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Abstract
In this article we define an elliptic double shuffle Lie algebra dsell that generalizes the well-
known double shuffle Lie algebra ds to the elliptic situation. The double shuffle, or dimorphic,
relations satisfied by elements of the Lie algebra ds express two families of algebraic relations
between multiple zeta values that conjecturally generate all relations. In analogy with this,
elements of the elliptic double shuffleLie algebra dsell areLie polynomials having a dimorphic
property called �-bialternality that conjecturally describes the (dual of the) set of algebraic
relations between elliptic multiple zeta values, which arise as coefficients of a certain elliptic
generating series (constructed explicitly in Lochak et al. [15]) in On elliptic multiple zeta val-
ues 2016, in preparation) and closely related to the elliptic associator definedbyEnriquez [10].
We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding
the existence of an injective Lie algebramorphism ds→dsell . Ourmain result is the compatibil-
ity of this map with the tangential-base-point section Lieπ1(MTM)→Lieπ1(MEM) constructed
by Hain and Matsumoto [14] and with the section grt→grtell mapping the Grothendieck–
Teichmüller Lie algebra grt into the elliptic Grothendieck–Teichmüller Lie algebra grtell

constructed by Enriquez. This compatibility is expressed by the commutativity of the fol-
lowing diagram (excluding the dotted arrow, which is conjectural).

Lieπ1(MTM)
� � Brown ��

Hain Matsumoto
��

grt

Enriquez

��

� � Furusho �� ds

Ecalle

��
Lieπ1(MEM) ��

����
���

���
���

� grtell ��

��

dsell

�����
���

���
�

Der Lie[a, b]

(A)

Résumé
Dans cet article, nous définissons une algèbre de Lie de double mélange elliptique dsell

qui généralise l’algèbre de Lie bien connue de double mélange ds au cas elliptique. Les
relations de double mélange (ou dimorphiques) satisfaites par les éléments de l’algèbre de
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262 L. Schneps

Lie ds expriment deux familles de relations algébriques entre les valeurs zêta multiples,
qui engendrent conjecturalement toutes les relations. En analogie avec cette conjecture, les
éléments de l’algèbre de double mélange elliptique dsell sont des polynômes de Lie ayant
une propriété dimorphique, appelée �-bialternalité, qui décrit conjecturalement (le dual de)
l’ensemble des relations algébriques entre les valeurs zêtas elliptiques multiples, qui sont les
coefficients d’une certaine série génératrice elliptique (construite explicitement dans Lochak
et al. in On elliptic multiple zeta values 2016, in preparation) reliée à l’associateur d’Enriquez
(Sel Math 20(2):49–584, 2014). Nous montrons que l’un des résultats majeurs de la théorie
des moules de J. Écalle peut être interprété comme l’existence d’un morphisme injectif
ds→dsell d’algèbres de Lie. Notre résultat principal est la compatibilité de ce morphisme
avec la section “point base tangentiel” Lieπ1(MTM)→Lieπ1(MEM) construite par Hain and
Matsumoto [14], et avec la section grt→grtell construite par Enriquez qui envoie l’algèbre de
Lie grt de Grothendieck-Teichmüller vers sa version elliptique grtell . Ces compatibilités sont
exprimées par la commutativité du diagramme (A) (à l’exception de la flèche en pointillé,
qui est conjecturale.)

Mathematics Subject Classification 11M32

1 Introduction

1.1 Overview

The goal of this paper is to apply Ecalle’s mould theory to define an elliptic double shuf-
fle Lie algebra dsell that turns out to parallel Enriquez’ construction in [10] of the elliptic
Grothendieck–Teichmüller Lie algebra, and Hain and Matsumoto’s construction of the fun-
damental Lie algebra of the category MEM of mixed elliptic motives in [14]. Both of those
Lie algebras are equipped with canonical surjections to the corresponding genus zero Lie
algebras,

{
grtell →→ grt

Lieπ1(MEM) →→ Lieπ1(MTM).

Here,MTM is the category ofmixed Tatemotives overZ, and the notation Lieπ1(MTM)

(resp. Lieπ1(MEM)) denotes the Lie algebra of the pro-unipotent radical of the fundamental
group of the Tannakian category MTM (resp. MEM) equipped with the de Rham fiber
functor (resp. its lift to a fiber functor on MEM via composition with the natural surjection
MEM → MTM , cf. [14, Sect. 5].)

Each of the Lie algebras grtell and Lieπ1(MEM) is also equipped with a natural section
of the above surjection, corresponding, geometrically, to the tangential base point at infinity
on the moduli space of elliptic curves:

{
γ : grt ↪→ grtell

γt : Lieπ1(MTM) ↪→ Lieπ1(MEM).

Hain-Matsumoto determine a canonical Lie ideal ofu ofLieπ1(MEM), andEnriquez defines
a canonical Lie ideal rell of grtell , such that the above sections give semi-direct product
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Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 263

structures {
grtell � rell � γ (grt)

Lieπ1(MEM) � u � γt
(
Lieπ1(MTM)

)
.

Let Ci = ad(a)i−1(b) for i ≥ 1, and let Lie[C] denote the Lie algebra Lie[C1,C2, . . .].
It is an easy consequence of Lazard elimination that Lie[C] is a free Lie algebra on the
generators Ci , and that

Lie[a, b] � Qa ⊕ Lie[C]
(see Appendix). In other words, the elements in Lie[C] are all the elements of Lie[a, b]
having no linear term in a.

Definition Let Der0Lie[a, b] denote the subspace of derivations D ∈ Der Lie[a, b] that
annihilate [a, b] and such that D(a) and D(b) lie in Lie[C].

Hain-Matsumoto and Enriquez both give derivation representations of the elliptic spaces
into Der0Lie[a, b], but Enriquez’s Lie morphism grtell → Der0Lie[a, b] is injective (by
[23], cf. below formore detail), whereasHain-Matsumoto conjecture this result in themotivic
situation. However, Hain-Matsumoto compute the image of u in Der0Lie[a, b] and show that
it is equal to a certain explicitly determined Lie algebra b3 related to SL2(Z) (or to the Artin
braid group B3 on three strands), namely the Lie algebra generated by derivations ε2i , i ≥ 0
defined by ε2i (a) = ad(a)2i (b), ε2i ([a, b]) = 01, whereas Enriquez considers the same Lie
algebra b3, shows that it injects into rell , and conjectures that they are equal.2

All these maps are compatible with the canonical injective morphism Lieπ1(MTM) →
grtwhose existencewasprovenbyGoncharov andBrown in two stages as follows.Goncharov
constructed a Hopf algebra A of motivic zeta values as motivic iterated integrals [13, Sect.
5], and identified it with a subalgebra of the Hopf algebra of framed mixed Tate motives [13,
Sect. 8]; he showed that these motivic zeta values satisfy the associator relations. Brown [3]
subsequently lifted Goncharov’s construction to an algebraH in which the motivic ζm(2) is
non-zero, such that in fact H � A ⊗ Q[ζm(2)]. He was able to compute the structure and
the dimensions of the graded parts of H and thus of A, from which it follows that A is in
fact equal to the full Hopf algebra of framed mixed Tate motives. In the dual situation, this
means that the fundamental Lie algebra of MTM injects into the Lie algebra of associators,
namely the top arrow of the following commutative diagram:

Lieπ1(MTM)

��

�� grt

��
Lieπ1(MEM) �� grtell .

The elliptic double shuffle Lie algebra dsell that we define in this article is conjecturally
isomorphic to Lieπ1(MEM) and grtell . We show that it shares with them the following
properties: firstly, it comes equipped with an injective Lie algebra morphism

γs : ds → dsell ,

1 This Lie algebra was introduced by Tsunogai in [22, Sect. 3] (see also [17], [2] and [6] for
some results on its interesting structure. The ε2i also play an important role in [7] and [10].
2 It is really remarkable that these two papers were written totally independently of one
another.
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264 L. Schneps

where ds is the regularized double shuffle Lie algebra defined in [18], where it is denoted
dmr (“double mélange régularisé”).

Secondly there is an injective derivation representation

dsell ↪→ Der0Lie[a, b].
Unfortunately, we have not yet been able to find a good canonical Lie ideal in dsell that would
play the role of u and rell , although it is easy to show that there is an injection b3 ↪→ dsell
whose image conjecturally plays this role (cf. the end of Sect. 1.3). Since u → b3 ↪→ dsell ,
we do have a Lie algebra injection,

Lieπ1(MEM) ↪→ dsell ,

but not the desired injection

grtell ↪→ dsell ,

(the dotted arrow in the diagram in the abstract), which would follow as a consequence
of Enriquez’ conjecture that rell = b3. It would have been nice to give a direct proof of
the existence of a Lie algebra morphism grtell → dsell even without proving Enriquez’
conjecture, but we were not able to find one. This result appears like an elliptic version
of Furusho’s injection grt ↪→ ds (cf. [12]), and may possibly necessitate some similar
techniques.

Our main result, however, is the commutation of the diagram given in the abstract, which
does not actually require an injective map grtell → dsell , but, given all the observations
above, comes down to the commutativity of the triangle diagram

grt ��

����
���

���
��

ds

�����
���

���
�

Der0Lie[a, b] .

(1.1)

The morphisms from grt and ds to Der Lie[a, b] factor through the respective elliptic Lie
algebras (cf. the diagram in the abstract). Note that the morphisms in (1.1) must not be
confused with the familiar Ihara-type morphism grt → Der Lie[x, y] via y �→ [ψ(−x −
y, y), y] and x + y �→ 0, and the analogous map for ds investigated in [20]. The relation
between the two is based on the fact that Lie[x, y] is identified with the Lie algebra of the
fundamental group of the thrice-punctured sphere, whereas Lie[a, b] is identified with the
Lie algebra of the once-punctured torus. The natural Lie morphism Lie[x, y] → Lie[a, b],
reflecting the underlying topology, is given by

x �→ t01, y �→ t02,

where we write Berx = ad(x)/
(
exp(ad(x)) − 1

)
for any x ∈ Lie[a, b], and set

t01 = Berb(−a), t02 = Ber−b(a).

We show that certain derivations of Lie[x, y], transported to the free Lie subalgebra
Lie[t01, t02] ⊂ Lie[a, b] have a unique extension to derivations of all of Lie[a, b], and
that in particular this is the case for the derivations in the image of grt and ds (cf. Sect. 2).
This gives a direct interpretation of the two maps to derivations in the diagram (1.1) whose
commutativity we prove.

