
Ann. Math. Québec (2019) 43:99–124
https://doi.org/10.1007/s40316-017-0094-x

Applications of Kronecker’s limit formula for elliptic
Eisenstein series

Jay Jorgenson1 · Anna-Maria von Pippich2 ·
Lejla Smajlović3
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Abstract Wedevelop two applications of theKronecker’s limit formula associated to elliptic
Eisenstein series: A factorization theorem for holomorphic modular forms, and a proof of
Weil’s reciprocity law. Several examples of the general factorization results are computed,
specifically for certain moonshine groups, congruence subgroups, and, more generally, non-
compact subgroups with one cusp. In particular, we explicitly compute the Kronecker limit
function associated to certain elliptic fixed points for a few small level moonshine groups.
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Résumé Dans cet article nous développons deux applications de la formule limite de Kro-
necker associée aux series d’Eisenstein elliptiques: Un théorème de factorisation pour des
formesmodulaires holomorphes et une preuve de la loi de réciprocité deWeil. Plusieurs exem-
ples de notre résultat général de factorisation sont donnés, particulièrement pour quelques
groupes de type moonshine, groupes de congruence et, plus généralement, pour des groupes
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non-cocompactes à une seule pointe. En particulier, nous calculons la fonction limite de
Kronecker associée à certains points elliptiques pour des groupes de type moonshine de petit
niveau.

Mathematics Subject Classification 11M36 · 11F11

1 Introduction and statement of results

1.1 Non-holomorphic Eisenstein series.

Let � ⊂ PSL2(R) be a Fuchsian group of the first kind which acts on the hyperbolic space
H by fractional linear transformations, and let M = �\H be the finite volume quotient. One
can view M as a finite volume hyperbolic Riemann surface, possibly with cusps and elliptic
fixed points. For convenience, we will use M to denote both the Riemann surface as well as
a (Ford) fundamental domain for � acting on H.

The abelian subgroups of � are classified in three distinct types: Parabolic, hyperbolic,
and elliptic. Accordingly, there are three types of scalar-valued non-holomorphic Eisenstein
series, whose definitions we now recall.

Parabolic subgroups are characterized by having a unique fixed point P on the boundary
of the extended upper-half plane ̂H. The fixed point P is known as a cusp of M , and the
associated parabolic subgroup is denoted by �P . The parabolic Eisenstein series Epar

P (z, s)
associated to P is defined, for z ∈ M and s ∈ C with Re(s) > 1, by the series

Epar
P (z, s) =

∑

η∈�P \�
Im(σ−1

P ηz)s,

where σP is a scaling matrix for the cusp P , i.e. an element of PSL2(R) such that σP∞ = P
and σ−1

P �PσP = 〈( 1 1
0 1

)〉.
Hyperbolic subgroups have two fixed points on the extended upper-half plane ̂H. Let us

denote a hyperbolic subgroup by �γ for γ ∈ �, and let Lγ denote the geodesic path in H

connecting the two fixed points of the hyperbolic element γ . Let σγ be a scaling matrix
for Lγ , i.e. an element of PSL2(R) such that σγL = Lγ , where L denotes the imaginary
axis. Following Kudla and Millson from [22], one then defines the scalar-valued hyperbolic
Eisenstein series, for z ∈ M and s ∈ C with Re(s) > 1, by the series

Ehyp
γ (z, s) =

∑

η∈�γ \�
cosh(dhyp(σ

−1
γ ηz,L))−s , (1)

where dhyp(σ−1
γ ηz,L) denotes the hyperbolic distance from the point σ−1

γ ηz to the geodesic
L. Using the identity cosh(dhyp(w,L)) = |w|/ Im(w), one can rewrite the hyperbolic Eisen-
stein series in terms of the entries of γ .

The difference between (1) and the series �(s − 1, z) defined in [22] is that our series is
a scalar-valued hyperbolic Eisenstein series whereas the series �(s − 1, z) is form-valued
and scaled with the factor �((s + 1)/2)/

(√
π �(s/2)

)

. The hyperbolic Eisenstein series is
also similar to the form-valued series which appears at the bottom of p. 189 of [7].

Elliptic subgroups have finite order and have a unique fixed point within H. In fact, for
any point w ∈ M , there is an elliptic subgroup �w which fixes w, where in all but finitely
many cases �w is reduced to the identity element. Elliptic Eisenstein series were defined in
an unpublished manuscript from 2004 by Jorgenson and Kramer and were studied in depth
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Applications of Kronecker’s... 101

in the dissertation [24] by von Pippich and in [25]. Specifically, for z ∈ M , z �= w, and s ∈ C

with Re(s) > 1, the elliptic Eisenstein series is defined by the series

Eell
w (z, s) =

∑

η∈�w\�
sinh(dhyp(ηz, w))−s =

∑

η∈�w\�

(

2 Im(w)Im(ηz)

|ηz − w| |ηz − w|
)s

, (2)

where dhyp(ηz, w) denotes the hyperbolic distance from ηz to w. It is immediate from (2)
that, for z, w ∈ M with z �= w, one has the relation ord(w)Eell

w (z, s) = ord(z)Eell
z (w, s),

where ord(w) resp. ord(z) denotes the order of �w and �z , respectively.

1.2 Known properties and relations

There are some fundamental differences between the three types of Eisenstein series defined
above. Hyperbolic Eisenstein series are in L2(M), whereas parabolic and elliptic series are
not. Elliptic Eisenstein series are defined as a sum over cosets of � by a finite subgroup of
�, and indeed the series (2) can be extended to all � which would introduce a multiplicative
factor equal to the order of �w . However, hyperbolic and parabolic series are necessarily
formed by sums over cosets of � by an infinite subgroup of �. Parabolic Eisenstein series are
eigenfunctions of the hyperbolic Laplacian�hyp; however, hyperbolic and elliptic Eisenstein
series satisfy a differential-difference equation which involves the value of the series at s +2.
Specifically, if Re(s) > 1, then one can differentiate term-by-term and prove that

(�hyp − s(1 − s))Ehyp
γ (z, s) = s2Ehyp

γ (z, s + 2)

and

(�hyp − s(1 − s))Eell
w (z, s) = −s2Eell

w (z, s + 2). (3)

Despite their differences, there are several intriguing ways in which these Eisenstein series
interact. Since the hyperbolic Eisenstein series are in L2(M), the expression (1) admits a
spectral expansion which involves the parabolic Eisenstein series; see [15] and [22]. If one
considers a degenerating sequence of Riemann surfaces obtained by pinching a geodesic,
then the associated hyperbolic Eisenstein series converges to a parabolic Eisenstein series on
the limit surface; see [4] and [8]. If one studies a family of elliptically degenerating surfaces
obtained by re-uniformizing at a point with increasing order, then the corresponding elliptic
Eisenstein series converges to a parabolic Eisenstein series on the limit surface; see [9].

Finally, there are some basic similarities amongst the series. Each series admits a mero-
morphic continuation to all s ∈ C. The poles of the meromorphic continuations have been
identified and are closely related, in all cases involving data associated to the continuous and
non-cuspidal discrete spectrum of the hyperbolic Laplacian and, for hyperbolic and elliptic
series, involving data associated to the cuspidal spectrum as well; see [15] and [25]. Finally,
and most importantly for this article, for all known instances, the parabolic Eisenstein series
is holomorphic at s = 0, which implies that the hyperbolic and elliptic Eisenstein series are
holomorphic at s = 0 as well. In all of these cases, the value of each Eisenstein series at s = 0
is independent of z. The coefficient of s in the Taylor series expansion about s = 0 of each of
these Eisenstein series, which is a function of z, shall be called the Kronecker limit function.

1.3 Kronecker limit functions

Recall that Dedekind’s delta function �(z) is defined by
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�(z) =
[

q1/24
z

∞
∏

n=1

(

1 − qn
z

)

]24

= η(z)24

with qz = e2π i z and η(z) denoting the classical eta function. With this, the classical
Kronecker’s limit formula for � = PSL2(Z) reads as (see [28], Theorem 1, p. 14, with
ζQ(s) = 2ζ(2s)Epar∞ (z, s))

Epar∞ (z, s) = 3

π(s − 1)
− 1

2π
log

(|�(z)| Im(z)6
) + C + O(s − 1), as s → 1,

whereC := 6(1−12 ζ ′(−1)− log(4π))/π ; see also [19], where a detailed proof is provided.
By employing the well-known functional equation for Epar∞ (z, s), the Kronecker’s limit

formula can be reformulated as

Epar∞ (z, s) = 1 + log
(|�(z)|1/6 Im(z)

)

s + O(s2), as s → 0.

