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Abstract We study the exponential convergence to the stationary state for nonequilibrium
Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed
for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding
respectively to frictions going to zero or infinity) are carefully investigated. In particular, the
maximal magnitude of admissible perturbations are quantified as a function of the friction.
Numerical results based on aGalerkin discretization of the generator of the dynamics confirm
the theoretical lower bounds on the spectral gap.

Keywords Langevin dynamics · Nonequilibrium forcing · Hypocoercivity · Exponential
convergence of the law · Galerkin discretization

Résumé Nous considérons la convergence exponentielle vers l’état stationnaire pour des
dynamiques de Langevin hors d’équilibre, par une approche perturbative reposant sur des
techniques d’hypocoercivité initialement développées pour des dynamiques d’équilibre. Les
limites hamiltoniennes et suramorties (qui correspondent respectivement au cas des frictions
tendant vers zéro ou l’infini) sont étudiées précisément. En particulier, nous quantifions la
magnitudemaximale des perturbations admissibles en fonction de la friction. Des simulations
numériques utilisant une discrétisation deGalerkin du générateur de la dynamique confirment
les bornes inférieures que nous obtenons théoriquement pour le trou spectral.

Mathematics Subject Classification 82C31 · 35H10 · 65N35
1 Introduction

Langevin dynamics are a commonly used model to describe the evolution of systems at con-
stant temperature, i.e., in contact with a heat bath at equilibrium at a given temperature. The
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interaction with the heat bath is modeled by a dissipative term and a random fluctuating term
related by a fluctuation-dissipation relation. This dynamics is therefore a stochastic pertur-
bation of the Hamiltonian dynamics. It can be used to sample configurations of a physical
system at equilibrium, according to the canonical ensemble, which allows to numerically
estimate average macroscopic properties; see for instance [18] for a mathematically oriented
introduction to molecular dynamics. The Langevin dynamics is by now well-understood,
both for its theoretical properties and its discretization, see the review article [21].

On the other hand, the properties of nonequilibrium Langevin dynamics, as obtained for
instance by the addition of a non-gradient drift term, have been less investigated.We consider
in this work the following paradigmatic nonequilibrium Langevin dynamics in a compact
position space with periodic boundary conditions (see Sect. 2 for a more precise description):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dqt = pt
m
dt,

dpt = (−∇U (qt ) + τ F)dt − ξ
pt
m
dt +

√
2ξ

β
dWt ,

(1)

where the position q belongs to D = (2πT)d (with T = R/Z the one-dimensional unit
torus), the momentum p is in R

d , Wt is a standard d-dimensional Brownian motion, and
U : D → R is the potential energy function. We assume U to be smooth in all this work,
and denote by E = D × R the phase-space of the system. The dynamics (1) is parametrized
by several constants: the mass m > 0 of the particles (for simplicity, we consider a single
massm, although our results can be extended to account for more general mass matrices), the
inverse temperature β > 0, the friction ξ > 0 and the magnitude of the external force τ ∈ R,
with given direction F ∈ S

d−1 (i.e., F ∈ R
d with |F | = 1). Let us emphasize that the

external forcing induced by τ F is indeed non-gradient since τ F is not the gradient of a
smooth, periodic function. Let us also mention that our analysis could be extended to more
general non-gradient forcings F(q) genuinely depending on the position variable, as long as
the function F is sufficiently smooth.

There are two interesting limiting regimes that can be considered: (i) the limit ξ → 0,
which corresponds to a Hamiltonian limit; (ii) the limit m → 0 or ξ → +∞ (with, in the
latter case, a time rescaling by a factor ξ ), which corresponds to an overdamped limit. More
precisely, fixing for instance m = 1 and setting τ = 0, a simple proof shows that qξ t , the
solution of (1) observed at time ξ t , converges in law to the solution Qt of the overdamped
Langevin dynamics (see for instance [20, Proposition 2.14])

dQt = −∇U (Qt ) dt +
√

2

β
dW̃t . (2)

In the absence of external forcing (τ = 0), the system described by (1) has an equilibrium
stationary measure given explicitly by the canonical Gibbs measure:

μ(dq dp) = Z−1
μ e−βH(q,p) dq dp, H(q, p) = U (q) + p2

2m
, Zμ =

∫

E
e−βH . (3)

When τ �= 0, there exists a unique nonequilibrium stationary measure, but it cannot be
computed explicitly.

Although the Langevin dynamics (1) is not elliptic (the noise acts only on the momenta
and not directly on the positions), it can be shown to be hypoelliptic. The rate of the expo-
nential convergence to the stationary state can be obtained by Lyapunov techniques, see for

123
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instance [22,25]. The corresponding convergence rates are however usually not very explicit
in terms of the parameters of the dynamics. In particular, it is difficult to make explicit their
dependence on ξ . A more quantitative approach is based on estimates in L2(μ), where expo-
nential convergence rates for the law of the process towards μ can be obtained by a careful
use of commutator identities, as pioneered in [11,14,29] and later abstracted in the theory of
hypocoercivity [30]. The application of this theory to Langevin dynamics allows to quantify
the convergence rates in terms of the parameters of the dynamics; see for instance [13] for the
Hamiltonian limit ξ → 0 and [19,21] for partial results on the overdamped limit ξ → +∞.
A more direct route to prove the convergence was subsequently proposed in [8,9], which
makes it even easier to quantify convergence rates; see [7] for a complete study on the depen-
dence of a parameter similar to ξ by this approach for a dynamics similar to an equilibrium
Langevin dynamics, as well as [1] for sharp estimates for equilibriumLangevin dynamics and
a harmonic potential energy function. An extension to nonlinear potentials was also provided
in the latter work, based on a non-symmetric Bakry–Emery condition; although further work
is required to use this approach in our context because the results are stated for equilibrium
dynamics with potentials U which are convex and such that

√
maxU ′′ − √

minU ′′ � ξ .
Let us finally mention the recent work [10] which provide the correct qualitative rates of
convergence in terms of ξ by a coupling strategy.

