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Abstract For certain contact manifolds admitting a 1-periodic Reeb flow we construct a
conjugation-invariant norm on the universal cover of the contactomorphism group. With
respect to this norm the group admits a quasi-isometric monomorphism of the real line. The
construction involves the partial order on contactomorphisms and symplectic intersections.
This norm descends to a conjugation-invariant norm on the contactomorphism group. As a
counterpoint, we discuss conditions under which conjugation-invariant norms for contacto-
morphisms are necessarily bounded.
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Resume On construit une norme invariante par conjugaison sur le revêtement universel du
groupe des contactomorphismes associé à certaines variétés de contact admettant un flot de
Reeb 1-périodique. Par rapport à cette norme, le groupe admet un monomorphisme quasi-
isométrique des réels. La construction utilise l’ordre partiel sur les contactomorphismes et
des propriétés des intersections symplectiques. Cette norme induit une norme invariante par
conjugaison sur le groupe des contactomorphismes. Par contraste avec cette construction,
nous discutons de conditions sous lesquelles des normes invariantes par conjugaison sur des
groupes des contactomorphismes sont nécessairement bornées.
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1 Introduction

A conjugation-invariant norm on a group G is a function ν : G → [0,∞) satisfying the
following properties:
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(1) ν(1) = 0 and ν(g) > 0 for all g �= 1.
(2) ν(gh) ≤ ν(g) + ν(h) for all g, h ∈ G.
(3) ν(g−1) = ν(g) for all g ∈ G.
(4) ν(h−1gh) = ν(g) for all g, h ∈ G.

A function ν satisfying only 1–3 is a norm on G , while if the non-degeneracy condition
ν(g) > 0 for g �= 1 is dropped ν is said to be a pseudo-norm (or semi-norm).

Given any bi-invariant metric d on G, distance to the identity defines a conjugation-
invariant norm, ν( f ) := d( f,1), and vice versa, any conjugation-invariant norm ν defines
a bi-invariant metric d( f, g) := ν( f g−1).

Following the terminology of [8] we say a norm on G is bounded when there exists
C < ∞ such that ν(g) ≤ C for all g ∈ G. A norm is called stably unbounded if for some
g ∈ G, ν(gn) ≥ c|n| for all n ∈ Z with some c > 0. A norm ν is discrete if there exists
a constant c > 0 such that c ≤ ν(g) for any g �= 1, and a norm is trivial if it is both
discrete and bounded (i.e., equivalent to the trivial norm). In many cases we will consider, a
general argument of [8] implies that all conjugation-invariant norms are discrete, and hence
boundedness is equivalent to triviality.

In this paper, we focus on conjugation-invariant norms on contactomorphism groups and
in particular on their (un)boundedness. Such norms were discovered by Sandon in [31]
and further studied in recent papers [39] by Zapolsky and [9] by Colin and Sandon. Their
geometric properties turn out to be sensitive to the contact topology of (V, ξ). The above
norms are:

• unbounded for T ∗
R
n × S1, but not stably unbounded [9,31];

• stably unbounded for T ∗X × S1 with compact X [39] and for RP2n+1 [9];
• bounded for S2n+1 and R

2n+1 [9],

where the manifolds in the list are equipped with the standard contact structures. All
these norms are studied by using Legendrian spectral invariants. Sandon’s norm and the
related norm by Zapolsky are actually defined through these invariants, while the Colin–
Sandon norms have geometric and/or dynamical definitions. It is also possible to define
non-conjugation-invariant (pseudo-) norms purely in terms of Hamiltonians; such norms, in
the spirit of Hofer’s norm, have been studied by Shelukhin [35] and Müller and Spaeth [25]
(cf. also [29,30]).

Conjugation-invariant norms are closely related to quasi-morphisms. Indeed if μ is
a homogeneous quasi-morphism on a group G—a real-valued function on G such that
φ( f n) = nφ( f ) for any f ∈ G, n ∈ Z and for which there is D > 0 such that
|φ( f g)−φ( f )−φ(g)| ≤ D for all f, g ∈ G—then it is easily checked that φ is conjugation-
invariant and μ( f ) := |φ( f )| + D for f �= 1, μ(1) := 0 defines a stably unbounded
conjugation-invariant norm on G. Quasi-morphisms on contactomorphism groups are con-
structed for real projective spaces by Givental [18] and generalizing his construction, for
Lens spaces by Granja et al. [20], as well as for certain prequantizations by Borman and
Zapolsky [7]. Thus, in all these cases, the contactomorphism groups carry stably unbounded
conjugation invariant norms.

Finally, we note that, as with diffeomorphisms, a fragmentation property holds for con-
tactomorphisms (see Banyaga [4]) and any open cover therefore induces a corresponding
fragmentation norm (c.f. [8] for diffeomorphisms, [9] for contactomorphisms). With some
care in the choice of cover this norm will be conjugation-invariant and, as we show in
Sect. 3.4, will dominate all known conjugation-invariant norms, a situation analogous to that
for diffeomorphism groups [8].
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On Sandon-type metrics for contactomorphism groups 193

The aim of the present paper is twofold. In Sect. 2 for certain contact manifolds admitting
a 1-periodic Reeb flow we give yet another construction of a stably unbounded conjugation-
invariant norm on the (universal cover of) contactomorphism groups. The construction
involves the partial order on contactomorphism groups introduced in [14]. Stable unbound-
edness is automatic for compact manifolds, and for non-compact manifolds it is deduced
from basic results on symplectic intersections. The examples include various prequantiza-
tion spaces such as T ∗X × S1 with closed X , prequantizations of symplectically aspherical
manifolds containing a closed Bohr–Sommerfeld Lagrangian submanifold and the standard
projective spaces RP2n+1.

These results are contrasted with the following statement proved in Sect. 3: if the contact
fragmentation norm is bounded, which in particular holds for V = S2n+1, then every known
conjugation invariant norm on the identity component of the contactomorphism group is
trivial. The proof follows closely [8].

2 Constructions

2.1 Preliminaries

Let (V, ξ) be a contact manifold, not necessarily closed, with co-oriented contact structure
ξ . Assume moreover that λ is a contact form which obeys the co-orientation and whose Reeb
vector field generates a circle action et , t ∈ S1.

Let us fix some notation for the groups we will be dealing with. We write G(V, ξ) for the
identity component of the group of compactly supported contactomorphisms of (V, ξ). This
is shortened to G(V ) or G when clear from the context. We denote by ˜G(V ) or ˜G the universal
cover of G(V ) = G.

Contact isotopies supported in a given open set X ⊂ V give rise to subgroups of G(V )

and ˜G(V ) generated by these isotopies. We denote them respectively by G(X) ⊂ G(V ) and
˜G(X, V ) ⊂ ˜G(V ). Let usmention that in general ˜G(X, V ) does not coincidewith the universal
cover ˜G(X) of G(X). However there exists a natural epimorphism

˜G(X) → ˜G(X, V ). (1)

When V is closed, the construction and properties of our norm on ˜G(V ), resp. G(V ), are
quite direct, whereas for open V they are more involved. Indeed, to handle the open case, we
first define and study a normon the auxiliary groupGe(V, λ) consisting of contactomorphisms
of the form et ·φ where φ ∈ G(V ). When V is closed these groups coincide, G(V ) = Ge(V ),
and the general construction we give in Sect. 2.2 for both open or closed V reduces to a direct
construction in the case of closed V . The reader who wishes to see the simpler case of closed
V first may proceed directly to Sect. 2.2, where Remark 2.13 gives the needed background.

We emphasize that by contactomorphism, we always mean a diffeomorphism preserving
the co-oriented contact structure.We do not, however, require contactomorphisms to preserve
any specific contact form. We denote by ˜Ge the universal cover of Ge.

When V is an open manifold, every f ∈ Ge(V ) coincides with some et outside a suf-
ficiently large compact subset, so we have a fibration G(V ) → Ge(V ) → S1. The exact
homotopy sequence yields in this case that

0 = π2(S1) → π1(G) → π1(Ge) ,

and hence π1(G) → π1(Ge) is a monomorphism. This implies that ˜G can be considered as a
subgroup of ˜Ge.
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Let SV = (V × R+, d(sλ)) be the symplectization of V . For a contactomorphism f of
V we write f̄ for the corresponding R+-equivariant symplectomorphism of SV . A time-
dependent function Ft : SV → R which is R+-equivariant, i.e. such that Ft (sx) = sFt (x)
for all s ∈ R+, x ∈ SV , is called a contact Hamiltonian. The Hamiltonian flow it defines
is also R+-equivariant and so produces a contact isotopy of (V, λ). Moreover, every contact
isotopy ft is given uniquely by such an Ft . In particular, the Reeb flow et is given by the
(time-independent) contact Hamiltonian s.