For general Fuchsian groups of the first kind, Goldstein [10] studied analogues of the
Kronecker’s limit formula associated to parabolic Eisenstein series. We shall use the results
from [10] throughout this article.

The hyperbolic Eisenstein series in [22] are form-valued, and the series are defined by an
infinite sum which converges for Re(s) > 0. The main result in [22] is that the one-form
valued hyperbolic Eisenstein series is holomorphic at s = 0, and its value at s = 0 is equal
to the harmonic form which is Poincaré dual to the geodesic determined by the two fixed
points of γ .

The analogue of the Kronecker’s limit formula for the elliptic Eisenstein series was first
proved in [24] and [25]. Specifically, it is shown that for any w ∈ H, at s = 0, the series (2)
admits the Laurent expansion

ord(w) Eell
w (z, s) − 2s√π �(s − 1

2 )

�(s)

p�
∑

k=1

Epar
Pk

(w, 1 − s) Epar
Pk

(z, s)

= − c − log
(|H�(z, w)|ord(w)(Im(z))c) · s + O(s2), as s → 0, (4)

where Pk , k = 1, . . . , p� , are the cusps of M and c = 2π/ volhyp(M). Let us write the
coefficient of s in (4) as

log
(|H�(z, w)|ord(w)(Im(z))c) = log

(|H̃�(z, w)|(Im(z))c(Im(w))c), (5)

where we have set H̃�(z, w) = H�(z, w)ord(w)/ Im(w)c. As a function of z, H�(z, w), hence
H̃�(z, w), is locally holomorphic on H. Furthermore, H�(z, w) is uniquely determined up
to multiplication by a complex constant of absolute value one. In addition, H�(z, w) is an
automorphic form with a non-trivial multiplier system, which depends on w, with respect to
� acting on z. The function H�(z, w) vanishes if and only if z = ηw for some η ∈ �. Many
properties of H̃�(z, w) can be derived from properties of H�(z, w). In particular, since

ord(w) Eell
w (z, s) = ord(z) Eell

z (w, s),

one can combineCorollary 7.4 of [25] togetherwith the properties of the automorphicGreen’s
function (see, e.g., [13]) to conclude that H̃�(z, w) is locally holomorphic in the variable w.

Two explicit computations are given in [24] and [25] for � = PSL2(Z) when considering
the elliptic Eisenstein series Eell

w (z, s) associated to the points w = i and w = ρ = (1 +
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i
√
3)/2. In these cases, the elliptic Kronecker limit function H�(z, w) at points w = i and

w = ρ is such that

|H�(z, i)| = exp(−Bi ) |E6(z)| , where Bi = −3(24ζ ′(−1) − log(2π) + 4 log�(1/4)), (6)

|H�(z, ρ)| = exp(−Bρ) |E4(z)| , where Bρ = −2(24ζ ′(−1) − 2 log(2π/
√
3) + 6 log�(1/3)).

(7)

TheKronecker’s limit formula for each elliptic Eisenstein series is given by the asymptotic
formulas

Eell
i (z, s) = − log(|E6(z)||�(z)|−1/2) · s + O(s2), as s → 0, (8)

and

Eell
ρ (z, s) = − log(|E4(z)||�(z)|−1/3) · s + O(s2), as s → 0, (9)

where E4 and E6 are the classical holomorphic Eisenstein series for PSL2(Z) of weight four
and six, respectively. More generally, in [25], it is shown that

ord(w)Eell
w (z, s) = − log

(| j (z) − j (w)|) · s + O(s2), as s → 0, (10)

where j (z) is the classical j-invariant. Equations (3) and (10) are reminiscent of relations
involving the well-studied automorphic Green’s function; see, in particular, equations (5.2)
and (5.3) of [13]. Indeed, Corollary 7.4 of [25] states that, in a sense, a first order approx-
imation to the elliptic Eisenstein series at s = 0 is given by a multiple of the automorphic
Green’s function. We refer the interested reader to Sect. 7 of [25] for a detailed development
of various identities and asymptotic formulas.

Before continuing, let us state what we believe to be an interesting side comment. As
we show below, one can realize the Kronecker limit function for parabolic Eisenstein series
for groups with one cusp as the coefficient of s in the Laurent expansion of the parabolic
Eisenstein series at s = 0. One has yet to study the Laurent expansion near s = 0, in
particular the coefficient of s, for the scalar-valued hyperbolic Eisenstein series; for that
matter, we have not fully understood the analogous question for the vector of parabolic
Eisenstein series for general groups. We expect that one can develop a systematic theory by
focusing on coefficients of s in all cases.

1.4 Important comment and assumption

At the present moment, we do not have a complete understanding of the behavior of the
parabolic Eisenstein series Epar

P (z, s) near s = 0. If the group has one cusp, the functional
equation of the Eisenstein series implies that Epar

P (z, 0) = 1. In the notation to be set below,
the evaluation that Epar

P (z, 0) = 1 is equivalent to the statement that its scattering determinant
det(�M (s)) is zero at s = 0. However, this equivalence could fail to be true when there is
more than one cusp. For example, on p. 536 of [11], the author computes the scattering
matrix for �0(N ) for square-free N , from which it is clear that det(�M (s)) is holomorphic
but not zero at s = 0. Specifically, it remains to determine if the parabolic Eisenstein series is
holomorphic at s = 0, which is a question we were unable to answer in complete generality.
For that reason, we shall work throughout this article under the following assumption.

Assumption A For every cusp P of M , the parabolic Eisenstein series Epar
P (z, s) is holo-

morphic at s = 0.

Assumption A is true in all the instances where specific examples are developed.
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1.5 Main results

The purpose of the present paper is to further study the Kronecker limit function associated
to elliptic Eisenstein series. We develop two applications. To begin, we examine the relation
(4) and study the contribution near s = 0 of the term involving the parabolic Eisenstein
series. As with the parabolic Eisenstein series, the resulting expression is particularly simple
in the case when the group � has one cusp. However, in all cases, we obtain an asymptotic
formula for Eell

w (z, s) near s = 0 which allows us to prove asymptotic bounds for the elliptic
Kronecker limit function at any cusp of M . From this analysis, we obtain the main result
of this article, namely a factorization theorem which expresses holomorphic forms on M of
arbitrary weight as products of the elliptic Kronecker limit functions.

The product formulas are developed in detail in the case of the so-calledmoonshine groups,
which are discrete groups obtained by adding the Fricke and Atkin-Lehner involutions to the
congruence subgroups �0(N ). As an application of the factorization theorem, we establish
further examples of relations similar to (6), (7), (8), and (9). For example, the moonshine
group � = �0(2)+ = �0(2)+/{±Id} has e2 = 1/2 + i/2 as an elliptic fixed point of order
four. In Sect. 6.2, we prove that the elliptic Kronecker limit function H2(z, e2) associated to
the point e2 is such that

|H2(z, e2)| = exp(−B2,e2)|E (2)
4 (z)|1/2,

where E (2)
4 (z) is the weight four holomorphic Eisenstein series associated to �0(2)+ and

B2,e2 = −
(

24ζ ′(−1) + log(8π2) − 11

6
log 2 + 1

12
log (|�(1/2 + i/2) · �(1 + i)|)

)

.

In this case, the Kronecker’s limit formula for the elliptic Eisenstein series Eell
e2 (z, s) reads

as

Eell
e2 (z, s) = − log

(

|E (2)
4 (z)|1/2|�(z)�(2z)|−1/12

)

· s + O(s2), as s → 0,

or, equivalently, as

Eell
e2 (z, s) = − log

(

1√
5
|E4(z) + 4E4(2z)|1/2|�(z)�(2z)|−1/12

)

· s + O(s2),

as s → 0. (11)

The factorization theorem (Theorem 9 below) allows one to formulate numerous examples
of this type, of which we develop a few for certain moonshine and congruence subgroups.

Second, we use the elliptic Kronecker’s limit formula to give a new proof of Weil’s
reciprocity formula. A number of authors have obtained generalizations ofWeil’s reciprocity
law; see, for example, the elegant presentation in [21] which discusses various reciprocity
laws overC as well as Deligne’s article [3] where the author re-interprets Tate’s local symbol
and obtains a number of generalizations and applications. It would be interesting to study
the possible connection between the functional analytic method of the article [17] with the
algebraic ideas in [3] and results surveyed in [21].