Our aim in this work is to investigate the exponential convergence to the stationary state
for nonequilibriumLangevin dynamics. The new contributions of this work are the following:

1. we provide some technical variations/improvements on the theoretical side by

(a) giving explicit decay estimates for nonequilibrium Langevin dynamics, both in the
Hamiltonian limit ξ → 0 and in the overdamped limit ξ → +∞, thereby extending
the results obtained at equilibrium. Similar convergence results were very recently
stated for a different nonequilibrium model and a fixed friction in [5];

(b) deriving hypocoercive estimates in a degenerate H1(μ) norm, which allows to
obtain lower bounds on convergence rates which are more explicit than the ones
obtainedwith a non-degenerate H1(μ) norm. Such degenerate normswhere already
considered in [29], and were also recently used in [2,3,23];

(c) comparing the results obtained by either the standard hypocoercive approach fol-
lowed by hypoelliptic regularization, or the direct L2 approach of [8,9].

2. on the numerical side, we perform a study of the spectral gap of the generator of the
dynamics (which is related to the exponential convergence of the lawof the process to the
invariant measure), as a function of the friction ξ and the magnitude τ of the external
forcing, in order to assess the sharpness of the bounds provided by the theoretical
results. Let us emphasize that we consider a situation where the invariant measure does
not have an explicit expression, so that it is difficult to rely on Monte-Carlo techniques
to estimate the convergence rate as in [7]. We consider instead a Galerkin discretization
of the generator of the dynamics.

This article is organized as follows. We first start by describing the stationary state of
the nonequilibrium Langevin dynamics we consider in Sect. 2. We next state in Sect. 3 the
exponential convergence to 0 of the evolution semigroup in various functional settings. Our
emphasis is on carefully estimating the scaling of these rates with respect to the friction ξ and
the magnitude τ of the external forcing. The estimates we obtain provide lower bounds on
the spectral gap of the Fokker–Planck operator. The relevance/sharpness of these bounds is
investigated from a numerical viewpoint in Sect. 4 by a Galerkin discretization. The longest
proofs of the results presented in Sect. 3 are postponed to Sect. 5.
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2 Stationary states of nonequilibrium Langevin dynamics

We make precise in this section some properties of the nonequilibrium Langevin dynamics.
We first state a result on the existence and uniqueness of the steady-state, as well as (non
explicit) exponential convergence results (see Sect. 2.1).We next give some simple properties
of the stationary state in Sect. 2.2. We conclude with a perturbative expansion of the steady-
state in terms of the magnitude τ of the external forcing, making explicit the admissible
magnitude of the perturbation τ in terms of the friction ξ (see Sect. 2.3).

2.1 Existence and uniqueness of the invariant measure

We recall in this section a result on the existence and uniqueness of the invariant measure
for any value of τ , as well as exponential convergence rates in weighted L∞ spaces (see [21,
Proposition 5.1]). To state this result, we denote by Lξ,τ the generator of the dynamics (1):

Lξ,τ = Lham + ξLFD + τLpert,

where the generator associated with the Hamiltonian part of the dynamics, the fluctua-
tion/dissipation and the external perturbation respectively read

Lham = p

m
· ∇q − ∇U (q) · ∇p, LFD = − p

m
· ∇p + 1

β
�p, Lpert = F · ∇p.

We also introduce the Lyapunov functionsKn(q, p) = 1+|p|n for n � 2, and the functional
spaces

L∞
Kn

=
{

ϕ measurable, ‖ϕ‖L∞
Kn

=
∥
∥
∥
∥

ϕ

Kn

∥
∥
∥
∥
L∞

< +∞
}

.

Proposition 1 Fix τ∗ > 0 and ξ > 0. For any τ ∈ [−τ∗, τ∗], the dynamics (1) admits a
unique invariant probability measure which admits a C∞ density ψτ (q, p) with respect to
the Lebesgue measure. Moreover, for any n � 2, there exist Cn, λn > 0 (depending on τ∗)
such that, for any τ ∈ [−τ∗, τ∗] and for any ϕ ∈ L∞

Kn
(E),

∀t � 0,

∥
∥
∥
∥e

tLτ ϕ −
∫

E
ϕ ψτ

∥
∥
∥
∥
L∞
Kn

� Cne
−λn t ‖ϕ‖L∞

Kn
.

Let us however emphasize that it is difficult to quantify the above convergence rates in
terms of the parameters of the dynamics (such as the friction ξ or the potential U ) and the
magnitude of the external forcing τ , since the proof relies on minorization conditions for
which the dependence on the parameters is not very explicit.

In order to write more explicit convergence results, it will be convenient to work in
(subspaces) of L2(μ), see Sect. 3. In the sequel, we consider by default all operators as
defined (by their extensions) on the Hilbert space L2(μ), the adjoint A∗ of a (closable)
operator A being defined with respect to the associated canonical scalar product. Working
in L2(μ) however requires that the invariant measure itself admits a density hτ with respect
to μ which is in L2(μ), i.e.,

ψτ = hτμ, hτ ∈ L2(μ). (4)

Such a result is provided by perturbation results for linear operators, see Sect. 2.3. In this
setting, the invariance of the measure ψτ can be translated into the following Fokker–Planck
equation:
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L∗
ξ,τhτ = 0,

∫

E
hτ dμ = 1, (5)

with hτ � 0. More explicitly, the action ofL∗
ξ,τ , the adjoint ofLξ,τ considered as an operator

on L2(μ), is given by

L∗
ξ,τ = −Lham + ξLFD − τ F · ∇p + τβ

m
F · p. (6)

2.2 Qualitative properties of the steady-state

We provide here some simple properties of the stationary state. The first one is that, due to
the constant force applied on the momenta, a non-zero velocity builds up in the system. More
precisely, denoting byEτ the expectation with respect toψτ , this average velocity vτ satisfies

vτ = Eτ

( p

m

)
= 1

ξ

(
τ F − Eτ (∇U )

)
. (7)

This relation follows from the following identities (the first equality arising from the invari-
ance of ψτ through the nonequilibrium Langevin dynamics (1)):

∫

E

(Lξ,τ p
)
ψτ = 0 = −ξ

∫

E

p

m
ψτ −

∫

E
∇U ψτ + τ F.

Another relation is obtained by computing the average ofLξ,τ H with respect toψτ , where
the Hamiltonian H is defined in (3). Indeed, since

Lξ,τ H(q, p) = ξ

(

− p2

m2 + 1

βm

)

+ τ F · p

m
,

it follows that

τ F · vτ = − ξ

m

(
1

β
− Eτ

[
p2

m

])

.

The above identity expresses the energy conservation: the work performed by the non-
conservative force τ F is equal to the heat, i.e., the energy flow into the heat bath.