Any f ∈ ˜Ge is a homotopy class of path connecting the identity to a fixed contactomor-
phism. We write { ft }t∈[a,b] for a specified path in the class f , { ft } when [a, b] = [0, 1],
and { ft }t∈S1 for a loop. We remind that the contact Hamiltonian depends on this choice of
path within the class f and is not uniquely defined by f . We write H( ft ) to denote the
Hamiltonian for the path { ft }. We recall that the product f g of f, g ∈ ˜Ge can be represented
by the path { ft gt }, and by the cocycle formula

H( ft gt ) = H( ft ) + H(gt ) ◦ ( f̄t )
−1. (2)

Stabilization and suspension We consider Stab(SV ) := SV × T ∗S1, the stabilization of
SV , with symplectic form d[sλ + rdt]. For any subset X ⊂ SV we then define Stab0(X)

= X ×OS1 ⊂ SV ×T ∗S1, where in general in this paper we writeOM for the zero section of
T ∗M . The stabilization Stab(SV ) is symplectomorphic to the symplectization of the contact
manifold (V × T ∗S1, λ + rdt), since under the diffeomorphism σ : S(V × T ∗S1) →
SV × T ∗S1, (s, u, r, t) �→ (s, u, sr, t) for s ∈ R+, u ∈ V, r ∈ R, t ∈ S1, the Liouville form
sλ + rdt on the exact symplectic manifold SV × T ∗S1 pulls back to the form s(λ + rdt) on
S(V × T ∗S1). This identification induces an R+-action on SV × T ∗S1 given by c · (z, r, t)
= (c · z, cr, t) where z ∈ SV , r ∈ R, t ∈ S1.

Definition 2.1 We say that a compact set B ⊂ SV has stable intersection property if
Stab0(B) cannot be displaced from SV × OS1 by an R+-equivariant Hamiltonian diffeo-
morphism of SV × T ∗S1.

Remark 2.2 Our terminology related to stabilizations is slightly different from that defined in
[14, Sect. 2.2]. In that paper the notion is used in the contact category and the stabilization of
the contact manifold V is the contact manifold Stab(V ) obtained by quotienting SV × T ∗S1
via the R+-action; by contrast, we remain in the symplectic category and refer to the sym-
plectic manifold SV × T ∗S1 as the stabilization Stab(SV ) of SV . In [14] the stabilization
Stab(K ) of subsets K ⊂ V is only defined for certain K (Legendrians and pre-Lagrangians)
which lift (non-canonically) to Lagrangians L ⊂ SK and Stab(K ) is taken to be the (canon-
ical) image of L × OS1 after quotienting. Their definition of Stab(K ) could also apply to
K = V but this is not done and would produce a conflict with the definition of Stab(V )

mentioned earlier. In the symplectic category we do not need to worry about lifts and we
define the stabilization Stab0(X) = X × OS1 for any set X ⊂ SV . The subscript prevents
conflict with Stab(SV ) = SV × T ∗S1 in the case X = SV .

Remark 2.3 The definition of stable intersection property in [14] is for a pair of sets (K , A) in
V and corresponds to non-displaceability of Stab(K ) from Stab(A) via contactomorphisms;
in our case we consider de facto only K = V and say that B ⊂ SV has stable intersection
property when Stab0(B) cannot be displaced from Stab0(SV ) by an R+-equivariant Hamil-
tonian diffeomorphism. It is important to note that stable intersection property of (K , A) in
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On Sandon-type metrics for contactomorphism groups 195

the sense of [14] for some K implies it for K = V and, thus, results establishing stable
intersection property of (K , A) in the sense of [14] always imply a lift B ⊂ SV of A has
stable intersection property in our sense.

In the present paper every use of the stable intersection property in fact uses only non-
existence of a displacing R+-equivariant Hamiltonian diffeomorphism of Stab(SV ) which
is a suspension of a contractible loop of contactomorphisms of V (see [14]). We recall the
notion of suspension next. This construction associates to a loop of contactomorphisms of
V an R+-equivariant symplectomorphism of SV × T ∗S1 as follows. Let ϕ = {φt }t∈S1 ,
φ0 = φ1 = 1 be a loop of contactomorphisms in Ge(V ) generated by a contact Hamiltonian
	t on SV . Define the suspension map


ϕ : SV × T ∗S1 → SV × T ∗S1

of ϕ by

(z, r, t) �→ (

φ̄t z, r − 	t
(

φ̄t z
)

, t
)

.

The map 
ϕ is an R+-equivariant symplectomorphism of SV × T ∗S1. Given two loops ϕ

and θ , the co-cycle formula implies 
ϕ◦θ = 
ϕ ◦ 
θ . Furthermore, if ϕ is contractible and
ϕ(s) is a homotopy of ϕ = ϕ(0) to the constant loop ϕ(1) = 1, the family of suspension maps

ϕ(s) is a Hamiltonian isotopy of SV × T ∗S1.

For certain purposes, the following modification of the stable intersection property will
be useful. We write � for the image of the fundamental group π1(G,1) in π1(Ge,1) under
the natural inclusion morphism. Each loop in Ge representing an element of � can be written
as a product of a contractible loop in Ge and a loop in G (note that the order of factors is
not important since G is a normal subgroup of Ge). We consider a compact subset B ⊂ SV
which satisfies the following condition:


ϕ(SV × OS1) ∩ (B × OS1) �= ∅, ∀ loopϕ s.t. [ϕ] ∈ �. (3)

The importance of these stable intersection properties for us rests on the following Lemma.

Lemma 2.4 (c.f. Proposition [14, 2.3.B]) Let B ⊂ SV be a compact set with stable inter-
section property. Then for every contractible loop ϕ = {φt }t∈S1 its contact Hamiltonian 	

vanishes for some t0 ∈ S1 and y ∈ B: 	t0(y) = 0. If B satisfies condition (3) then the same
holds true for every loop ϕ representing an element of �.

Proof The stable intersection property implies that the sets 
ϕ(SV × OS1) and B × OS1

intersect. Thus there exist z ∈ SV and t0 ∈ S1 such that φ̄t0 z ∈ B and 	t0(φ̄t0 z) = 0. Setting
y = φ̄t0 z, we get the first statement of the lemma. The second statement is analogous. ��

Partial order on contactomorphisms The following binary relation introduced and studied
in [14] plays a crucial role in our story: we write f � 1, f ∈ ˜Ge if f “can be given by
a non-negative contact Hamiltonian”, i.e. there is some path { ft } in the class of f having
a non-negative contact Hamiltonian. Observe that in this case d

dt ft (x) ∈ T ft x V belongs to
the non-negative half-space bounded by the contact hyperplane ker(λ ft x ). We remark that
having a non-negative Hamiltonian is a coordinate-free condition and so f � 1 is invariant
under conjugation of f in ˜Ge. We write f � g if f g−1 � 1. By conjugating with g−1,
we have the equivalent definition: f � g if g−1 f � 1. Observe that the relation � is
reflexive.

We denote by e the element of ˜Ge represented by the path {et }t∈[0,1] and denote by ec,
c ∈ R the element represented by {et }t∈[0,c] (so e is shorthand for e1).
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196 M. Fraser et al.

Lemma 2.5 (1) For f, g ∈ ˜Ge, f � g if and only if f and g can be given by Hamiltonians
F and G such that F ≥ G. Moreover one can prescribe either F or G in advance, hence
� is transitive;

(2) f � g and a � b implies that f a � gb, i.e. � is bi-invariant;
(3) Any element φ ∈ ˜Ge generated by a positive contact Hamiltonian bounded away from

zero on the hypersurface {s = 1} is dominant, i.e. ∀ f ∈ ˜Ge, ∃p ∈ N s.t. φ p � f . In
particular any ec, c > 0 is dominant.

Proof To prove the if direction of the first property, fix paths { ft } and {gt } for f and g such
that H( ft ) ≥ H(gt ). By (2)

H(g−1
t ft )(z, t) = H(g−1

t )(z, t) + H( ft )(ḡt z, t)

= −H(gt )(ḡt z, t) + H( ft )(ḡt z, t).

So {g−1
t ft } is a path in the class g−1 f having non-negative Hamiltonian. Now, to prove the

only if direction, let {ht } be a path in the class g−1 f having non-negative Hamiltonian H(ht ).
Let {gt } be an arbitrary path for g and set ft = gtht (or if we wish to prescribe ft then set gt
accordingly). Then ht = g−1

t ft and so the earlier computation shows that H( ft ) ≥ H(gt ).
The second property is also proved using the cocycle formula (2) (comparingHamiltonians

for f (ab−1) and g). The third property is straightforward (note that cs is a contactHamiltonian
for ec). ��
Remark 2.6 The Hamiltonians F and G in Lemma 2.5 item 1 can moreover be taken to be
1-periodic. This is because a non-negative (resp. positive) isotopy can be homotoped within
the class of non-negative (resp. positive) isotopies to one with 1-periodic Hamiltonian. For
positive isotopies this is given by Lemma [14, 3.1.A], see also the argument within the proof
of Theorem [15, 1.19]. The same arguments go through for non-negative isotopies.

Remark 2.7 The definition of � summarized above (due to [14]) applies very generally in
the universal cover of any connected contactomorphism group when the underlying contact
structure is co-oriented. Reflexivity, transitivity and bi-invariance of � are given by the
previous Lemma. Anti-symmetry however is not automatic.As the reader may verify, it fails
on the universal cover of a group of contactomorphisms if and only if that group contains a
non-constant contractible loop with non-negative Hamiltonian (c.f. [14, Proposition 2.1.A]).

Definition 2.8 For closed V , ˜G(V )—or for short-hand simply V—is said to be orderable1

[15] when � is anti-symmetric on ˜G(V ). For V with 1-periodic Reeb flow we define ˜Ge(V )

to be orderable when � is anti-symmetric on ˜Ge(V ).

We note that when V is closed and admits 1-periodic Reeb flow ˜Ge(V ) = ˜G(V ) so the
two definitions of orderability coincide.

Remark 2.9 We note that the notion of orderability in Definition 2.8 depends, in general, on
the choice of contact form with 1-periodic Reeb flow. In practice, however, we will deduce
orderability from Theorem 2.10 whose assumptions are not related to a specific contact
form. In particular, when the theorem is applicable it implies orderability of ˜Ge(V ) for any
1-periodic Reeb flow e.