Let us finish this introduction by giving an outline of the paper. In Sect. 2, we establish
notation and recall various known results. In Sect. 3, we reformulate the Kronecker’s limit
formula for parabolicEisenstein series as an asymptotic statement near s = 0. From the results
in Sect.3, we then prove, in Sect. 4, the asymptotic behavior of the elliptic Kronecker limit
function at each cusp of M . Specific examples are given for moonshine groups �0(N )+ with
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square-free level N and congruence subgroups �0(p)with prime level p. In Sect. 5 we prove
the factorization theorem which states, in somewhat vague terms, that any holomorphic form
on M can be written as a product of elliptic Kronecker limit functions, up to a multiplicative
constant. In addition, from the asymptotic formula from Sect. 4, one is able to obtain specific
information associated to the multiplicative constant in the aforementioned description of
the factorization theorem. In Sect. 6 we give examples of the factorization theorem for
holomorphic Eisenstein series for the modular group, for moonshine groups of levels 2
and 5, for general moonshine groups, and for congruence subgroups �0(p) of prime level.
Finally, in Sect. 7, we present our proof of Weil’s reciprocity using the elliptic Kronecker
limit functions and state a few concluding remarks.

2 Background material

2.1 Basic notation

Let � ⊂ PSL2(R) denote a Fuchsian group of the first kind acting by fractional linear
transformations on the hyperbolic upper half-planeH := {z = x+iy ∈ C | x, y ∈ R; y > 0}.
We let M := �\H, which is a finite volume hyperbolic Riemann surface, and denote by
p : H −→ M the natural projection. We assume that M has e� elliptic fixed points and p�

cusps. We identify M locally with its universal cover H.
We let μhyp denote the hyperbolic metric on M , which is compatible with the complex

structure of M , and has constant negative curvature equal to minus one. The hyperbolic line
element ds2hyp, resp. the hyperbolic Laplacian �hyp acting on functions, are given as

ds2hyp := dx2 + dy2

y2
, resp. �hyp := −y2

(

∂2

∂x2
+ ∂2

∂y2

)

.

By dhyp(z, w) we denote the hyperbolic distance between the two points z, w ∈ H.

2.2 Moonshine groups

Let N = p1 · . . . · pr be a square-free, non-negative integer. The subset of SL2(R), defined
by

�0(N )+ :=
{

e−1/2
(

a b
c d

)

∈ SL2(R) : ad − bc = e, a, b, c, d, e ∈ Z, e | N , e | a, e | d, N | c

}

is an arithmetic subgroup of SL2(R).Weuse the terminology “moonshine group” of level N to
describe�0(N )+ because of the important role these groups play in “monstrous moonshine”.
Previously, the groups �0(N )+ were studied in [12] where it was proved that if a subgroup
G ⊂ SL2(R) is commensurable with SL2(Z), then there exists a square-free, non-negative
integer N such that G is a subgroup of �0(N )+. We also refer to p. 27 of [27] where the
groups �0(N )+ are cited as examples of groups which are commensurable with SL2(Z) but
not necessarily conjugate to a subgroup of SL2(Z).

Let {±Id} denote the set of two elements, where Id is the identity matrix. In general, if �

is a subgroup of SL2(R), we let � := �/{±Id} denote its projection into PSL2(R).

With this notation, we introduce the quotient space Y +
N := �+

0 (N )\H. The topological
features of Y +

N in terms of the integer N are developed in detail in [2]. In particular, for
any square-free N , Y +

N has one cusp. Generally speaking, the spaces Y +
N serve as interesting

examples for general considerations, as developed in [18] in the study of Weyl’s law, in [19]
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106 J. Jorgenson et al.

in the study of q-expansions of holomorphic modular functions, and in [20] in the study of
the ring of holomorphic modular forms when Y +

N has genus zero. In the present paper, the
groups �0(N )+ will yield explicit and interesting examples of Kronecker limit functions;
see Sect. 6.

2.3 Holomorphic Eisenstein series

Following [26], we define a weakly modular form f of weight 2k for k ≥ 1 associated to �

to be a function f which is meromorphic on H and satisfies the transformation property

f

(

az + b

cz + d

)

= (cz + d)2k f (z), for any

(

a b
c d

)

∈ �.

Let� be a Fuchsian group of the first kind that has at least one class of parabolic elements.
By conjugating, if necessary, wemay always assume that the group� has a subgroup isomor-
phic to Z with ∞ as a fixed point and scaling matrix equal to the identity. In this situation,
any weakly modular form f will satisfy the relation f (z + 1) = f (z), so we can write

f (z) =
∞
∑

n=−∞
anqn

z , where qz = e(z) = e2π i z .

If an = 0 for all n < 0, then f is said to be holomorphic at the cusp at ∞.
A holomorphic modular form with respect to � is a weakly modular form which is holo-

morphic on H and at all the cusps of �. Examples of holomorphic modular forms are the
holomorphic Eisenstein series, which are defined as follows. Let �∞ denote the subgroup of
� which stabilizes the cusp at ∞. For k ≥ 2, let

E2k,�(z) :=
∑

( ∗ ∗
c d

)

∈�∞\�
(cz + d)−2k . (12)

It is elementary to show that the series on the right-hand side of (12) is absolutely convergent
for all integers k ≥ 2 and defines a holomorphic modular form of weight 2k with respect to
�. Furthermore, the series E2k,� is bounded and non-vanishing at the cusps and such that

E2k,�(z) = 1 + O(exp(−2π Im(z))), as Im(z) → ∞.

When � = PSL2(Z), we denote E2k,PSL2(Z) by E2k . The holomorphic forms E2k(z) have
the q-expansions

E2k(z) = 1 − 4k

B2k

∞
∑

n=1

σ2k−1(n)qn
z ,

where B2k denotes the 2k-th Bernoulli number and σl is the generalized divisor function,
which is defined by σl(m) = ∑

d|m dl . By convention, we set σ(m) = σ1(m).
On the full modular surface, there is no weight two holomorphic modular form. Consider,

however, the function E2(z) defined by its q-expansion

E2(z) = 1 − 24
∞
∑

n=1

σ(n)qn
z ,
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which transforms according to the formula

E2(γ z) = (cz + d)2E2(z) + 6

π i
c(cz + d),

for
( ∗ ∗

c d

) ∈ PSL2(Z). It is elementary to show that for a prime p, the function

E2,p(z) := E2(z) − pE2(pz) (13)

is a weight two holomorphic form associated to the congruence subgroup �0(p) of PSL2(Z).
The q-expansion of E2,p is given by

E2,p(z) = (1 − p) − 24
∞
∑

n=1

σ(n)(qn
z − pq pn

z ). (14)

When � = �+
0 (N ), we denote the forms E

2k,�+
0 (N )

by E (N )
2k . In [19] it is proved that

E (N )
2k (z) may be expressed as a linear combination of forms E2k(z), with dilated arguments,

namely

E (N )
2k (z) = 1

σk(N )

∑

v|N
vk E2k(vz), (15)

where the sum is taken over all positive divisors of N .

2.4 Scattering matrices

Assume that the surface M has p� cusps, we let Pj with j = 1, . . . , p� denote the individual
cusps.Denote byφ jk(s),with j, k = 1, . . . , p� , the entries of the hyperbolic scatteringmatrix
�M (s)which are computed from the constant terms in the Fourier expansion of the parabolic
Eisenstein series Epar

Pj
(z, s) around the cusp Pk . For all j, k = 1, . . . , p� , each function φ jk

has a simple pole at s = 1with residue equal to 1/ volhyp(M). Furthermore, φ jk has a Laurent
series expansion at s = 1 which we write as

φ jk(s) = 1

volhyp(M)(s − 1)
+ β jk + γ jk(s − 1) + O((s − 1)2), as s → 1. (16)

After a slight renormalization and a trivial generalization, Theorem 3-1 from [10] asserts that
the parabolic Eisenstein series Epar

Pj
(z, s) admits the Laurent expansion

Epar
Pj

(z, s) = 1

volhyp(M)(s − 1)
+ β j j − 1

volhyp(M)
log |η4Pj

(z) Im(z)| + f j (z)(s − 1)

+ O((s − 1)2), (17)

as s → 1, for j = 1, . . . , p� .
As the notation suggests, the function ηPj (z) is a holomorphic form for � and is a gen-

eralization of the eta function η(z) for the full modular group. To be precise, ηPj (z) is an
automorphic form corresponding to the multiplier system v(σ ) = exp(iπ S�, j (σ )), where
S�, j (σ ) is a generalization of a Dedekind sum attached to the cusp Pj for each j = 1, . . . , p�

of M , i.e. S�, j (σ ) is a real number depending on σ ∈ � which satisfies the relation

log ηPj (σ (z)) = log ηPj (z) + 1

2
log(cz + d) + π i S�, j (σ ).
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The coefficient f j (z)multiplying (s−1) in formula (17) is a certain function, whose behavior
is not relevant for this paper. This term would probably yield a definition of generalized
Dedekind sums; see, for example, [29].