Let us now turn to the entropy production rate of the stationary state, which is proportional
to τ F · vτ by the above discussion. We consider to this end Lξ,τ (ln hτ ) (where hτ is defined
in (4)). The following computations are formal but could be made rigorous upon obtaining
appropriate estimates on ∇phτ . Since

hτLξ,τ (ln hτ ) = Lξ,τhτ − ξ

β

|∇phτ |2
hτ

,

and the entropy production rate is
∫

E

(Lξ,τhτ

)
dμ =

∫

E

(L∗
ξ,τ 1
)
hτ dμ = τβF ·

∫

E

p

m
hτ dμ = τβF · vτ ,

it follows, after integration with respect to μ and in view of (5),

∫

E
hτLξ,τ (ln hτ ) dμ =

∫

E

(L∗
ξ,τhτ

)
ln hτ dμ = 0 = τβF · vτ − ξ

β

∫ |∇phτ |2
hτ

dμ.
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78 A. Iacobucci et al.

This shows that the entropy production rate is positive. Using (7), we also obtain the following
bound on a degenerate Fisher information:

∫

E

|∇phτ |2
hτ

dμ = β2τ

ξ
F · vτ =

(
βτ

ξ

)2

− β2τ

ξ2
F · Eτ (∇U ) �

(
βτ

ξ

)2

+ β2τ

ξ2
‖∇U‖∞,

which provides some information on the distance of the stationary distribution of themomenta
to the equilibrium Gaussian distribution with variance m/β.

A last information on the stationary state is provided by the Einstein relation, first proven
in [27], which provides a linear response result on the average velocity vτ :

d

dτ
vτ

∣
∣
∣
τ=0

= βDF, (8)

where D ∈ R
d×d is the diffusivity of the system at τ = 0 i.e., the asymptotic variance:

D := lim
t→∞

1

2t
E0

[(∫ t

0

ps
m

ds

)

⊗
(∫ t

0

ps
m

ds

)]

, (9)

with E0 the expectation over all initial conditions (q0, p0) ∼ μ and all realizations of the
Brownian motion Wt . This relation also follows from the first order term in the expansion of
hτ recalled in Sect. 2.3.

2.3 Perturbative expansion of the invariant measure

We prove in this section that the decomposition (4) is well defined, and actually give a
complete characterization of hτ as some series expansion for τ sufficiently small. Define the
subspace of L2(μ) composed of functions with average 0 with respect to μ:

L2
0(μ) =

{

f ∈ L2(μ),

∫

E
f dμ = 0

}

.

We also denote by B(X) the operator norm on a Banach space X .
The operator Lξ,0 is invertible on L2

0(μ). This can be seen as a particular case of the
convergence results provided in Sect. 3 (for τ = 0). In fact, it can be proved that there exists
K > 0 such that

∀ξ ∈ (0,+∞),

∥
∥
∥L−1

ξ,0

∥
∥
∥
B (L2

0(μ))
� K

min(ξ, ξ−1)
.

see also [13,19,21]. In addition, recalling that |F | = 1,we obtain, for a smooth and compactly
supported function ϕ ∈ L2

0(μ),

∥
∥Lpertϕ

∥
∥2
L2(ψ0)

� ‖∇pϕ‖2L2(μ)
= −β

ξ

〈
ϕ,Lξ,0ϕ

〉

L2(μ)
� β

ξ
‖Lξ,0ϕ‖L2(ψ0)

‖ϕ‖L2(ψ0)
.

We next project Lpertϕ onto L2
0(μ), replace ϕ by L−1

ξ,0φ and take the supremum over φ ∈
L2
0(μ) to obtain a bound on the operator LpertL−1

ξ,0 considered as an operator on L2
0(μ):

∥
∥
∥LpertL−1

ξ,0

∥
∥
∥
B (L2

0(μ))
�
√

β

ξ

∥
∥
∥L−1

ξ,0

∥
∥
∥
B (L2

0(μ))
�

√
βK

min(1, ξ)
.
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Let us denote by r the spectral radius of the operator appearing in the left hand-side of the
previous inequality, namely

r = lim
n→+∞

∥
∥
∥
∥

[(
LpertL−1

ξ,0

)∗]n∥∥
∥
∥

1/n

B (L2
0(μ))

,

The following result (given by [21, Theorem 5.2]) provides an expression of hτ .

Proposition 2 For |τ | < r−1, the unique invariant measure can be written as ψτ = hτμ,
where hτ ∈ L2(μ) admits the following expansion in powers of τ :

hτ =
(
1 + τ

(
LpertL−1

ξ,0

)∗)−1
1 =

(

1 +
+∞∑

n=1

(−τ)n
[(

LpertL−1
ξ,0

)∗]n
)

1. (10)

Since 0 � r �
∥
∥
∥LpertL−1

ξ,0

∥
∥
∥
B (L2

0(μ))
, it holds

1

r
� min(1, ξ)√

βK
. (11)

This shows that the upper limit on τ for the validity of the expansion (10) should be of
order min(1, ξ). This is consistent with physical intuition: when the fluctuation/dissipation
is small, the external forcings which can be sustained by the system are at most of the same
order of magnitude than the dissipation mechanism; while for large fluctuation/dissipation
mechanisms, external forcings of the same order of magnitude as∇U can be sustained. Let us
mention that it is not clear whether the condition (11) really is a necessary one. For extremely
large forcings τ , we expect that the invariant measure will be quite different from μ, so that
it is not a surprise that the perturbative approach of Proposition 2 fails as such.

As an application of the power expansion provided in Proposition 2, let us recall one way
to obtain (8), (9). Note first that (9) can be rewritten as

D =
∫ +∞

0
E0

[ pt
m

⊗ p0
m

]
dt.

Next, in view of (10) and using the following equality in the sense of bounded operators on
L2
0(μ) (relying for instance on the convergence results of Sect. 3 with τ = 0, which ensure

that the time integral is well defined):

−L−1
ξ,0 =

∫ +∞

0
etLξ,0 dt,

it follows that

d

dτ
vτ

∣
∣
∣
τ=0

= −
∫

E

p

m

(
L∗

ξ,0

)−1
L∗
pert1 dμ = −β

∫

E
L−1

ξ,0

( p

m

) p

m
· F dμ

= β

∫ +∞

0
E0

[ pt
m

( p0
m

· F
)]

dt.