1 In fact, although the study of � on ˜G(V ) was initiated in [14], the terminology orderable was introduced
later in [15] and was applied to V itself; to avoid confusion we specify instead the relevant group.
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On Sandon-type metrics for contactomorphism groups 197

The next result is an analogue to our setting of Theorem [14, 2.3A] which was stated and
proved in [14] only for closed V .

Theorem 2.10 Suppose that V admits 1-periodic Reeb flow. If SV contains a compact set B
with stable intersection property then � is anti-symmetric on ˜Ge(V ), i.e. ˜Ge(V ) is orderable.

Remark 2.11 (Proof overview and comparison with [14]) Asmentioned in Remark 2.7, anti-
symmetry of� is equivalent to the non-existence of a non-constant, non-negative contractible
loop of contactomorphisms. The proof of Proposition [14, 2.3.A] derives this non-existence
from the stable intersection property using two results: Propositions [14, 2.1.B] and [14,
2.3.B].

The first, Proposition [14, 2.1.B], applies to G(V ) for closed V and says that existence of
a non-negative, non-constant contractible loop implies existence of a positive one. The proof
in [14] uses compactness of V in an essential way; we modify it significantly to deal with
our setting in Proposition 2.12 below.

The second, Proposition [14, 2.3.B], shows that stable intersection property prevents
existence of a positive contractible loop. It generalizes immediately to our setting and was
stated and proved already as Lemma 2.4.

Proposition 2.12 (c.f. Proposition [14, 2.1.B]) Assume there exists a non-negative non-
constant loop { ft }t∈S1 of contactomorphisms. Then for any compact set C ⊂ V there exists
a loop {gt }t∈S1 of contactomorphisms whose contact Hamiltonian Gt is positive on SC for
all t ∈ S1. Moreover, when { ft }t∈S1 is contractible so is {gt }t∈S1 . Compact support is also
retained.

Proof of Theorem 2.10 As described in Remark 2.11, Proposition 2.12 and Lemma 2.4
together imply Theorem 2.10. More precisely, given compact B ⊂ SV with stable inter-
section property we let C be its projection to V and apply Proposition 2.12. ��
Proof of Proposition 2.12 At first we proceed as in the first two steps of the proof of Propo-
sition [14, 2.1.B], and then we resort to a modification.

As in step 1 of [14, 2.1.B], without loss of generality we may assume F(z, 0) �= 0 for
some z ∈ SV . Let U ⊂ V be such that F(z, 0) > 0 for all z ∈ SU .

As in step 2 of [14, 2.1.B], we take a sequence ϕ1, . . . , ϕd of elements of Ge such that
C ⊂ ⋃d

k=0 ψk(U ), where ψ0 = 1, ψk = ϕ1 · · · ϕk for k = 1, . . . , d . This can be done since
C is compact. Define

gt = ftϕ1 ft . . . ϕd ft (ϕ1 · · · ϕd)
−1. (4)

This forms a loop {gt }t∈S1 generated by the Hamiltonian

G(z, t) = F(z, t) + F
(

ϕ̄−1
1 f̄ −1

t z, t
)

+ · · · + F
(

ϕ̄−1
d f̄ −1

t · · · ϕ̄−1
1 f̄ −1

t z, t
)

.

For z ∈ SU the first summand is positive when t = 0. On the other hand, for z ∈ SC\SU
there exists k such that ψ̄−1

k z ∈ SU , in which case the k’th summand is positive when t = 0.
Since all summands are non-negative we conclude G(z, 0) > 0 for all z ∈ SC . Note that
{gt }t∈S1 is contractible if { ft }t∈S1 is, and compact support is also retained, so without loss of
generality we now assume F(z, t) > 0 for all z ∈ SC , t = 0 and hence for all z ∈ SC and
t ∈ � ⊂ S1 a closed interval containing 0.
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Let H be an autonomous contact Hamiltonian H : SV → R which is positive on the set
∪t∈S1 f̄t (SC). Moreover assume H vanishes outside SK for some compact K ⊂ V so the
associated contact isotopy ht is compactly supported. By construction, H( f̄ −1

t z) > 0 for all
t ∈ S1, z ∈ SC . We claim there exists a smooth function u : [0, 1] → R with the following
properties:

• u(0) = u(1) = 0.
• For all t /∈ �, u′(t) > 0.
• For all t ∈ �,

u′(t) > − min
z∈SC

F(z, t)

H
(

f̄ −1
t z

) . (5)

Indeed, the minimum in (5) exists and is positive, since for each t ∈ �, F(z, t)/H( f̄ −1
t z) is

a well defined, positive, and R+-invariant function on SC ; therefore, we can allow u′ to be
negative on part of � and so make it positive outside of �.

Consider now the loop gt = ft hu(t). Clearly, it is homotopic to { ft } via the endpoint-
preserving homotopy { ft hsu(t)}. It is also compactly supported when ft is (because {ht } has
compact support).

Moreover, its Hamiltonian is G(z, t) = F(z, t)+ u′(t)H( f̄ −1
t z) which, by condition (5),

is positive for all z ∈ SC and t ∈ �. We claim that G(z, t) > 0 for all z ∈ SC and t ∈ S1.
Indeed, if t /∈ �, then u′(t) > 0 and, as observed above, H( f̄ −1

t z) > 0 for z ∈ SC , thus
implying G(z, t) > 0 (since F ≥ 0). ��
2.2 The norm ν

Throughout this section we assume that ˜Ge(V ) is orderable; that is, the relation � is a partial
order on ˜Ge(V ) (see Remark 2.7).

Remark 2.13 (Compact manifolds) When restricting attention to closed V only, Sect. 2.2
can be read independently of the previous section. Let us note that in this case the group Ge
is simply G, the identity component of the contactomorphism group of V . For the sake of
readers who skipped the previous section, we recall the relation defined on ˜G in [14] by f � g
if and only if f and g can be generated by contact Hamiltonians F and G, respectively, such
that F ≥ G. This is a bi-invariant, transitive and reflexive relation on ˜G (see Lemma 2.5 or
[14] for more details). V is called orderable when � is anti-symmetric (i.e., a partial order),
and we assume this is the case throughout this section. We recall additionally that the Reeb
loop e = [{et }t∈S1 ] is dominant, that is, for every f ∈ ˜G there is k ∈ N such that ek � f .

Observe that e lies in the center of˜Ge. For an element f ∈ ˜Ge consider the following invariants:

ν+( f ) := min{n ∈ Z : en � f }
and

ν−( f ) := max{n ∈ Z : en � f }.
Note that ν− ≤ ν+ by transitivity of �.
It is readily checked that ν+ and ν− are conjugation-invariant (since e is in the center) and
ν−( f ) = −ν+( f −1), using the bi-invariance of �. We also observe that ν+ and ν− are
respectively sub- and super-additive:
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On Sandon-type metrics for contactomorphism groups 199

ν+( f g) ≤ ν+( f ) + ν+(g)

ν−( f g) ≥ ν−( f ) + ν−(g).

We write

ν( f ) := max(|ν+( f )|, |ν−( f )|).
Remark 2.14 Let k ∈ Z≥0. We remark that ν( f ) ≤ k if and only if e−k � f � ek . This in
turn is equivalent to the property: f can be generated by a contact Hamilonian F+ such that
F+ ≤ ks and also by a contact Hamiltonian F− such that F− ≥ −ks (see Lemma 2.5). By
Remark 2.6, the Hamitonians F± may moreover be assumed to be 1-periodic.

We have the following.

Theorem 2.15 ν is a conjugation-invariant norm on ˜Ge.
Proof Clearly ν ≥ 0. Observe moreover that ν( f ) = 0 if and only if 1 � f � 1 and hence
f = 1. Since both ν+ and ν− are conjugation-invariant, ν is as well. It remains to prove the
triangle inequality. Observe that, by Remark 2.14,

ν( f ) = min{k ∈ Z≥0 : e−k � f � ek}.
Now, let f, g ∈ ˜Ge, and put m = ν( f ), n = ν(g). Then

e−m � f � em; e−n � g � en .

By bi-invariance of �, this implies e−(m+n) � f g � em+n , which gives ν( f g) ≤ m + n
= ν(g) + ν(g). ��
Remark 2.16 Note that a � b � 1 implies ν(a) ≥ ν(b). In other words, (˜G(V ), ν,�) is a
partially ordered metric space in the sense of [14, Section 1.7].

Remark 2.17 We note that the norm ν depends not only on the contact structure ξ , but
rather on the specific choice of contact form with 1-periodic Reeb orbit. When M is closed,
however, the equivalence class of the norm ν depends only on the contact structure. Indeed,
given two contact forms with 1-periodic Reeb flows represented respectively by elements
e, f ∈ ˜G, denote by νe and ν f the corresponding norms on˜G. One easily verifies the inequality
νe ≤ νe( f ) · ν f , which shows that the two norms are equivalent.

When V is open, however, we cannot compare the two norms as above. It would be
interesting to study whether in this case one may find two contact forms with 1-periodic
Reeb flows giving rise to non-equivalent norms. We thank an anonymous referee for posing
this question to us.

Remark 2.18 We note ν(en) = |n| for all n ∈ Z; therefore, ν is always stably unbounded on
˜Ge(V ). In particularwhen V is closed, ν is stably unbounded on ˜G(V ) = ˜Ge(V ). In general the
interesting question is when stable unboundedness passes to ˜G and G. The following results
give sufficient conditions for this to occur. They appeal to the stable intersection property
and its modification (3).

