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Abstract
This paper is a synopsis of the recent book [9]. The latter is dedicated to the stochastic Burgers
equation as a model for 1d turbulence, and the paper discusses its content in relation to the
Kolmogorov theory of turbulence.

Résumé
Cet article est un synopsis du livre récent [9]. Le livre est dédié à l’équation be Burgers
stochastique comme un modèle du turbulence unidimensionnelle, et l’article discute de son
contenu en relation avec la théorie de la turbulence de Kolmogorov.

Keywords Turbulence · Burgulence · K41 theory · Small-scale increments · Energy
spectrum
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1 Introduction

The goal of this paper is to discuss the content of the book [9], dedicated to a rigorous
theory of 1d turbulence, in its relation to Kolmogorov’s understanding of hydrodynamical
turbulence, known as the K41 theory. At the origin of the book lie the results, obtained in PhD
theses of two students of the author of this paper, Biryuk [4,5] and Boritchev [7,8] (the latter
is another author of the book [9]). The theses, in their turn, were based on the previous work
[17–19] on turbulence in the complex Ginzburg–Landau equation (see [6, Section 5] for this
concept). The results of the two theses were developed further in subsequent publications of
their authors, gave a material for an M2 lecture course which the author of this paper taught
in Paris 7 and in some other universities, and were improved and edited in the lecture notes
for that course [13]. Finally the results were significantly developed while working on the
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book [9]. More detailed references may be found in Chapters 5 and 9 of [9]. Proofs of all
theorems, given below, may be easily found in [9]. Some of them are sketched in the paper.

The paper is based on a number of zoom-seminars which we gave in the year 2020.

1.1 K41 theory

TheK41 theory of turbulencewas created byKolmogorov in three articles [14–16], published
in 1941 (partially based on the previous work of Taylor and von Karman–Howard); see in
[20, §33−34], [11] and [9, Chapter 6]. This heuristic theory describes statistical properties
of turbulent flows of fluids and gazes and is now the most popular theory of turbulence. We
will discuss its basic concepts for the case of a fluid flow with velocity u(t, x) of order 1,
space–periodic of period one and with zero space-meanvalue. The Reynolds number of such
a flow is

Rey = ν−1,

where ν is the viscosity. If Rey = ν−1 is large, then the velocity field u(t, x) becomes very
irregular, and the flow becomes turbulent. The viscosity is the most important parameter for
what follows; dependence on it is clearly indicated, and all constants below are independent
from ν.

Kolmogorov postulated that the short scale in x features of a turbulent flow u(t, x) display
a universal behaviour which depends on particularities of the system only through a few
parameters (in our setting—only through ν), and the K41 theory presents and discusses these
universal features—the laws of the Kolmogorov theory.

The K41 theory is statistical. That is, it assumes that the velocity u(t, x) is a random field
over some probability space (�,F,P ). Moreover, u is assumed to be stationary in time
and homogeneous in space, with zero mean-value. The K41 theory studies its short space-
increments u(t, x + r) − u(t, x), |r | � 1, and examines their moments as functions of r .
Besides, for the decomposition of u(t, x) in Fourier series

u(t, x) =
∑

s∈Z3

ûs(t)e
2π is·x , û0(t) ≡ 0,

the theory examines the second moments of Fourier coefficients ûs(t) as functions of |s| and
ν.

Below we present the one-dimensional version of the Kolmogorov theory for a model,
given by the stochastic Burgers equation and advocated by Burgers, Frisch, Sinai and some
other mathematicians and physicists. Then we will discuss the basic statements of the K41
theory, their 1d versions and the proofs of the latter, suggested in [9].

1.2 Stochastic Burgers equation

The model for 1d turbulence we will talk about is given by the stochastic Burgers equation

ut + uux − νuxx = ∂tξ(t, x), x ∈ S1 = R/Z,

∫
u dx =

∫
ξ dx = 0,

u(0, x) = u0(x),

(1.1)
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where ξ is a Wiener process in the space of functions of x ,

ξω(t, x) =
∑

s=±1,±2,...

bsβ
ω
s (t)es(x), 0 < B0 =

∑

s

b2s < ∞. (1.2)

Here {es, s = ±1,±2, . . . } is the trigonometric basis in the space of 1-periodic function
with zero mean:

{
ek = √

2 cos(2πkx),

e−k = √
2 sin(2πkx),

k ∈ N,

{βω
s (t)} are standard independent Brownian processes, and {bs} are real numbers. For the

purposes of this paper we assume that they fast converge to zero. Then ξ is a Wiener process
in the space of functions of x , and for a.e. ω its realisation ξω(t, x) is continuous in t and
smooth in x .