This is indeed (8).
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3 Exponential convergence of the law

From the convergence result provided in Proposition 1 and the stationary Fokker–Planck
equation (5), it is expected that etL

∗
ξ,τ f converges to hτ for any initial density f ∈ L2(μ)

such that
∫

E
f dμ = 1, f � 0.

We state several such results in this section: the first two are based on the hypocoercive
approach presented in [30] and used also in [13] for equilibrium Langevin dynamics (see
Sect. 3.1 for a result in a degenerate H1(μ) norm and the related convergence in L2(μ)

after hypoelliptic regularization), while the third one follows from the more direct approach
of [8,9] (see Sect. 3.2). The main point is that the latter approach is the only one which
allows to state exponential convergence results consistent with the upper bound (11) on the
series expansion of the invariant measure, while the more traditional hypocoercive approach
is limited to small forcings τ = O(ξ−1) for large frictions.

Although the convergence results are stated here for probability densities, they can in fact
be obtained for general elements of L2(μ) (i.e., the functions under consideration need not
be non-negative and be of integral 1 with respect to μ). We write them however for elements
of L2(μ) of mass 1, introducing to this end

L2
1(μ) =

{

f ∈ L2(μ),

∫

E
f dμ = 1

}

.

Convergence results for arbitrary elements of L2(μ) follow by an appropriate renormaliza-
tion.

3.1 Standard hypocoercive approach

We start by stating a convergence result in a norm finer than the L2(μ) norm, but coarser
than the H1(μ) norm usually considered in the theory of hypocoercivity. Instances of such
degenerate norms can be found in [2,3,23,29]. More precisely, we consider the Hilbert space

H = { f ∈ L2(μ), (∇p + ∇q) f ∈ L2(μ)
}
,

endowed with the scalar product (for a > 0)

〈 f, g〉a = 〈 f, g〉L2(μ) + a
〈
(∇p + ∇q) f, (∇p + ∇q)g

〉

L2(μ)
.

The associated scalar product is denoted by ‖ · ‖a . The precise convergence result is the
following.

Theorem 1 There exist δ∗ > 0 and a continuous function a : (0,+∞) → (0,+∞) satisfy-
ing

lim
ξ→0

a(ξ)

ξ
= a0 > 0, lim

ξ→+∞ ξa(ξ) = a∞ > 0,

such that, for any δ ∈ [0, δ∗], there is λδ > 0 for which, for all ξ ∈ (0,+∞) and τ ∈
[−δmin(ξ, ξ−1), δmin(ξ, ξ−1)],

∀ f ∈ H ∩ L2
1(μ), ∀t � 0,

∥
∥
∥etL

∗
ξ,τ f − hτ

∥
∥
∥
a(ξ)

� e−λδ min(ξ,ξ−1)t‖ f − hτ‖a(ξ). (12)

Moreover, λδ = λ0 + O(δ).

123



Convergence rates for nonequilibrium... 81

The proof of this result can be read in Sect. 5.1. A careful inspection of the final argument
based on an asymptotic analysis of the key matrix inequality (28) would allow to give more
precise expressions of a0, a∞ and λδ as a function of the parameters of the dynamics. Let
us also emphasize that, in the degenerate norm we consider, there is no prefactor on the
right-hand side of (12), contrarily to convergence theorems stated in H1(μ) for which the
prefactor degenerates in the limits ξ → 0 or ξ → +∞. Let us finally mention that the way
we formulate our result, by considering τ ∈ [−δmin(ξ, ξ−1), δmin(ξ, ξ−1)] (rather than
τ ∈ [−δ∗ min(ξ, ξ−1), δ∗ min(ξ, ξ−1)]), allows to emphasize that the convergence rate has
some uniformity with respect to τ .

By hypoelliptic regularization, the convergence result of Theorem 1 can be transferred to
L2(μ) (see Sect. 5.2 for the proof).

Theorem 2 There exist C, δ∗ > 0 such that, for any δ ∈ [0, δ∗], there is λδ > 0 for which,
for all ξ ∈ (0,+∞) and all τ ∈ [−δmin(ξ, ξ−1), δmin(ξ, ξ−1)],

∀ f ∈ L2
1(μ), ∀t � 0,

∥
∥
∥etL

∗
ξ,τ f − hτ

∥
∥
∥
L2(μ)

� Ce−λδ min(ξ,ξ−1)t‖ f − hτ‖L2(μ). (13)

The convergence rate λδ is the same as in Theorem 1. Note also that the prefactor C is
independent of δ since the regularization properties of the dynamics can be shown to be
uniform with respect to τ (see Proposition 3 in Sect. 5.2).

We conclude by emphasizing an important restriction of the results in this section: in the
large friction limit, only very small forcings τ , of order 1/ξ are allowed, whereas, in view
of (11), the density hτ is well defined for values of τ of order 1. This restriction can however
be bypassed by the more direct approach from [8,9], as made precise in Sect. 3.2.

3.2 Direct L2 estimates

We state a convergence result similar to Theorem 2, with the important difference that the
too stringent restriction on the upper bound of τ is removed; see Sect. 5.3 for the proof.

Theorem 3 There exist C, δ∗ > 0 such that, for any δ ∈ [0, δ∗], there is λδ > 0 for which,
for all ξ ∈ (0,+∞) and all τ ∈ [−δmin(ξ, 1), δmin(ξ, 1)],

∀ f ∈ L2
1(μ), ∀t � 0,

∥
∥
∥etL

∗
ξ,τ f − hτ

∥
∥
∥
L2(μ)

� Ce−λδ min(ξ,ξ−1)t‖ f − hτ‖L2(μ). (14)

Moreover, λδ = λ0 + O(δ).

As in Sect. 3.1, the convergence rateλδ can be quantified in terms of the various parameters
of the dynamics by optimizing the smallest eigenvalue of a matrix (see (32) in the proof).
It would also be possible to obtain a contraction result on ‖etL∗

ξ,τ f − etL
∗
ξ,τ g‖L2(μ) for two

elements f, g ∈ L2
1(μ), from which the existence and uniqueness of an invariant measure

characterized by hτ can be deduced as in [5].