Theorem 2.19 Suppose that a compact set B ⊂ SV has stable intersection property and
in addition B is invariant under the flow ēt . Assume f ∈ ˜Ge can be generated by a contact
Hamiltonian Ft satisfying Ft > cs on B for some c > 0 and all t ∈ S1. Then ν+( f ) ≥ [c],
the integer part of c, and so ν( f ) ≥ [c].
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Corollary 2.20 Suppose that a compact set B ⊂ SV has stable intersection property and
in addition B is invariant under the flow ēt . Then ν is stably unbounded on ˜G(V ) ⊂ ˜Ge(V ).
Moreover, ˜G(V ) admits a quasi-isometric monomorphism of the real line. In fact these state-
ments already hold for ˜G(X, V ) ⊂ ˜G(V ) for any open set X ⊂ V which contains the
projection C = π(B) of B to V .

Proof Suppose c ∈ N and ε > 0. Let C = π(B) ⊂ V be the (compact) projection of B.
Define F to be an autonomous contact Hamiltonian equal to (c+ε)s on SC and supported in
a larger SK , with K ⊂ V compact. Then F generates an element f ∈ G(V ) which satisfies
the hypotheses of Theorem 2.19. In particular if n ∈ Z then nF is a Hamiltonian for f n . For
n > 0 it strictly exceeds cn on B so the Theorem gives ν+( f n) ≥ cn, while for n < 0 we
obtain ν−( f n) ≥ c|n|. We conclude ν( f n) ≥ c|n| for all n ∈ Z. Moreover, taking ε < 1, we
can arrange that |F | ≤ (c+1)s on SV , which byRemark 2.14 gives ν( f n) ≤ (c+1)|n|. Since
F is autonomous its Hamiltonian flow t �→ ft thus defines a quasi-isometric monomorphism
R → ˜G(V ). ��
Proof of Theorem 2.19 Without loss of generality wemay assume c to be an integer. Suppose
it is not true that ν+( f ) ≥ c. Then f � ec (recall ec denotes the class of the path {ect }). This
means that

H
(

f̄t
) ≤ H

(

ēct φ̄t
)

(6)

for some contractible loop ϕ = {φt } on Ge. By the cocycle formula, this yields Ft ≤ cs +
	t ◦ ē−ct . Applying Lemma 2.4, we see that 	t0(y) = 0 for some t0 ∈ S1 and y ∈ B. Since
x := ēct0 y ∈ B, we get that Ft0(x) ≤ cs(x), contradicting the assumption Ft |B > cs for all
t . ��
If we consider only compactly supported contactomorphisms, i.e. restrict the above norm to
˜G, it descends to G as follows. Given f ′ ∈ G, define

ν∗( f ′) := inf ν( f ) , (7)

where the infimum is taken over all lifts f of f ′ to ˜G ⊂ ˜Ge. Observe that ν∗ is non-degenerate:
indeed, since ν( f ) is integer, the infimum is necessarily attained on some lift f , but ν( f ) = 0
yields f = 1 and hence f ′ = 1.

Theorem 2.21 Suppose that a compact set B satisfies condition (3) and in addition B is
invariant under the flow ēt . Assume f ∈ ˜G is generated by a contactHamiltonian Ft satisfying
Ft > cs on B, for some c > 0 and all t ∈ S1. Let f ′ ∈ G be the time-one endpoint of f .
Then ν∗( f ′) ≥ [c].
Corollary 2.22 Suppose that a compact set B ⊂ SV satisfies condition (3) and in addition
B is invariant under the flow ēt . Then ν∗ is stably unbounded on G(V ). Moreover, G(V )

admits a quasi-isometric monomorphism of the real line. In fact these statements already
hold for G(X) ⊂ G(V ) for any open set X ⊂ V which contains the projection C = π(B) of
B to V .

The proof of Theorem2.21 repeats verbatim that of Theorem2.19with the following observa-
tion: given f and f ′ as in our hypotheses, inequality (6) holds for a loopϕ = {φt } representing
an element of �. The derivation of Corollary 2.22 from Theorem 2.21 is analogous to that
of Corollary 2.20 from Theorem 2.19.
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2.3 Examples

In this section we discuss some settings where our norm is well-defined.

Remark 2.23 In Examples 2.24, 2.26, 2.28 below we consider V of the form T ∗Z × S1. In
all these settings, given a set Y ⊂ T ∗Z we write ̂Y := Y × S1 to denote its lift to V .

Example 2.24 Assume that V = T ∗X × S1, where X is a closed manifold, equipped with
the contact form λ = dτ − pdq whose Reeb flow is given by et (p, q, τ ) = (p, q, τ + t). In
this setting we have the following result.

Proposition 2.25 The norm ν is well-defined and stably unbounded on ˜G. Moreover, the
norm ν∗ on G, defined by (7), is stably unbounded.

Let us mention before the proof that the norm ν∗ is greater than or equal to the norm
defined by Zapolsky in [39] (this readily follows from [39]).

Proof Consider the Lagrangian submanifold

B := OX × {s = 1} ⊂ SV,

where {s = 1} ⊂ S1 × R+. We claim that B has stable intersection property. Indeed, the
symplectic embedding SV → T ∗X × T ∗S1, (q, p, τ, s) �→ (q,−sp, τ, s − 1) maps B to
the zero-section OX×S1 so the claim follows from the standard fact that the zero section
of T ∗(X × S1 × S1) cannot be displaced from itself by any Hamiltonian diffeomorphism
[16,19,21]. Thus by Theorems 2.10 and 2.15 and Corollary 2.20, ν is well-defined on ˜Ge
and stably unbounded on ˜G ⊂ ˜Ge. Next we turn to ν∗. We claim that B in fact satisfies
condition (3). Indeed, for any loop ϕ = {φt } in Ge representing an element of �, we claim
that 
ϕ(Stab0(B)) has the same Liouville class as Stab0(B) and hence these Lagrangian
submanifolds intersect by a theorem of Gromov [19, 2.3.B ′′

4 ]. We prove this claim below.
Therefore by Corollary 2.22 we deduce that the norm ν∗ is stably unbounded on the group
G.

Finally we address the claim regarding Liouville classes. We need to show [�|Stab0(B)]
= [�|
ϕ(Stab0(B))]where� := sλ+rdt is theLiouville formon SV×T ∗S1 andϕ represents
an element of �. By definition, � is the image of π1(G,1) → π1(Ge,1). Thus there exists a
loopψ onG such thatψ andϕ are homotopic as loops inGe. It follows that
ϕ and
ψ differ by
a Hamiltonian diffeomorphism (because a homotopy between ϕ andψ yields a path between
their suspensions and thus a Hamiltonian path, since we are in an exact setting). But the latter
preserve Liouville classes, thus without loss of generality assume ϕ = {φt } is a loop on G.
By the Künneth formula H1(Stab0(B)) is generated by loops of the form {(γ (ρ), 0, 0)}ρ∈S1
and {(z0, 0, t)}t∈S1 where {γ (ρ)}ρ∈S1 is a loop in B and z0 ∈ B. Thus H1(
ϕ(Stab0(B)))

is generated by loops {(γ (ρ),−	0(γ (ρ)), 0)}ρ∈S1 and {(φ̄t z0,−	t (φ̄t z0), t)}t∈S1 . � coin-
cides on loops {(γ (ρ), 0, 0)}ρ∈S1 and {(γ (ρ),−	0(γ (ρ)), 0)}ρ∈S1 (since rdt vanishes).
Before comparing the other loops note that we may deform OX × S1 by a contact isotopy
so that at least one point w of the image lies outside the compact support of the isotopy φt .
This deformation lifts and extends trivially to a Hamiltonian isotopy ht of SV × T ∗S1
so without loss of generality, appealing also to the Hamiltonian isotopy 
ϕht
−1

ϕ for

ϕ(Stab0(B)), we may replace z0 by (s, w) for some s ∈ R+ when evaluating � on loops
{(z0, 0, t)}t∈S1 vs. {(φ̄t z0,−	t (φ̄t z0), t)}t∈S1 . These loops now lie outside the support of
ϕ

and so coincide. ��
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Example 2.26 As above, let V = T ∗X × S1. Under extra hypotheses, one can make an even
stronger statement than just unboundedness of our norm ν. Namely, we have the following
result:

Proposition 2.27 In the setting of Example 2.26, suppose that T ∗X admits a closed
Lagrangian submanifold L ⊂ T ∗X such that

(a) HF(L , L) �= 0 (Floer homology with coefficients in a field, say Z2)
(b) (a · L) ∩ L = ∅, ∀a > 0, a �= 1, where a · (p, q) = (ap, q).

Then for any bounded domainU ⊂ T ∗X containing the zero section and any N ∈ N, ˜G(̂U, V )

admits a quasi-isometric monomorphism of RN .

Some examples of X and L satisfying the hypotheses of Proposition 2.27 are:

(1) X is a closed manifold admitting a closed 1-form α without zeroes, and L is the graph
of α.

(2) X = S2 and L is the Lagrangian torus studied by Albers and Frauenfelder in [1] with
HF(L , L;Z2) �= 0.