As usual, uω(t, x) is a solution of (1.1) if a.s.

u(t) − u0 +
∫ t

0
(uux − νuxx ) ds = ξ(t), ∀ t ≥ 0.

For an integer m ≥ 0 we denote by Hm the L2-Sobolev space of order m of functions on
S1 with zero mean-value, equipped with the homogeneous norm

‖u‖2m =
∫

(u(m)(x))2dx .

It is not hard to see that if u0 ∈ Hr , r ≥ 1, then there is a solution u of (1.1) such that
uω ∈ C(R+, Hr ) a.s., and any two solutions coincide a.s. We will denote a solution of (1.1),
regarded as a random process in a space of functions of x , as u(t; u0) or uν(t; u0). Regarding
u as a random field of (t, x) we will write it as u(t, x; u0) or uν(t, x; u0).

As we will soon explain, in average solutions of (1.1) are of order one, i.e. for any u0,
E|uν(t; u0)|2L2

∼ 1 uniformly in t ≥ 1 and ν ∈ (0, 1]. Since the order of magnitude of a

solution uν is
√
E|uν(t)|2L2

and its space-period is one, then the Reynolds number of uν is

∼ ν−1. So Eq. (1.1) with small ν describes 1d turbulence (called by Uriel Frisch burgulence).
The goals, related to Eq. (1.1) as a 1d model of turbulence, are:

(1) to study solutions uν(t, x) for small ν and for 1 ≤ t ≤ ∞;
(2) to relate the obtained results with the theory of turbulence, regarding the Burgers equation

(1.1) as a 1d hydrodynamical equation.

Inspired by the heuristic work on the stochastic Burgers equation by Frisch with collab-
orators (e.g. see [1,3]), Sinai and others in the influential paper [10] used the Lax–Oleinik
formula to write down the limiting dynamics of (1.1) as ν → 0, and next studied the obtained
limiting solutions u0(t, x) of the inviscid stochastic Burgers equation (1.1) |ν=0. The research
was continued by Khanin and some other mathematicians, e.g. see [12] and references in [9].
It has led to a beautiful theory which is related to 1d turbulence and casts light on the prob-
lem (1) above, but so far this approach has not allowed to obtain for the limiting dynamics
analogies of the K41 laws.

On the contrary, in [9] we study Eq. (1.1) for small but positive ν, i.e. not when ν → 0,
but when 0 < ν � 1 is fixed, using basic tools from PDEs and stochastic calculus. This
approach allows to get relations, similar to those claimed by the K41 theory, and to rigorously
justify the heuristic theory of burgulence, built in [1,3].
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184 S. Kuksin

2 A priori estimates

We start with a-priori estimates for Eq. (1.1). The key starting point is the Oleinik inequality,
which we apply to solutions of (1.1) with fixed ω. The inequality was proved by Oleinik for
the free Burgers equation, but her argument applies to the stochastic equation (1.1) trajectory-
wise and implies the following result:

Theorem 2.1 For any initial data u0 ∈ H1, any p ≥ 1 and any ν, θ ∈ (0, 1], uniformly in
t ≥ θ we have:

E
(|uν(t; u0)|p

L∞ + |uν
x (t; u0)|p

L1
+ |u+

x (t; u0)|p
L∞

) ≤ C pθ
−p (2.1)

(here v+ = max(v, 0)). Apart from p, the constant C p depends only on the random force in
(1.1).

Decomposing a solution u(t; u0) in Fourier series,

u(t, x; u0) =
∑

ûν
k (t; u0)e

2π ikx , (2.2)

and using that |ûν
k (t; u0)| ≤ |ux (t; u0)|L1/2π |k| we derive from (2.1) an important conse-

quence:

E|ûν
k (t; u0)|p ≤ C ′

p|k|−pθ−p, p ≥ 1, |k| ≥ 1, (2.3)

if t ≥ θ , for any u0 ∈ H1.