4 Numerical estimation of the spectral gap

Let us first relate the exponential decay of the semigroup etL
∗
ξ,τ with the spectral gap

of L∗
ξ,τ in L2(μ); and in fact the spectral gap of Lξ,τ . We fix ξ ∈ (0,+∞) and τ ∈

[−δmin(ξ, 1), δ∗ min(ξ, 1)], where 0 � δ � δ∗ is defined in Theorem 3. We first note
that the decay estimate (14) implies that for all f, g ∈ L2(μ),
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∣
∣
∣
〈
etLξ,τ g − 〈g, hτ 〉L2(μ) , f

〉

L2(μ)

∣
∣
∣ =

∣
∣
∣
∣

〈
etLξ,τ g, f

〉

L2(μ)
− 〈g, hτ 〉L2(μ)

∫

E
f dμ

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

〈

g, etL
∗
ξ,τ f − hτ

∫

E
f dμ

〉

L2(μ)

∣
∣
∣
∣
∣

� ‖g‖L2(μ)

∥
∥
∥
∥e

tL∗
ξ,τ f − hτ

∫

E
f dμ

∥
∥
∥
∥
L2(μ)

� Ce−λδ min(ξ,ξ−1)t‖g‖L2(μ)

∥
∥
∥
∥ f − hτ

∫

E
f dμ

∥
∥
∥
∥
L2(μ)

� Ce−λδ min(ξ,ξ−1)t‖g‖L2(μ)

(
1 + ‖hτ‖L2(μ)

) ‖ f ‖L2(μ),

using a Cauchy–Schwarz inequality for the bound ‖ f ‖L1(μ) � ‖ f ‖L2(μ). By taking the
supremum over f ∈ L2(μ) with ‖ f ‖L2(μ) = 1, it follows that

∥
∥etLξ,τ g − 〈g, hτ 〉L2(μ)

∥
∥
L2(μ)

� Ce−λδ min(ξ,ξ−1)t‖g‖L2(μ)

(
1 + ‖hτ‖L2(μ)

)
. (15)

Let us introduce the subspace of observables with average 0 with respect to the invariant
measure of the nonequilibrium system:

L2
0,τ (μ) = {g ∈ L2(μ)

∣
∣ 〈g, hτ 〉L2(μ) = 0

}
.

A simple computation shows that this space is stable by etLξ,τ . The decay estimate (15)
then shows that the following equality holds in L2

0,τ (μ): for all z ∈ C such that Re(z) <

λδ min(ξ, ξ−1),

(
z + Lξ,τ

)−1 = −
∫ +∞

0
etLξ,τ ezt dt,

with

∥
∥
∥
(
z + Lξ,τ

)−1
∥
∥
∥
B (L2

0,τ (μ))
�

C
(
1 + ‖hτ‖L2(μ)

)

λδ min(ξ, ξ−1) − Re(z)
.

This means that the spectral gap γ (ξ, τ ) of the generator Lξ,τ on L2
0,τ (μ), defined as

γ (ξ, τ ) = min
{
Re(z), z ∈ σ(−Lξ,τ )\{0}

}
,

is bounded from below as
γ (ξ, τ ) � λδ min(ξ, ξ−1). (16)

We show in Sect. 4.1 how to approximate the spectral gap using a Galerkin discretization of
the generator Lξ,τ . We then study in Sect. 4.2 the relevance of the lower bound (16) from a
numerical viewpoint, and check that it is in fact sharp.

4.1 Discretization by a Galerkin procedure

We consider d = 1 for simplicity, although the discretization procedure described below
can be extended to any arbitrary dimension by a tensorization argument, with of course the
caveat that the computational cost of themethod explodes. TheGalerkin discretizationwe use
relies on a tensor product of Fourier modes in space and Hermite functions for the momenta,
see for instance [17,24,28] for previous similar discretizations as well as [26] for a seminal
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presentation of such approaches. More precisely, we introduce the following discretization
basis for n ∈ {0, . . . , N } and k ∈ {−K , . . . , K }:

ψnk(q, p) = Gk(q)Hn(p), Gk(q) =
√

Zν

2π
eikq+βU (q)/2,

where Hn is the Hermite polynomial of degree n:

Hn(p) = (−1)n

n!
(√

m

β

)n

eβp2/(2m) dn

dpn

(
e−βp2/(2m)

)
,

and

Zν =
∫ 2π

0
e−βU

is the normalization constant of the marginal of μ in the position variable. Recall that the
Hermite polynomials are orthonormal on L2(κ), where κ(dp) is the marginal of μ in the
momentum variable:

κ(dp) =
∫

D
μ(dq dp) =

√
β

2πm
e−βp2/(2m) dp. (17)

Note that the family {ψnk(q, p)}0�n�N ,−K�k�K is orthonormal in L2(μ), and spans L2(μ)

in the limit N → +∞ and K → +∞.
The generator Lξ,τ is represented in this basis by a matrix with elements

[
Lξ,τ

]

n′k′,nk = 〈ψn′k′ ,Lξ,τψnk
〉

L2(μ)
. (18)

These matrix elements are easily computed using the following properties of Hermite func-
tions:

∂pHn(p) =
√

βn

m
Hn−1(p) ,

∂∗
pHn(p) = βp

m
Hn(p) − ∂pHn−1(p) =

√
β(n + 1)

m
Hn+1(p).

In particular, Hermite polynomials are a complete set of eigenfunctions for LFD on L2(κ),
and LFDHn = −nHn/m. In addition, the action of derivatives on the Fourier modes can be
evaluated as

〈
Gk′ , ∂qGk

〉

L2(ν)
= ikδk,k′ + β

2
uk−k′ , uK = 1

2π

∫ 2π

0
U ′(q) eiKq dq.

Finally, note also that the Hamiltonian part of the generator can be rewritten as

Lham = 1

β

(
∂q∂

∗
p − ∂p∂

∗
q

)
.
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Therefore,

〈ψn′k′ ,Lhamψnk〉L2(μ) = 1

β

(
〈
Gk′ , ∂qGk

〉

L2(ν)

〈
Hn′ , ∂∗

pHn

〉

L2(κ)

−〈Gk, ∂qGk′
〉

L2(ν)

〈
Hn′ , ∂pHn

〉

L2(κ)

)

=
√

β(n + 1)

m
δn′,n+1

[
ik

β
δk,k′ + 1

2
uk−k′

]

+
√

βn

m
δn′,n−1

[
ik

β
δk,k′ − 1

2
uk−k′

]

.

Moreover, with F = 1,

〈
ψn′k′ ,Lpertψnk

〉

L2(μ)
=
√

βn

m
δn′,n−1δk,k′ .

