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Abstract We obtain a sharp estimate to the scalar curvature of stochastically complete
hypersurfaces immersed with constant mean curvature in a locally symmetric Riemannian
space obeying standard curvature constraints (which includes, in particular, a Riemannian
space with constant sectional curvature). For this, we suppose that these hypersurfaces sat-
isfy a suitable Okumura-type inequality recently introduced by Meléndez (Bull Braz Math
Soc 45:385–404, 2014), which is a weaker hypothesis than to assume that they have two
distinct principal curvatures. Our approach is based on the equivalence between stochastic
completeness and the validity of the weak version of the Omori–Yau’s generalized maximum
principle, which was established by Pigola et al. (Proc AmMath Soc 131:1283–1288, 2002;
Mem Am Math Soc 174:822, 2005).

Keywords Locally symmetric spaces · Stochastically complete hypersurfaces ·
Constant mean curvature hypersurfaces · Scalar curvature · Isoparametric hypersur-
faces

Résumé Nous obtenons une estimation optimale de la courbure scalaire des hypersurfaces
stochastiquement complètes immergées avec courbure moyenne constante dans un espace
Riemannien localement symétrique, obéissant aux contraintes de courbure standard (qui com-
prend, en particulier, un espace Riemannien avec courbure sectionnelle constante). Pour cela,
nous supposons que ces hypersurfaces satisfont une inégalité appropriée de type Okumura
récemment introduite par Meléndez (Bull Braz Math Soc 45:385–404, 2014), ce qui est une
hypothèse plus faible que de supposer qu’elles ont deux courbures principales distinctes.
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Notre approche est basée sur l’équivalence entre la complétude stochastique et la validité de
la version faible du principe maximal généralisé de Omori–Yau, qui a été établi par Pigola
et al. (Proc Am Math Soc 131:1283–1288, 2002; Mem Am Math Soc 174:822, 2005).

Mathematics Subject Classification Primary 53C42; Secondary 53C40

1 Introduction

The problem of characterizing hypersurfaces immersed with constant mean curvature in a

Riemannian space form M
n+1
c of constant sectional curvature c constitutes an important and

fruitful topic in the theory of isometric immersions, which has being widely approached
by many authors. For instance, Alencar and do Carmo [1] studied compact hypersurfaces
immersedwith constantmean curvature in the Euclidean sphere. Specifically, they introduced
a tensor �, the so-called total umbilicity tensor of the hypersurface, and showed that if the
squared norm of� is bounded from above for a certain constant βH depending only on mean
curvature and dimension of hypersurface, then either the hypersurface is totally umbilical or
the equality |�|2 = βH holds. In the last case, they characterized all hypersurfaces having
this property. This result extended previous ones due to Simons [12], Lawson [6] and Chern
et al. [4].

More recently, Alías andGarcía-Martínez [2] used theweakOmori–Yaumaximumprinci-
ple due to Pigola et al. [10,11] to study the behavior of the scalar curvature R (or, equivalently,
of the norm of �) of a hypersurface immersed with constant mean curvature in a Rieman-

nian space form M
n+1
c , with n ≥ 3, by deriving a sharp estimate for the infimum of R (or

equivalently, for the supremum of the norm of �). In particular, they gave a generalization
of result due Alencar and do Carmo to complete parabolic hypersurfaces in space forms.
Afterwards, following the approach introduced in [2] and by assuming an Okumura type
inequality, Meléndez [7] proved results similar to the above cited.

We recall that a Riemannianmanifold is said to be locally symmetricwhen all the covariant
derivative components of its curvature tensor vanish identically. This class of Riemannian
manifolds consists in an interesting generalization of constant sectional curvature spaces and,
consequently, it is a natural question to revisit in this ambient spaces the known results of
constant sectional curvature spaces. So, following the ideas introduced in [2,7], our main
purpose in this paper is to obtain a sharp estimate for the infimum of the scalar curvature of
stochastically complete hypersurfaces with constant mean curvature in a locally symmetric
Riemannian manifold obeying standard curvature constraints. For this, we will suppose that
these hypersurfaces satisfy an Okumura-type inequality recently introduced by Meléndez
in [7] andwhich is aweaker hypothesis comparedwith the assumption that such hypersurfaces
have two distinct principal curvatures (for more details, see Sect. 3).