2.1 Upper bounds for moments of Sobolev norms of solutions

The very powerful estimate (2.1), jointly with some PDE tricks, allows to bound from above
moments of all Sobolev norms of solutions. Namely, denoting

X j (t) = E‖u(t)‖2j , Bm =
∑

s∈Z∗
|2πs|2mb2s < ∞, j, m ∈ N,

and applying to Eq. (1.1) Ito’s formula, estimate (2.1) and theGagliardo–Nirenberg inequality
we get that

d

dt
Xm(t) ≤ Bm − 2νXm+1(t) + Cm Xm+1(t)

2m
2m+1

= Bm − Xm+1(t)
2m

2m+1

(
2νXm+1(t)

1
2m+1 − Cm

)
, t ≥ θ.

Using once again (2.1) jointly with basic PDE inequalities we obtain

Xm(t) ≤ C ′
m Xm+1(t)

2m−1
2m+1 , t ≥ θ.

It can be derived from these two relations that second moments of L2-Sobolev norms of
solutions are bounded uniformly in the initial data:

Theorem 2.2 For any u0 ∈ H1, every m ∈ N, 0 < ν ≤ 1 and every θ > 0,

E‖uν(t; u0)‖2m ≤ C(m, θ)ν−(2m−1) if t ≥ θ. (2.4)
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Jointly with (2.1) and the Gagliardo–Nirenberg inequality this result implies upper bounds
on moments of all L p-Sobolev norms of solutions of (1.1). A remarkable feature of the
Burgers equation is that these estimates1 are asymptotically sharp when ν → 0. In the next
section we prove this fact for the basic inequalities (2.4).

2.2 Lower bounds

The Ito formula, applied to 1
2‖u(t)‖20, where u(t) satisfies (1.1), implies the balance of energy

relation

E

∫
1
2 |u(T + σ, x)|2dx − E

∫
1
2 |u(T , x)|2dx + νE

∫ T +σ

T

∫
|ux (s, x)|2dxds = σ B0,

where T , σ > 0. Let T ≥ 1. By (2.1) the first two terms are bounded by a constant C∗ which
depends only on the random force. If σ ≥ σ∗ = 4C∗/B0, then C∗ ≤ 1

4σ B0 and we get that

νE
1

σ

∫ T +σ

T

∫
|ux (s, x)|2dxds ≥ 1

2 B0.

For any random process f ω(t) we denote by 〈〈 f 〉〉 its averaging in ensemble and local
averaging in time,

〈〈 f 〉〉 = 〈〈 f (t)〉〉 = E
1

σ

∫ T +σ

T
f (s) ds,

where T ≥ 1 and σ ≥ σ∗ are parameters of the averaging. In this notation the just proved
result reads 〈〈‖uν‖21〉〉 ≥ ν−1 1

2 B0. But by Theorem 2.2 〈〈‖uν‖21〉〉 ≤ ν−1C . So

〈〈‖uν‖21〉〉 ∼ ν−1,

where ∼ means that the ratio of the two quantities is bounded from below and from above,
uniformly in ν and in the parameters T ≥ 1 and σ ≥ σ∗, entering the definition of the
brackets 〈〈·〉〉.

Now the Gagliardo–Nirenberg inequality jointly with (2.1) imply:

〈〈|uν
x |2L2

〉〉 ≤ C ′
m〈〈‖uν‖2m〉〉 1

2m−1 〈〈|uν
x |2L1

〉〉 2m−2
2m−1 ≤ Cm〈〈‖uν‖2m〉〉 1

2m−1 , m ∈ N.

Using the already obtained lower bound for the first Sobolev norm we get from here lower
bounds for the second moments of all norms ‖uν‖m :

〈〈‖uν‖2m〉〉 ≥ C ′′
mν−(2m−1) ∀m ∈ N.