Proof Fix N ∈ N and fix a bounded tube U ⊂ T ∗X around the zero section. Choose distinct
real numbers a1, . . . , aN , a j �= 1 such that L j := a j L ⊂ U . Thus L j , j = 1, . . . , N are
pairwise disjoint. We now identify SV with a domainW := �(SV ) ⊂ T ∗X × T ∗S1 via the
R+-equivariant symplectic embedding

� : SV → T ∗X × T ∗S1, (p, q, s, τ ) �→ (−s · p, q, s, τ )

where (p, q) ∈ T ∗X, s ∈ R+, τ ∈ S1. In W , put ̂L j := L j × S1 ⊂ V . Let Wj ⊂ T ∗X be
tubular neighborhoods of L j respectively such that Wj ∩ Wi = ∅ when i �= j , where Wj

denotes the closure of Wj . Then the closures of their lifts ̂Wj to V are pairwise disjoint.
Take contact Hamiltonians Hj , with supp Hj ⊂ S(̂Wj ), Hj = 1 on ̂L j and 0 ≤ Hj ≤ s.

Let htj be the corresponding Hamiltonian flow. Consider the map � : RN → ˜G(̂U, V ) given

by (t1, . . . , tN ) �→ ht11 . . . htNN . This is by construction a homomorphism, which is injective

sinceWj ’s are pairwise disjoint. On the one hand, h
t1
1 . . . htNN is generated by H = ∑N

j=1 t j Hj

so

ν
(

ht11 . . . htNN

)

≤ max
j

(|t j | + 1).

This follows by Lemma 2.5 (1) since the supports of Hj are pairwise disjoint and thus
H ≤ max

j
|t j |s. On the other hand, H |

̂L j
= t j so by Theorem 2.19

ν
(

ht11 . . . htNN

)

≥ max
j

(|t j | − 1).

Indeed, if max j |t j | occurs for ti > 0 apply the Theorem verbatim, while if ti < 0 apply it to
the inverse of ht11 . . . htNN and use symmetry of ν. Thus

||t ||∞ − 1 ≤ ν
(

ht11 . . . htNN

)

≤ ||t ||∞ + 1 ,
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where ||t ||∞ := max j |t j |. We conclude that

� :
(

R
N , || · ||∞

)

→ (

˜G(U, V ), ν
)

is a quasi-isometric monomorphism. ��

Example 2.28 Let X be a closed manifold equipped with a Riemannian metric ρ without
contractible geodesics and consider V = T ∗X × T ∗

T
k × S1, where T

k = (S1)k is the
k-torus. For c > 0 put

�c := {(p, q) ∈ T ∗X : |p|ρ = c }.
In this setting we prove the following results.

Proposition 2.29 Let U ⊂ T ∗X × T ∗
T
k be a bounded domain containing the zero section

and any N ∈ N, ˜G(̂U, V ) admits a quasi-isometric monomorphism of RN .

We thank Michael Usher [38] for his suggestion to consider hypersurfaces �c in a similar
Hofer-geometric context.

Proof We claim that for every c > 0 and k ≥ 1, the subset

�c × T
k ⊂ T ∗X × T ∗

T
k

(identifying T
k with the zero section OTk ) is non-displaceable. Indeed, observe that

�′ = �c × T
k is a coistropic submanifold of T ∗X × T ∗

T
k . Moreover, it is stable in the

sense of [17, Theorem 1.5]. Assume on the contrary that �′ is displaceable. By Ginzburg’s
Theorem 1.5, there exists a disc of positive symplectic area with boundary lying on one of
the fibers of �′. Every fiber of �′ is of the form L := γ × T

k , where γ is a trajectory of
the geodesic flow on �. Since all closed geodesics of ρ are non-contractible, the inclusion
L → T ∗X × T ∗

T
k induces a monomorphism of fundamental groups. Thus every disc with

boundary on L has vanishing symplectic area, a contradiction.
We now argue as in Example 2.26. Namely, given a bounded domain U ⊂ T ∗X × T ∗

T
k

containing the zero section and an integer N , fix distinct positive numbers c1, . . . , cN such
that L j := �c j × T

k ⊂ U for 1 ≤ j ≤ N , and let Hj be contact Hamiltonians supported
in pair-wise disjoint neighbourhoods of the symplectizations of ̂L j such that Hj = 1 on ̂L j

and 0 ≤ Hj ≤ s. Denote by htj the Hamiltonian flow generated by Hj . Exactly as in the
proof of Proposition 2.27, we find that the map

(

R
N , || · ||∞

)

→ (

˜G(̂U), V
)

, (t1, . . . , tN ) �→ ht11 · · · htNN ,

is a quasi-isometric monomorphismn. ��

Example 2.30 [Compact manifolds] Let V be a closed orderable contact manifold, that is
the group ˜G(V ) is orderable, and suppose that V admits a contact form with 1-periodic Reeb
flow. By Remark 2.18, the norm ν is automatically stably unbounded on ˜G(V ). Examples of
such manifolds include:

• Real projective space V = RP2n+1, with its standard contact structure. Orderability in
this case was proven in [14, Theorem 1.3.E], using the work of Givental [18].
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• More generally, consider lens spaces V = S2n+1/Zk , with their standard contact struc-
ture. Orderability in this case was proven by Milin [23] (see also [33]). The situation
changes drastically when we pass to the k-fold cover S2n+1 of V : as we shall see in
the next section, all known conjugation-invariant norms on ˜G(S2n+1) are bounded, pro-
vided n ≥ 1. Let us note that while ν descends to a conjugation-invariant norm ν∗ on
G(V ), it is not clear if ν∗ is unbounded. In the case 2n + 1 = 3, is it possible that
every conjugation-invariant norm on G(M3), M3 a contact three-manifold, is bounded?
The analog of this statement holds for diffeomorphisms by a result of Burago-Ivanov-
Polterovich (Theorem [8, 1.11(iii)]) and work in progress by Patrick Massot seeks to use
open book decompositions to develop a contact version of that argument.

• Let V → M be a prequantization of a closed symplectic manifold with [ω] ∈ H2(M,Z).
Suppose that M contains a closed Lagrangian submanifold L such that the connection
on V defined by λ has trivial holonomy when restricted to L (the Bohr-Sommerfeld con-
dition), and the relative homotopy group π2(M, L) vanishes. Under these assumptions,
orderability of ˜G(V ) is proven in [14, Theorem 1.3.D].

2.4 Norm ν and k-translated fixed points

In this section we study the interplay between three aspects of the group ˜G: the geometry
of the norm ν, a “Hofer type” topology on ˜G, and dynamical features of contact isotopies.
We prove, roughly speaking, that elements of ˜G which lie on the “Hofer type” boundary of
a ν-ball must possess translated points. Let us begin by a more precise formulation of these
concepts.

Definition 2.31 We say that f ∈ ˜G has a k-translated fixed point x ∈ V , k ∈ Z, if there
exists a contact isotopy { ft }, t ∈ [0, 1], in the class f such that f̄t x = ēkt x . In particular,
f1x = x , since the Reeb flow is 1-periodic.

This definition is adapted to our setting of f ∈ ˜G. It is closely related to the notion
of a translated point of a contactomorphism. Recall that x ∈ V is a translated point of a
contactomorphismϕ ifϕ(x) and x belong to the sameReeborbit and (ϕ∗α)x = αx . Translated
points were introduced by Sandon [32,34] and further studied by Colin and Sandon [9]. They
form a special case of leaf-wise intersection points, which were studied by Moser [24] and
more recently by Albers and Fraunfelder [2] and Albers and Merry [3]. Finally, a translated
point which is also a fixed point is called a discriminant point, a notion which goes back to
Givental [18].

Thus if x is a k-translated fixed point of f ∈ ˜G there exists a contact isotopy { ft } in the
class f for which x is a translated point of ft , for all t . Moreover, as k is integer, x is a
discriminant point of f1.

Next we turn to the “Hofer type” topology. Define, for ε > 0, B̊(ε) (resp. B(ε)) as the
set of f ∈ ˜G which can be generated by Hamiltonians F± such that F+(x, s, t) < εs and
F−(x, s, t) > −εs (resp. F+(x, s, t) ≤ εs and F−(x, s, t) ≥ −εs). As in Remark 2.6 we
may assume such Hamiltonians are 1-periodic. Recall that for integer ε = k, B(k) is the
closed ball of radius k in the norm ν, i.e.

B(k) = { f ∈ ˜G : ν( f ) ≤ k}.
We will in fact not deal explicitly with the topology these balls generate, but rather restrict
out attention to the following notion.

Definition 2.32 We say that f ∈ ˜G is k-robust, for k ∈ N, if f B̊(ε) ⊂ B(k) for some ε > 0.
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One readily checks that f is k-robust if and only if f ∈ B̊(k). Indeed, for the ‘only if’
direction, let ε > 0 such that f B̊(ε) ⊂ B(k) and take positive c < ε and elements g± ∈ B̊(ε)

such that g± coincides with e±c on the support of f . Then f e±c ∈ B(k) yields the existence
of Hamiltonians F± as needed to conclude f ∈ B̊(k). In particular, we see that f is k-robust
if and only if g f g−1 is k-robust (since, if f can be generated by a Hamiltonian F , then g f g−1

can be generated by F ◦ g−1
1 ).

Theorem 2.33 Let k ∈ N and suppose f ∈ B(k) has neither k-translated fixed points nor
−k-translated fixed points. Then f is k-robust.

Proof Assume f ∈ B(k) ⊂ ˜G has no k-translated fixed points. Let W := SV ×
T ∗S1, with coordinates (s, x, r, t). Recall that W is equipped with the symplectic form
� := d(sλ) + dr ∧ dt and with the R+-action c · (s, x, r, t) = (cs, x, cr, t), c ∈ R+.