The main focus of this paper is on the Kronecker limit functions corresponding to the
Taylor series expansion at s = 0; hence, we set the following notation

φ jk(s) = a jk + b jks + c jks2 + O(s3), as s → 0 (18)

for the coefficients in the Laurent expansion of φ jk at s = 0. Note that the form of this
expansion is justified by Assumption A made in Sect. 1.4.

3 Kronecker’s limit formula for parabolic Eisenstein series

In this section we will re-write the Kronecker’s limit formula for the parabolic Eisenstein
series as an expression involving the Laurent expansion at s = 0.We beginwith the following
lemma which states certain relations amongst coefficients appearing in (16) and (18).

Let us recall that throughout the paper we assume that Assumption A holds true.

Lemma 1 With notation as in (16) and (18), we have, for each k, l = 1, . . . , p� , the follow-
ing relations:

p�
∑

j=1

a jk = 0, (19)

p�
∑

j=1

(

− b jk

volhyp(M)
+ a jkβ jl

)

= δkl , (20)

p�
∑

j=1

(

− c jk

volhyp(M)
+ b jkβ jl

)

=
p�
∑

j=1

a jkγ jl , (21)

where δkl is the Kronecker symbol.

Proof The relations (19) through (21) are immediate consequences of the functional equation
for the scatteringmatrix, namely the formula�M (s)�M (1−s) = Id; see, e.g., [13], Theorem
6.6. In particular, the formulae are obtained by computing the coefficients of s−1, 1, and s in
the Laurent expansion at s = 0. 
�

Proposition 2 With the notation introduced in (16) and (18), the parabolic Eisenstein series
Epar

Pj
(z, s) has a Taylor series expansion at s = 0 which can be written as

Epar
Pj

(z, s) =
p�
∑

k=1

[

− b jk

volhyp(M)
+ a jk

(

βkk − 1

volhyp(M)
log

∣

∣η4Pk
(z) Im(z)

∣

∣

)]

+ s ·
p�
∑

k=1

[

− c jk

volhyp(M)
+ b jk

(

βkk − 1

volhyp(M)
log

∣

∣η4Pk
(z) Im(z)

∣

∣

)

+ a jk fk(z)

]

+ O(s2). (22)
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Proof The result is a straightforward computation based on the functional equation

(Epar
P1

(z, s) . . . Epar
Pp�

(z, s))T = �M (s)(Epar
P1

(z, 1 − s) . . . Epar
Pp�

(z, 1 − s))T ,

see, e.g., [13], Theorem 6.5., together with the expansions (17) and (18). 
�
In the case when p� = 1, the relations (19) through (21) and Proposition 2 become

particularly simple and yield an elegant statement. As is standard, the cusp is normalized to
be at ∞, and the associated Eisenstein series, eta function, scattering coefficients, etc. are
written with the subscript ∞.

Corollary 3 The Kronecker’s limit formula for parabolic Eisenstein series Epar∞ (z, s) on a
finite volume Riemann surface with one cusp at ∞ can be written as

Epar∞ (z, s) = 1 + log(|η4∞(z)| Im(z)) · s + O(s2), as s → 0. (23)

Example 4 In the case when � = �+
0 (N ), where N is a square-free, positive integer with r

prime factors , the quotient space Y +
N has one cusp. The automorphic form η∞ is explicitly

computed in [19], where it is proved that

η∞(z) = 2r

√

∏

v|N
η(vz),

where the product is taken over positive divisors of N .

Example 5 In the case when � is the congruence group �0(N ), for a positive integer N , the
corresponding quotient space MN := �0(N )\H has many cusps. Using a standard funda-
mental domain, MN has cusps at ∞, at 0 and, in the case when N is not prime, at the rational
points 1/v, where v | N is such that (v, N

v
) = 1, where (·, ·) stands for the greatest common

divisor. As in the above example, let us use the subscript ∞ to denote data associated to the
cusp at ∞. In particular, the automorphic form η∞ in the example under consideration was
explicitly computed in [30], where it is proved that

η∞(z) = ϕ(N )

√

∏

v|N
η(vz)vμ(N/v),

where ϕ(N ) is the Euler ϕ−function and μ denotes the Möbius function. In the case of other
cusps Pk , the automorphic form ηPk was also computed in [30], but the expressions are more
involved so we omit giving the formulas here.

Also, for the cusp at ∞ and the principal congruence subgroup �(N ), the eta-function is
computed in Theorem 1, p. 405, of [29].

4 Kronecker’s limit formula for elliptic Eisenstein series

The function H�(z, w), defined in (4) is called the elliptic Kronecker limit function at w. It
satisfies the transformation rule

H�(γ z, w) = εw(γ )(cz + d)2Cw H�(z, w), for any γ =
(∗ ∗

c d

)

∈ �, (24)

where εw(γ ) ∈ C is a constant of absolute value 1, independent of z and

Cw = 2π/(ord(w) volhyp(M)), (25)
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see [24], Proposition 6.1.2., or [25]. Since H�(z, w), as a function of z, is finite and non-zero
at the cusp P1 = ∞, we decide to re-scale so that H�(z, w) is real at the cusp ∞.

We begin by studying the asymptotic behavior of H�(σP�
z, w) as y = Im(z) → ∞, for

� = 1, . . . , p� .

Proposition 6 For any cusp P�, with � = 1, . . . , p� , let

Bw,P�
= −Cw

(

2 − log 2 + log
∣

∣η4P�
(w) Im(w)

∣

∣ − β�� volhyp(M)
)

. (26)

Then there exists a constant aw,P�
∈ C of modulus one such that

H(σP�
z, w) = aw,P�

exp(−Bw,P�
)|c�z + d�|2Cw+O(exp(−2π Im(z))), as Im(z)→∞ ,

where σP�
= ( ∗ ∗

c� d�

)

is a scaling matrix for the cusp P� and Cw is defined by (25).

Proof The proof closely follows the proof of [24], Proposition 6.2.2. when combinedwith the
Taylor series expansion (22) of the parabolic Eisenstein series at s = 0. For the convenience
of the reader, we present the complete argument.

Combining the Eq. (4) with the proof of Proposition 6.1.1 from [24], taking e j = w, we
can write

− log(|H�(z, w)| Im(z)Cw ) = Kw(z),

where the function Kw(z) can be expressed as the sum of two terms: A term Fw(z) arising
from the spectral expansion and a term Gw(z) which can be expressed as the sum over the
group. Furthermore, for z ∈ H such that Im z > Im(γw) for all γ ∈ � the parabolic Fourier
expansion of Kw(σP�

z) is given by

Kw(σP�
z) =

∑

m∈Z
bm,w,P�

(y)e(mx)

with coefficients bm,w,P�
(y) given by

bm,w,P�
(y) =

1
∫

0

Kw(σP�
z)e(−mx)dx .

Since the hyperbolic Laplacian is SL2−invariant, we easily generalize computations from
p. 128 of [24] to deduce that

Kw(σP�
z) = −Cw log y + Aw,P�

y + Bw,P�
+

∞
∑

m=1

(Am;w,P�
e(mz) + Am;w,P�

e(−mz)),

for some constants Aw,P�
, Bw,P�

∈ R and complex constants Am;w,P�
.

Let us introduce the notation

fw,P�
(z) := exp

(

−2
∞
∑

m=1

Am;w,P�
e(mz)

)

, (27)

from which one immediately can write

Kw(σP�
z) = Aw,P�

y + Bw,P�
− log(

∣

∣ fw,P�
(z)

∣

∣ Im(z)Cw ). (28)
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When employing (28), we can re-write (4) as

Eell
w (σP�

z, s) − hw(s)
p�
∑

j=1

Epar
Pj

(w, 1 − s)Epar
Pj

(σP�
z, s) (29)

= − Cw + (Aw,P�
y + Bw,P�

− log(| fw,P�
(z)| Im(z)Cw )) · s + O(s2),

as s → 0, where

hw(s) := 2s√π �(s − 1/2)

ord(w)�(s)
. (30)

As in [24], pp. 129–130, we use the functional equation of the parabolic Eisenstein series and
consider the constant term in the Fourier series expansion, as a function of z, of the function

Eell
w (σP�

z, s) − hw(s)
p�
∑

j=1

Epar
Pj

(w, 1 − s)Epar
Pj

(σP�
z, s)

= Eell
w (σP�

z, s) − hw(s)
p�
∑

j=1

Epar
Pj

(w, s)Epar
Pj

(σP�
z, 1 − s). (31)

The constant term is given by

−hw(s)
p�
∑

j=1

φ j�(1 − s)ysEpar
Pj

(w, s)=−
√

π

ord(w)

�(s − 1/2)

�(s)
(2y)s

p�
∑

j=1

φ j�(1−s)Epar
Pj

(w, s).