In conclusion,

〈
ψn′k′ ,Lξ,τψnk

〉

L2(μ)
=
√

β(n + 1)

m
δn′,n+1

[
ik

β
δk,k′ + 1

2
uk−k′

]

+
√

βn

m
δn′,n−1

[(
ik

β
+ τ

)

δk,k′ − 1

2
uk−k′

]

− ξn

m
δn,n′δk,k′ .

The spectral gap ofLξ,τ is approximated by the spectral gap of the matrix with elements (18).
There are currently no error estimates on the spectral approximation provided by this pro-
cedure, while in contrast there is a large body of literature on the Galerkin approximation
of operators defined by quadratic forms (see for instance [6] and references therein). Some
preliminary steps in this direction are however provided in [28] in the form of error estimates
on the discretization of solutions of Poisson equations −Lξ,τ� = f .

Although the extension of the Galerkin procedure poses no difficulties from a conceptual
viewpoint, it is strongly limited by the size of the matrices to be considered, which, for a
standard tensorized basis, are of dimension (N + 1)d(2K + 1)d . The two-dimensional case
is therefore already challenging. In order to make the method more efficient, it would be
necessary to use the sparsity of the matrices under consideration, devise better bases than
tensorized ones by using tensor formats [12], relying on preconditionning strategies, etc. This
work is in progress.

4.2 Numerical results

We choose U (q) = U0(1 − cos q), which corresponds to the so-called rotor model. The
partition function Zν can be explicitly computed as

Zν = 2πe−βU0 I0(βU0),

where I0(a) = (2π)−1
∫ 2π
0 ea cos(q) dq is the modified Bessel function of the first kind. In

addition,

uk−k′ = − iU0

2

(
δk′,k+1 − δk′,k−1

)
.
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Fig. 1 Convergence of the estimated spectral gap as a function of the basis sizes K = N/2, forU0 = 1. Left:
ξ = 0.1. Right: ξ = 1

Wefirst show in Sect. 4.2.1 that the spectral gap can be estimatedwith the procedure described
in Sect. 4.1, by comparing the computed spectral gap to known analytical values in the case
when U0 = 0 (see [16]) and studying the convergence of the spectral gap in the limit
N , K → +∞. We next present in Sect. 4.2.2 plots of the spectral gap a function of the
friction, for various values of the external forcing τ and magnitude U0 of the potential
energy.

4.2.1 Checking the convergence

We first study the convergence of the spectral gap with respect to the basis sizes N , K . We
choose N = 2K in all our simulations, as well as m = β = 1. As can be seen from the
numerical results presented in Figure 1 and as confirmedby extensive simulations not reported
here, the convergence is faster for larger values of the friction ξ . In the results reported below,
we consider the spectral gap to be converged when the relative variation between the current
estimation of the spectral gap for a given basis size K = N/2 and the average of the last
three ones corresponding to values of K − 1, K − 2, K − 3 is lower than 10−3. Let us also
emphasize that, when the values of τ are too large in the case of small frictions, we do not
observe convergence for reasonable values of K (about 20). In fact, for too large forcings,
we observe that the spectral gap is negative for the smallest values of K , but then becomes
positive again for sufficiently large K ; although this stabilization to a positive value may
occur for prohibitely large values of K for small ξ .

As a consistency check, we next verify that the spectral gap predicted by the Galerkin
method agrees with the one which can be analytically computed in the case when U0 = 0.
More precisely, the results of [16] show that the eigenvalues are

λn,k = −nξ

m
− k2

βξ
,

so that the spectral gap is

γ (ξ, 0) = min

(
ξ

m
,
1

βξ

)

. (19)

The crossover from one eigenvalue branch to the other occurs at ξ = √
m/β. Figure 2

presents the eigenvalues which are numerically computed. They are in perfect agreement
with the theoretical prediction (19).
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Fig. 2 Predicted spectral gap as
a function of the friction ξ when
U0 = 0, β = 1 and m = 1 (solid
line), and theoretical
prediction (19) (dashed lines; one
of the lines represents ξ the other
one 1/ξ )

Fig. 3 Spectral gap as a function
of ξ for τ = 0, 0.1, 1 when
U (q) = 1 − cos(q)

Fig. 4 Zoom of Figure 3 around ξ = 1 (Left) and large ξ (Right; logarithmic scale)

4.2.2 Spectral gap as a function of the friction

We report in Figures 3 and 4 the spectral gap as a function of the friction ξ for various
values of the forcing τ and the choice U0 = 1 (with m = 1 and β = 1). The first point to
mention is that the introduction of a potential smoothes out the sharp transition observed at
ξ = √

m/β = 1 when U0 = 0 and τ = 0 (recall Figure 2). As τ is increased, we were
able to compute the spectral gap only for frictions above a certain treshold, roughly ξ � |τ |.
The spectral gap is increased with respect to the case τ = 0 in a certain range of values of ξ

(roughly, 1 � ξ � 4), and decreased for other ones (in particular ξ � 1). Forcings however
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Fig. 5 Spectral gap as a function of ξ for τ = 0, 0.1, 1 whenU (q) = U0(1− cos(q)). Left:U0 = 0.1. Right:
U0 = 10

have to be sufficiently strong in order for the perturbation to have some non-negligible impact
(when τ = 0.1, the perturbation on the spectral gap is visible only around ξ = 2). Lastly,
we observe that the spectral gap decreases as �τ /ξ for large ξ (for some prefactor �τ > 0)
whatever the value of τ we considered, with �τ decreasing as τ increases.

We next study the influence of the potential by computing the spectral gap for various
values of τ, ξ when the potential is U (q) = U0(1 − cos(q)). The results for U0 = 0.1 and
U0 = 10 are reported in Figure 5. Note that the effect of the perturbation is less visible on
these pictures: the spectral gaps are much closer to the ones corresponding to τ = 0. For U0

small, this is related to the fact that the spectral gap is independent of τ whenU0 = 0 (see [15]
for further precisions), a feature which approximately persists for small but non-zero values
ofU0. For largeU0, the perturbation τ F is dominated by the gradient part of the forceU ′(q);
hence it has less impact on the spectral gap.

5 Proofs of the results

We introduce the marginal measure in the position variable:

ν(dq) =
∫

Rd
μ(dq dp) = Z−1

ν e−βU (q) dq.