The existence of the injection ds → dsell arose from an elliptic reinterpretation of a
major theorem by Ecalle in mould theory. This reading of Ecalle’s work and interpretation
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Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 265

of some of his important results constitute one of the main goals of this paper in themselves.
Indeed, it appears that Ecalle’s seminal work in mould and multizeta theory has been largely
ignored by the multiple zeta community.3 This minimalist way of phrasing the main result
shows that it could actually be stated and proved without even defining an elliptic double
shuffle Lie algebra. However, this object is important in its own right, principally for the
following reason. Recall that the usual double shuffle Lie algebra ds expresses the double
shuffle relations satisfied by the multiple zeta values, in the following sense. Let FZ , the
formal multizeta algebra, be the graded dual of the universal enveloping algebra of ds; it is
generated by formal symbols satisfying only the double shuffle relations. Since motivic and
real multizeta values are known to satisfy them (see for example [21]), FZ surjects onto
the algebras of motivic and real multizeta values. These surjections are conjectured to be
isomorphisms, i.e., it is conjectured that the double shuffle relations generate all algebraic
relations between motivic, resp. real multizeta values (with the first of these problems being
undoubtedly much more tractable than the second, for reasons of transcendence).

The role played by the double shuffle algebra with respect to ordinary multizeta values is
analogous to the role played by the elliptic double shuffle algebra defined in this article with
respect to the elliptic mzv’s defined in [15]. There, we define an elliptic generating series in
the completed Lie algebra Lie[a, b], whose coefficients, called elliptic mzv’s or emzv’s, are
related to the iterated integrals that form the coefficients of Enriquez’ monodromic elliptic
associator, and we give an explicit “dimorphic” or “double shuffle” type symmetry of this
generating series which is exactly the defining property of dsell . Indeed, letting E denote
the graded Hopf algebra generated by the emzv’s, we show in [15] that the vector space
ne = E>0/

(E>0
)2 is isomorphic to a semi-direct product b3 � nz∨, where nz is the space

of “new multizeta values” obtained by quotienting the algebra of multizeta values by ζ(2)
and products. Under the standard conjecture from multizeta theory nz∨ � grt, as well as
Enriquez’ conjecture rell � b3, this implies that ne � grtell . If grtell � dsell , as we believe,
this would mean that the elliptic double shuffle property determines all algebraic relations
between the emzv’s. This topic, which reflects the geometric aspects of the elliptic double
shuffle relations introduced in this paper, is explored in detail in [15].

The content of the present paper has some relation with the recent preprint [5] as well as
the earlier, closely related online lecture notes [4]. In particular Brown gives the existence
of rational-function moulds satisfying the double shuffle relations, which is an immediate
consequence of an important theorem of Ecalle that appears in all of his articles concerning
ARI/GARI and multiple zeta values (cf. Theorem 1.3 below), although Brown introduces a
completely different construction (vines and grapes). Brown also mentions in passing (cf.
(3.7) of [5]) the result of the useful extension Lemma 2.2 below, however without proof. In [4]
(conjecture 3) and [5] (following Prop. 4.6), Brown asks the question of whether ugeom � pls.
The answer to this question is no; indeed all elements of grt with no depth 1 part furnish
elements of pls not lying in u via Enriquez’ section, as explained in the Corollary following
Theorem 1.4.

3 According to the author’s discussion with several colleagues, this appears to be at least partly
due to a reluctance to accept Ecalle’s language, because, at least according to some, it uses
a system of words with varying vowels, rather than the more standard single letters, for the
basic objects. This seems surprising, as it is unclear why calling a derivation arit(f), say, rather
than D f should pose such a problem. Possibly we enter here into the domain of psychology. A
second, more serious obstacle is the lack of proofs in Ecalle’s work, and the incredible profusion
of statements, which makes it difficult to pick out exactly what is needed to establish a specific
result. The author has attempted to solve this problem, at least partially, in the basic text [19]
which gives an introduction with complete proofs to the portion of Ecalle’s work most directly
related to current problems in double shuffle algebra.
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266 L. Schneps

1.2 The elliptic Grothendieck–Teichmüller Lie algebra

In this section we recall the definition of the elliptic Grothendieck–Teichmüller Lie algebra
grtell defined in [10], along with some of its main properties. Recall that the genus 1 braid
Lie algebra on n strands, t1,n , is generated by elements x+

1 , . . . , x+
n and x−

1 , . . . , x−
n subject

to relations

x+
1 + · · · + x+

n = x−
1 + · · · + x−

n = 0, [x+
i , x+

j ] = [x−
i , x−

j ] = 0 if i �= j,

[x+
i , x−

j ] = [x+
j , x−

i ] for i �= j, [x+
i , [x+

j , x−
k ]]

= [x−
i , [x+

j , x−
k ]] = 0 for i, j, k distinct.

We write ti j = [x+
i , x−

j ]. It is the Lie algebra of the unipotent completion of the topological
fundamental group of the configuration space of n ordered marked points on the torus (cf. [7,
Sect. 2.2] for details). The Lie algebra t1,2 is isomorphic to Lie[a, b], the free Lie algebra
on two generators4 a and b. Throughout this article, we write Lie[a, b] for the completed
Lie algebra, i.e., it contains infinite Lie series and not just polynomials. Thus an element
α ∈ t1,2 � Lie[a, b] is a Lie series α(a, b) in two free variables.

Definition The elliptic Grothendieck–Teichmüller Lie algebra grtell is the set of triples
(ψ, α+, α−) with ψ ∈ grt, α+, α− ∈ t1,2, such that setting⎧⎪⎨

⎪⎩

(x±

1 ) = α±(x±
1 , x∓

1 ) + [x±
1 , ψ(t12, t23)],


(x±
2 ) = α±(x±

2 , x∓
2 ) + [x±

2 , ψ(t12, t13)],

(x±

3 ) = α±(x±
3 , x∓

3 )

(1.2)

yields a derivation of t1,3. The spacegrtell ismade into aLie algebra bybracketing derivations;
in other words, writing Dα± for the derivation of t1,2 � Lie[a, b] which takes a �→ α+(a, b)
and b �→ α−(a, b), we have

〈(ψ, α+, α−), (φ, β+, β−)〉 =
(
{ψ, φ}, Dα±(β+) − Dβ±(α+), Dα±(β−) − Dβ±(α−)

)
,

where {ψ, φ} is the Poisson (or Ihara) bracket on grt. Finally, we assume that the coefficient
of a in both α+ and α− is equal to 0.

Remark The last assumption is not contained in Enriquez’ original definition. In particular
he allows the element (0, 0, a), corresponding to the derivation e(a) = 0, e(b) = a, which
together with ε0(a) = b, ε0(b) = 0 generate a copy of sl2 in grtell . Because of this, Enriquez’
version of grtell is not pronilpotent, and is thus strictly larger than the Lieπ1(MEM) studied
in [14], which is the Lie algebra of the prounipotent radical of the fundamental group of
MEM . Thus, isomorphism can only be conjectured if the extra element is removed, motivat-
ing our slight alteration of his definition.We nonetheless write grtell for the modified version;
the results of Enriquez on elements of grtell that we cite adapt directly with no changes.

We summarize Enriquez’ important results concerning grtell in the following theorem.

Theorem 1.1 (cf. [En1]) For all (ψ, α+, α−) ∈ grtell , the derivation Dα± of t1,2 annihi-
lates the element t12 = [a, b]. But for each ψ ∈ grt, there exists one and only one triple

4 With respect to the notation of [10] we have Lie[a, b] = t1,2, a = y1 = x−
1 , b = x1 = x+

1
(Enriquez uses both notations).
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Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 267

(ψ, α+, α−) ∈ grtell such that Dα± restricts to the Lie subalgebra Lie[t01, t12] as follows:⎧⎪⎨
⎪⎩
t01 �→ [ψ(t01, t12), t01],
t02 �→ [ψ(t02, t12), t02],
t12 �→ 0.

(1.3)

The map γ : grt → grtell mappingψ to this triple is a Lie algebra morphism that is a section
of the canonical surjection grtell → grt. The Lie algebra grtell thus has a semi-direct product
structure

grtell = rell � γ (grt). (1.4)

These results of Enriquez show that grtell is generated by elements belonging to two particular
subspaces. The first is the subspace rell of triples (ψ, α+, α−) with ψ = 0, which forms a
Lie ideal inside grtell . The quotient grtell/rell is canonically isomorphic to grt, the surjection
being nothing other than themorphism forgettingα+ andα−. The second subspace, the image
of the section grt ↪→ grtell , is the space of triples that restrict on the free Lie subalgebra
Lie[t01, t02] to Ihara-type derivations (1.3). For any triple (ψ, α+, α−) of the second type,
i.e., in the—but only and uniquely for those, not for general elements of grtell—we let
Dψ = Dα± , and write D̃ψ for the the restriction of Dψ to Lie[t02, t12] given by (1.3).

Remark This is actually a rephrasing of part of Enriquez’ results. In fact, he gives the deriva-
tion Dψ by explicitly displaying its value on t01 (as in (1.3) and on b. Since Dψ(t12) = 0, the
restriction of Dψ to Lie[t01, t02] is the well-known Ihara derivation associated to ψ ∈ grt,
and therefore the value on t02 must be as in (1.3). The fact that Dψ is the only extension of
(1.3) to a derivation on all of Lie[a, b] follows from our extension Lemma 2.2 below. This
characterization of Dψ is sufficient for our purposes in this article; we do not actually use the
explicit expression of Dψ(b), but it is necessary for Enriquez’ work on elliptic associators.

