or, equivalently,

N∑
α=1

∣∣∣∣xσα − x
σm−1

α
+ x

σm+1
α

2

∣∣∣∣
2

,

which is much easier to do, in particular as d = 1, when it just amounts to sorting the
sequence

α → x
σm−1

α
+ x

σm+1
α

in increasing order! Numerical experiments can therefore be easily performed in the case
d = 1. Let us show on Fig. 1 the example of

σ 1
α = α, σ M

α = inf(2α, 2N − 2α + 1).

As N ↑ ∞, we can guess from Fig. 1 how the sequence of permutations converge to a
minimizing geodesic along DS([0, 1]), with end points μ0 and μ1 respective given by

μ0(dxda) = δ(x − a)da, μ1(dxda) = δ(x − T (a))da,

where

T (a) = inf(2a, 1 − 2a)

is the well-known “triangle” (a.k.a “Matterhorn”) map in VPM([0, 1]).

1.2 Relaxation of the Euler equation

The combinatorial numerical scheme we just described suggests the following relaxed for-
mulation of the Euler equations:

Proposition 1 let (X , p) be a smooth solution to the Euler equations, written in material
coordinates:

d2Xt (a)

dt2
= −(∇ p)(t, Xt (a)),

where each Xt belongs to SDiff(D). Then, the pair of measures (c, q), respectively nonneg-
ative and valued in Rd ,

c(t, x, a) = δ(x − Xt (a)), q(t, x, a) = dXt

dt
(a)δ(x − Xt (a)),

togetherwith the scalar field p, obey the following self-consistent (pseudo-differential) system
of evolution equations:

∂t c(t, x, a) + ∇x · q(t, x, a) = 0,

(∂t q + ∇x · q ⊗ q

c
)(t, x, a) = −c(t, x, a)∇x p(t, x).
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198 Y. Brenier

Fig. 1 Example of a minimizing geodesic along DS([0, 1]) The initial and final maps are given in VPM([0, 1]
and drawn in box 1 and box 9. For the discretization, we use 16 time steps and 4000 cells. Intermediate
permutations are drawn every two time steps in box 2 through box 8 and approximate generalized maps that
obviously belong to DS([0, 1]) but not to VPM(D)

−�p(t, x) = ∇x ⊗ ∇x ·
∫
a

q ⊗ q

c
(t, x, a),

where we use notation

q ⊗ q

c
(t, x, a) = dXt (a)

dt
⊗ dXt (a)

dt
δ(x − Xt (a)).

Proof

Notice first that ∫
a
c(t, x, a) = 1,

directly follows from the fact that Xt belongs to SDiff(D).
Next, for every test-function f , we get

d

dt

∫
(x,a)

f (x, a)c(t, x, a) = d

dt

∫
f (Xt (a), a)da =

∫
(∇x f )(Xt (a), a) · dXt

dt
(a)da

= ∫
(x,a)

∇x f (x, a) · q)(t, x, a). Similarly:

d

dt

∫
(x,a)

f (x, a)q(t, x, a) = d

dt

∫
f (Xt (a), a)

dXt

dt
(a)da
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=
∫

(∇x f )(Xt (a), a) ·
(
dXt

dt
⊗ dXt

dt

)
(a)da −

∫
f (Xt (a), a)(∇x p)(t, Xt (a))da

=
∫

(x,a)

∇x f (x, a) · q ⊗ q

c
(t, x, a) − f (x, a)c(t, x, a)∇x p(t, x),

Finally:

−�p(t, x) = ∇x ⊗ ∇x ·
∫
a

q ⊗ q

c
(t, x, a)

follows from ∫
a
c(t, x, a) = 1.

End of proof.