Combining this with the upper bound in Theorem 2.2 we get:

Theorem 2.3 For any u0 ∈ H1, any 0 < ν ≤ 1 and every m ∈ N ,

〈〈‖uν(t; u0)‖2m〉〉 ∼ ν−(2m−1). (2.5)

This theorem and the Oleinik estimate turn out to be a powerful and efficient tool to study
turbulence in the 1d Burgers equation (1.1) (the burgulence). In particular, they imply that

〈〈‖uν(t; u0)‖2m〉〉 ∼ 1 ∀u0 ∈ H1, ∀ m ≤ 0.

1 Except those for moments of the L1-Sobolev norms.
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186 S. Kuksin

Here the upper bound 〈〈‖uν(t; u0)‖2m〉〉 ≤ C−1 for m ≤ 0 immediately follows from (2.1),
while derivation of the lower estimate 〈〈‖uν(t; u0)‖2m〉〉 ≥ C−1

m for m ≤ 0 requires some
efforts.

We stress that we do not know if 〈〈‖uν‖2m〉〉 admits an asymptotic expansion as ν → 0, i.e.
if it is true that

〈〈‖uν‖2m〉〉 = Cmν−(2m−1) + o(ν−(2m−1)), m ∈ N,

for a suitable constants Cm .

3 Burgulence and K41

3.1 Dissipation scale

By a direct analogy with K41, the basic quantity, characterizing a solution uν(t, x) of (1.1)
as a 1d turbulent flow is its dissipation scale ld , a.k.a. Kolmogorov’s inner scale. To define
the mathematical dissipation scale ld(u) of any random field uν(t, x) which depends on a
parameter ν ∈ (0, 1] and defines a random process uν(t, ·) ∈ L2, we write u as Fourier series
(2.2). Then we set ld to be the smallest number of the form ld = ν−cd , cd > 0, such that for
|s| � ld the averaged squared norm of the s-sth Fourier coefficient ûs(t) decays with s very
fast. Namely, cd is the smallest positive number with the property that for each γ > 0

〈〈|ûs(t)|2〉〉 ≤ CN ,γ |s|−N if |s| ≥ ν−cd−γ .

If such a cd > 0 does not exist, then the inner scale ld(u) is not defined. If u does not
depend on t or is stationary in t , then, naturally, in the relation above the averaging 〈〈·〉〉 may
be replaced by E.

Theorem 2.3 and estimates (2.3) with p = 2 imply:

Theorem 3.1 The mathematical dissipation space-scale ld of any solution u of Eq. (1.1) with
u0 ∈ H1 equals ν−1.

In physics, the dissipative scale ld is defined modulo a constant factor, so for the Burgers
equation the physical dissipative scale is ld =Const ν−1. It was Burgers himself who first
predicted the correct value of ld .

Now let us consider the set of integers [C1,∞), regarded as the set of indices s of Fourier
coefficients ûs , and the closed interval [0, c1], c1 ≤ 1/2, regarded as the set of increments
of x . Using the physical dissipative scale ld we divide both of them to two sets, called the
dissipation and inertial ranges:2

– in Fourier presentation the dissipation range is Idiss = (ld ,∞) = (Cν−1,∞), and the
inertial range is Iinert = [ const, ld ] = [C1, Cν−1].

– in the x-presentation the dissipation range is I x
diss = [0, cν) ⊂ [0, 1/2], and the inertial

range is I x
inert = [cν, c1] ⊂ [0, 1/2].

The constants C, C1 and c, c1 do not depend on ν and may change from one group of
results to another.
Dissipation scale in K41. In K41 the hydrodynamical dissipation scale is predicted to be
l K
d =Const ν−3/4. Accordingly, in the Fourier presentation the inertial range of the K41
theory is I K

inert = [C1, Cν−3/4], while in the x-presentation it is I x K
inert = [cν3/4, c1].