This manuscript is organized in the following way: in Sect. 2 we introduce some basic
facts and notations that will appear along the paper. In particular, we establish our curvatures
constraints related to a hypersurface immersed in a locally symmetric space. In Sect. 3 we
recall an Okumura type inequality due to Meléndez in [7] and we quote two key lemmas. In
Sect. 4 we apply the weak Omori–Yau’s generalized maximum principle to obtain a sharp
estimate for the infimum of the scalar curvature of a stochastically complete hypersurface
with constant mean curvature, characterizing the equality by showing that, if it holds, then the
hypersurface must be either totally umbilical or isometric to an isoparametric hypersurface
having two distinct principal curvatures (see Theorems 1 and 2).
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2 Locally symmetric spaces

In this work, we will deal with n-dimensional, orientable and connected hypersurface

ψ : �n → M
n+1

immersed into an (n + 1)-dimensional Riemannian manifold M
n+1

.

We choose a local field of orthonormal frame {e1, . . . , en+1} in M
n+1

with dual coframe
{ω1, . . . , ωn+1} such that, at each point of �n , e1, . . . , en are tangent to �n and en+1 is
normal to �n . We will use the following convention for the indices:

1 ≤ A, B,C, . . . ≤ n + 1 and 1 ≤ i, j, k, . . . ≤ n.

In this setting, RABCD, RAC and R denote respectively the Riemannian curvature tensor,

the Ricci tensor and the scalar curvature of the Riemannian manifold M
n+1

. So, we have

RAC =
∑

B

RABCB and R =
∑

A

RAA.

Now, restricting all the tensor to �n , we see that ωn+1 = 0 on �n . Hence, 0 = dωn+1 =
−∑

i ωn+1i ∧ ωi and as it well known we get

ωn+1i =
∑

j

hi jω j , hi j = h ji .

This gives the second fundamental form of�n , A = ∑
i, j hi jωiω j en+1 and its squared norm

|A|2 = ∑
i, j h

2
i j . Furthermore, the mean curvature H of �n is defined by H = 1

n

∑
i hii .

On the other hand, it follows from Gauss equation that the Ricci curvature and the scalar
curvature of �n are given, respectively, by

Ri j =
∑

k

Rik jk + nHhi j −
∑

k

hikhk j and R =
∑

i

Rii , (2.1)

where Ri jkl are the components of the Riemannian curvature tensor of �n . So, by (2.1) we
obtain

R =
∑

i, j

Ri ji j + n2H2 − |A|2. (2.2)

We also remember that the squared norm of the covariant differential of the second funda-
mental form A is given by

|∇A|2 =
∑

i, j,k

h2i jk, (2.3)

where hi jk denote the first covariant derivatives of hi j .
Taking a local orthonormal frame {e1, . . . , en} on�n such that hi j = λiδi j , from equation

(2.10) of [5] we have the following Simons type formula:

1

2
	|A|2 = |∇A|2 +

∑

i

λi (nH)i i + nH
∑

i

λ3i − |A|4

−
∑

i, j,k

hi j (R(n+1)i jk;k + R(n+1)kik; j ) +
∑

i

R(n+1)i(n+1)i
(
nHλi − |A|2)

+
∑

i, j

(λi − λ j )
2Ri ji j . (2.4)
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Proceeding as in [3,5], we will assume that there exist constants c1 and c2 such that the

sectional curvature K of the ambient space M
n+1

satisfies the following two constraints

K (η, v) = c1
n

, (2.5)

for vectors η ∈ T⊥� and v ∈ T�, and

K (u, v) ≥ c2, (2.6)

for vectors u, v ∈ T�.
From now on, we will consider M

n+1
being a locally symmetric Riemannian manifold,

which means that all the covariant derivative components RABCD;E of its curvature tensor
vanish identically.

Remark 1 Obviously, when the ambient manifold M
n+1

has constant sectional curvature
c, then it is locally symmetric and the curvature conditions (2.5) and (2.6) are satisfied

for every hypersurface �n immersed in M
n+1

, with c1/n = c2 = c. Therefore, in some
sense our assumptions are a natural generalization of the case where the ambient space has
constant sectional curvature. Moreover, when the ambient manifold is a Riemannian product
of two Riemannian manifolds of constant sectional curvature, say M = M1(κ1) × M2(κ2),
then M is locally symmetric and, if κ1 = 0 and κ2 ≥ 0, then every hypersurface of type
� = �1 × M2(κ2), where �1 is an orientable and connected hypersurface immersed into
M1(κ1), satisfies the curvature constraints (2.5) and (2.6) with c1 = c2 = 0 (for more details,
see Remark 3.1 of [3]).