1.3 Variational origin of the relaxed Euler equations

The relaxed Euler equations turn out to be the optimality conditions for the convex mini-
mization problem

inf

{∫
t,x,a

|q(t, x, a)|2
2c(t, x, a)

; (∂t c + ∇x · q)(t, x, a) = 0,
∫
a
c(t, x, a) = 1

}
,

where (c ≥ 0, q ∈ R
d) is a pair of Borel measures over [t0, t1] × D2, c being prescribed at

t = t0 and t = t1. Note that, in this formulation,∫
t,x,a

|q|2
2c

should be more precisely understood as

sup
∫
t,x,a

A(t, x, a)c(t, x, a) + B(t, x, a) · q(t, x, a)

for all continuous functions A ∈ R, B ∈ R
d subject to

2A(t, x, a) + |B(t, x, a)|2 ≤ 0, ∀(t, x, a) ∈ [t0, t1] × D2.

Also notice that it makes sense to prescribe c at times t0 and t1 because of the “continuity
equation” ∂t c + ∇x · q = 0 and the finiteness of the energy to be minimized.

Let us emphasize that this convexminimization problem, studied in [12], is just the correct
relaxation, as d ≥ 3, of the Minimizing Geodesic Problem in Arnold’s geometric formu-
lation of the Euler equations [12]. The need of a relaxed framework is clearly justified by
Shnirelman’s negative result [30] that the minimizing geodesic problem may admit no solu-
tion in the classical framework of SDiff(D) (and not even in VPM(D) as mentioned in
[10]). Moreover, another crucial result of Shnirelman [31] fully justifies this convex relax-
ation, through the following dynamical approximation result of generali zed solutions by
classical curves along SDiff(D):

Proposition 2 Let (c(t, x, a) ≥ 0, q(t, x, a) ∈ R
d) be a pair of Borel measures on [t0, t1] ×

D2, such that

∂t c(t, x, a) + ∇x · q(t, x, a) = 0,
∫
a
c(t, x, a) = 1,

∫
t,x,a

|q(t, x, a)|2
c(t, x, a)

< +∞.
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200 Y. Brenier

Then, as long as d ≥ 2, there is a sequence of smooth curves

t ∈ [t0, t1] → Xn
t ∈ SDiff(D),

such that the corresponding measures (cn, qn) defined by

cn(t, x, a) = δ(x − Xn
t (a)), qn(t, x, a) = dXn

t (a)

dt
δ(x − Xn

t (a)),

weakly converge to (c, q) with no energy gap in the sense that
∫
t,x,a

|q(t, x, a)|2
c(t, x, a)

= lim
n↑∞

∫ t1

t0

∫
D

∣∣∣∣dX
n
t (a)

dt

∣∣∣∣
2

dadt .

1.4 Connection with permutation valued processes

In the particular case t0 = 0, t1 = 1, D = [0, 1]
c(0, x, a) = δ(x − a), c(1, x, a) = δ(x − T (a)), T (a) = 1 − a,

the relaxedminimization problem admits an exact solution (already described in [10]). It turns
out that this solution plays a crucial rose in the analysis of permutation valued processes,
for which we refer to [17,18,29] (where no connection seems to be made with the Euler
model of incompressible flows before [17]). The author is very grateful to Gérard Ben–
Arous for pointing out this remarkable connection after a lecture delivered by the author
in Toulouse in 2017. From that observation, we make the conjecture that the Euler model,
through its Arnold geometric interpretation, can be just interpreted as the macroscopic limit
of the large deviation principle for the process of random exchanges of subcubes Dα with
common interfaces, as N ↑ ∞. In our opinion, this would be a particularly exciting and quite
fundamental interpretation of the Euler equations!

1.5 Some properties of the relaxed equations

Due to the convexity of the relaxed minimization problem, it is shown in [12] that there is
a unique pressure gradient ∇ p, entirely determined by the data of c at the end points t0, t1,
such that for all solutions (c, q), we get

∇ p(t, x) = −
∫
a
∂t q(t, x, a) + ∇x ·

(
q ⊗ q

c

)
(t, x, a).

For this unique pressure gradient, we have partial regularity and continuous depen-
dence results for which we refer to [1,2,5,12,14]. In addition, the “Boltzmann entropy”∫
a,x (c log c− c)(t, x, a) ≥ 0 turns out to be a convex function of t ∈ [t0, t1]. This had been

conjectured in [13] and proven in [7,24]. We conjecture that this property might lead to a
proof that the group of volume preserving diffeomorphisms SDiff(D) enjoys, in a suitable
sense, a nonnegative Ricci curvature, à la Lott–Sturm–Villani.