Recall the expansions

�(s − 1/2) = −2
√

π
(

1 + (2 − γ − 2 log 2)s + O(s2)
)

, (32)

1

�(s)
= s

(

1 + γ s + O(s2)
)

, and (2y)s = 1 + s log(2y) + O(s2), (33)

which hold as s → 0, where, as usual, γ denotes the Euler constant. When combining these
expressions with (16), we can write the asymptotic expansions near s = 0 of the constant
term in the Fourier series expansion of (31) as

2π

ord(w)

(

1 + (2 + log y − log 2)s + O(s2)
)

·
p�
∑

j=1

(

− 1

volhyp(M)
+ β j�s + O(s2)

)

Epar
Pj

(w, s). (34)

Let us now compute the first two terms in the Taylor series expansion at s = 0 of the
expression

p�
∑

j=1

(

− 1

volhyp(M)
+ β j�s + O(s2)

)

Epar
Pj

(w, s). (35)

By applying (22), we conclude that the constant term in the Taylor series expansion of (35)
is

p�
∑

j=1

p�
∑

k=1

−1

volhyp(M)

(

− b jk

volhyp(M)
+ a jkβkk − a jk

volhyp(M)
log

∣

∣η4Pk
(w) Im(w)

∣

∣

)

.
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Applying relations (19) and (20) we then obtain, by computing the sums, that the constant
term in (35) is equal to −1/ volhyp(M). The factor multiplying s is equal to

p�
∑

j=1

p�
∑

k=1

−1

volhyp(M)

(

− c jk

volhyp(M)
+ b jkβkk − b jk

volhyp(M)
log

∣

∣η4Pk
(w) Im(w)

∣

∣ + a jk fk(w)

)

+
p�
∑

j=1

p�
∑

k=1

β j�

(

− b jk

volhyp(M)
+ a jkβkk − a jk

volhyp(M)
log

∣

∣η4Pk
(w) Im(w)

∣

∣

)

.

Applying relations (19) to (21) we get that

p�
∑

j=1

p�
∑

k=1

a jk fk(w) = 0

and
p�
∑

k=1

(

− 1

volhyp(M)
log

∣

∣η4Pk
(w) Im(w)

∣

∣ + βkk

) p�
∑

j=1

(

− b jk

volhyp(M)
+ a jkβ j�

)

= − 1

volhyp(M)
log

∣

∣η4P�
(w) Im(w)

∣

∣ + β��,

as well as
p�
∑

j=1

p�
∑

k=1

(

− c jk

volhyp(M)
+ b jkβ j�

)

=
p�
∑

j=1

p�
∑

k=1

a jkγ j� = 0.

Therefore, the factor multiplying s in the Taylor series expansion of (35) is equal to

− 1

volhyp(M)
log

∣

∣η4P�
(w) Im(w)

∣

∣ + β��.

Inserting this into (34) we see that the constant term in the Fourier series expansion of (31)
is given by

−Cw − Cw

(

2 − log 2 + log y + log
∣

∣

∣η
4
p�

(w) Im(w)

∣

∣

∣ − β�� volhyp(M)
)

s + O(s2),

as s → 0. Comparing this result with the right-hand side of formula (29) and having in mind
the definition of the number Cw , we immediately deduce the identities Aw,P�

= 0,

Bw,P�
= −Cw

(

2 − log 2 + log
∣

∣η4P�
(w) Im(w)

∣

∣ − β�� volhyp(M)
)

,

and

Kw(σP�
z) = − log(|H�(σP�

z, w)||c�z + d�|−2Cw Im(z)Cw )

= Bw,P�
− log(| fw,P�

(z)| Im(z)Cw ),

where the function fw,P�
is defined by (27). From (27) we deduce that

∣

∣ fw,P�
(z)

∣

∣ = exp

(

−2Re

( ∞
∑

m=1

Am;w,P�
e(mz)

))

= 1 + O(exp(−2π Im(z))),

as Im(z) → ∞. Therefore,
∣

∣H�(σP�
z, w)

∣

∣ = exp(−Bw,P�
)|c�z + d�|2Cw + O(exp(−2π Im(z))), as Im(z) → ∞ .
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This completes the proof. 
�
Example 7 (Moonshine groups) Let N = p1 · . . . · pr be a square-free number and recall that
the surface Y +

N = �0(N )+\H possesses one cusp at ∞ with the identity as a scaling matrix.
The scattering determinant ϕN associated to the only cusp of Y +

N at ∞ is computed in [18],
where it was shown that

ϕN (s) = √
π

�(s − 1/2)

�(s)

ζ(2s − 1)

ζ(2s)
· DN (s),

where ζ(s) is the Riemann zeta function and

DN (s) =
r

∏

j=1

p1−s
j + 1

ps
j + 1

= 1

N s−1

r
∏

j=1

ps−1
j + 1

ps
j + 1

.

Let bN denote the constant term in the Laurent series expansion of ϕN (s) at s = 1. One can
compute bN by expanding the functions DN (s), �(s), and ζ(s) at s = 1, which yields, at
s = 1, the Laurent expansions

DN (s) = 2r

σ(N )

⎛

⎝1 + (s − 1)

⎛

⎝

r
∑

j=1

(1 − p j ) log p j

2(p j + 1)
− log N

⎞

⎠ + O((s − 1)2)

⎞

⎠ ,

√
π

�(s − 1/2)

�(s)
= π

(

1 − 2 log 2(s − 1) + O((s − 1)2)
)

, (36)

as well as

ζ(2s − 1)

ζ(2s)
= 6

π2

(

1

2(s − 1)
− log(2π) + 1 − 12ζ ′(−1) + O(s − 1)

)

. (37)

Multiplying the expansions (36) and (37) and using that (see, for example, [19])

1

volhyp(Y
+
N )

= 3 · 2r

π σ(N )
,

we arrive at the expression

bN = − 1

volhyp(Y
+
N )

⎛

⎝

r
∑

j=1

(p j − 1) log p j

2(p j + 1)
− log N + 2 log(4π) + 24ζ ′(−1) − 2

⎞

⎠ .

With this formula, Proposition 6, and Example 4 we conclude that the elliptic Kronecker
limit function HN (z, w) := H

�+
0 (N )

(z, w) associated to the point w ∈ Y +
N may we written

as

HN (z, w) = aN ,w exp(−BN ,w) + O(exp(−2π Im(z))), as Im(z) → ∞,

where aN ,w is a complex constant of modulus one and

BN ,w = − 2π

ord(w) volhyp(Y
+
N )

×
⎛

⎝

r
∑

j=1

(p j − 1) log p j

2(p j + 1)
− log N + C + log

⎛

⎝ 2r

√

∏

v|N
|η(vw)|4 · Im(w)

⎞

⎠

⎞

⎠

with C := log(8π2) + 24ζ ′(−1).
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Example 8 (Congruence subgroups of prime level) Let Mp = �0(p)\H, where p is a prime.
The surface Mp has two cusps, at ∞ and 0. The scaling matrix for the cusp at ∞ is the
identity matrix. The scattering matrix in this setting is computed in [11], p. 536, and is given
by

�Mp (s) = √
π

�(s − 1/2)

�(s)

ζ(2s − 1)

ζ(2s)
· 1

p2s − 1

(

p − 1 ps − p1−s

ps − p1−s p − 1

)

.

Using the expansions (36) and (37), together with volhyp(Mp) = π(p + 1)/3 and the expan-
sion

p − 1

p2s − 1
= 1

p + 1
− 2p2 log p

(p − 1)(p + 1)2
(s − 1) + O((s − 1)2), as s → 1 ,

we conclude that the coefficients β11 and β22 in the Laurent series expansion (16) are given
by

β11 = β22 = − 2

volhyp(Mp)

(

log(4πp) + 12ζ ′(−1) − 1 + log p

p2 − 1

)

.