Since f ∈ B(k), in particular f � ek and so f is generated by a 1-periodic Hamiltonian
F(s, x, t) with F(s, x, t) ≤ ks. Moreover F vanishes when x lies outside some compact
subset of V .Wewill show, using the assumption that f has no k-translated fixed points, that f
can in fact be generated by aHamiltonian F+ satisfying the strict inequality F+(s, x, t) < ks.
We proceed in the following five steps.
Step 1 Put H(s, x, r, t) = r + F(s, x, t) and K (s, x, r, t) = r + ks. Since H ≤ K the
hypersurface � = {H = 0} ⊂ W lies in the closed domainU = {K ≥ 0} ⊂ W . Moreover,
dH = dK at each point of the set Y = � ∩ ∂U , since on Y the function H − K attains its
maximal value. Thus the Hamiltonian vector fields sgrad H and sgrad K coincide on Y .

Observe that all orbits of the Hamiltonian flow of K on ∂U are (up to time shifts τ

�→ τ + τ0, where τ stands for the time variable of the flow) circles of the form γx,s(τ )

= (ekτ x, s,−ks, τ ).
Step 2 We claim that the set Y ⊂ � does not contain a compact invariant set of the Hamil-
tonian flow hτ of H on �. Indeed, otherwise this invariant set necessarily contains some
hτ -orbit, which, since sgrad H = sgrad K on Y , must be a circle of the form γx,s(τ ). Denote
by p : W → SV the natural projection, and note that

f̄τ (x, s) = p
(

hτ (x, s,−ks, 0)
) = p(γx,s(τ )) = ēkτ (x, s).

Therefore (x, s) is a k-translated fixed point of f , a contradiction with the assumption of the
theorem. The claim follows.
Step 3 Observe that the Hamiltonians H, K are equivariant with respect to the R+-action on
W . Since H(x, s, r, t) = r for x outside a compact subset of V and K (x, s, r, t) = r+ks with
k > 0, the set Y/R+ is compact. By an R+-equivariant application of a theorem of Sullivan
[22,36] there exists anR+-equivariant function 	(x, s, r, t) onW with d	(sgrad H) < 0 at
every point of Y (namely, apply Sullivan’s theorem to the induced flow on {s = 1} identified
with W/R+ and extend the resulting function equivariantly). Here we use the fact that Y
does not contain a compact invariant set of the Hamiltonian flow hτ on �, see Step 2. Since
on Y

d	(sgrad H) = d	(sgrad K ) = �(sgrad K , sgrad	) = −dK (sgrad	),

it follows that sgrad	 is transversal to ∂U at the points of Y and moreover sgrad	 looks
insideU at points of Y (cf. [26, the proof of Theorem 1.5]). Denoting by φt the Hamiltonian
flow of 	, we get that for a sufficiently small ε > 0

φε(�) ⊂ Interior(U ). (8)
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Step 4 The hypersurface �′ := φε(�) is transversal to the lines parallel to the r -axis and
hence has the form �′ = {r + F ′(x, s, t) = 0} for some R+ equivariant Hamiltonian F ′ on
SV . Put H ′(x, s, r, t) = r+F ′(x, s, t). We claim that the time one map f ′ of F ′ is conjugate
to f in ˜G(V ). Indeed, S = � ∩ {t = 0} is a Poincaré section of the Hamiltonian flow hτ on
�. Similarly, S′ = �′ ∩ {t = 0} is a Poincare section of the Hamiltonian flow h′

τ of H ′ on
�′. Denote by ψ and ψ ′ the corresponding return maps.

Further, φε(S) is a Poincaré section of f ′
t with return map

ψ ′′ = φεψφ−1
ε . (9)

The orbits of f̄ ′
t establish an R+-equivariant symplectomorphism, say η, between S′ and

φε(S). Thus
ψ ′ = η−1ψ ′′η. (10)

Finally, let π : S → SV and π ′ : S′ → SV be the restrictions of the natural projection.
Then f̄ = πψπ−1 and f̄ ′ = π ′ψ ′(π ′)−1. Combining this with (9) and (10) we get that
f̄ and f̄ ′ are conjugate by R+-equivariant symplectomorphisms, and hence f and f ′ are
conjugate as well.
Step 5By (8) we have the strict inequality F ′ < ks. Since f and f ′ are conjugate, we deduce
that f can be generated by a Hamiltonian F+ satisfying F+ < ks, as asserted.

Finally, as f ∈ B(K ) we also have f � e−k , and so f is generated by a periodic
Hamiltonian such that F ≥ −ks. Repeating Steps 1–5 above, using this time that f has no
−k-translated fixed points, we get that f is also generated by a Hamiltonian F− satisfying
F− > −ks. This shows that f ∈ B̊(k), which as noted above is equivalent to f being
k-robust. ��

3 Obstructions

3.1 Overview

In the next sections we discuss some restrictions on conjugation-invariant norms on G(V )

or ˜G(V ) for certain contact manifolds V . Our first result concerns discreteness, our second
result boundedness. Recall that a conjugation invariant norm μ is called discrete if μ(g) ≥ c
for some c > 0 and all g �= 1.

Theorem 3.1 Let V be any contact manifold.

(1) Any conjugation-invariant norm on G(V ) is discrete.
(2) Any conjugation-invariant norm on ˜G(V ) is discrete on ˜G(V )\π1(G(V )).

Example 3.2 This example shows the second part of Theorem 3.1 cannot be improved. It
follows from [10] that π1(G(S3)) = Z. Let φ ∈ π1(G(S3)) be a generator, and let r ∈ (0, 1)
be an irrational number. Define a norm μ on ˜G(S3) by setting

μ(φn) = |e2π inr − 1|,
and μ(g) = 1 for g /∈ π1(G(S3)). One readily checks that μ defines a norm on ˜G(S3), which
is conjugation-invariant since π1(G(S3)) is a normal subgroup. Moreover, μ is clearly not
discrete.

Next we address boundedness. To this end, we consider the fragmentation norm. Recall
that any compactly supported contact isotopy can be represented as a finite product of contact
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isotopies each supported in a Darboux ball (see [4]). Here by Darboux ball wemean a contact
embedded image of an open ball centred at the origin in the standard Euclidean space. The
contact fragmentation norm νF ( f ) of f ∈ ˜G(V ) is the minimal number of factors in such a
representation of f . One can analogously define the contact fragmentation norm on G(V ).
These norms are useful for us as they are maximal in the following sense:

Theorem 3.3 Let V be a contact manifold and let μ be a conjugation-invariant norm on
G(V ) or ˜G(V ) which is bounded on a C1-neighborhood of the identity. Then there is a
constant C = C(V, μ) such that μ ≤ C · νF .

This automatically implies:

Corollary 3.4 Let V be a contact manifold and suppose the fragmentation norm on G(V )

(resp. ˜G(V )) is bounded. Then any conjugation-invariant norm on G(V ) (resp. ˜G(V )) which
is bounded on a C1-neighborhood of the identity is bounded.

As an example, consider the sphere S2n+1 with its standard contact structure, for n ≥ 1.

Proposition 3.5 The fragmentation norm on ˜G(S2n+1) is bounded by 2 when n ≥ 1.

Proof For z ∈ S2n+1 put Vz = S2n+1\{z}. Observe that Vz ⊂ S2n+1 is a Darboux ball.
Now, let { ft } be a contact isotopy representing f ∈ ˜G(S2n+1). Take a sufficiently small ball
B ⊂ V such that X := ∪t ft (B) �= S2n+1. Fix any point z /∈ X . Let {gt } be a contact
isotopy supported in Vz with gt |B = ft |B for all t ∈ [0, 1]. Set ht = g−1

t ft . Observe that
ht ∈ G(Vw) for any point w ∈ B. Then f = gh and hence νF ( f ) ≤ 2. ��

As an immediate consequence of Proposition 3.5 and Corollary 3.4 we get:

Corollary 3.6 Let n ≥ 1. Any conjugation-invariant norm on G(S2n+1) or ˜G(S2n+1) which
is bounded on a C1-neighborhood of the identity is bounded.

Remark 3.7 All boundedness results in this paper—both Theorem 3.3 and Corollary 3.4
above and the analogous results in Sect. 3.5—involve a C1-boundedness hypothesis and
their proofs use perfectness of groups of contactomorphisms of finite smoothness [37]. If
one instead appeals to perfectness of the group of smooth contactomorphisms [28] then this
additional hypothesis is not needed and one obtains analogous boundedness statementswhich
hold for any conjugation-invariant norm.We note, nevertheless, that all the norms mentioned
in this paper do satisfy the C1-boundedness assumption appearing above:

• The norm ν (and consequently also ν∗) defined in Sect. 2 satisfies this assumption, since
any element of ˜G(V ) sufficiently C1-close to 1 can be represented by a flow generated
by a Hamiltonian satisfying |H | ≤ εs.

• Zapolsky’s norms ρosc and ρsup [39] satisfy this assumption since, as mentioned in Exam-
ple 2.24, they are bounded above by the norm ν∗ (as follows from [39, Proposition
2.9(iii)]).

• The discriminant, zig-zag, and oscillation norms [9] satisfy this assumption. Indeed,
both the oscillation and discriminant norms are bounded above by the zig-zag norm, so
it suffices to consider the latter. An easy modification of the proof of [9, Lemma 2.1]
shows that any element φ ∈ ˜G sufficiently C1-close to the identity can be represented
as a product φ = f g, where f is positive, g is negative, and both are C1-close to the
identity. By the proof of [9, Lemma 2.1] again, both f and g are embedded, and so φ has
zig-zag norm ≤ 2.
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• Sandon’s spectral norm [31] satisfies this assumption, as follows from the previous item
and the fact, proven in [9, Sect. 6], that for f = [{ ft }], the spectral number �c+( f1)� is
bounded from above by the discriminant norm of f .