1.6 Frequent ill-posedness of the Cauchy problem

As just seen, the relaxed Euler equations:

∂t c(t, x, a) + ∇x · q(t, x, a) = 0,
∫
a
c(t, x, a) = 1,
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(∂t q + ∇x · q ⊗ q

c
(t, x, a) = −c(t, x, a)∇x p(t, x),

are well suited for the “minimizing geodesic problem”. However, the Cauchy problem is
rarely well-posed, only under severe conditions (à la Rayleigh–Penrose) on the initial data
(c, q)(t = 0, x, a). There have been a lot of relatedworks, in the last 20 years, from numerous
authors such as A. Baradat, C. Bardos, N. Besse, Y. Brenier, E. Grenier, D. Han-Kwan, M.
Iacobelli, F. Rousset. (See [6] as a very recent reference on these issues.)

2 Incompressible flow in porousmedia

The “Muskat system”, also known as “incompressible porous media equations”, rules the
motion of an inhomogeneous incompressible fluid driven by a potential � through a porous
medium. The traditional writing, in “Eulerian coordinates”, of this model reads

∂tρ + ∇ · (ρv) = 0, v = P(−ρ∇�),

where P is the Helmholtz L2 projection onto divergence-free fields. This was a starting point
for Otto’s gradient flow theory [22,27,28]. It is also of high interest [33] for the application
of convex integration in mathematical Fluid Mechanics à la De Lellis and Székelyhidi [19]
(which followed another very influential work of Shnirelman [32]!).

TheMuskat system on a compact domain D ⊂ R
d can be easily written in material (a.k.a.

Lagrangian) coordinates:

dXt

dt
(a) = −ρ0(a)(∇�)(Xt (a)) − (∇ p)(t, Xt (a)), a ∈ D,

where Xt is a volume-preserving map of D, ∀t ≥ 0.
So theMuskat system is just a friction dominatedfirst order analog of theEuler equations of

an incompressible inhomogeneous fluid accelerated by∇�, with Boussinesq approximation,
written in material (or Lagrangian) coordinates:

d2Xt

dt2
(a) = −ρ0(a)(∇�)(Xt (a)) − (∇ p)(t, Xt (a)), a ∈ D,

where Xt is a volume-preserving map of D, ∀t ≥ 0. As a matter of fact, the local well-
posedness of the Muskat system written in Lagrangian coordinates directly follows from the
techniques developed in [20].

2.1 A time discrete version of theMuskat system based on the polar factorization of
maps

A natural time discretization of the Muskat system, written in material coordinates, rely on
the following “polar factorization” theorem (cf. [8,11] and [25] in the Riemannian case):

Theorem 1 (Polar factorization of maps.) Let D ⊂ R
d be a compact convex domain (for

simplicity), with Lebesgue measure LD. Let T ∈ L2(D,Rd) s.t. LD ◦ T−1 << LRd . Then
T admits a unique factorization T = ∇U ◦ X , where:

(i) U : D → R is convex;
(ii) X : D → D is volume-preserving (i.e. LD ◦ X−1 = LD).
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Fig. 2 The horizontal axis corresponds to time while the vertical axis corresponds to space. Particles have
three different possible weights: light particles are drawn in black, heavy ones in yellow and neutral in red.
At time 0, heavy particles lie at the top of the column, while light ones lie at the bottom. We can see how the
neutral particles are forced to give way to the other ones but eventually return to their original positions. The
computation is performed according to the polar factorization scheme

This result generalizes the polar factorization of real square matrices (which corresponds
to the particular case when D is the unit ball and T a linear map from D to Rd , both factors
∇U and X being also linear in this very special case). It can also be seen as a nonlinear
version of the Helmholtz decomposition of vector fields which simply amounts to linearizing
the polar factorization about the identity map. The polar factorization of maps suggests the
following time discretization with time step δt of the Muskat system

d

dt
Xt = −ρ0 ∇� ◦ Xt − ∇ p ◦ Xt .