Therefore, from Proposition 6, when applied to the cusp ∞, and Example 5, we conclude
that the elliptic Kronecker limit function ˜Hp(z, w) := H�0(p)(z, w) associated to the point
w ∈ Mp can be written as

˜Hp(z, w) = ãp,w exp(−˜Bp,w) + O(exp(−2π Im(z))), as Im(z) → ∞,

where ãp,w is a complex constant of modulus one and

˜Bp,w = − 2π

ord(w) volhyp(Mp)

(

2p2 log p

p2 − 1
+ C + log

(∣

∣

∣

∣

∣

p−1

√

η(pw)p

η(w)
· Im(w)

∣

∣

∣

∣

∣

))

with C := log(8π2) + 24ζ ′(−1).

5 A factorization theorem

In (6) and (7) one has an evaluation of the elliptic Kronecker limit function in the special
case when � = PSL2(Z) and w = i or w = ρ = exp(2π i/3) are the elliptic fixed points of
PSL2(Z). The following theorem generalizes these results. A further extension is discussed
in Remark 10 below.

Theorem 9 Let M = �\H be a finite volume Riemann surface with at least one cusp.
Without loss of generality, we assume that one cusp is at ∞ with the identity as a scaling
matrix. Let k be a fixed positive integer such that there exists a weight 2k holomorphic form
f2k on M which is non-vanishing at all cusps and with the q−expansion at ∞ given by

f2k(z) = b f2k +
∞
∑

n=1

b f2k (n)qn
z . (38)

Let Z( f2k) denote the set of all zeros f2k counted according to their multiplicities and let us
define the function

H f2k (z) :=
∏

w∈Z( f2k )

H�(z, w),
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where, as above, H�(z, w) is the elliptic Kronecker limit function. Then there exists a complex
constant c f2k such that

f2k(z) = c f2k H f2k (z) (39)

and

∣

∣c f2k

∣

∣ = ∣

∣b f2k

∣

∣ exp

⎛

⎝

∑

w∈Z( f2k )

Bw,∞

⎞

⎠ ,

where Bw,∞ is defined in (26).

Proof Assume that f2k possesses m + l ≥ 1 zeros on M , where m zeros are at the elliptic
points e j of M , j = 1, . . . , m, and l zeros are at the non-elliptic points wi ∈ M , where, of
course, all zeros are counted with multiplicities. Then H f2k (z) is a holomorphic function on
M which is vanishing if and only if z ∈ Z( f2k) and which according to (24) satisfies the
transformation rule

H f2k (γ z) = ε f2k (γ )(cz + d)C f2k H f2k (z), for any γ =
(∗ ∗

c d

)

∈ �,

where ε f2k (γ ) is a constant of modulus one,

C f2k = 4π

volhyp(M)

⎛

⎝

m
∑

j=1

1

ne j

+ l

⎞

⎠ ,

and ne is the order of the elliptic point e.
The classical Riemann-Roch theorem relates the number of zeros of a holomorphic form

to its weight and the genus of M in the case M is smooth and compact. A generalization of
the relation follows from Proposition 7, p. II-7, of [1] which, in the case under consideration,
yields the formula

k · volhyp(M)

2π
=

∑

e∈EN

1

ne
ve( f ) +

∑

z∈M\EN

vz( f ), (40)

where EN denotes the set of elliptic points of M and vz( f ) denotes the order of the zero z of
f .
Since Z( f2k) is the set of all vanishing points of f2k , formula (40) implies that

2k · volhyp(M)

4π
=

m
∑

j=1

1

ne j

+ l,

hence C f2k = 2k. In other words, H f2k (z) is a holomorphic function on M , vanishing if and
only if z ∈ Z( f2k) and satisfying the transformation rule

H f2k (γ z) = ε f2k (γ )(cz + d)2k H f2k (z), for any γ =
(∗ ∗

c d

)

∈ �.

ByProposition 6, we have that for anyw ∈ Z( f2k) and any cusp Pl of M , with l = 1, . . . , p� ,
the function

F f2k (z) := H f2k (z)

f2k(z)
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is a non-vanishing holomorphic function on M , bounded and non-zero at the cusp at ∞ and
has at most polynomial growth in the variable Im(z) at any other cusp of M . Therefore, the
function log |F f2k (z)| is harmonic on M whose growth at any cusp is such that log |F f2k (z)|
is L2 on M . As a result, log |F f2k (z)| admits a spectral expansion; see [11] or [13]. Since
log |F f2k (z)| is harmonic, one can use integration by parts to show that log |F f2k (z)| is orthog-
onal to any eigenfunction corresponding to a non-zero eigenvalue of the hyperbolic Laplacian.
Therefore, from the spectral expansion, one concludes that log |F f2k (z)| is constant, hence
so is F f2k (z). The evaluation of the constant is obtained by considering the limiting behavior
as z approaches ∞. This completes the proof of (39). 
�
Remark 10 It is evident that one can generalize Theorem 9 to the case when the holomorphic
form f2k vanishes at a cusp, or at several cusps. In such an instance, one should include
factors of the parabolic Kronecker limit function in the construction of H f2k . The parabolic
Kronecker limit function is bounded and non-vanishing at each of the cusps other than the
one to which it is associated, and the (fractional) order to which it vanishes follows from
Theorem 1 of [29]. As with Theorem 9, one can express any holomorphic modular form as a
product of parabolic and elliptic Kronecker limit functions, up to a multiplicative constant.
Furthermore, the multiplicative constant can be computed, up to a factor of modulus one,
from the value of the various functions at a cusp.

6 Examples of factorization

6.1 An arbitrary surface with one cusp

In the case when a surface M has one cusp, we get the following special case of Theorem 9.

Corollary 11 Let M = �\H be a finite volume Riemann surface with one cusp, which we
assume to be at ∞ with the identity as a scaling matrix. Then the weight 2k holomorphic
Eisenstein series E2k,� defined in (12) can be represented as

E2k,�(z) = aE2k,�
BE2k,�

∏

w∈Z(E2k,�)

H�(z, w),

where aE2k,�
is a complex constant of modulus one and

BE2k,�
=

∏

w∈Z(E2k,�)

exp
(

Cw

(

log 2 − 2 + βM volhyp(M)
)) · ∣

∣η4∞(w) Im(w)
∣

∣

−Cw
.

As before, η∞ is the parabolic Kronecker limit function defined in Sect. 3, formula (17), and
βM is the constant term in the Laurent series expansion of the scattering determinant on M.

In this case, due to a very simple form of the Kronecker’s limit formula for parabolic
Eisenstein series as s → 0, the factorization theorem yields an interesting form of the
Kronecker’s limit formula for elliptic Eisenstein series, which we state as the following
proposition.

Proposition 12 Let M = �\H be a finite volume Riemann surface with one cusp, which we
assume to be at ∞ with the identity as a scaling matrix. Let k be a fixed positive integer such
that there exists a weight 2k holomorphic form f2k on M with the q-expansion at ∞ given
by (38). Then
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∑

w∈Z( f2k )

Eell
w (z, s) = −s log

(

| f2k(z)||η4∞(z)|−k
)

+ s log |b f2k | + O(s2), (41)

as s → 0, where b f2k is the non-zero constant term in the expansion (38) and Z( f2k) denotes
the set of all zeros of f2k counted with multiplicities.

Proof We start with formula (4), which we divide by ord(w), and take the sum over all
w ∈ Z( f2k) to get

∑

w∈Z( f2k )

Eell
w (z, s) − Epar∞ (z, s)

∑

w∈Z( f2k )

hw(s)Epar∞ (w, 1 − s)

= −
∑

w∈Z( f2k )

Cw (1 + s log(Im z))−log

⎛

⎝

∏

w∈Z( f2k )

|H�(z, w)|
⎞

⎠ · s+O(s2), (42)

as s → 0, where Cw and hw(s) are defined by (25) and (30), respectively. Recall that for any
w ∈ Z( f2k), we let ord(w) denote the order of the elliptic subgroup �w of � which fixes w.
One now expands the second term on the left hand side of (42) into a Taylor series at s = 0
by applying formulas (32), (33), (23), and (17). After multiplication, we get, as s → 0, the
expression

Epar∞ (z, s)
∑

w∈Z( f2k )

hw(s)Epar∞ (w, 1 − s)

=
∑

w∈Z( f2k )

Cw

(

1 + s
(

2 − log 2 − βM volhyp(M) + log |η4∞(w) Im(w)|

+ |η4∞(z) Im(z)|)) + O(s2), (43)

as s → 0. Theorem 9 yields that

log

⎛

⎝

∏

w∈Z( f2k )

|H�(z, w)|
⎞

⎠ = log | f2k(z)| −
∑

w∈Z( f2k )

Bw,∞ − log |b f2k |, (44)

where Bw,∞ is defined by (26) for the cusp Pl = ∞. Finally, from formula (40), we get that

∑

w∈Z( f2k )

Cw = k.