The map

grtell → Der0Lie[a, b]
(ψ, α+, α−) �→ Dα±

is injective; in other words, knowing the pair (α+, α−) allows us to uniquely recover ψ . This
result follows from [23, Theorem 1.17] (building on previous work in [16]), which states that
removing the third braid strand yields an injectionD(2)

1 ↪→ D(1)
1 , whereD(1)

1 � Der0Lie[a, b]
and D(2)

1 is a space of special derivations of L(2)
1 � t1,3 which contains (and is conjecturally

equal to) grtell .
Furthermore, by Lemma 2.1 below, there is an injective linear map

Der0Lie[a, b] → Lie[a, b]
D �→ D(a), (1.5)

which is a Lie algebra bijection onto its image when that image (equal to the subspace
Liepush[a, b] of push-invariant elements of Lie[a, b], cf. Sect. 2) is equipped with the cor-
responding bracket. In particular this shows that in the triple (ψ, α+, α−), the element α+
determines α−, and thus also ψ . We write γ+ : grt ↪→ Lie[a, b] for the map sending
ψ �→ α+. By the above arguments, γ+ determines γ and vice versa.
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268 L. Schneps

The desired triangle diagram (1.1) is thus equivalent to

grt

γ+

����
���

���
��

� � �� ds

�����
���

���
�

Liepush[a, b],

(1.6)

by composing it with the map (1.5). Our main result, Theorem 1.2 below, is the explicit
version of the commutation of the diagram (1.6).

1.3 Mould theory, elliptic double shuffle and themain theorem

In this section we explain how we use Ecalle’s mould theory—particularly adapted to the
study of dimorphic (or “double shuffle”) structures—to construct the elliptic double shuffle
Lie algebra dsell , which like grtell is a subspace of the push-invariant elements of Lie[a, b],
and how we reinterpret one of Ecalle’s major theorems and combine it with some results
from Baumard’s Ph.D. thesis ([B]), to define the injective Lie morphism ds → dsell .

We assume some familiaritywithmoulds in this section; however all the necessary notation
and definitions starting with that of a mould are recalled in the appendix at the end of the
paper. We use the notation ARI to denote the vector space of moulds with constant term 0,
and write ARIlu for ARI equipped with the lu-bracket and ARIari for ARI equipped with
the ari-bracket (the usual ARI according to Ecalle’s notation). Similarly, we write GARI
for the set of moulds with constant term 1 and write GARImu and GARIgari for the groups
obtained by equipping GARI with the mu and gari multiplication laws. In Sect. 3 we will
introduce a third Lie bracket on ARI , the Dari-bracket, and employ the notation ARIDari ,
as well as the corresponding group GARIDgari with multiplication law Dgari .

We define the following operators on moulds:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dar(P)(u1, . . . , ur ) = u1 · · · ur P(u1, . . . , ur )

dur(P)(u1, . . . , ur ) = (u1 + · · · + ur ) P(u1, . . . , ur )

�(P)(u1, . . . , ur ) = u1 · · · ur (u1 + · · · + ur ) P(u1, . . . , ur )

ad(Q) · P = [Q, P] for all Q ∈ ARI .

(1.7)

We take dar(P)(∅) = dur(P)(∅) = �(P)(∅) = P(∅). The operators dur and ad(Q)

are derivations of the Lie algebra ARIlu , whereas dar is an automorphism of ARIlu . We will
also make use of the inverse operators dur−1 (resp. dur−1 and �−1) defined by dividing a
mould in depth r by (u1 + · · · + ur ) (resp. by (u1 + · · · + ur ) and (u1 + · · · + ur )u1 · · · ur ).

If p ∈ Lie[a, b], then we have⎧⎪⎨
⎪⎩
ma

([p, a]) = dur
(
ma(p)

)
ma

(
p(a, [b, a])) = dar

(
ma(p)

)
ma

([p(a, [b, a]), a]) = �
(
ma(p)

)
.

(1.8)

A proof of the first equality can be found in [18, Proposition 4.2.1.1] or [19, Lemma 3.3.1].
The second is obvious from the definition of ma (cf. Appendix), since substituting [b, a]
for b in Ck yields −Ck+1 so making the substitution in a monomial Ck1 · · ·Ckr yields
(−1)rCk1+1 · · ·Ckr+1, and we have

ma
(
(−1)rCk1+1 · · ·Ckr+1

) = (−1)r (−1)k1+···+kr uk11 · · · ukrr = u1 · · · ur ma
(
Ck1 · · ·Ckr

)
.
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Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 269

The third equality of (1.8) follows from the first two.
We now recall the definition of the key mould pal that lies at the heart of much of Ecalle’s

theory of moulds. Following [9], we start by introducing an auxiliary mould dupal ∈ ARI ,
given by the simple explicit expression

dupal(u1, . . . , ur ) = Br
r !

1

u1 · · · ur

⎛
⎝r−1∑

j=0

(−1) j
( r − 1
j

)
u j+1

⎞
⎠ . (1.9)

The mould pal is then defined by setting pal(∅) = 1 and using the equality

dur(pal) = pal dupal, (1.10)

which gives a recursive definition for pal depth by depth starting with pal(∅) = 1, since
to determine the left-hand side dur(pal) in depth r only requires knowing pal up to depth
r − 1 on the right-hand side.

Since pal(∅) = 1, we have pal ∈ GARI . We write invpal for its inverse invgari (pal) in
the group GARIgari . Since GARIgari is the exponential of the Lie algebra ARIari , it has an
adjoint action on ARIari ; we write Adari (P) for the adjoint operator on ARIari associated
to a mould P ∈ GARIgari .

At this point we are already equipped to baldly state our main theorem linking Ecalle’s
theory of moulds to Enriquez’ section γ : grt → grtell , or rather to the modified version γ+
introduced above that maps ψ to the associated element α+ in Enriquez’ triple (ψ, α+, α−).

Theorem 1.2 Let ψ ∈ grt and set f (x, y) = ψ(x,−y). We have the following equality of
moulds:

�
(
Adari (invpal) · ma( f )

) = ma
(
γ+(ψ)

)
. (1.11)

In order to place this theorem in context and explain its power in terms of helping to
define an elliptic double shuffle Lie algebra that in turn will shed light on the dimorphic
(“double-shuffle”) properties of elliptic multiple zeta values, we first give some results from
the literature, starting with Ecalle’s main theorem, with which he first revealed the surprising
role of the adjoint operator Adari (pal) and its inverse Adari (pal)−1 = Adari (invpal).

Recall from the appendix that in terms ofmoulds, ds is isomorphic to the Lie subalgebra of
ARIari of polynomial-valued moulds that are even in depth 1, and are alternal with swap that
is alternil up to addition of a constant mould. The notation we use for this in mould language
is a bit heavy, but has the advantage of concision and total precision in that the various
symbols attached to ARI carry all of the information about the moulds in the subspace under
consideration: we have the isomorphism

ma : ds ma→ ARI
pol,al∗il
ari ,

where pol indicates polynomial moulds, the underlining is Ecalle’s notation for moulds that
are even in depth 1, and the usual notation al/il for an alternal mould with alternil swap is
weakened to al ∗ il when the swap is only alternil up to addition of a constant mould.

Similarly, the notation ARI
al∗al
ari refers to the subspace of moulds in ARIari that are

even in depth 1 and alternal with swap that is alternal up to addition of a constant mould
(or “bialternal”). When we consider the subspace of these moulds that are also polynomial-
valued, ARI pol,al∗al , we obtain the (image underma of the) “linearized double shuffle” space
ls studied for example in [5]. But the full non-polynomial space is of course hugely larger.
One of Ecalle’s most remarkable discoveries is that the mould pal provides an isomorphism
between the two types of dimorphy, as per the following theorem.
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Theorem 1.3 (cf. [E]5) The adjoint map Adari (invpal) induces a Lie isomorphism of Lie
subalgebras of ARIari :

Adari (invpal) : ARI al∗ilari
∼→ ARI

al∗al
ari , (1.12)

and if F ∈ ARI al∗il and C is the constant mould such that swap(F + C) is alternil,
then swap

(
Adari (invpal)(F)

) + C is alternal, i.e., the constant corrections for F and
Adari (invpal) · F are the same. In particular if C = 0, i.e., if F is al/il, then
Adari (invpal)(F) lies in al/al.

One important point to note in the result of Theorem 1.3 is that the operator Adari (invpal)
does not respect polynomiality of moulds. Indeed, applying Adari (pal) to bialternal polyno-
mial moulds produces quite complicated denominators with many factors. However, in his
doctoral thesis S. Baumard was able to show that conversely, when applying Adari (invpal)
to moulds ma( f ) for f ∈ ds, i.e., to moulds in ARI pol,al∗il , the denominators remain
controlled. Indeed, let ARI� denote the space of moulds P ∈ ARI such that �(P) ∈
ARI pol , i.e., the space of rational-function valued moulds whose denominator is “at worst”
u1 · · · ur (u1 + · · · + ur ) in depth r .

Theorem 1.4 ([1], Thms. 3.3, 4.35) The space ARI� forms a Lie algebra under the ari-
bracket, and we have an injective Lie algebra morphism

Adari (invpal) : ARI pol,al∗ilari ↪→ ARI�
ari . (1.13)

Recall that pls (“polar linearized double shuffle”) is the notation used by F. Brown for the
space ARI�,al/al and u for the Lie subalgebra of ARI generated by B−2 and B2i for i ≥ 1,
where Bi denotes the mould concentrated in depth 1 defined by Bi (u1) = ui1. As a corollary
of Theorems 1.2, 1.3 and 1.4, we give a negative answer to the question posed by Brown
([4], conjecture 3 and [5], following Prop. 4.6) as to whether pls and u are equal.

Corollary Let ψ ∈ grt be an element of grt having no depth 1 part. Then

�−1(ma(γ+(ψ)
) ∈ ARI�,al/al = pls

but

�−1(ma(γ+(ψ))
)

/∈ u.

Proof Since by Furusho’s theorem, ψ(x, y) �→ f (x, y) = ψ(x,−y) maps grt ↪→ ds, we
have ma( f ) ∈ ARI pol,al∗il for every ψ ∈ grt. In particular, if ψ has no depth 1 part,
then ma( f ) ∈ ARI pol,al/il ; thus by Theorem 1.3, Adari (invpal) · ma( f ) ∈ ARI al/al , and
by Theorem 1.4, it also lies in ARI�; thus it lies in ARI�,al/al = pls. By Theorem 1.2,
Adari (invpal) · ma( f ) is equal to �−1

(
ma(γ+(ψ)

)
where γ+ denotes Enriquez’ section

grt → grtell , associating to ψ ∈ grt the element α+ from the triple (ψ, α+, α−). But
Enriquez shows that grtell is a semi-direct product γ+(grt) � rell and that �(u) ⊂ ma(rell).
Thus ma

(
γ+(grt)

) ∩ �(u) = {0}. ��

5 This result is stated and used constantly in [E], as well as many other analogous results
concerning other symmetries. But the proof is not given. Ecalle was kind enough to send us
a sketch of the proof in a personal letter, relying on the fundamental identity (2.62) of [E],
itself not proven there. Full details of the reconstructed proof can be found in [19], with (2.62)
proved in Theorem 2.8.1 and Theorem 1.3 above proved in Sect. 4.6.
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For the rest of this article we will use the notation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f = ψ(x,−y)

F = ma( f )

A = Adari (invpal) · F
M = �(A).