Recall also the definition (17) for the marginal κ(dq) in the momentum variable. These
measures satisfy the following Poincaré inequalities:

∀ϕ ∈ H1(ν) ∩ L2
0(ν), ‖ϕ‖L2(ν) � 1

Kν

‖∇qϕ‖L2(ν), (20)

and

∀φ ∈ H1(κ) ∩ L2
0(κ), ‖φ‖L2(κ) � 1

Kκ

‖∇pφ‖L2(κ). (21)

In fact, Kκ = √
β/m. The measure μ therefore also satisfies a Poincaré inequality:

∀g ∈ H1(μ) ∩ L2
0(μ), ‖g‖2L2(μ)

� 1

K 2
ν

‖∇qg‖2L2(μ)
+ 1

K 2
κ

‖∇pg‖2L2(μ)
. (22)

This also implies

∀g ∈ H1(μ) ∩ L2
0(μ), ‖g‖L2(μ) � 1

Kν

‖∇qg‖L2(μ) + 1

Kκ

‖∇pg‖L2(μ). (23)
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In all the proofs below, we start by fixing a function f in the Hilbert space under consid-
eration, and define

f (t) = etL
∗
ξ,τ f − hτ . (24)

Note that, to simplify the notation, we omit the dependence of f (t) on ξ, τ . We also consider
that Lξ,τ is defined on L2(μ), with domain D(Lξ,τ ) = { f ∈ L2(μ), Lξ,τ f ∈ L2(μ)}. In
all cases under consideration, f (t) has average 0 with respect to μ for all times t � 0.

We will also make use of the following remark: the smallest eigenvalue of the positive
definite matrix

M =
(

a b/2
b/2 c

)

is

�−(M) = a + c

2
− 1

2

√
(a − c)2 + b2 = 4ac − b2

a + c +√(a − c)2 + b2
. (25)

5.1 Proof of Theorem 1

Formally,

d

dt

(
1

2
‖ f (t)‖2a(ξ)

)

= 〈 f (t),L∗
ξ,τ f (t)

〉

a(ξ)
.

The exponential decay therefore follows by a Gronwall inequality provided

∀g ∈ D(L∗
ξ,τ ) ∩ L2

0(μ),
〈
g,L∗

ξ,τ g
〉

a(ξ)
� −λ(ξ, τ )‖g‖2a(ξ),

for some λ(ξ, τ ) > 0. Let us establish this inequality by considering a smooth and compactly
supported function g with average 0 with respect to μ, and then conclude by density. By
the computations recalled in [21, Section 2.2.3] (which correspond to the equilibrium case
τ = 0),

〈
g,L∗

ξ,0g
〉

a(ξ)
� −XT S(ξ)X − ξa(ξ)

β
‖(∇p + ∇q)∇pg‖2L2(μ)

, (26)

with

X =
(‖∇pg‖L2(μ)

‖∇qg‖L2(μ)

)

, S(ξ) =
(

Spp(ξ)Idd Sqp(ξ)Idd/2

Sqp(ξ)Idd/2 Sqq(ξ)Idd

)

,

the elements of the matrix S being

Spp(ξ) = ξ

(
1

β
+ a(ξ)

m

)

− a(ξ)‖∇2U‖L∞ ,

Sqp(ξ) = −a(ξ)

(
1 + ξ

m
+ ‖∇2U‖L∞

)

, Sqq(ξ) = a(ξ)

m
.

In addition, the perturbation term can be bounded as
∣
∣
∣
∣

〈
g,L∗

pertg
〉

a(ξ)

∣
∣
∣
∣ �

∣
∣
∣
〈Lpertg, g

〉

L2(μ)

∣
∣
∣+ a(ξ)

∣
∣
∣
∣

〈(∇q + ∇p
)
g,
(∇q + ∇p

)
F · ∇∗

pg
〉

a(ξ)

∣
∣
∣
∣ .
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Since
(
∂qi + ∂pi

)
∂∗
p j
g = ∂∗

p j

(
∂qi + ∂pi

)
g + δi jβg/m, it follows that

∣
∣
∣
∣

〈
g,L∗

pertg
〉

a(ξ)

∣
∣
∣
∣ � ‖g‖L2(μ)‖∇pg‖L2(μ)

+ a(ξ)‖(∇p + ∇q)g‖L2(μ)

(

‖(∇p + ∇q)∇pg‖L2(μ) + β

m
‖g‖L2(μ)

)

� ‖g‖L2(μ)

[(

1 + βa(ξ)

m

)

‖∇pg‖L2(μ) + βa(ξ)

m
‖∇qg‖L2(μ)

]

+ ηa(ξ)
(‖∇pg‖L2(μ) + ‖∇qg‖L2(μ)

)2 + a(ξ)

4η
‖(∇p + ∇q)∇pg‖2L2(μ)

,

for any η > 0 by Young’s inequality. Therefore, using (23),
∣
∣
∣
∣

〈
g,L∗

pertg
〉

a(ξ)

∣
∣
∣
∣ � XT T (ξ, η)X + a(ξ)

4η
‖ (∇p + ∇q

)∇pg‖2L2(μ)
, (27)

where

T (ξ, η) =
(

Tpp(ξ, η)Idd Tqp(ξ, η)Idd/2

Tqp(ξ, η)Idd/2 Tqq(ξ, η)Idd

)

,

the elements of the matrix T being

Tpp(ξ, η) = 1

Kκ

(

1 + βa(ξ)

m

)

+ ηa(ξ),

Tqp(ξ, η) = 1

Kν

(

1 + βa(ξ)

m

)

+ βa(ξ)

mKκ

+ 2ηa(ξ),

Tqq(ξ, η) = βa(ξ)

mKν

+ ηa(ξ).

Finally, in view of the Poincaré inequality (22), the norm ‖ · ‖a(ξ) can be controlled by
|X | as

‖g‖2a(ξ) � XT P(ξ)X, P(ξ) =

⎛

⎜
⎜
⎝

a(ξ) + 1

K 2
κ

a(ξ)

a(ξ) a(ξ) + 1

K 2
ν

⎞

⎟
⎟
⎠ .

The comparison between (26) and (27) suggests choosing η = β|τ |/(4ξ). The constant
λ(ξ, τ ) can therefore be chosen as the largest real number such that

S(ξ) − |τ |T
(

ξ,
β|τ |
4ξ

)

� λ(ξ, τ )P(ξ). (28)

Let us now make this condition more explicit by distinguishing the two limiting regimes
ξ → 0 and ξ → +∞.