Therefore, by inserting (26), (44), and (43) into (42), we immediately deduce (41). The proof
is complete. 
�

Remark 13 In the case � = PSL2(Z), the parabolic Kronecker limit function is given by
η∞(z) = η(z) = �(z)1/24. Then, for k = 3 and f2k = E6, we have bE6 = 1 and Z(E6) =
{i}, hence Proposition 12 yields (8). Analoguously, for k = 2 and f2k = E4, we have bE4 = 1
and Z(E4) = {ρ}, and Proposition 12 gives (9). Furthermore, we have BE6,� = exp(Bi ) and
BE4,� = exp(Bρ), where Bi and Bρ are given by (6) and (7), respectively; see [24] and [25].

Let us now develop further examples of surfaces with one cusp and explicitly compute
the constant BE2k,�

in these special cases.
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6.2 Moonshine groups of square-free level

Example 14 Consider the surface Y +
2 . There exists one elliptic fixed point of order two,

e1 = i/
√
2, and one elliptic fixed point of order four, e2 = 1/2 + i/2. The surface Y +

2 has

genus zero and one cusp, hence volhyp(Y
+
2 ) = π/2. The transformation rule for E (2)

6 implies
that the form must vanish at the points e1 and e2. Furthermore, formula (40) when applied
to Y +

2 becomes

2k

8
= v∞( f ) + 1

4
ve2( f ) + 1

2
ve1( f ) +

∑

z∈Y +
2 \{e1,e2}

vz( f ). (45)

Taking k = 3, we conclude that e1 and e2 are the only vanishing points of E (2)
6 and the order

of vanishing is one at each point. Therefore, in the notation of Theorem 9 and Example 7, we
have that the form H (2)

6 (z) = H
E (2)
6

(z) is given by H (2)
6 (z) := H2(z, e1)H2(z, e2). Assuming

that the phase of H (2)
6 (z) is such that it attains real values at the cusp ∞, we have that

E (2)
6 (z) = C2,6H (2)

6 (z), (46)

where the absolute value of the constant C2,6 is given by |C2,6| = eB2,e1+B2,e2 with

B2,e1 = −2

(

24ζ ′(−1) + log(8π2) − 4

3
log 2 + 1

12
log(|�(i

√
2) · �(i/

√
2)|)

)

and

B2,e2 = −
(

24ζ ′(−1) + log(8π2) − 11

6
log 2 + 1

12
log(|�(1/2 + i/2) · �(1 + i)|)

)

.

Let us now consider the case when k = 2. From (45), we have that only e1 and e2 can
be vanishing points of E (2)

4 . However, there are two possibilities: Either e2 is an order two

vanishing point, and E (2)
4 (z) �= 0 for all z �= e2 in the fundamental domain F2 of Y +

2 , or

e1 is an order one vanishing point and E (2)
4 (z) �= 0 for all points z �= e1 in F2. If the latter

possibility is true, then E (2)
6 (z)/E (2)

4 (z) would be a weight two holomorphic modular form
which vanishes only at e2, which is not possible since there is no weight two modular form
on Y +

N for any square-free N such that the surface Y +
N has genus zero; see, for example, [20].

Therefore, E (2)
4 vanishes at e2 of order two, and there are no other vanishing points of E (2)

4
on Y +

2 .

Hence, in the notation ofTheorem9,wehave H (2)
4 (z) := H

E (2)
4

(z) = H2(z, e2)2, implying

that

E (2)
4 (z) = C2,4H2(z, e2)

2, (47)

where |C2,4| = e2B2,e2 . This proves that H2(z, e2)2 is a weight four holomorphic modular
function on �0(2)+. If we combine (46) with (47) we get

H2(z, e1)
2 = C2,4

C2
2,6

· (E (2)
6 (z))2

E (2)
4 (z)

;

in other words, H2(z, e1)2 is a weight eight holomorphic modular function on �0(2)+.
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Furthermore, an application of Proposition 12 with f2k = E (2)
4 and Z f2k = {e2} (with

multiplicity two) together with Example 4 and with the representation formula (15) yields
(11).

By applying Proposition 12 with f2k = E (2)
6 and Z f2k = {e1, e2} together with formula

(11) we get the following elliptic Kronecker’s limit formula

Eell
e1 (z, s) = −s log

(

|E (2)
6 (z)||E (2)

4 (z)|−1/2|�(z)�(2z)|−1/6
)

+ O(s2), as s → 0.

Example 15 Consider the surfaceY +
5 . There exist three order two elliptic fixedpoints, namely

e1 = i/
√
5, e2 = 2/5 + i/5, and e3 = 1/2 + i/(2

√
5). The surface Y +

5 has genus zero and

one cusp, hence volhyp(Y
+
5 ) = π . Using the transformation rule for E (5)

6 , one concludes that

the holomorphic form E (5)
6 must vanish at e1, e2, and e3. By the dimension formula (40), one

sees that e1, e2, and e3 are the only zeros of E (5)
6 . Theorem 9 then implies that

E (5)
6 (z) = C5,6H6(z, e1)H6(z, e2)H6(z, e3) := C5,6H (5)

6 (z), (48)

where the absolute value of the constant C5,6 is given by |C5| = eB5,e1+B5,e2+B5,e3 and

B5,e1 + B5,e2 + B5,e3 = −3
(

24ζ ′(−1) + log(8π2)
) − log 50

+ 1

12
log

(∣

∣

∣�(i/
√
5)�(i

√
5)�(2/5 + i/5)�(2 + i)�(1/2 + i/(2

√
5))�(5/2 + i

√
5/2)

∣

∣

∣

)

.

One can view (48) as analogue of the Jacobi triple product formula.

Remark 16 Let N = p1 · . . . · pr be a square-free number. Then, according to the properties
of the surface Y +

N listed in Sect. 2.2, one can develop a number of results similar to the above
examples when N = 2 or N = 5. In particular, Theorem 9 holds, so one can factor any
holomorphic Eisenstein series E (N )

2k of weight 2k into a product of elliptic Kronecker limit
functions, up to a factor of modulus one.

6.3 Congruence subgroups of prime level

Consider the surface Mp = �0(p)\H for a prime p. The smallest positive integer k such
that there exists a weight 2k holomorphic form is k = 1. As a result, we have the following
corollary of Theorem 9.

Corollary 17 Let f2k,p denote a weight 2k ≥ 2 holomorphic form on the surface Mp

bounded at cusps and such that the constant term in its q-expansion is equal to b f2k ,p.
Assume that b f2k ,p �= 0. Then,

f2k,p(z) = a f2k ,p ˜B f2k ,p

∏

w∈Z( f2k ,p)

˜Hp(z, w),

where a f2k ,p is a complex constant of modulus one and

˜B f2k ,p = ∣

∣b f2k ,p
∣

∣

∏

w∈Z( f2k ,p)

⎛

⎝exp

[

−Cw

(

2p2 log p

p2 − 1
+ C

)]

∣

∣

∣

∣

∣

p−1

√

η(pw)p

η(w)
Im(w)

∣

∣

∣

∣

∣

−Cw
⎞

⎠

with C := log(8π2) + 24ζ ′(−1).

Let us now compute the constants ˜B f2k ,p for two cases.
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Example 18 If p = 2, then the surface M2 has only one elliptic fixed point, e = 1/2 + i/2,
which has order two. Furthermore, volhyp(Mp) = π , hence formula (40) with k = 1 implies
that the holomorphic form E2,2 defined by (13) with p = 2 vanishes only at e, and the
vanishing order is one. From the q−expansion (14) we have that

∣

∣bE2,2,2
∣

∣ = 2 − 1 = 1.
Since Ce = 1, we get

E2,2(z) = a2 · 1

16 3
√
4π2

exp(−24ζ ′(−1))

∣

∣

∣

∣

η(1/2 + i/2)

η(1 + i)2

∣

∣

∣

∣

˜H2(z, e),

for some complex constant a2 of modulus one. In other words, the elliptic Kronecker limit
function ˜H2(z, e) is a weight two modular form on �0(2).

Example 19 If p = 3, then the surface M3 has only one elliptic fixed point e = 1/2+√
3i/6,

which has order three. The hyperbolic volume of the surface M3 is 4π/3, hence formula
(40) with k = 1 implies that the holomorphic form E2,3 vanishes only at e, of order two.
Furthermore,

∣

∣bE2,3,2
∣

∣ = 2 and Ce = 1/2, so then

E2,3(z) = a3 · 1

12 4
√
27π2

exp(−24ζ ′(−1))

∣

∣

∣

∣

∣

∣

∣

⎛

⎜

⎝

η
(

1/2 + i
√
3/6

)

η
(

3/2 + i
√
3/2

)3

⎞

⎟

⎠

1/2∣
∣

∣

∣

∣

∣

∣

˜H3(z, e)2,

for some complex constant a3 of modulus one.