(1.14)

Corollary 1.5 Let f ∈ ds and let F = ma( f ), so F ∈ ARI pol,al∗il . Then the mould
M = �

(
Adari (invpal) · F)

is alternal, push-invariant and polynomial-valued.

Proof Let A = Adari (invpal) · F . Then A ∈ ARI al∗al by Theorem 1.3, so A is alternal, and
furthermore A is push-invariant because all moulds in ARI al∗al are push-invariant (see [9]
or [19, Lemma 2.5.5]). Thus M = �(A) is also alternal and push-invariant since� preserves
these properties. The fact that M is polynomial-valued follows from Theorem 1.4. ��
Definition A mould P is said to be �-bialternal if �−1(P) is bialternal, i.e., P ∈
�(ARI al∗alari ). The elliptic double shuffle Lie algebra dsell ⊂ Lie[a, b] is the set of Lie
polynomials which map under ma to polynomial-valued �-bialternal moulds that are even
in depth 1, i.e.,

dsell = ma−1
(
�

(
ARI

�,al∗al
ari

))
. (1.15)

Taken together, Theorems 1.3 and 1.4 show that the image of ma(ds) = ARI
pol,al∗il
ari

under Adari (invpal) lies in ARI
�,al∗al
ari , so the image under � ◦ Adari (invpal) lies in the

space of polynomial-valued�-bialternal moulds that are also even in depth 1 (since it is easy
to see that Adari (invpal) preserves the lowest-depth part of a mould). Thus we can define
γs to be the polynomial avatar of � ◦ Adari (invpal), i.e., γs is defined by the commutation
of the diagram

ds
ma ��

γs

��

ARI
pol,al∗il
ari

�◦Adari (invpal)
��

dsell
ma �� �

(
ARI

�,al∗al
ari

)
.

(1.16)

Thus for f ∈ ds we have

ma
(
γs( f )

) = �
(
Adari (invpal) · ma( f )

)
.

This reduces the statement of the main Theorem 1.2 above to the equality

γs( f ) = γ+(ψ),

i.e., to the commutation of the diagram

grt ��

γ+ ����
���

���
��

ds

γs�����
���

���
�

Liepush[a, b],
which is the precise version of the desired diagram (1.6).

123



272 L. Schneps

As a final observation, we note that the definition of dsell makes the injective Lie algebra
morphism b3 ↪→ dsell mentioned at the beginning of the introduction obvious. Indeed,
identifying b3 with its image in Liepush[a, b] under the map (1.5), it is generated by the
polynomials ε2i (a) = ad(a)2i (b) = C2i+1 for i ≥ 0, which map under ma to the moulds
B2i concentrated in depth 1 and given by B2i (u1) = u2i1 (Ecalle denotes these moulds by
ekma2i at least for i ≥ 1; note however that B0 and �−1(B0) = B−2 are essential in the
elliptic situation). To show that these moulds lie in dsell , we need only note that the moulds
�−1(B2i ) = B2i−2 are even in depth 1, and trivially bialternal since this condition is empty
in depth 1.

2 Proof of themain theorem

For the proof of themain theorem,we first recall in 2.1 a fewwell-established facts about non-
commutative polynomials, moulds and derivations, and give the key lemma about extending
derivations on the Lie subalgebra Lie[t01, t02] to all of Lie[a, b]. Once these ingredients are in
place, the proof of the main theorem, given in 2.2, is a simple consequence of one important
proposition, whose proof, contained in Sect. 3, necessitates some developments in mould
theory. In fact, the present section could be written entirely in terms of polynomials in a
and b without any reference to moulds. We only use moulds in the proof of Lemma 2.1,
but merely as a convenience, as even this result could be stated and proved in terms of
polynomials. Indeed this has already been done (cf. [20]), but the proof given here using
moulds is actually more elegant and simple.

2.1 The push-invariance and extension lemmas

Definition For p ∈ Lie[a, b], write p = paa + pbb and set

p′ =
∑
i≥0

(−1)i−1

i ! aib∂ ia(pa) (2.1)

where ∂a(a) = 1, ∂a(b) = 0. We call p′ the partner of p. If P ∈ ARI then we define P ′ to
be the mould partner of P , given by the formula

P ′(u1, . . . , ur ) = 1

u1 + · · · + ur

(
P(u2, . . . , ur−1,−u1 − · · · − ur−1) − P(u2, . . . , ur )

)
.

(2.2)

This formula defines a partner for any mould P ∈ ARI , but in the case of polynomial-valued
moulds it corresponds to (2.1) in the sense that if P = ma(p), then P ′ = ma(p′).

Recall that the push-operator on a mould is an operator of order r + 1 in depth r defined
by

push(P)(u1, . . . , ur ) = P(−u1 − · · · − ur , u1, . . . , ur−1),

and that a mould P is said to be push-invariant if P = push(P). We say that a polynomial
p ∈ Lie[a, b] is push-invariant if ma(p) is.

Lemma 2.1 Let p, p′ be two polynomials in Lie[a, b] such that the coefficient of a in p and
p′ is zero, and let D denote the derivation of Lie[a, b] given by a �→ p, b �→ p′. Then
D([a, b]) = 0 if and only if p is push-invariant and p′ is its partner.

123



Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 273

Proof Let P = ma(p) = ma
(
D(a)

)
and P ′ = ma(p′) = ma

(
D(b)

)
. Using the fact that

ma is a Lie algebra morphism (see Appendix) and the first identity of (1.8) we find that

ma
(
D([a, b]) = ma

([D(a), b] + [a, D(b)]) = [P, B] − dur(P ′), (2.3)

where B = ma(b) is the mould concentrated in depth 1 given by B(u1) = 1. Note that the
mould [P, B] − dur(P ′) is zero in depths r ≤ 1.

Let us first assume that P is push-invariant and P ′ is its partner as given in (2.2). We have

[P, B](u1, . . . , ur ) = P(u1, . . . , ur−1) − P(u2, . . . , ur ) (2.4)

and

dur(P ′) = P(u2, . . . , ur ) − P(u2, . . . , ur−1,−u1 − · · · − ur−1). (2.5)

Thus [P, B] − dur(P ′) is given in depth r > 1 by

P(u1, . . . , ur−1) − P(u2, . . . , ur−1,−u1 − · · · − ur−1) = (
P − push−1(P)

)
(u1, . . . , ur ),

but since P is push-invariant, this is equal to zero, so by (2.3) D([a, b]) = 0.
Assume now that D([a, b]) = 0, i.e., [P, B] = dur(P ′), i.e.,

P(u1, . . . , ur−1) − P(u2, . . . , ur ) = (u1 + · · · + ur )P
′(u1, . . . , ur ). (2.6)

This actually functions as a defining equation for P ′. But knowing that P ′ = ma(p′) is a
polynomial-valued mould, (2.6) implies that P(u1, . . . , ur−1) − P(u2, . . . , ur ) must vanish
along the pole u1 + · · · + ur = 0, in other words when ur = −u1 − · · · − ur−1, so we have

P(u1, . . . , ur−1) = P(u2, . . . , ur−1,−u1 − · · · − ur−1). (2.7)

As noted above, the right-hand side of (2.7) is nothing other than push−1(P), so (2.7) shows
that P is push-invariant. Furthermore, we can substitute (2.7) into the left-hand side of (2.6)
to find the new defining equation for P ′:

P ′(u1, . . . , ur ) = 1

u1 + · · · + ur

(
P(u2, . . . , ur−1,−u1 − · · · − ur−1) − P(u2, . . . , ur )

)
,

(2.8)

but this coincides with (2.2), showing that P ′ is the partner of P . ��
Lemma 2.2 Let D̃ be a derivation of the Lie subalgebra Lie[t01, t02] ⊂ Lie[a, b]. Then
(i) there exists a unique derivation D ∈ Der0Lie[a, b] having the following two properties:
(i.1) D(t02) = D̃(t02);
(i.2) D(b) is the partner of D(a).

(ii) If D̃(t12) = 0 and D(a) is push-invariant, then D is the unique extension of D̃ to all of
Lie[a, b].

Proof (i) Let T = D̃(t02), and write T = ∑
n≥w Tn for its homogeneous parts of weight

n, where the weight is the degree as a polynomial in a and b, and w is the minimal weight
occurring in T . We will construct a derivation D satisfying D(t02) = D̃(t02) via the equality

T = D
(
Ber−b(a)

)
= D

(
a + 1

2
[b, a] + 1

12
[b, [b, a]] − 1

720
[b, [b, [b, [b, a]]]] + · · · )
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= D(a) + 1

12
[D(b), [b, a]] − 1

720
[D(b), [b, [b, [b, a]]] − 1

720
[b, [D(b), [b, [b, a]]]]

− 1

720
[b, [b, [D(b), [b, a]]]] + · · · . (2.9)

We construct D(a) by solving (2.9) in successive weights starting withw. We start by setting
D(a)w = Tw and D(a)w+1 = Tw+1, and take D(b)w and D(b)w+1 to be their partners. We
then continue to solve the successive weight parts of (2.9) for D(a) in terms of T and lower
weight parts of D(b). For instance the next few steps after weights w and w + 1 are given
by

D(a)w+2 = Tw+2 − 1

12
[D(b)w, [b, a]],

D(a)w+3 = Tw+3 − 1

12
[D(b)w+1, [b, a]],

D(a)w+4 = Tw+4 − 1

12
[D(b)w+2, [b, a]] + 1

720
[D(b)w, [b, [b, [b, a]]]

+ 1

720
[b, [D(b)w, [b, [b, a]]]] + 1

720
[b, [b, [D(b)w, [b, a]]]].

In this way we construct the unique Lie series D(a) and its partner D(b) such that the
derivation D satisfies D

(
Ber−b(a)

) = D(t02) = T = D̃(t02). We note that D is not
necessarily an extension of D̃ to all of Lie[a, b], because D and D̃ may not agree on t12.