2 In this paper we do not deal with the energy range, so we do not define it.
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3.2 Moments of small-scale increments

For a random field u = u(t, x), t ≥ 0, x ∈ S1, such that u(t, ·) is a random process in L p

for every p < ∞, we consider the moments of its space-increments, average them in (x, t)
and organise the result in the structure function of u:

Sp,l(u) = 〈〈|u(· + l) − u(·)|p
L p

〉〉, p > 0, |l| ≤ 1/2. (3.1)

If u = uν(t, x; u0) with some u0 ∈ H1, then a.s. for t > 0 u is a smooth function of x ,
so for very small l the function S(u) behaves as |l|p . It turns out that for l not that small it
behaves differently:

Theorem 3.2 For u = uν as above and for |l| in the inertial range [cν, c1] we have

Sp,l(u
ν) ∼ |l|min(p,1) ∀ p > 0. (3.2)

While for |l| in the dissipation range [0, cν)

Sp,l(u
ν) ∼ |l|pν1−min(p,1) ∀ p > 0. (3.3)

The constants c and c1 depend only on the force (1.2).

In [1] Frisch with collaborators obtained the assertion (3.2) by a convincing heuristic
argument. We rigorously derive (3.2) and (3.3) from Theorems 2.1 and 2.3, using some ideas
from the paper above.
Moments of small-scale increments in K41. For water turbulence the structure function is
defined as above with the difference that there the increment of the velocity field u(x + r) −
u(x) (usually) is replaced by its projection on the direction of the vector r . Since the K41
theory deals with stationary and homogeneous vector fields, then there the structure function
of a velocity field u(t, x), x ∈ T

3, is defined as

S‖
p,r (u) = E

∣∣∣
(
u(t, x + r) − u(t, x)

) · r

|r ]
∣∣∣

p
(3.4)

(the r.h.s. does not depend on t and x , and we recall that Eu(t, x) ≡ 0). The K41 theory
predicts that if the viscosity of the fluid is ν � 1 (so the Reynolds number is large), then

S‖
2,r (u)∼|r |2/3 for |r | ∈ I x K

inert . (3.5)

This is the celebrated 2/3 law of the K41 theory. The theory states that the third moment
of the speed’s increments without the modulus sign behaves similarly:3

〈(
(u(x + r) − u(x)) · r/|r |)3

〉
∼ −r for |r | ∈ I x K

inert . (3.6)

The dimension argument, used by Kolmogorov to derive (3.5), also implies that

S‖
p,r (u)∼|r |p/3 for p > 0 if |r | ∈ I x K

inert . (3.7)

This relation, although not claimed in the K41 papers, was frequently suggested in later
works, related to the Kolmogorov theory.
Burgulence compare to K41. In (3.5), (3.7) the structure function behaves as |r |, raised to a
degree, proportional to p, while in (3.2) the degree is a nonlinear function of p. Based on that,

3 This relation implies that the random field u is not Gaussian since for Gaussian fields the l.h.s. of (3.6)
vanishes.
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188 S. Kuksin

the relation in (3.2) sometime is called the abnormal scaling. The linear in p behaviour of
the exponent in (3.7) now is frequently put to doubt. Indeed, it implies that for any p, q > 0
the ratio

(S‖
p,r )

1/p/(S‖
q,r )

1/q ∼ C p,q for |r | ∈ I x K
inert , (3.8)

where C p,q is an r -independent quantity. If u(x + r) − u(x) =: ζ was a Gaussian r.v.,
then the relations (3.8) would hold as equalities with absolute constants C p,q , independent
from ζ . But it is well known from experiments [and follows from (3.6)] that increments of
the velocity field u of a fluid with small viscosity are not Gaussian, so the Gaussian-like
behaviour, manifested by (3.8), looks suspicious. On the contrary, if u = uν(t; u0) is a
solution of (1.1), then in view of (3.2), for p, q ≥ 1 we have

S1/p
p,r

/
S1/q

q,r ∼ C p,q |r |1/p−1/q for |r | ∈ I x
inert = [cν, c1],

which is big if p > q and |r | ∈ I x
inert is small (the latter may be achieved if ν � 1). This

very non-Gaussian behaviour4 of the increments of u shows that solutions of (1.1) with small
ν are random fields, far from Gaussian.

3.3 Distribution of energy along the spectrum

The second celebrated law of the Kolmogorov theory deals with the distribution of fluid’s
energy along the spectrum.

For a random field u(t, x) which defines a random process u(t, ·) ∈ L2 we define its
energy as 1

2 〈〈|u|2L2
〉〉 (this is a common convention). By Parseval’s identity,

〈〈
1
2

∫
|u|2dx

〉〉
=

∑

s

1
2 〈〈|ûs |2〉〉,

so the quantities 1
2 〈〈|ûs |2〉〉 characterize distribution of energy of the fieldu along the spectrum.