7 Additional considerations

In this section, we use the elliptic Kronecker limit function to prove the Weil’s reciprocity
law. In addition, we state a few concluding remarks.

7.1 The factorization theorem for compact surfaces

Assume that the Riemann surface M is compact. In the notation of the proof of Theorem 9,
the quotient

F f2k (z) := H f2k (z)

f2k(z)

is a non-vanishing, bounded, and holomorphic function on M , hence the quotient is constant.
In other words, there is a constant c f2k such that

f2k(z) = c f2k H f2k (z) := c f2k

∏

w∈Z( f2k )

H�(z, w).

The point now is to develop a strategy by which one can evaluate c f2k . Perhaps the most
natural approach would be to study the limiting value of

˜H�(z) := lim
w→z

H�(z, w)

z − w
,

which needs to be considered in the correct sense as a holomorphic form on M . One can then
express c f2k in terms of the first non-zero coefficient of f2k about a point z ∈ Z( f2k), a product
of the forms H f2k (z, w) for two different points in Z( f2k) and ˜H�(z). Such formulae could
be quite interesting in various cases of arithmetic interest. We will leave the development of
such identities for future investigation.
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7.2 Symmetric form of the elliptic Kronecker limit function

For simplicity, assume that the Riemann surface M is smooth and compact. Let us re-write
(4) as

Eell
w (z, s) = −c − log

(|H̃�(z, w)|(Im(z) Im(w))c) · s + O(s2), as s → 0,

where, as before, c = 2π/ volhyp(M) and H̃�(z, w) = H�(z, w)/ Im(w)c. Recall that
the function H̃�(z, w) is locally holomorphic in both z and w; see Sect. 1.3. Using the
transformation rule (24) for the function H�(z, w), the fact that, in our setting Cw =
2π/(ord(w) volhyp(M)) = c, for all w ∈ M , together with the symmetry Eell

w (z, s) =
Eell

z (w, s), we may write the transformation rules of H̃� as

H̃�(γ z, w) = ε1,w(γ )(cz + d)2c H̃�(z, w), for any γ =
(∗ ∗

c d

)

∈ �,

and

H̃�(z, γw) = ε2,z(γ )(cw + d)2c H̃�(z, w), for any γ =
(∗ ∗

c d

)

∈ �,

where ε1,w and ε2,z denote complex numbers of absolute value equal to one. For fixed z
and γ , ε1,w(γ ) is locally holomorphic in w. However, since M is compact, and ε1,w(γ ) has
modulus one, it follows that ε1,w(γ ) is independent of w. Similarly, ε2,z(γ ) is independent
of z, so then we may write

ε1(γ ) := ε1,w(γ ) and ε2(γ ) := ε2,z(γ ).

7.3 Weil reciprocity

We now will use the discussion in Sects. 7.1 and 7.2 to prove Weil’s reciprocity law. For
simplicity, we assume that the Riemann surface M is smooth and compact, though it is
evident that with careful consideration the approach can be extended.

Theorem 20 (Weil reciprocity) Let f and g be meromorphic functions on the smooth, com-
pact Riemann surface M. Let D f and Dg denote the divisors of f and g, respectively, which
we write as

D f =
∑

m f (P)P and Dg =
∑

mg(P)P.

Assume that D f and Dg are disjoint. Then, we have
∏

w j ∈Dg

f (w j )
mg(w j ) =

∏

zi ∈D f

g(zi )
m f (zi ).

Proof The factorization theorem developed in Sect. 7.1 together with the discussion from
Sect. 7.2 implies that we can write

f (z) = c f

∏

w j ∈D f

H̃�(z, w j )
m f (w j )

for some constant c f . However, since H̃�(z, w) is locally holomorphic in w, and vanishes
to first order when w approaches z, one can also write any holomorphic form as a product
using the second variable in H̃� . Thus we can write g as
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g(w) = cg

∏

zi ∈Dg

H̃�(zi , w)mg(zi ).

Both f and g have degree zero, so then
∑

zi ∈Dg

mg(zi ) =
∑

w j ∈D f

m f (w j ) = 0,

hence
∏

zi ∈Dg

c
mg(zi )

f =
∏

w j ∈D f

c
mg(w j )
g = 1.

Therefore, we obtain
∏

w j ∈Dg

f (w j )
mg(w j ) =

∏

w j ∈Dg

∏

zi ∈D f

H̃�(zi , w j )
m f (w j )mg(zi ) =

∏

zi ∈D f

g(zi )
m f (zi ),

which completes the proof of Theorem 20. 
�
7.4 Unitary characters and Artin formalism

As with parabolic Eisenstein series, one can extend the study of elliptic Eisenstein series to
include the presence of a unitary character. More precisely, let π : � → U (n) denote an
n-dimensional unitary representation of the group � with associated character χπ . Let us
define

Eell
w (z, s;π) =

∑

η∈�

χπ(η) sinh(dhyp(ηz, w))−s (49)

to be the elliptic Eisenstein series twisted by χπ . Note that if n = 1 and π is trivial, then the
above definition is equal to ord(w) times the series in (2). In general terms, the meromorphic
continuation of (49) could be proven by using the methodology of [17], which depended on
the spectral expansion and small time asymptotics of the associated heat kernel.

Having established the meromorphic continuation of (49), one then can study the elliptic
Kronecker limit functions. It would be interesting to place the study in the context of the
Artin formalism relations; see [16] and references therein. The system of elliptic Eisenstein
series associated to the representations π will satisfy additive Artin formalism relations, and,
through exponentiation, the corresponding elliptic Kronecker limit functionswill satisfymul-
tiplicativeArtin formalism relations. It would be interesting to carry out these computations in
the setting of the congruence groups �0(N ) as subgroups of the moonshine groups �0(N )+,
for instance, in order to relate the above-mentioned computations for parabolic Kronecker
limit functions. It is possible that a similar approach could yield further relations amongst
the elliptic Kronecker limit functions.

7.5 Fay’s prime form

In a separate consideration, it may be interesting to express H̃�(z, w) in terms of Fay’s prime
form. This investigation will not be undertaken in the present article, though we can, at this
time, comment on the matter.

Assume for now that M is smooth and compact. In chapter 2 of [6] the author constructs
the prime form E(z, w) for points z, w ∈ M with certain characterizing properties, including:
It is a locally holomorphic function on M × M , it vanishes if and only if z = w, it is anti-
symmetric, meaning E(z, w) = −E(w, z), and its periodicity properties when continuing
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along a path on M (meaning, when lifting to H × H and analytically continuing) can be
determined. We refer to p. 19 of [6] for precise statements.

In other terms, Fay describes E(z, w) as a holomorphic section of a particular line bundle
on M × M ; see statement (i) on p. 16 of [6]. In the language of algebraic geometry, one can
equip the line bundle with a canonical norm ‖·‖2 so that ‖E(z, w)‖2 is a well-defined smooth
function on M × M ; see p. 401 of [5] which is elaborated upon in [14]. In general terms, Fay’s
definition of the prime form is a quotient of the Riemann theta function with characteristics
and certain holomorphic one forms. The norm of the prime form is obtained using the norm
of the Riemann theta function (see p. 228 of [14]) and the norm of holomorphic one-forms
using the Weil–Petterson metric on the canonical bundle (see p. 232 of [14]).

With this discussion, one can relate the Kronecker limit function and log ‖E(z, w)‖.
Indeed, both (5) and log ‖E(z, w)‖ have logarithmic singularities as z approaches w. Also,
both functions are such that away from the singularity, the hyperbolic Laplacian of each
function is constant. Therefore, we have, in somewhat vague terms, that the prime form
can be expressed in terms of H̃�(z, w), trivial theta functions (see chapter VI of [23]), and
constants which may depend M .

Going further, it would be interesting to study the means by which the Kronecker limit
function could extend the definition of the prime form to Riemann surfaces with singularities
or with cusps. Additionally, one could examine specific situations, such as compact surfaces
of small genus, to determine if the above discussion would lead to precise formulas involving
Riemann’s theta function and related quantities. We will leave this point of study for future
investigations.

Acknowledgements We thank the anonymous referee for carefully reading a preliminary manuscript and
providing many comments. His/her remarks helped greatly in improving this article.
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