For (ii), suppose that D̃(t12) = D̃([a, b]) = 0. Since D(a) is push-invariant and D(a)

and D(b) are partners by construction, we also have D([a, b]) = 0 by Lemma 2.1. Therefore
D and D̃ agree on t02 and t12, so on all of Lie[t02, t12]; thus D is an extension of D̃. For
the uniqueness, suppose that E is another derivation of Lie[a, b] that coincides with D̃ on
t02 and t12. The fact that E(t12) = E([a, b]) = 0 shows that E(a) and E(b) are partners by
Lemma 2.1. But then E satisfies (i.1) and (i.2), so it coincides with D. ��

2.2 Proof of themain theorem

For each ψ ∈ grt, let f (x, y) = ψ(x,−y). Let A = Adari (invpal) · ma( f ) as before, and
M = �(A). By Corollary 1.5, there exists a polynomial m ∈ Lie[C] such that

ma(m) = M = �
(
Adari (invpal) · ma( f )

)
.

Since by the same corollary m is push-invariant, we see that by Lemma 2.1 there exists a
unique derivation Eψ ∈ Der Lie[a, b] such that Eψ(a) = m, Eψ([a, b]) = 0 and Eψ(b) ∈
Lie[C], namely the one such that Eψ(b) is the partner of Eψ(a). The main result we need
about this derivation is the following.

Proposition 2.3 The derivation Eψ satisfies

Eψ(t02) = [ψ(t02, t12), t02]. (2.10)

Using this, we can easily prove the main theorem. Since t12 = [a, b], we have Eψ(t12) =
0, so Proposition 2.3 shows that Eψ restricts to a derivation Ẽψ on the Lie subalgebra
Lie[t02, t12], where it coincides with the restriction D̃ψ of Enriquez’ derivation Dψ given
in (1.3). Furthermore, since Eψ(t12) = 0 and Eψ(a) = m is push-invariant, we are in
the situation of Lemma 2.2 (ii), so Eψ is the unique extension of Ẽψ to all of Lie[a, b].
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But Enriquez’ derivation Dψ is an extension of D̃ψ to all of Lie[a, b], and it also satisfies
Dψ(t12) = 0, so byLemma2.1, Dψ(a) = α+ = γ+(ψ) is push-invariant; thus byLemma2.2
(ii) Dψ is the unique extension of D̃ψ to all of Lie[a, b]. Thus, since Ẽψ = D̃ψ , we must
have Eψ = Dψ , and in particular Eψ(a) = m = Dψ(a) = γ+(ψ). Taking ma of both sides
yields the desired equality (1.11). ♦

3 Proof of Proposition 2.3

3.1 Mould theoretic derivations

We begin by defining a mould-theoretic derivation Eψ on ARIlu for eachψ ∈ grt as follows.

Definition For any mould P , let Darit(P) be the operator on moulds defined by

Darit(P) = −dar
(
ari t

(
�−1(P)

) − ad
(
�−1(P)

)) ◦ dar−1. (3.1)

Then for all P , Darit(P) is a derivation of ARIlu , since ari t(P) and ad(P) are both
derivations and dar is an automorphism.

Let ψ ∈ grt. We use the notation of (1.14), and set

Eψ = Darit(M). (3.2)

Recall that ARI denotes the vector space of rational-valued moulds with constant term
0. Let ARI a denote the vector space obtained by adding a single generator a to the vector
space ARI , and let ARI alu be the Lie algebra formed by extending the lu-bracket to ARI a

via the relation

[Q, a] = dur(Q) (3.3)

for every Q ∈ ARIlu . Recall from (1.8) that this equality holds in the polynomial sense if
Q is a polynomial-valued mould; in other words, (1.9) extends to an injective Lie algebra
morphism ma : Lie[a, b] → ARI alu by formally setting ma(a) = a.

The Lie algebra ARIlu forms a Lie ideal of ARI alu , i.e., there is an exact sequence of Lie
algebras

0 → ARIlu → ARI alu → Qa → 0.

We say that a derivation (resp. automorphism) of ARIlu extends to a if there is a derivation
(resp. automorphism) of ARI alu that restricts to the given one on the Lie subalgebra ARIlu .
To check whether a given derivation (resp. automorphism) extends to a, it suffices to check
that relation (3.3) is respected.

Recall that B = ma(b) is the mould concentrated in depth 1 given by B(u1) = 1. Let us
write Bi , i ≥ 0, for the mould concentrated in depth 1 given by Bi (u1) = ui1. In particular
B0 = B = ma(b), and B1(u1) = u1, so B1 = ma([b, a]).
Lemma 3.1 (i) The automorphism dar extends to a taking the value dar(a) = a;
(ii) The derivation dur extends to a taking the value dur(a) = 0;
(iii) For all P ∈ ARI , the derivation ari t(P) of ARIlu extends to a, taking the value

ari t(P) · a = 0.
(iv) For all P ∈ ARI , the derivation Darit(P) of ARIlu extends to a, with Darit(P) ·a =

P. Furthermore, Dari t(P) · B1 = 0.
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Proof Since dar is an automorphism, to check (3.3) we write

[dar(Q), dar(a)] = [dar(Q), a] = dur
(
dar(Q)

)
.

But it is obvious from their definitions that dur and dar commute, so this is indeed equal
to dar

(
dur(Q)

)
. This proves (i). We check (3.3) for (ii) similarly. Because dur(a) = 0 and

dur is a derivation, we have

dur([Q, a]) = [dur(Q), a] = dur
(
dur(Q)

)
.

For (iii), we have

ari t(P) · [Q, a] = [ari t(P) · Q, a] = dur
(
ari t(P) · Q)

)
.

But as pointed out by Ecalle [9] (cf. [19, Lemma 4.2.2] for details), ari t(P) commutes with
dur for all P , which proves the result.

For (iv), the calculation to check that (3.3) is respected is a little more complicated. Let
Q ∈ ARI . Again using the commutation of ari t(P) with dur , as well as that of dar and
dur , we compute

Darit(P) · [Q, a]
= [

Darit(P)(Q), a
] + [

Q, Darit(P)(a)
]

= dur
(
Darit(P) · Q) + [Q, P]

= −dur

(
dar

(
ari t

(
�−1(P)

) · dar−1(Q) − [
�−1(P), dar−1(Q)

)]) + [Q, P]

= −dur

(
dar

(
ari t

(
�−1(P)

) · dar−1(Q)
))

− dur
([

Q, dur−1(P)
]) + [Q, P]

= −dar

(
dur

(
ari t

(
�−1(P)

) · dar−1(Q)
))

− [[Q, N ], a] + [
Q, [N , a]]

with N = dur−1P, i.e., P = [N , a]
= −dar

(
ari t

(
�−1(P)

) · dur dar−1(Q)
)

− [[Q, a], N]
by Jacobi

= −dar
(
ari t

(
�−1(P)

) · dar−1 dur(Q)
)

− [
dur(Q), dur−1P

]
= −dar

(
ari t

(
�−1(P)

) · dar−1 dur(Q)
)

− dar
([
dar−1dur(Q), dar−1dur−1(P)

])
= −dar

(
ari t

(
�−1(P)

) · dar−1 dur(Q)
)

+ dar
([

�−1(P), dar−1dur(Q)
])

= Darit(P) · dur(Q).

This proves the first statement of (iv). For the second statement, we note that dar−1(B1) =
B. Set R = �−1(P). We compute

Darit(P) · B1 = −dar
(
ari t(R) · B) + dar

([R, B])
= −u1 · · · ur

(
R(u1, . . . , ur−1) − R(u2, . . . , ur )

)
−u1 · · · ur

(
R(u2, . . . , ur ) − R(u1, . . . , ur−1)

)
= 0.

This concludes the proof of Lemma 3.1. ��
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We consider by default that a is alternal and polynomial. Let (ARI alu)
pol,al denote the Lie

subalgebra of alternal polynomial moulds of ARI alu . Then ARI pol,allu is a Lie ideal of ARI alu
and we have the Lie algebra isomorphism

L[C] � Qa � Lie[a, b] ma−→ (
ARI alu

)pol,al � ARI pol,allu � Qa. (3.4)

Lemma 3.2 Suppose that P ∈ ARI is a mould such that Darit(P) preserves the Lie sub-
algebra (ARI alu)

pol,al of ARI alu . Then there exists a derivation EP ∈ Der Lie[a, b] that
corresponds to Darit(P) restricted to (ARI alu)

pol,al , in the sense that

ma
(
EP ( f )

) = Darit(P)
(
ma( f )

)
for all f ∈ Lie[a, b].

The derivation EP has the property that the values EP (a) and EP (b) lie in Lie[C].
Proof By the isomorphism (3.4), every mould P ∈ (ARI alu)

pol,al has a unique preimage in
Lie[a, b] under ma: we write p = ma−1(P). Recall that B = ma(b). By assumption, P is
an alternal polynomial-valued mould, and so is Darit(P) ·B since P preserves such moulds.
Thus we can define EP by setting EP (a) = ma−1(P), EP (b) = ma−1

(
Darit(P) · B)

. In
particular this means that the monomial a does not appear in the polynomials EP (a) and
EP (b). ��
Lemma 3.3 Let P be an alternal polynomial-valued mould. Then Darit(P) preserves
(ARI alu)

pol,al if and only if P is push-invariant.

Proof By the isomorphism (3.4), (ARI alu)
pol,al is generated as a Lie algebra under the lu

bracket byma(a) = a andma(b) = B. Since Darit(P) ·a = P is alternal and polynomial-
valued by assumption, it suffices to determine when Darit(P) ·B is alternal and polynomial.
Let N = �−1P , and set B−1 = dar−1(B), so B−1 is concentrated in depth 1with B−1(u1) =
1/u1. We compute(

Darit(P) · B)
(u1, . . . , ur )

= −dar
(
ari t(N ) · B−1 − [N , B−1]

)
(u1, . . . , ur )

= −dar
(
ari t(N ) · B−1

)
(u1, . . . , ur ) − dar

([B−1, N ])(u1, . . . , ur )
= −dar

(
B−1(u1 + · · · + ur )

(
N (u1, . . . , ur−1) − N (u2, . . . , ur )

))
−u1 . . . ur

(
B−1(u1)N (u2, . . . , ur ) + N (u1, . . . , ur−1)B−1(ur )

)
= −u1 · · · ur (u1 + · · · + ur )

−1(N (u1, . . . , ur−1) − N (u2, . . . , ur )
)

−u2 · · · ur N (u2, . . . , ur ) + u1 · · · ur−1N (u1, . . . , ur−1)

= 1

u1 + · · · + ur

(
P(u1, . . . , ur−1) − P(u2, . . . , ur )

)
.