Next, for any k ∈ N we define Ek(u) as the averaging of 1
2 〈〈|ûs |2〉〉 in s along the layer Jk

around ±k,

Jk = {n ∈ Z
∗ : M−1k ≤ |n| ≤ Mk}, M > 1.

I.e.,

Ek(u) = 〈〈ek(u)〉〉, ek(u) = 1

|Jk |
∑

n∈Jk

1
2 |ûn |2. (3.9)

The function k �→ Ek(u) is called the energy spectrum of the random field u.
If u = uν(t; u0) is a solution of (1.1), then it follows immediately from the definition of

ld(u) that for k � ld Ek(u) decays faster than any negative degree of k, uniformly in ν. But
for k ≤ ld the behaviour of Ek is quite different. Namely, Theorem 3.2 and relations (2.3)
imply the following spectral power law for “1d Burgers fluid”:

Theorem 3.3 Let u be a solution of Eq. (1.1) with any u0 ∈ H1. Then for k in the inertial
range, 1 ≤ k ≤ Cν−1, we have:

Ek(u
ν) ∼ k−2, (3.10)

with suitable C > 0 and M > 1, depending only on the random force.

4 The function above with p = 4, q = 2 is called the flatness of the random variable u(x + l) − u(x). It
equals three for any Gaussian r.v.
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For solutions of (1.1), Jan Burgers already in 1940 predicted that Ek ∼ |k|−2 for |k| ≤
Const ν−1, i.e. exactly the spectral power law above.

We do not know if the theorem’s assertion remains true for any M > 1 (with a suitable
C(M)).

Let us briefly explain how (3.10) follows from Theorem 3.2. For a solution u =
uν(t, x; u0) relation (2.3) implies the upper bound for energy spectrum, Ek(uν) ≤ Ck−2

for each k, as well as that
∑

|n|≤M−1k

|n|2〈〈|ûn |2〉〉 ≤ C M−1k,
∑

|n|≥Mk

〈〈|ûn |2〉〉 ≤ C ′M−1k−1. (3.11)

Now consider the sum k = ∑
|n|≤Mk

|n|2〈〈|ûn |2〉〉. Since |α| ≥ | sin α|, then

k ≥ k2

π2

( ∞∑

n=−∞
sin2(nπk−1)〈〈|ûn |2〉〉 −

∑

|n|>Mk

sin2(nπk−1)〈〈|ûn |2〉〉
)
.

By Parseval’s identity, |u(t, · + y) − u(t, ·)|2L2
= 4

∑
n∈Z∗ sin2(nπ y)|ûn(t)|2. Applying

the averaging 〈〈·〉〉 to this equality we get that the structure function S2,1/k(u) equals to
4

∑
n sin

2(nπk−1)〈〈ûn(t)〉〉2. So

k ≥ k2

π2

(1
4

S2,1/k(u) −
∑

|n|>Mk

〈〈|ûn |2〉〉
)
.

Using the second inequality in (3.11) and Theorem 3.2 we find that k ≥ k2C1k−1 −
C2M−1k. Since

Ek ≥ 1

2k3M3

(
k −

∑

|n|≤M−1k

|n|2〈〈|ûn |2〉〉
)
,

then using the just obtained lower bound for k and the first inequality in (3.11) we get that
Ek ≥ C−1k−2, if M is large enough.
Distribution of energy along the spectrum in K41. For the water turbulence the K41 theory
predicts that Ek obeys the celebrated Kolmogorov–Obukhov law:

Ek ∼ |k|−5/3 for k in the inertial range. (3.12)

Experiments and numerical study of the corresponding equations convincingly show that this
law is close to reality, see [11, Section 5.1].