Supposing that M
n+1

satisfies condition (2.5) and denoting by RAB the components of
its Ricci tensor, we have that its scalar curvature R is such that

R =
n+1∑

A=1

RAA =
n∑

i, j=1

Ri ji j + 2
n∑

i=1

R(n+1)i(n+1)i =
n∑

i, j=1

Ri ji j + 2c1. (2.7)

Since the scalar curvature of a locally symmetric Riemannianmanifold is constant, from (2.7)

we see that
∑

i, j Ri ji j is a constant naturally attached to M
n+1

. So, for sake of simplicity,

in the course of this work we will denote the constant 1
n(n−1)

∑
i, j Ri ji j byR and, assuming

that M
n+1

also satisfies condition (2.6), the parameter c will stand for the quantity 2c2 − c1
n
.

3 Key lemmas

Given �i j = hi j − Hδi j , we will also consider the following symmetric tensor

� =
∑

i, j

�i jωi ⊗ ω j .

Let |�|2 = ∑
i, j �

2
i j be the squared norm of �. It is not difficult to check that � is traceless

and |�|2 = |A|2 − nH2 ≥ 0, with equality if and only if �n is totally umbilical. For that
reason, � is called the total umbilicity tensor of �n . Moreover, from (2.2) we get

|�|2 = n(n − 1)
(
H2 + R) − R. (3.1)

123



A sharp scalar curvature estimate for CMC… 259

Motivated by classical Okumura’s lemma which was established in [8], we will consider
the following Okumura type inequality introduced by Meléndez in [7]:

|tr(�3)| ≤ (n − 2p)√
np(n − p)

|�|3, (3.2)

where 1 ≤ p ≤ n/2. It is worth to point out that, since� is traceless, the classical Okumura’s
lemma [8] guarantees that the inequality (3.2) is automatically true when p = 1. Moreover,
to suppose that inequality (3.2) holds is weaker than to assume that the hypersurface has two
distinct principal curvatures with multiplicities p and n − p. Indeed, in this case there exist
real numbers μ and ν such that

κ1 = · · · = κp = μ

κp+1 = · · · = κn = ν,

where κi stand for the eigenvalues of �. Then, it is not difficult see that

0 =
∑

i

κi = pμ + (n − p)ν and |�|2 =
∑

i

κ2
i = pμ2 + (n − p)ν2.

Hence, we infer that

tr(�3) =
∑

i

κ3
i = pμ3 + (n − p)ν3 = ± (2p − n)√

np(n − p)
|�|3.

In order to establish our characterization results, we will need of the following Okumura
type result (for more details, see Lemma 2.2 of [7]).

Lemma 1 Let κ1, . . . , κn, n ≥ 3, be real numbers such that
∑

iκi = 0 and
∑

iκ
2
i = β2,

where β ≥ 0. Then,

∑

i

κ3
i = (n − 2p)√

np(n − p)
β3

(
∑

i

κ3
i = − (n − 2p)√

np(n − p)
β3

)
, 1 ≤ p ≤ n − 1,

holds if and only if p of the numbers κi are nonnegative (resp. nonpositive) and equal and
the rest n − p of the numbers κi are nonpositive (resp. nonnegative) and equal.

For the proof of our results, we will also make use of the well known weak Omori–
Yau maximum principle. Let us recall that, following the terminology introduced by Pigola
et al. in [10,11], the Omori–Yau maximum principle is said to hold on a (not necessarily
complete) n-dimensional Riemannian manifold �n if, for any smooth function u ∈ C2(�)

with u∗ = sup u < +∞ there exists a sequence of points (pk) ⊂ �n satisfying

u(pk) > u∗ − 1

k
, |∇u(pk)| <

1

k
and 	u(pk) <

1

k
.

In this sense, the classical result given by Omori and Yau in [9,13] states that Omori–Yau
maximum principle holds on every complete Riemannian manifold with Ricci curvature
bounded from below.