In order for this mould to be polynomial-valued, it is necessary and sufficient that the numer-
ator should be zero when ur = −u1 − · · · − ur−1, i.e., that

P(u1, . . . , ur−1) = P(u2, . . . , ur−1,−u1 − · · · − ur−1). (3.5)

But the right-hand term is equal to push−1(P), so this condition is equivalent to the push-
invariance of P . ��
Corollary 3.4 The derivation Eψ defined in Sect. 2.2 is equal to the derivation EM associated
to Darit(M) as in Lemma 3.2.
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Proof Since M is push-invariant by Corollary 1.5, Darit(M) preserves (ARI alu)
pol,al by

Lemma 3.3. Thus we are in the situation of Lemma 3.2, so there exists a derivation EM of
Lie[a, b] such that EM (a) = m with ma(m) = M . Furthermore, setting B1 = ma([b, a]),
we know that Darit(M) · B1 = 0 by Lemma 3.1 (iv), and therefore by Lemma 3.2, we have
EM ([b, a]) = EM ([a, b]) = 0. Thus the derivation EM of Lie[a, b] agrees with Eψ on a
and on [a, b], so since furthermore EM (b) ∈ Lie[a, b] � Lie[a], they are equal. ��

This result means that we can now use mould theoretic methods to study Darit(M) in
order to prove Proposition 2.3.

3.2 The1-operator

Let us define a new Lie bracket, the Dari-bracket, on ARI by

Dari(P, Q) = Darit(P) · Q − Darit(Q) · P,

where Darit(P) is the lu-derivation defined in (3.1). Let ARIDari denote the Lie algebra
obtained by equipping ARI with this Lie bracket.

Proposition 3.5 The operator � is a Lie algebra isomorphism from ARIari to ARIDari .

Proof Certainly � is a vector space isomorphism from ARIari to ARIDari since it is an
invertible operator on moulds. To prove that it is a Lie algebra isomorphism, we need to show
the Lie bracket identity �

(
ari(P, Q)

) = Dari
(
�P,�Q

)
, or equivalently,

Dari(P, Q) = �
(
ari(�−1P,�−1Q)

)
(3.6)

for all moulds P, Q ∈ ARI . But indeed, we have

Dari(P, Q) = Darit(P) · Q − Darit(Q) · P
= −(

dar ◦ ari t(�−1P) ◦ dar−1) · Q + (
dar ◦ ad(�−1P) ◦ dar−1) · Q

+(
dar ◦ ari t(�−1Q) ◦ dar−1) · P − (

dar ◦ ad(�−1Q) ◦ dar−1) · P
= −(

� ◦ ari t(�−1P) ◦ �−1) · Q + (
� ◦ ari t(�−1Q) ◦ �−1) · P

+(
dar ◦ ad(�−1P) ◦ dar−1) · Q − (

dar ◦ ad(�−1Q) ◦ dar−1) · P
= −(

� ◦ ari t(�−1P) ◦ �−1) · Q + (
� ◦ ari t(�−1Q) ◦ �−1) · P

+dar
([�−1(P), dar−1Q]) − dar

([�−1(P), dar−1P])
= �

(
−ari t(�−1P · �−1Q + ari t(�−1Q) · �−1P

+dur−1([�−1P, dar−1Q] + [dar−1P,�−1Q]))
= �

(
−ari t(�−1P · �−1Q + ari t(�−1Q) · �−1P

+dur−1([�−1P, dur�−1Q] + [dur�−1P,�−1Q]))
= �

(
−ari t(�−1P · �−1Q + ari t(�−1Q) · �−1P

+dur−1dur
([�−1P,�−1Q]))

= �
(
−ari t(�−1P · �−1Q + ari t(�−1Q) · �−1P + [�−1P,�−1Q]

)

123



Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 279

= �
(
ari(�−1P,�−1Q)

)
,

which proves the desired identity. ��
Let us now define the group GARIDgari . We start by defining the exponential map

expDari : ARIDari → GARI by

expDari (P) = 1 +
∑
n≥1

1

n!Darit(P)n−1(P), (3.7)

which for all P ∈ ARI satisfies the equality

exp
(
Darit(P)

)
(a) = expDari (P). (3.8)

This map is easily seen to be invertible, since for any Q ∈ GARI we can recover P such
that expDari (P) = Q recursively depth by depth. Let logDari denote the inverse of expDari .
For each P ∈ GARI , we then define an automorphism Dgarit(P) ∈ Aut ARIlu by

Dgarit(P) = Dgarit
(
expDari

(
logDari (P)

)) = exp
(
Darit

(
logDari (P)

))
.

Finally, we define the multiplication Dgari on GARI by

Dgari(P, Q) = expDari
(
chDari (logDari (P), logDari (Q))

)
= exp

(
Darit(logDari (P))

) ◦ exp
(
Darit(logDari (Q))

) · a
= Dgarit(P) ◦ Dgarit(Q) · a
= Dgarit(P) · Q,

where chDari denotes the Campbell–Hausdorff law on ARIDari . We obtain the following
commutative diagram, analogous to Ecalle’s diagram (A.18) (cf. Appendix):

ARIDari
expDari ��

Darit

��

GARIDgari

Dgari t

��
Der ARIlu

exp �� Aut ARIlu .

(3.9)

Lemma 3.6 For any mould P ∈ GARI , the automorphism Dgarit(P) of ARIlu extends to
an automorphism of the Lie algebra ARI alu with the following properties:

(i) its value on a is given by

Dgarit(P) · a = a − 1 + P ∈ ARI a; (3.10)

(ii) we have Dgarit(P) · B1 = B1.

Proof Let Q = logDari (P) ∈ ARI . We saw in Lemma 3.1 (iv) that Darit(Q) extends to
ARI alu with Darit(Q) · a = Q. By diagram (3.9), we have

Dgarit(P) · a = Dgarit
(
expDari (Q)

) · a
= exp

(
Darit(Q)

) · a
= a + Darit(Q) · a + 1

2
Darit(Q)2 · a + · · ·

= a + Q + 1

2
Darit(Q) · Q + · · ·
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= a − 1 + expDari (Q) by (3.7)

= a − 1 + P.

The second statement follows immediately from the fact that Darit(Q) · B1 = 0 for all
Q ∈ ARI shown in Lemma 3.1 (iv). ��

Finally, we set �∗ = expDari ◦� ◦ logari , to obtain the commutative diagram of isomor-
phisms

ARIari
�−→ ARIDari

expari ↓ ↓ expDari

GARIgari
�∗→ GARIDgari , (3.11)

which will play a special role in the proof of Proposition 2.3. Indeed, the key result in our
proof Proposition 2.3 is an explicit formula for the map �∗. In order to formulate it, we first
define the mu-dilator of a mould, introduced by Ecalle in [E2].

Definition Let P ∈ GARI . Then the mu-dilator of P , denoted duP , is defined by

duP = P−1 dur(P). (3.12)

Ecalle writes this in the equivalent form dur(P) = P duP , and by (3.3), this means that
[P, a] = Pa − aP = P duP = P , which multiplying by P−1, gives us the useful formu-
lation6

P−1aP = a − duP. (3.13)

Proposition 3.7 The isomorphism

�∗ : GARIgari → GARIDgari

in diagram (3.11) is explicitly given by the formula

�∗(Q) = 1 − dar
(
du invgari (Q)

)
. (3.14)

Proof Let Q ∈ GARI , and set P = logari (Q). Let R = expari (−P). By Lemma A.1 from
the Appendix, the derivation −ari t(P) + ad(P) extends to a taking the value [a, P] on a,
and we have

exp
(−ari t(P) + ad(P)

) · a = R−1 a R. (3.15)

By (3.1), we have

exp
(
Darit

(
�(P)

)) = dar ◦ exp
(−ari t(P) + ad(P)

) ◦ dar−1.

Recall that dar(a) = a byLemma 3.1 (i), and dar is an automorphism of ARI alu ; in particular
du commutes with dar . Thus we have

exp
(
Darit

(
�(P)

)) · a = dar ◦ exp
(−ari t(P) + ad(P)

) · a
= dar(R−1 a R) by Lemma A.1

= dar(R)−1 a dar(R)

6 We are grateful to B. Enriquez for spotting this enlightening interpretation of the mu-dilator, which cannot
even be stated meaningfully for general moulds unless a is added to ARI .
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= a − du
(
dar(R)

)
by (3.13)

= a − dar
(
duR

)
. (3.16)

Now, using P = logari (Q), we compute

�∗(Q) = 1 − a + Dgarit
(
�∗(Q)

) · a by (3.10)

= 1 − a + Dgarit
(
expDari

(
�(logari (Q))

)) · a by (3.11)

= 1 − a + Dgarit
(
expDari

(
�(P)

)) · a
= 1 − a + exp

(
Darit

(
�(P)

)) · a by (3.9)

= 1 − dar
(
du expari (−P)

)
by (3.16)

= 1 − dar
(
du invgari (Q)

)
. (3.17)

This proves the proposition. ��
Corollary We have the identity

�∗(invpal) = ma
(
1 − a + Ber−b(a)

)
. (3.18)

Proof Applying (3.14) to Q = invpal = invgari (pal), we find

�∗(invpal) = 1 − dar
(
dupal

)
, (3.19)

where dupal is the mu-dilator of pal given in (1.9), discovered by Ecalle. Comparing the
elementary mould identity

ma
(
ad(−b)r (−a)

)
=

r−1∑
j=0

(−1) j
( r − 1
j

)
u j+1

with (1.9) shows that dar(dupal) is given in depth r ≥ 1 by

dar(dupal)(u1, . . . , ur ) = Br
r !

r−1∑
j=0

(−1) j
( r − 1
j

)
u j+1 = Br

r ! ma
(
ad(−b)r (−a)

)
.