• The norms of Borman and Zapolsky and Granja, Karshon, Pabiniak and Sandon, coming
from homogeneous quasi-morphisms (see Sect. 1) satisfy this assumption. Indeed, the
quasi-morphismsφ they construct aremonotone, meaning thatφ(g) ≤ φ(h) if g � h (see
[7, Lemma1.33] and [20,Theorem1.2]). This implies that the corresponding conjugation-
invariant norms μ are dominated by our norm ν in the sense that for each such μ here
exists K > 0 such that μ(g) ≤ K · ν(g) for all g ∈ ˜G(V ) .

Remark 3.8 In the previous remark we mentioned comparison of various known norms on
contactomorphism groups. Let us mention one more such comparison, between our norm ν

and the oscillation normofColin–Sandon [9].We claim thatwe have the following inequality:
νosc ≤ 3ν+2. Indeed, this follows easily from the compatibility ofνoscwith the partial order�
[9, Proposition 3.4]: 1 � f � g implies νosc( f ) ≤ νosc(g). Let f ∈ ˜G and denote k = ν( f ).
By definition, we have e−k � f � ek , which by bi-invariance of � gives 1 � ek f � e2k .
Therefore, the compatibility of νosc with � gives

νosc( f ) ≤ νosc(e
−k) + νosc(e

k f ) ≤ νosc(e
−k) + νosc(e

2k).

Finally, noting that by the definition of the oscillation norm, ν(em) ≤ m + 1, this gives the
asserted inequality. We note that an inequality in the converse direction is not known to us at
the moment.

The rest of Sect. 3 is organized as follows. Theorem 3.1 is proved in Sect. 3.3, and
Theorem 3.3 in Sect. 3.4. Beforehand, in Sect. 3.2 we recall some algebraic results used in
those proofs. Finally, in Sect. 3.5 we discuss a class of sub-domains of contact manifolds for
which analogous boundedness results can be obtained.

3.2 Algebraic results

The following definition is taken from [8].

Definition 3.9 Let G be a group, and let H ⊂ G be a subgroup. We say that an element
g ∈ G m-displaces H if the subgroups

H, gHg−1, g2Hg−2, . . . , gmHg−m

pairwise commute.

The geometric meaning of m-displacement in our context is as follows. LetU ⊂ V be an
open subset. We say that a contactomorphism φ ∈ G(V ) m-displaces U if the subsets

U, φ(U ), . . . , φm(U )

are pairwise disjoint. If this holds then φ m-displaces the subgroup G(U ) of G(V ). Similarly,
if ˜φ = {φt } ∈ ˜G is a path such that φ1 m-displaces U then ˜φ m-displaces the subgroup
˜G(U, V ) of ˜G(V ).

Returning to the general algebraic setting, given a subgroup H ⊂ G and an element h in
the commutator subgroup [H, H ], we denote by clH (h) the commutator length of h, which
is the minimal number of commutators needed to represent h as a product of commutators.
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We will need the following result (see [8], Theorem 2.2). Suppose that μ is a conjugation-
invariant norm on a group G. Let H ⊂ G be a subgroup such that there exists g ∈ G which
m-displaces H . Then for any h ∈ [H, H ] with clH (h) = m one has

μ(h) ≤ 14μ(g). (11)

Finally, we will use the following result of Tsuboi [37] dealing with contactomorphisms
of finite smoothness. Let W be a connected contact manifold of dimension 2n + 1. For
1 ≤ r < ∞, denote by Gr (W ) the identity component of the group of compactly supported
Cr -contactomorphisms ofW , and by ˜Gr (W ) its universal cover.Moreover, for an open subset
X ⊂ W, denote by ˜Gr (X,W ) the subgroup of ˜Gr (W ) containing those contact isotopies
which are supported in X .

Tsuboi’s theorem states that for r ≤ n+3/2, the groups Gr (W ) and ˜Gr (W ) are perfect, i.e.
equal to their commutator subgroups. In particular if X ⊂ W is a connected open subset, the
groups Gr (X) and ˜Gr (X,W ) are perfect. The latter group is perfect since it is an epimorphic
image of the perfect group ˜Gr (X) [similarly to (1) above].

3.3 Discreteness

In this section we prove Theorem 3.1 on discreteness. In what follows by an embedded open
ball we mean the interior of an embedded closed ball. We use the following fact which we
prove in Sect. 3.4 (see Example 3.12).

Lemma 3.10 Let D1, D2 ⊂ V be Darboux balls and let U be an open subset of D1 such
that Closure(U ) ⊂ D1. Then there exists φ ∈ G(V ) such that φ(U ) ⊂ D2.

Proof of Theorem 3.1 First we note that (2) follows from (1). Indeed, denote by π : ˜G → G
the natural projection. Assume that (1) holds, and let μ be a conjugation-invariant norm on
˜G. Define a conjugation-invariant normμ∗ on G byμ∗( f ) = inf{μ( f ′) : π( f ′) = f }. Then
by assumption μ∗ is discrete. Observe that μ( f ) ≥ μ∗(π f ) for all f ∈ ˜G. Since for all
f /∈ π1(G), π( f ) �= 1, we get (2).
Next we prove (1). Assume the result does not hold. Fix an open ball U with closure

contained in a Darboux ball D, and a pair of elements φ,ψ ∈ G(U ) with [φ,ψ] �= 1. We
claim μ([φ,ψ]) = 0, a contradiction.

By assumption, for any ε > 0 we can find θ ∈ G with μ(θ) < ε. Since θ �= 1, θ moves
some point, so there must exist an open ball B ⊂ V such that θ(B) ∩ B = ∅. Let η ∈ G such
that η(U ) ⊂ B (which exists byLemma3.10). Then η−1θη displacesG(U ) and hence by (11)

μ([φ,ψ]) ≤ 14μ(η−1θη) = 14μ(θ) < 14ε.

Our claim follows. ��
3.4 Boundedness

In this section we prove Theorem 3.3.

Definition 3.11 An open connected contact manifold (V, ξ) is called contact portable if
there exists a connected compact set V0 ⊂ V and a contact isotopy {Pt } of V , t ≥ 0, P0 = 1
such that the following hold:

• The set V0 is an attractor of {Pt }, i.e. for every compact set K ⊂ V and every neighbor-
hood U0 ⊃ V0 there exists some t > 0 such that Pt (K ) ⊂ U0.

• There exists a contactomorphism θ of V displacing V0.
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Note that θ is not assumed to be compactly supported. Definition 3.11 is a contact version of
the notion of portable manifold defined in [8].

Example 3.12 An example of a contact portable manifold is R2n+1, equipped with the stan-
dard contact structure given by the kernel of the 1-form α = dz − ydx . Here we use the
coordinates (x, y, z) ∈ R

n × R
n × R. The contact isotopy is given by

Pt : (x, y, z) �→ (e−t x, e−t y, e−2t z).

The attractor V0 can be taken to be the closed ball {|x |2 + |y|2 + z2 ≤ 1} and the contacto-
morphism θ can be given, for example, by

θ(x, y, z) = (x, y, z + 3).

Similarly, any Euclidean ball {|x |2 + |y|2 + z2 < R} is contact portable.
In particular, this example shows that every compact subset of R2n+1 can be contact

isotoped into an arbitrary small neighborhood of the origin. Applying an appropriate cut-off
function to the generating contact Hamiltonian, this can be done inside a Darboux chart in
an arbitrary contact manifold. This, together with the transitivity of G, proves Lemma 3.10.

The proof of the following proposition is analogous to that of Theorem 1.17 in [8].

Proposition 3.13 Let (V, ξ) be a contact portable manifold. Then any conjugation-invariant
norm on G(V ) or ˜G(V ), which is bounded on a C1-neighborhood of the identity, is bounded.

We prove the case of ˜G(V ); the proof for G(V ) is similar.

Proof Let μ be such a norm, and fix a constant δ > 0 and a C1-neighborhood V ⊂ ˜G of the
identity such that μ(g) < δ for g ∈ V . Let V0, Pt and θ be as in Definition 3.11. We can find
a small connected neighborhood U of V0 with compact closure such that θ(U ) ∩ U = ∅.
First we show that μ is bounded on the subgroup H := ˜G(U, V ) of ˜G.

Indeed, let U ′ := θ(U ). Then U ′ is a neighborhood of θ(V0), which is an attractor
for the isotopy {gt = θ ◦ Pt ◦ θ−1}. Therefore, for some T > 0, gT (U ∪ U ′) ⊂ U ′.
Truncating the contact Hamiltonian generating {gt } and re-parametrizing gives a contact
isotopy ψ = {ψt } ∈ ˜G(V ) such that ψ1(U ∪ U ′) ⊂ U ′. We claim ψ1 m-displaces U for
all m ≥ 0. Indeed U lies in the complement of U ′, so ψ1(U ) ⊂ U ′\ψ1(U ′) and ∀k ∈ N,
ψk
1 (U ) ⊂ ψk−1

1 (U ′)\ψk
1 (U ′), which implies the ψk

1 (U ) are pairwise disjoint.
Now, by Tsuboi’s theorem any h ∈ H can be written as a product h = h1 · · · hm ,

hi = [σi , τi ] where σi , τi ∈ ˜G1(U, V ). Since the 2m-fold product of ˜G(U, V ) is dense
in the 2m-fold product of ˜G1(U, V ) and the product of m commutators defines a continuous
map to ˜G1(U, V ), there is some g ∈ ˜G(U, V ) satisfying g−1h ∈ V such that g = g1 · · · gm
where each gi is a product of commutators of elements of ˜G(U, V ). In particular, clH (g) ≤ m,
and hence

μ(g) ≤ 14μ(ψ).