On the other hand, as observed also by Pigola et al. in [11], the validity of Omori–
Yau maximum principle on �n does not depend on curvatures bounds as much as one
would expect. For instance, the Omori–Yau maximum principle holds on every Riemannian
manifolds which is properly immersed into a Riemannian space form with controlled mean
curvature (see [11, Example 1.14]). In particular, it holds for every constant mean curvature
hypersurface properly immersed into a Riemannian space form.
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More generally, and following again the terminology introduced in [11], the weak Omori–
Yau maximum principle is said to hold on a (not necessarily complete) n-dimensional
Riemannian manifold �n if, for any smooth function u ∈ C2(�) with u∗ < +∞ there
exists a sequence of points (pk) ⊂ �n with the properties

u(pk) > u∗ − 1

k
and 	u(pk) <

1

k
.

As it was proved by Pigola et al. [10,11], the fact that the weak Omori–Yau maximum
principle holds on �n is equivalent to the stochastic completeness of the manifold. More
precisely,

Lemma 2 A Riemannian manifold �n is stochastically complete if and only if, for every
u ∈ C2(�) satisfying sup� u < +∞, there exists a sequence of points (pk) ⊂ �n such that

lim u(pk) = sup
�

u and lim sup	u(pk) ≤ 0.

A direct consequence of Lemma 2 is that the weak Omori–Yau maximum principle holds
on every parabolic Riemannian manifold.

4 Main results

This section is devoted to obtain a sharp estimate for the infimum of the scalar curvature of
a stochastically complete hypersurface immersed with constant mean curvature in a locally
symmetric Riemannian manifold. So, we state our first result.

Theorem 1 Let ψ : �n → M
n+1

, n ≥ 4, be a stochastically complete hypersurface

immersed in a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions
(2.5) and (2.6). Suppose that �n has constant mean curvature H with H2 + c > 0, where
c = 2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 ≤ p ≤ n/2, then

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or

(a) inf� R ≤ n(n − 2)H2 + n(n − 1)R − nc, if p = n/2,
(b) and if p < n/2,

inf
�

R ≤ n(n − 2p)

2p(n − p)

(
2p(n − p)cn,p + ndn,pH

2 + |H |
√
n2H2 + 4p(n − p)c

)
,

where the constants cn,p and dn,p are given by

cn,p = R − c1 − 2nc2
n(n − 2p)

and dn,p = 2np − 2p2 − n

n − 2p
.

Moreover, if the equality holds and this infimum is attained at some point of �n (in the case
c > 0, assume in addition that H �= 0), then �n is an isoparametric hypersurface with two
distinct principal curvatures of multiplicities p and n − p.

It follows from (3.1) that inf� R = n(n − 1)(H2 + R) − sup� |�|2. Hence, Theorem 1
can be rewritten equivalently in terms of the total umbilicity tensor as follows.
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Theorem 2 Let ψ : �n → M
n+1

, n ≥ 4, be a stochastically complete hypersurface

immersed in a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions
(2.5) and (2.6). Suppose �n has constant mean curvature H such that H2 + c > 0, where
c = 2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 ≤ p ≤ n/2, then

(i) either sup� |�| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|�| ≥ α|H |,c,p =
√
n

2
√
p(n − p)

(√
n2H2 + 4p(n − p)c − (n − 2p)|H |

)
> 0.

Moreover, if the equality holds and this supremum is attained at some point of �n, then �n

is an isoparametric hypersurface with (in the case c > 0, assume that H �= 0) two distinct
principal curvatures of multiplicities p and n − p.

Proof Firstly, taking a local orthonormal frame field {e1, . . . , en} in �n such that

hi j = λiδi j and �i j = κiδi j ,

we can check that
∑

i

κi = 0,
∑

i

κ2
i = |�|2 and

∑

i

λ3i =
∑

i

κ3
i + 3H |�|2 + nH3.