Since the constant term of dar
(
dupal

)
(∅) is 0, this yields

dar
(
dupal

) = ma
(
Ber−b(−a) + a

)
= ma

(
a − Ber−b(a)

)
,

so (3.19) implies the desired identity (3.18). ��

3.3 Proof of Proposition 2.3

Let ψ ∈ grt. We return to the notation of (1.14). By Corollary 3.4, we have a derivation
EM = Eψ ∈ Der Lie[a, b] obtained by restricting the derivation Eψ = Darit(M) to the Lie
subalgebra of ARI alu generated by a and B = ma(b), which is precisely (ARI alu)

pol,al , and
transporting the derivation to the isomorphic space Lie[a, b]. The purpose of this section is
to prove (2.10), i.e.,

Eψ(t02) = [ψ(t02, t12), t02].
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Themain point is the following result decomposing Darit(M) into three factors; a derivation
conjugated by an automorphism. We note that although the values of the derivation and the
automorphism in Proposition 3.8 on a are polynomial-valued moulds, this is false for their
values on B = ma(b), which means that this decomposition is a result which cannot be
stated in the power-series situation of Lie[a, b]; the framework of mould theory admitting
denominators is crucial here.

Proposition 3.8 We have the following identity of derivations:

Darit
(
�

(
Adari (invpal) · F))

= Dgarit
(
�∗(invpal)

) ◦ Darit
(
�(F)

) ◦ Dgarit
(
�∗(invpal)

)−1
. (3.20)

Proof We use two standard facts about Lie algebras and their exponentials. Firstly, for any
exponential morphism exp : g → G mapping a Lie algebra to its associated group, the
natural adjoint action of G on g, denoted Adg(exp(g)) · h, satisfies
exp

(
Adg

(
exp(g)

) · h
)

= AdG
(
exp(g)

)(
exp(h)

) = exp(g) ∗G exp(h) ∗G exp(g)−1,

(3.21)

where ∗G denotes the multiplication in G, defined by

exp(g) ∗G exp(h) = exp
(
chg(g, h)

)
(3.22)

where chg denotes the Campbell–Hausdorff law on g.
Secondly, if � : g → h is an isomorphism of Lie algebras, then the following diagram

commutes:

g
� ��

Adg
(
expg(g)

)
��

h

Adh

(
exph

(
�(g)

))
��

g
� �� h.

(3.23)

To prove (3.20), we start by taking the exponential of both sides. Let li pal =
logari (invpal). We start with the left-hand side and compute

exp

(
Darit

(
�

(
Adari (invpal) · F)))

= exp

(
Darit

(
�

(
Adari (expari (li pal)) · F)))

= exp

(
Darit

(
AdDari

(
expDari (�li pal)

) · �(F)
)))

= Dgarit

(
expDari

(
AdDari

(
expDari (�li pal)

) · �(F)
))

= Dgarit
(
expDari

(
�li pal

)) ◦ Dgarit
(
expDari

(
�(F)

)) ◦ Dgarit
(
expDari

(
�li pal

))−1

= Dgarit
(
�∗(invpal)

) ◦ exp
(
Darit

(
�(F)

)) ◦ Dgarit
(
�∗(invpal)

)−1
, (3.24)

where the second equality follows from (3.23) (with g, expg and Adg identified with ARIari ,
expari and Adari , and the same three terms for hwith the corresponding terms for ARIDari ),

123



Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 283

the third from (3.9), the fourth from (3.21) and the fifth again from (3.9). But the first and
last expressions in (3.24) are equal to the exponentials of the left- and right-hand sides of
(3.20). This concludes the proof of the Proposition. ♦

We can now complete the proof of Proposition 2.3 by using Proposition 3.8 to compute
the value of Eψ(t02). By (3.14) and the Corollary to Proposition 3.7, we have

Dgarit
(
�∗(invpal)

) · a = a − 1 + �∗(invpal) = ma
(
Ber−b(a)

) = ma(t02). (3.25)

Recall that Eψ is nothing but the polynomial version of Darit(M) restricted to theLie algebra
generated by the moulds a and B. Thus, to compute the value of Eψ on t02 = Ber−b(a),
we can now simply use (3.20) to compute the value of Darit(M) on ma(t02). By (3.25), the
rightmost map of the right-hand side of (3.20) maps ma(t02) to a. By Lemma 3.1 (iv), the
derivation Darit(P) for any mould P ∈ ARI extends to a taking the value P on a, so we
can apply the middle map of (3.20) to a, obtaining

Darit
(
�(F)

) · a = �(F) = dur
(
dar(F)

) = ma
([ f (a, [b, a]), a])

= ma
([ψ(a, [a, b]), a]) = ma

([ψ(a, t12), a]). (3.26)

Finally, we note that by Lemma 3.6 (ii), the leftmost map of the right-hand side of (3.20)
fixes B1 = −ma(t12), so it also fixes ma(t12). By (3.25), it sends a to ma(t02), so applying
it to the rightmost term of (3.26) we obtain the total expression

Darit(M)
(
ma(t02)

) = ma
(
[ψ(t02, t12), t02]

)
.

In terms of polynomials, this gives the desired expression

Eψ(t02) = [ψ(t02, t12), t02],
which concludes the proof. ��
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Appendix: Mould basics

For the purposes of this article, we use the term “mould” to refer only to rational-function
valuedmoulds with coefficients inQ; thus, a mould is a family of functions {Pr (u1, . . . , ur ) |
r ≥ 0} with Pr (u1, . . . , ur ) ∈ Q(u1, . . . , ur ). In particular P0(∅) is a constant. The depth r
part of a mould is the function Pr (u1, . . . , ur ) in r variables. By defining addition and scalar
multiplication of moulds in the obvious way, i.e., depth by depth, moulds form a Q-vector
space that we call Moulds. Following Ecalle, we often drop the subscript r from the mould
notation; i.e., we write P(u1, . . . , ur ) to mean the rational function Pr (u1, . . . , ur ), where
the number of variables automatically indicates which depth part we are considering.

We write GARI for the set of moulds with P(∅) = 1, and ARI for the set of moulds7

with P(∅) = 0. Then ARI forms a vector subspace of Moulds.
Let (Moulds)pol denote the subspace of polynomial-valued moulds, i.e., moulds such

that P(u1, . . . , ur ) is a polynomial in each depth r ≥ 0, and ARI pol the polynomial-valued

7 Ecalle uses the notation ARI for the space of these moulds equipped with the ari-bracket, that we denote
ARIari , and in fact he considers more general bimoulds in two sets of variables.
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subspace of ARI . In this appendixwewill stress the connections between polynomial-valued
moulds and power series in the non-commutative variables a and b, showing in particular
how familiar notions from multizeta theory (the Poisson–Ihara bracket, the twisted Magnus
group etc.) not only translate over to the corresponding moulds, but generalize to all moulds.

Let Ci = ad(a)i−1(b) for i ≥ 1. Let the depth of a monomial Ci1 · · ·Cir be the number r
of Ci in the monomial; the depth forms a grading on the free associative ring of polynomials
in the Ci ’s. Let Q〈C〉 = Q〈C1,C2, . . .〉 denote the depth completion of this ring, i.e., Q〈C〉
is the space of power series that are polynomials in each depth. We also write

L[C] = Lie[C1,C2, . . .] (A.1)

for the corresponding freeLie algebra.Note that the freeness follows fromLazard elimination,
which also shows that we have the isomorphism

Qa ⊕ L[C] � Lie[a, b].
Ecalle uses the notation ma to denote the standard vector space isomorphism from Q〈C〉 to
the space (Moulds)pol of polynomial-valued moulds defined by

ma : Q〈C〉 ∼→ (Moulds)pol

Ck1 · · ·Ckr �→ (−1)k1+···+kr−r uk1−1
1 · · · ukr−1

r (A.2)

on monomials and extended by linearity. This map ma can also be considered as a ring iso-
morphism when (Moulds)pol is equipped with the suitable multiplication, cf. the remarks
following (A.4) below. (We use the same notation ma when Ci = ad(x)i−1(y), for
polynomials usually considered in Lie[x, y], such as polynomials in grt.) For any map
� : Q〈C〉 → Q〈C〉, we define its transport ma(�) to (Moulds)pol , namely the corre-
sponding map on polynomial-valued moulds

ma(�) : (Moulds)pol → (Moulds)pol

by the obvious relation

ma(�)(ma( f )) = ma
(
�( f )

)
for all f ∈ Q〈C〉. (A.3)

Power series, moulds, standard multiplication and Lie bracket.Via the map (A.2), many
of the familiar notions associatedwith power series and Lie series pass to polynomial moulds,
with general expressions that are in fact valid for all moulds.

In particular, the standard mould multiplication mu is given by

mu(P, Q)(u1, . . . , ur ) =
r∑

i=0

P(u1, . . . , ui )Q(ui+1, . . . , ur ).

For simplicity, we write P Q = mu(P, Q). The multiplication mu generalizes ordinary
multiplication of non-commutative power series in the sense that

ma( f g) = mu
(
ma( f ),ma(g)

) = ma( f )ma(g) (A.4)

for f , g ∈ Q〈C〉. The space (Moulds)pol is a ring under the mu multiplication, generated
by the depth 1 polynomial moulds Bi given by Bi (u1) = ui1 for i ≥ 0. By (A.4), the linear
mapma from (A.2) can be defined as a ring isomorphism fromQ〈C〉 to (Moulds)pol , taking
values ma(Ci ) = (−1)i−1Bi−1 on the generators Ci for i ≥ 1.
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Amould P is invertible for themu-multiplication if and only if its constant term P(∅) ∈ Q

is invertible. If the constant term is 1, the formula for the mu-inverse P−1 = invmu(P) is
explicitly given by

P−1(u) =
∑

0≤s≤r

(−1)s
∑

u=u1···us
P(u1) · · · P(us),

where the sum runs over all ways u1 · · · us of cutting the word u = (u1, . . . , ur ) into s
non-empty chunks. By (A.4), if f ∈ Q〈C〉 is invertible (i.e., has non-zero constant term), we
have ma( f −1) = P−1.

Themu-multiplication makesGARI , the set of moulds with constant term 1, into a group
that we denote by GARImu . Defining the associated lu-bracket by lu(P, Q) = mu(P, Q)−
mu(Q, P), i.e., [P, Q] = P Q − Q P , gives ARI the structure of a Lie algebra that we call
ARIlu .