3.4 Relation between the two laws of turbulence

Let us first note that the definitions of the structure function S and the energy spectrum Ek

of a random field u in Sect. 3 apply in the case when u = u(x) does not depend on t and
ω. Then the averaging 〈〈·〉〉 may be dropped in the definitions of the objects. In this case the
proof of Theorem 3.3, sketched in Sect. 3.3, shows that if a function uν(x) ∈ H1 depends
on ν ∈ (0, 1], is normalised by the relation |uν |L2 ≡ 1 and for all ν satisfies

(1) relation (3.2) with p = 2 for |l| ∈ [cν, c1],
(2) relation (2.3), which for u = u(x) reeds |ûν

k | ≤ C |k|−1 for all k,
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then the assertion of Theorem 3.3 holds with a suitable C and a sufficiently big M (certainly
same is true if uν is a random field).

It is very likely (but we have not checked this) that, on the contrary, the assertion of
Theorem 3.3 jointly with relation (2.3) (or (2.1)), which should be understood as in (2)
above, imply the validity of (3.2) for |l| ∈ [cν, c1] with suitable c, c1 > 0, and for p = 2.

Much more interesting and more involved is the relation between the 2/3-law (3.5) with
|r | ∈ I x K

inert and the Kolmogorov–Obukhov law (3.12) with |k| ∈ I K
inert , for any 3d random

field u(x), depending on a parameter ν. On a physical level of rigour it is explained on pp. 134–
135 of [20] that the two laws are equivalent for rather general fields u, but for a mathematical
reader this explanation seems rather insufficient.5 In [21, §21.4] (also see [11, Section 4.5]),
assuming that u(x) is an homogeneous and isotropic random field on R

3, the equivalence
of the two laws is established by a formal calculation, based on the spectral representation
for u(x) (see [21, §11.2]). By analogy with what was said above concerning the two laws
of burgulence, it seems that this calculation cannot be rigorously justified without imposing
additional restrictions on u(x) (and/or its Fourier transform), cf. above assumption (1). So we
think that without referring to some additional properties of fluid’s flow with large Reynolds
number (e.g. without evoking a new estimate for solutions of the 3d Navier–Stokes system),
the two laws of turbulence should be regarded not as the same assertion, written in the x-
and in Fourier presentations, but rather as two different (although related) statements.

To find a natural sufficient condition which would guarantee for a vector field uν(x) onT3

(or for a stationary field on T
3, or on R

3) equivalence of the two laws of the K41 theory, or
at least that one of them implies another, is an interesting open question. The field uν should
be normalised by the relation |uν |L2 ≡ 1, or E|uν(x)|2 ≡ 1 if it is a stationary field on T

3.
If uν is a stationary field on R

3, it should be assumed that its correlation uniformly in ν is a
tensor of order one, fast decaying at infinity.

The technique, developed to prove the equivalence of the two laws under a hidden addi-
tional condition, may allow to calculate the asymptotic of S‖

p,r (u) for p > 0 and |r | in the
inertial range, and thus to correct relation (3.7), which most likely is wrong for large p.

4 Themixing

The mixing in Eq. (1.1) means that in a function space Hm, m ≥ 1, where we study the
equation, there exists a unique Borel measure μν , such that for any “reasonable” functional
f on Hm and for any solution u(t, x; u0), u0 ∈ H1, we have

E f (u(t; u0)) →
∫

Hm
f (u) μν(du) as t → ∞. (4.1)

The measure μν is called the stationary measure for Eq. (1.1). If u0 is a r.v., distributed
as μν , then u(t; u0) =: ust (t) is a stationary solution: D(ust (t)) ≡ μν .

It may be derived from a general theory that the mixing holds for Eq. (1.1), but then the
rate of convergence in (4.1) would depend on ν. In the same time, in the theory of turbulence
the rate of convergence to a statistical equilibrium should not depend on the viscosity (see
[2], e.g. pages 6–7 and 109), and for solutions of (1.1) it does not:

5 The corresponding argument was added by E. Lifschitz to the third Russian edition of the book, after
L. Landau passed away. In that version of the book (which corresponds to the second English edition [20])
the part, dedicated to the theory of turbulence, was significantly edited and enlarged.
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Theorem 4.1 If the functional f (u) is continuous in some L p-norm, p < ∞, and | f (u)| ≤
C |u|N

L p
for suitable C > 0 and N ∈ N, then (4.1) holds. The rate of convergence is at least

(ln t)−κp , for some κp > 0.