We polar factorize, at each time step n ∈ N, the “predictor”

Xn − δt ρ0 ∇� ◦ Xn

as

(I d + δt∇ pn+1) ◦ Xn+1,

with Xn+1 : D → D volume preserving and x ∈ D → |x |2/2 + δt pn+1(x) convex.
Surprisingly enough, asd = 1, this “predictor–corrector” scheme stillmakes sense and can

be trivially coded through a standard sorting algorithm! In some sense, the polar factorization
scheme already suggests a natural relaxation of the Muskat model where fluid particles can
cross each other as shown on Fig. 2.
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Fig. 3 The horizontal axis corresponds to time while the vertical axis corresponds to space. Particles have
three different possible weights: only light and heavy particles are drawn in red. At time 0, heavy particles
lie at the top of the column, while light ones lie at the bottom. The computation is performed according to a
standard CFD method (first order upwind scheme). Trajectories are recovered through numerical integration
of the velocity fields associated to the heavy and light phases
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Fig. 4 Muskat model. The horizontal axis corresponds to time while the vertical axis corresponds to space.
Particles have two different possible weights, but only heavy particles are drawn in blue. At time 0, heavy
particles lie at the top of the column, while light ones lie at the bottom. The computation is performed according
to the polar factorization scheme
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Fig. 5 InhomogeneousEulermodel. The horizontal axis corresponds to timewhile the vertical axis corresponds
to space. Particles have two different possible weights, but only heavy particles are drawn in red. At time 0,
heavy particles lie at the top of the column, while light ones lie at the bottom. The computation is performed
according to a suitable polar factorization scheme

2.2 The Eulerian–Lagrangian relaxedMuskat system

Just as we did for the Euler equation, we easily find a relaxed version of the Muskat system

dXt

dt
(a) = −ρ0(a)(∇�)(Xt (a)) − (∇ p)(t, Xt (a))

in terms of

c(t, x, a) = δ(x − Xt (a)), q(t, x, a) = dXt

dt
(a)δ(x − Xt (a)),

We immediately get

∂t c(t, x, a) + ∇xq(t, x, a) = 0, q(t, x, a) = c(t, x, a)(ρ0(a)∇�(x) + ∇ p(t, x)),

and obtain for c the self-consistent first-order pseudo-differential system of conservation
laws:

∂t c(t, x, a) = ∇x · (c(t, x, a)[ρ0(a)∇�(x) + ∇ p(t, x)])
−�p(t, x) = ∇x ·

(∫
a
c(t, x, a)ρ0(a)∇�(x)

)
.

This is somewhat surprising since theMuskat equations are often rather seen as a gradient flow
(as in [22,27])! In one space dimension, as d = 1, this system is no longer pseudo-differential
and further reduces to

∂t c(t, x, a) = ∂x

(
c(t, x, a)[ρ0(a) −

∫
b
ρ0(b)c(t, x, b)]∂x�(x)

)
.
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These equations can be discretized by standard CFD methods. The agreement with the polar
factorization scheme already discussed is remarkable as shown by comparing Figs. 2 and 3.

2.3 Entropy conservation and local well-posedness

In the special case when the potential� is linear, so that∇� is just a constant, one can easily
check that the relaxed “Eulerian–Lagrangian” Muskat system admits an extra conservation
law for the Boltzmann entropy ∫

a
(c log c − c)(t, x, a),

which is strictly convex in c. This property essentially suffices for the local well-posedness
of the relaxed Muskat system (in the spirit of [16]), in sharp contrast with the frequent ill-
posedness of the relaxed Euler equations. This is well illustrated, at the numerical level and
in dimension d = 1, by Figs. 4 and 5, where one can compare the rather wild behavior of the
relaxed (inhomogeneous) Euler equations and the much smoother behavior of the Muskat
system!

Conclusion

The relaxed Euler equations are well suited for the minimizing geodesic problem à la Arnold
(leading to the existence and uniqueness of a pressure gradient), but not so much for the
Cauchy problem which is rarely well-posed. In sharp contrast, in the friction dominated case
describing incompressible flows in porous media, the corresponding relaxed Muskat system
is at least locally well-posed and well suited for stable numerical computations ot the Cauchy
problem.
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