Mould symmetries. A mould P is said to be alternal if∑
u∈sh

(
(u1,...,ui ),(ui+1,...,ur )

) P(u) = 0 (A.5)

for 1 ≤ i ≤ r − 1.
It is well-known that p ∈ Q〈C〉 satisfies the shuffle relations if and only if p is a Lie

polynomial, i.e., p ∈ Lie[C]. The alternality property onmoulds is analogous to these shuffle
relations, i.e., a polynomial p ∈ Q〈C〉 satisfies the shuffle relations if and only if ma(p) is
alternal. (See [19, Sect. 2.3 and Lemma 3.4.1.].) This shows that, writing ARI al for the
subspace of alternal moulds and ARI pol,al for the subspace of alternal polynomial-valued
moulds, the map ma restricts to a Lie algebra isomorphism

ma : Lie[C] ma−→ ARI pol,allu .

Let the swap operator on moulds be defined by

swap(A)(v1, . . . , vr ) = A(vr , vr−1 − vr , . . . , v1 − v2).

Here the use of the alphabet v1, v2, . . . instead of u1, . . . , ur is purely a convenient way to
distinguish a mould from its swap. The mould swap(A) is alternal if it satisfies the property
(A.5) in the vi ’s. The space of moulds that are alternal and have a swap that is also alternal
is denoted ARI al/al ; these moulds are said to be strictly bialternal. We particularly consider
the situation where a mould is alternal and its swap differs from an alternal mould by addition
of a constant-valued mould. Such moulds are called bialternal, and the space of bialternal
moulds is denoted ARI al∗al . The space of polynomial-valued bialternal moulds is denoted
ARI pol,al∗al . Finally, we recall that Ecalle uses the notation of underlining the symmetry of
a mould to indicate that its depth 1 part is an even function of u1; thus we use the notation
ARI pol,al∗al etc. to denote the subspaces of moulds that are even in depth 1. The subspace
ARI

pol,al∗al
ari forms a Lie algebra under the ari-bracket (cf. [19, Theorem 2.5.6]), which is

isomorphic under the map ma to the “linearized double shuffle” Lie algebra ls studied for
example in [5].

Ecalle introduces a second symmetry called alternility on moulds in the vi ’s, which gen-
eralizes the usual stuffle relations on polynomials in a and b. As above, we write ARI al/il ,
ARI al∗il and ARI al∗il for the space of alternal moulds with swap that is alternil, resp.
alternil up to addition of a constant mould, resp. also even in depth 1. The space ARI pol,al∗il
is isomorphic under the map ma to the double shuffle Lie algebra ds. [19, Theorem 3.4.4]
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Twisted Magnus automorphism and group law. Let G ⊂ Q〈C〉 denote the set of power
series with constant term 1, so that ma gives a bijection G → GARI pol to the set of
polynomial-valued moulds with constant term 1. We write G for the group obtained by
putting the standard power series multiplication on G, so that we have a group isomorphism
G � GARI polmu . For all p ∈ G, we define the associated “twistedMagnus” automorphism Ap

ofG, defined by Ap(a) = a, Ap(b) = pbp−1. These automorphisms satisfy the composition
law

(Aq ◦ Ap)(b) = Aq(p)qbq
−1A(p)−1,

which defines a different multiplication on the set G, given by

p � q = Aq(p)q = p
(
a, qbq−1) q(a, b), (A.6)

satisfying

Ap�q = Aq ◦ Ap.

The inverse of the automorphism Ap is given by Aq where q is the unique power series such
that the right-hand side of (A.6) is equal to 1. We write G� for the “twisted Magnus” group
obtained by putting the multiplication law (A.6) on G. The association p �→ Ap extends
to the general case of moulds by associating to every P ∈ GARI the automorphism of
GARImu defined by Ecalle and denoted gari t(P), whose action on Q ∈ GARI is given by(
gari t(P) · Q)

(u) =
∑
s≥0

∑
u=a1b1c1···asbscs

Q(�b1� · · · �b2�)P(a1) · · · P(as)P−1(c1) · · · P−1(cs),

where the sum runs over all ways of cutting the word u = (u1, . . . , ur ) into 3s chunks
of which the bi ’s may not be empty, a1 and cs may be empty, and the interior chunks
ai and c j may be empty as long as no interior double chunk ciai+1 is empty. Note that
because GARImu is a huge group containing all possible moulds with constant term 1, the
automorphism gari t(P) cannot be determined simply by giving its value on some simple
generators as we do for Ap . However, gari t(P) extends to a taking the value a, and restricted
to the Lie algebra (ARI alu)

pol generated by a and B (isomorphic to Lie[a, b]), we find
gari t(P) · a = a, gari t(P) · B = PBP−1. (A.7)

In analogy with the formula for � given in (A.6), gari t defines a multiplication law gari
on GARI by the formula

gari(P, Q) = mu
(
gari t(Q) · P, Q) = (

gari t(Q) · P)
Q.

We write GARIgari for the group obtained by equipping GARI with this multiplication.

Poisson–Ihara bracket, exponential, linearization. For all P ∈ ARI , Ecalle defines a
derivation ari t(P) of ARIlu by the formula

ari t(F) · M(u) =
∑

u=abc,c �=∅
M(a�c)F(b) −

∑
u=abc,a �=∅

M(a�c)F(b).

For B = ma(b), i.e., B(u1) = 1, this formula yields

ari t(P) · B = [P, B]. (A.8)
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If P = ma( f ) for a polynomial f ∈ Lie[C], then ari t(P) restricts to ARI pol,allu , and
as we saw in Lemma 3.1 (iii), it extends to all of (ARI alu)

pol,al taking the value 0 on a. It
corresponds on the isomorphic Lie algebra Lie[a, b] to the Ihara derivation D f defined by

D f (a) = 0, D f (b) = [ f , b]. (A.9)

The Lie bracket {·, ·} that we put on L[C], known as the Poisson bracket or Ihara bracket,
comes from bracketing the derivations D f , i.e.,

[D f , Dg] = D{ f ,g} where { f , g} = D f (g) − Dg( f ) − [ f , g]. (A.10)

We obtain a pre-Lie law by linearizing the multiplication law � defined in (A.6). In fact,
because � is linear in p, we only need to linearize q , so we write q = 1 + t f and compute
the coefficient of t in

p
(
a, (1 + t f )b(1 − t f )

)(
1 + t f (a, b)

) = p
(
a, b + t[ f , b])(1 + t f (a, b)

)
,

obtaining the expression

p � f = p f + D f (p), (A.11)

valid for all p ∈ Q〈C〉, f ∈ L[C]. In particular, the pre-Lie law gives another, equivalent
way to obtain the Poisson bracket, namely {p, q} = p � q − q � p. The exponential map
exp� : L[C]{·,·} → G� is then defined via the pre-Lie law by

exp�( f ) =
∑
n≥0

1

n! f
�n, (A.12)

where the pre-Lie law is composed from left to right, so that the rightmost argument is always
f ∈ L[C]. The exponential map defined this way satisfies the basic identities

exp
(
D f

) = Aexp�( f ), (A.13)

and

exp(D f ) ◦ exp(Dg) = exp
(
ch{·,·}(D f , Dg)

)
, (A.14)

where ch{·,·} denotes the Campbell–Hausdorff law on L[C] equipped with the Poisson–Ihara
Lie bracket (A.10).

All these standard constructions extend to the case of general moulds; Ecalle gives explicit
formulas for the pre-Lie law preari and for the exponential expari , namely

preari(P, Q) = PQ + ari t(Q) · P and expari (P) =
∑
n≥0

1

n! preari(P, . . . , P︸ ︷︷ ︸
n

),

which clearly extend (A.11) and (A.12) above, and satisfy the analogous formulas general-
izing (A.13) and (A.14), namely

exp
(
ari t(P)

) = gari t
(
expari (P)

)
(A.15)

and

exp
(
ari t(P)

) ◦ exp
(
ari t(Q)

) = exp
(
ch

(
ari t(P), ari t(Q)

))
. (A.16)

The exponential maps satisfy the properties

exp
(
ari t(P)

) ◦ exp
(
ari t(Q)

) = exp
(
ari t

(
chari (P, Q)

))
(A.17)
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for the Campbell–Hausdorff law chari on ARIari . These properties are expressed by the
commutative diagram

ARI
expari ��

ari t
��

GARI

gari t
��

Der ARIlu
exp �� Aut ARIlu .

(A.18)

We conclude this appendixwith a linearization lemma used in the proof of Proposition 3.7.

Lemma A.1 Let P ∈ ARI . Then the derivation −ari t(P) + ad(P) extends to a taking the
value [P, a] on a, and we have

exp
(−ari t(P) + ad(P)

) · a = R−1aR

where R = expari (−P).

Proof Since ari t(P) extends to a taking the value 0 by Lemma 3.1 (iii), it suffices to check
that ad(P) extends to a via ad(P) · a = [P, a], i.e., that this action respects the formula
[Q, a] = dur(Q). Indeed, we have

ad(P) · [Q, a] = [ad(P) · Q, a] + [Q, ad(P) · a] = [[P, Q], a]
+[

Q, [P, a]] = [P, [Q, a]] = ad(P) · dur(Q).

For a real parameter t ∈ [0, 1], let Rt = expari (−t P), and let At denote the automorphism
of (ARI alu)

pol defined by

At (a) = R−1
t aRt , At (B) = B,

so that A1(a) = R−1aR. Let D = log(A); we will prove that D = −ari t(P) + ad(P) on
(ARI alu)

pol . We compute D(a) and D(b) by the linearization formula

D(a) = d

dt
|t=0

(
At (a)

)
and D(b) = d

dt
|t=0

(
At (b)

)
.

The second equality yields D(b) = 0. Let us compute D(a). Using R0 = 1 and d
dt |t=0Rt =

−P , we find

D(a) = d

dt
|t=0

(
At (a)

)
= d

dt
|t=0

(
R−1
t aRt

)
=

(
−R−1

t
d

dt
(Rt )R

−1
t aRt + R−1

t a
d

dt
(Rt )

)
|t=0

= Pa − aP.

Thus D(a) = [P, a] = (−ari t(P) + ad(P)
) · a and D(b) = 0 = (−ari t(P) + ad(P)

) · b,
which concludes the proof. ��
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