Now, since M
n+1

is locally symmetric and �n has constant mean curvature, it follows from
(2.4) that

1

2
	|�|2 = 1

2
	|A|2

= |∇A|2 + nH
∑

i

λ3i − |A|4 +
∑

i

R(n+1)i(n+1)i
(
nHλi − |A|2)

+
∑

i, j

(λi − λ j )
2Ri ji j . (4.1)

From curvature conditions (2.5) and (2.6), we get
∑

i

R(n+1)i(n+1)i (nHλi − |A|2) = c1(nH
2 − |A|2) = −c1|�|2 (4.2)

and
∑

i, j

Ri ji j (λi − λ j )
2 ≥ c2

∑

i, j

(λi − λ j )
2

= 2nc2(|A|2 − nH2) = 2nc2|�|2. (4.3)

Moreover, it follows from our hypothesis (3.2) that

nH
∑

i

λ3i − |A|4 = n2H4 + 3nH2|�|2 + nH
∑

i

κ3
i − (|�|2 + nH2)2

≥ n2H4 + 3nH2|�|2 − n|H |
∣∣∣∣∣
∑

i

κ3
i

∣∣∣∣∣ − |�|4 − 2nH2|�|2 − n2H4

≥ −|�|4 − n(n − 2p)√
np(n − p)

|H ||�|3 + nH2|�|2. (4.4)
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Hence, since c = 2c2 − c1/n, inserting (4.2), (4.3) and (4.4) into (4.1) we obtain that

1

2
	|�|2 ≥ |∇A|2 − |�|4 − n(n − 2p)√

np(n − p)
|H ||�|3 + n(H2 + c)|�|2

≥ −|�|2P|H |,c,p(|�|), (4.5)

where

P|H |,c,p(x) = x2 + n(n − 2p)√
np(n − p)

|H |x − n(H2 + c).

Observe that, since H2+c > 0, the polynomial P|H |,c,p(x) has an unique positive root given
by

α|H |,c,p =
√
n

2
√
p(n − p)

(√
n2H2 + 4p(n − p)c − (n − 2p)|H |

)
.

If sup� |�| = +∞, then (ii) holds trivially and there is nothing to prove. If sup� |�| <

+∞, then we can apply Lemma 2 to the function |�|2 to assures that there exists a sequence
of points (pk) ⊂ �n such that

lim |�|(pk) = sup
�

|�| and lim sup	|�|2(pk) ≤ 0,

which jointly with (4.5) implies
(
sup
�

|�|
)2

P|H |,c,p
(
sup
�

|�|
)

≥ 0.

It follows from here that either sup� |�| = 0, which means that |�| vanishes identically and
the hypersurface is totally umbilical, or sup� |�| > 0 and then P|H |,c,p(sup� |�|) ≥ 0. In
the latter case, it must be sup� |�| ≥ α|H |,c,p, which gives the inequality in (ii).

Moreover, assume that equality sup� |�| = α|H |,c,p holds. In this case, P|H |,c,p(|�|) ≤ 0
on �n , which jointly with (4.5) implies that function |�|2 is subharmonic on �n . Therefore,
if this supremum is attained at some point of�n , it follows from stronger maximum principle
that |�| = α|H |,c,p is constant. Thus, (4.5) becomes trivially an equality,

1

2
	|�|2 = 0 = −|�|2P|H |,c,p(|�|).

From here we obtain that |∇A|2 = 0 and, consequently, from (2.3) we conclude that �n is
isoparametric hypersurface. Finally, using once more the equality (4.5) we also obtain the
equality in Lemma 1, which implies that the hypersurface has exactly two distinct principal
curvatures of multiplicities p and n − p. This finishes the proof from theorem. ��

In the particular case where �n is complete, we obtain from Theorem 1 (or Theorem 2)
the following consequence.

Corollary 1 Let ψ : �n → M
n+1

, n ≥ 4, be a complete hypersurface immersed in a

locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (2.5) and
(2.6). Suppose that �n has constant mean curvature H with H2 + c > 0, where c =
2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 ≤ p ≤ n/2, then

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or
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(a) inf� R ≤ n(n − 2)H2 + n(n − 1)R − nc, if p = n/2,
(b) and if p < n/2,

inf
�

R ≤ n(n − 2p)

2p(n − p)

(
2p(n − p)cn,p + ndn,pH

2 + |H |
√
n2H2 + 4p(n − p)c

)
,

where the constants cn,p and dn,p are given by

cn,p = R − c1 − 2nc2
n(n − 2p)

and dn,p = 2np − 2p2 − n

n − 2p
.