The proof follows from the results in Sect. 2, basic methods to prove the mixing in
stochastic PDEs, and from another remarkable feature of the Burgers equation:

∣∣uω(t; u0) − uω(t; u1)|L1 ≤ |u0 − u1|L1 for every t ≥ 0,

for a.a. ω and all u0, u1 ∈ H1.
If in (1.2) bs ≡ b−s , then the random field ξ(t, x) is homogeneous in x . In this case the

measure μν also is homogeneous, as well as the stationary solution ust (t, x). All results in
Sect. 3 remain true for this solution, which describes the stationary and space-homogeneous
burgulence.

Energy spectrum of the stationary measure μν is Ek(μν) = ∫
ek(u)μμ(du), where ek is

as in (3.9). Obviously,

Ek(μν) = 〈〈ek(u
st (t))〉〉 = Eek(u

st (t)).

Since 〈〈ek(ust (t))〉〉 satisfies the spectral power law, then Ek(μν) also does:

Ek(μν) ∼ k−2 for 1 ≤ k ≤ Cν−1.

Due to Theorem 4.1 the instant energy spectrum of every solution converges to that of
μν :

Eek(u(t; u0)) → Ek(μ) ∀ u0 ∈ H1, ∀ k ∈ N,

uniformly in ν.
Similarly the structure function of μν , defined as Sp,l(μν) = ∫

Hm |u(· + l) −
u(·)|p

L p
μν(du), satisfies (3.2) and (3.3) for l in the inertial and dissipation ranges, corre-

spondingly. As above, the instant structure function of every solution converges, as time
grows, to Sp,l(μν) for all p and l, uniformly in ν (and in l). If bs ≡ b−s , then the measure
μν is homogeneous and then

Sp,l(μν) = E|ust (t, x + l) − ust (t, x)|p =
∫

Hm
|u(x + l) − u(x)|pμν(du) for any t, x .

The results in this section are in line with the general theory of turbulence which postu-
lates that statistical characteristics of turbulent flows converge, as time grows, to a universal
statistical equilibrium. They also are in the spirit of K41, where the velocity field of a fluid
is assumed to be stationary in t and homogeneous in x .

5 Inviscid limit

Another remarkable feature of the Burgers equation (1.1) is that, as ν → 0 (so the Reynolds
number of the corresponding “1d fluid” grows to infinity), the solutions of the equation
converge to inviscid limits:

uν(t, ·; u0) → u0(t, ·; u0) in L p(S1) ∀ t ≥ 0, a.s.,

for every p < ∞ and every u0. This result is due toLax–Oleinik (1957). The limit u0(t, x; u0)

is called an “inviscid solution”, or an “entropy solution” of Eq. (1.1) with ν = 0. The limiting
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random field u0(t, x; u0) a.s. is bounded in x for every t , but in general is not continuous.
Still its structure function and spectral energy are well defined and inherit the laws, proved
for uν with ν > 0. Now the laws are valid with ν = 0:

Theorem 5.1 For each entropy solution u0,

(1) Ek(u0) ∼ k−2 for all k;
(2) Sp,l(u0) ∼ |l|min(p,1) if p > 0 and |l| ≤ c1.

Since the spectral power law for Ek(u0) holds for all k ≥ 1, then the dissipation range
of u0 is empty. Its inertial range in the Fourier presentation is the interval [1,∞), and in
x—the interval [0, c1]. The inviscid solutions define in the space L1 = {u ∈ L1(S1) :∫

u dx = 0} a mixing Markov process, whose stationary measure is supported by the space
L1 ∩ ( ∩p<∞ L p(S1)

)
.

These results describe the inviscid burgulence. They have no analogy in the K41 theory
since there the Reynolds number Rey of fluid’s flow is a fixed finite quantity, and since
on the mathematical side of the question, behaviour of solutions of the 3d hydrodynamical
equations on time-intervals of order � 1, when Rey → ∞, is a completely open problem.

6 Conclusions

The stochastic Burgers equation (1.1) with small viscosity makes a consistent model of 1d
turbulence. Its rigorously proved statistical properties make natural and close analogies for
the main laws of the K41 theory of turbulence. This, once again, supports the belief that the
K41 theory is “close to the truth”.
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