But then

μ(h) ≤ μ(g) + μ(g−1h) ≤ 14μ(ψ) + δ =: C.

This proves that μ is bounded on H .
Now, given f = { ft } ∈ ˜G(V ), let K be a compact set such that ∪t supp ft ⊂ K . There

exists T such that PT (K ) ⊂ U . As before, truncating and re-parametrizing the contact
Hamiltonian which generates {Pt }t∈[0,T ], we can produce η ∈ ˜G(V ) with η(K ) ⊂ U . Then
η ◦ f ◦ η−1 ∈ H = ˜G(U, V ) and so,
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μ( f ) = μ(η ◦ f ◦ η−1) ≤ C.

��
Remark 3.14 Observe that the proof of Proposition 3.13works equallywell for a conjugation-
invariant pseudo-norm; the non-degeneracy of μ was never used.

We can now prove the maximality of the fragmentation norm. As above, we prove it for
˜G(V ); the proof for G(V ) is similar.

Proof of Theorem 3.3 Let μ be a conjugation-invariant norm on ˜G(V ) which is bounded on
a C1-neighborhood of the identity. Fix a Darboux ball B ⊂ V . By Proposition 3.13, μ is
bounded on ˜G(B, V )—indeed, pulling back μ by the epimorphism ˜G(B) → ˜G(B, V ) (recall
(1)) yields a conjugation-invariant pseudo-norm on ˜G(B), which is bounded by Remark 3.14
and Example 3.12, and so μ is bounded on ˜G(B, V ), say by C > 0. Now, let f ∈ ˜G(V ).
Write f = h1 · · · hN , where N = μF ( f ), and each hi is represented by an isotopy supported
in a Darboux ball Bi ⊂ V . By Lemma 3.10, one can find contact isotopies mapping each
supp hi into B, and so each hi is conjugate to a contact isotopy supported in B. Then for any
1 ≤ i ≤ N , μ(hi ) ≤ C . We get μ( f ) ≤ CN = CνF ( f ). ��
3.5 Boundedness on sub-domains

Definition 3.15 Suppose (V, ξ) is a contact manifold and V ′ ⊂ V an open subset. Then we
say that V ′ is a portable sub-domain of V if there exists a compact set V0 ⊂ V ′, and a contact
isotopy {Pt }t∈R of V such that the following hold:

• For every compact set K ⊂ V ′ and every neighborhoodU0 ⊃ V0 there exists some t > 0
such that Pt (K ) ⊂ U0.

• There exists a contactomorphism θ supported in V ′ displacing V0.

Observe that a portable sub-domain V ′ ⊂ V need not be a contact portable manifold, since
we allow more “squeezing room” (the isotopy Pt may have support outside V ′). By the same
argument as in the proof of Proposition 3.13, we have the following result:

Proposition 3.16 Let (V, ξ) be a contact manifold and V ′ ⊂ V be a portable sub-domain
of V . Then any conjugation-invariant norm on G(V ) (resp. ˜G(V )) which is bounded on a
C1-neighborhood of the identity is necessarily bounded on G(V ′) (resp. on ˜G(V ′, V )).

Example 3.17 Consider the contact manifold V = R
2n × S1 equipped with the contact

structure ξ = Ker(dt − α), where α = 1
2 (pdq − qdp). In what follows we assume that

n ≥ 2. Put U(r) := B2n(r) × S1, where B2n(r) stands for the ball {π(|p|2 + |q|2) < r}. In
[31] Sandon defined a conjugation invariant norm onG(V )which is bounded on all subgroups
G(U(r)). We claim that every conjugation-invariant norm on G(V ) is necessarily bounded
on G(U(r)) if r < 1.

To prove the claim, take any Hamiltonian symplectomorphism θ supported in B2n(r) ⊂
R
2n which displaces the origin. Let r ′ < r be sufficiently small so that B2n(r ′) is also

displaced and let̂θ ∈ G(U(r)) be the lift of θ to a contactomorphism of V supported in U(r).
We havêθ(U(r ′)) ∩ U(r ′) = ∅. Further, by the Squeezing Theorem [15, Theorem 1.3] there
exists P ∈ G(V ) such that P(U(r)) ⊂ U(r ′). Therefore U(r) is a portable sub-domain of V ,
and the claim follows from Proposition 3.16.
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In fact, the above argument can be applied more generally. Recall that a symplectic
manifold (M2n, ω = dα) is called Liouville if it admits a vector field v and a compact
2n-dimensional submanifold U with connected boundary Q = ∂U with the following
properties:

• iηω = α. This yields that the flow ηt of v is conformally symplectic;
• v is transversal to Q.

One can show that (Q,Ker(α)) is a contact manifold and for all specific choices of U these
are naturally contactomorphic. We refer to (Q,Ker(α)) as the ideal contact boundary of M .
The set C := ⋂

t>0 η−t (U) is called the core of M .
Consider now the contact manifold V = M × S1 equipped with the contact form λ =

dt − α. Put U(r) := η log r (U) × S1, where U is the interior of U .
Proposition 3.18 Suppose that the ideal contact boundary of (M, dα) is non-orderable
and the core C is displaceable by a Hamiltonian diffeomorphism in its arbitrary small
neighborhood. Then there exists r0 > 0 so that any conjugation-invariant norm on G(V )

(resp. ˜G(V )) which is bounded on a C1-neighborhood of the identity is necessarily bounded
on G(U(r)) (resp. ˜G(U(r), V )) for all positive r < r0.

Proof By [15, Theorem1.19] there is some r0 > 0 such that (by iterating theTheoremenough
times), one can obtain an isotopy which squeezes U(r0) arbitrarily close to C × S1, in fact
within2 some largerU(r ′) ⊂ V . Since the coreC is Hamiltonian displaceable in its arbitrarily
small neighborhood, the set C × S1 is displaceable in its arbitrarily small neighborhood by
a contact isotopy of V . It follows that for 0 < r < r0 the set U(r) is a portable sub-domain
of V and hence by Proposition 3.16 any conjugation-invariant norm on G(V ) (resp. ˜G(V )) is
bounded on G(U(r)) (resp. on ˜G(U(r), V )). ��
An important class of Liouville manifolds is formed by complete Stein manifolds, that is
by Kähler manifolds (M, J, dα) admitting a proper bounded from below Morse function F
with α = JdF and η = −gradF , where the gradient is taken with respect to the metric
dα(·, J ·). (By a result of Eliashberg [11] these manifolds admit an alternative description as
Weinstein manifolds provided dim M ≥ 3). For a generic F , the core of M is an isotropic
CW -complex of dimension n−k with k ∈ [0, n] (see [5,12]). We say that M is k-subcritical
if k ≥ 1 and critical if k = 0.

The assumptions of Proposition 3.18 implying boundedness of suitable conjugation-
invariant norms on some G(U(r)) hold true, for instance, when the Liouville manifold M
is k-critical with k ≥ 2 : indeed, the ideal contact boundary is non-orderable by Theorem
1.16 of [15], while the core C in this case is Hamiltonian displaceable in its arbitrary small
neighborhood (cf. [5, Sect. 3]).

On the other hand, for some critical Liouville manifolds M it is known that the core is
stably non-displaceable. For instance, this is true for cotangent bundles of closed manifolds,
where the core can be taken as the zero section. By Theorems 2.15, 2.19 and Corollary 2.20
this implies the conjugation invariant norm μ on ˜G(V ) is well defined and stably unbounded
when restricted to ˜G(U(r)) for all r > 0. Here the 1-periodic Reeb flow on V is associated
to the form λ and is given by rotation along the S1-factor so leaves U(r) invariant.

We thus see a dichotomy between boundedness of conjugation-invariant norms in small
U(r) ⊂ M× S1 in the case of sub-critical M , and stable unboundedness of the norm ν on any
U(r) in the case of certain critical M, those with stably non-displaceable core. It is natural
to ask:

2 See the argument in Remark 1.23 of that paper and the proof of Theorem 1.3 on the same page.
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Question 3.19 Is the norm ν well-defined and stably unbounded on any U(r) ⊂ M × S1 for
all critical M?

It could be that V = M × S1 is orderable for every Liouville manifold (M, dα)which would
confirm at least well-definedness of the norm ν for all V of this kind. This is true, for instance,
for some critical M such as cotangent bundles of closed manifolds (as explained in Example
2.24). Albers pointed out that the methods of [3] should prove the result for general M .

Regarding boundedness vs. stable unboundedness, however, little is known so far. On the
one hand, in case one wished to prove boundedness by using squeezing as in Proposition
3.18 above, it is unknown whether the ideal contact boundary of critical M is orderable or
not. On the other hand, it is unlikely that the technique of Sect. 2 based on stable intersection
property might be applicable to proving stable unboundedness for subcritical manifolds with
dim M ≥ 2. Indeed, by [6, Theorem 6.1.1], there are no “hard” symplectic obstructions to
Hamiltonian displacement of a compact subset of SV = M ×R+ × S1 from a given closed
subset, so existence of sets with stable intersection property is quite problematic. It would
be interesting to explore this point further.
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