Moreover, if the equality holds and this infimum is attained at some point of �n (in the case
c > 0, assume in addition that H �= 0), then �n is an isoparametric hypersurface with two
distinct principal curvatures of multiplicities p and n − p.

As mentioned before, we can rewritten Corollary 1 equivalently in terms of the total
umbilicity tensor as follows.

Corollary 2 Let ψ : �n → M
n+1

, n ≥ 4, be a complete hypersurface immersed in a

locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (2.5) and
(2.6). Suppose that �n has constant mean curvature H with H2 + c > 0, where c =
2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 < p ≤ n/2, then

(i) either sup� |�| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|�| ≥ α|H |,c,p =
√
n

2
√
p(n − p)

(√
n2H2 + 4p(n − p)c − (n − 2p)|H |

)
> 0.

Moreover, if the equality holds and this supremum is attained at some point of �n (in the
case c > 0, assume in addition that H �= 0), then �n is an isoparametric hypersurface with
two distinct principal curvatures of multiplicities p and n − p.

Proof We note that when sup� |�| = +∞ the result is clearly true. So, we can suppose
that sup� |�| < +∞. In this case, since �n has constant mean curvature, we have that

sup |A|2 < +∞. Hence, from Eq. (2.1) and our hypothesis on sectional curvature of M
n+1

,
we get

Rii ≥ (n − 1)c2 − nH sup
�

|A| − sup
�

|A|2 > −∞,

that is, the Ricci curvature of �n is bounded from below. In particular, �n is stochastically
complete and the result follows from Theorem 2. ��

Another consequence of Theorem 1 is the following result for complete parabolic hyper-
surfaces in locally symmetric spaces.

Corollary 3 Let ψ : �n → M
n+1

, n ≥ 4, be a complete parabolic hypersurface immersed

in a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (2.5)
and (2.6). Suppose that �n has constant mean curvature H with H2 + c > 0, where
c = 2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 ≤ p ≤ n/2, then

(i) either inf� R = n(n − 1)(H2 + R) and �n is a totally umbilical hypersurface,
(ii) or
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(a) inf� R ≤ n(n − 2)H2 + n(n − 1)R − nc, if p = n/2,
(b) and if p < n/2,

inf
�

R ≤ n(n − 2p)

2p(n − p)

(
2p(n − p)cn,p + ndn,pH

2 + |H |
√
n2H2 + 4p(n − p)c

)
,

where the constants cn,p and dn,p are given by

cn,p = R − c1 − 2nc2
n(n − 2p)

and dn,p = 2np − 2p2 − n

n − 2p
.

Moreover, if the equality holds (in the case c > 0, assume in addition that H �= 0), then �n

is an isoparametric hypersurface with two distinct principal curvatures of multiplicities p
and n − p.

Equivalently, we can prove the following

Corollary 4 Let ψ : �n → M
n+1

, n ≥ 4, be a complete parabolic hypersurface immersed

in a locally symmetric Riemannian manifold M
n+1

satisfying curvature conditions (2.5)
and (2.6). Suppose that �n has constant mean curvature H with H2 + c > 0, where
c = 2c2 − c1/n. If its total umbilicity tensor � satisfies (3.2) for some 1 ≤ p ≤ n/2, then

(i) either sup� |�| = 0 and �n is a totally umbilical hypersurface,
(ii) or

sup
�

|�| ≥ α|H |,c,p =
√
n

2
√
p(n − p)

(√
n2H2 + 4p(n − p)c − (n − 2p)|H |

)
> 0.

Moreover, if the equality holds (in the case c > 0, assume in addition that H �= 0), then �n

is an isoparametric hypersurface with two distinct principal curvatures of multiplicities p
and n − p.

Proof Firstly, we recall that every parabolic Riemannianmanifold is stochastically complete.
Then, by the first part of Theorem 2 we obtain that either sup� |�| = 0 and �n is totally
umbilical hypersurface, or sup� |�| ≥ α|H |,c,p. Moreover, if equality sup� |�| = α|H |,c,p
holds, then as in the proof of Theorem 2we have P|H |,c,p(|�|) ≤ 0 and |�|2 is a subharmonic
function on �n which is bounded from above. Since �n is parabolic, it must be constant
|�| = α|H |,c,p. Therefore, at this point we can reason in a similar way to the proof of Theorem
2. ��
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