(i) When ξ → 0, the condition that S should be positive definite requires in particular
that Spp(ξ) > 0. This means that a(ξ) should be sufficiently small, in fact at most of
order ξ . We therefore consider a(ξ) = a0ξ + O(ξ2). The condition (28) then reduces
to
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⎛

⎜
⎜
⎜
⎝

ξ

(
1

β
− a0‖∇2U‖L∞

)

− |τ |
(

1

Kκ
+ βa0|τ |

4

)

−a0ξ

2

(
1

m
+ ‖∇2U‖L∞

)

− |τ |
2Kν

− βa0|τ |2
4

−a0ξ

2

(
1

m
+ ‖∇2U‖L∞

)

− |τ |
2Kν

− βa0|τ |2
4

a0ξ

m
− βa0|τ |2

4

⎞

⎟
⎟
⎟
⎠

+ O
(
ξ2, ξ |τ |

)

� λ(ξ, τ )

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

1

K 2
κ

0

0
1

K 2
ν

⎞

⎟
⎟
⎠+ O(ξ)

⎤

⎥
⎥
⎦ .

It is then clear (by considering for instance the first element on the matrix on the left-
hand side) that τ can be chosen to be at mrost of order ξ , which we write as |τ | = δξ .
The above inequality then reduces to

⎛

⎜
⎜
⎝

1

β
− a0‖∇2U‖L∞ − δ

Kκ
−a0

2

(
1

m
+ ‖∇2U‖L∞

)

− δ

2Kν

−a0
2

(
1

m
+ ‖∇2U‖L∞

)

− δ

2Kν

a0
m

⎞

⎟
⎟
⎠+ O(ξ)

� λ(ξ,δξ)
ξ

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

1

K 2
κ

0

0
1

K 2
ν

⎞

⎟
⎟
⎠+ O(ξ)

⎤

⎥
⎥
⎦ .

Wenext choose δ > 0 sufficiently small and then a0 sufficiently small in order to satisfy
the above inequality. In any case, λ(ξ, τ ) is of order ξ . Moreover, from the above matrix
expression, it is clear that [λ(ξ, δξ) − λ(ξ, 0)]/ξ = O(δ).

(ii) When ξ → +∞, the limitation on a(ξ) arises from the fact that the determinant of
S(ξ) should be positive, which requires ξa(ξ) to be bounded. We therefore consider
a(ξ) = a∞/ξ + O(ξ−2).The condition (28) then reduces to
⎛

⎜
⎜
⎝

ξ

β
−a∞

2m

−a∞
2m

a∞
mξ

⎞

⎟
⎟
⎠− |τ |

⎛

⎜
⎜
⎝

1

Kκ

1

2Kν

1

2Kν
0

⎞

⎟
⎟
⎠+ O

(
1
ξ2

,
|τ |
ξ

)
� λ(ξ, τ )

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

1

K 2
κ

0

0
1

K 2
ν

⎞

⎟
⎟
⎠+ O

(
1
ξ

)

⎤

⎥
⎥
⎦ .

In view of (25), the smallest eigenvalue of the first matrix on the left-hand side is of
order 1/ξ , so that τ can be at most of order 1/ξ , which we write as τ = δ/ξ . The above
inequality then shows that λ(ξ, δ/ξ) is of order 1/ξ , and that ξ [λ(ξ, δξ) − λ(ξ, 0)] =
O(δ).

5.2 Proof of Theorem 2

The key estimate for proving the result is the following hypoelliptic regularization result.

Proposition 3 There exist K , δ∗ > 0 such that, for any ξ > 0 and τ ∈ [0, δ∗ min(ξ, 1)], the
following bound holds for any g ∈ L2(μ):

∀0 < t � 1,
∥
∥
∥∇pe

tL∗
ξ,τ g
∥
∥
∥
L2(μ)

+
∥
∥
∥∇qe

tL∗
ξ,τ g
∥
∥
∥
L2(μ)

�
K max

(
ξ, ξ−1

)

t3/2
‖g‖L2(μ).

Note that the hypoelliptic regularization is possible for values of τ of order 1 when ξ

is large, and it is therefore not this step which limits the range of admissible forcings in
Theorem 2.
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As a corollary of Proposition 3, there exists a constant K̃ > 0 such that ‖ f (t)‖2a(ξ) �
K̃ t−3/2‖ f ‖L2(μ) for 0 < t � 1 when the product a(ξ)max(ξ, ξ−1) is bounded, which
is the case for the function a(ξ) considered in Theorem 1. Combining this inequality and
Theorem 1 with t0 = 1, for instance, we can conclude that, for t � 1, and any ξ ∈ (0,+∞)

and τ ∈ [−δmin(ξ, ξ−1), δmin(ξ, ξ−1)]

‖ f (t)‖2L2(μ)
� ‖ f (t)‖2a(ξ) � e−2λδ min(ξ,ξ−1)(t−t0)‖ f (t0)‖2a(ξ)

� K̃ e−2λδ min(ξ,ξ−1)(t−t0)‖ f (0)‖2L2(μ)
,

which gives the claimed exponential decay in L2(μ).

Proof of Proposition 3 We denote by g(t) = etL
∗
ξ,τ g, and introduce

Ng(t) = 1

2

(
‖g(t)‖2L2(μ)

+ A(ξ)t‖∇pg(t)‖2L2(μ)
+ 2B(ξ)t2

〈∇pg(t),∇qg(t)
〉

L2(μ)

+C(ξ)t3‖∇qg(t)‖2L2(μ)

)
,

where A(ξ),C(ξ) are positive and A(ξ)C(ξ) − B(ξ)2 > 0. The result follows provided
Ng(t) has a controlled increase (in the sense that Ng(1) can be controlled by Ng(0) up to a
multiplicative factor) and A(ξ)C(ξ) − B(ξ)2 is of order min(ξ, ξ−1).

By computations similar to the ones leading to (26) (see for instance the proof of [21,
Theorem 2.18]), the following inequality holds when B(ξ) > 3mC(ξ)/2:

dNg(t)

dt
� −

(
ξ

β
+ A(ξ)

(
ξ t

m
− 1

2

)

− ‖∇2U‖L∞ B(ξ)t2
)
∥
∥∇pg(t)

∥
∥2
L2(μ)

−
(
B(ξ)

m
− 3C(ξ)

2

)

t2
∥
∥∇q g(t)

∥
∥2
L2(μ)

+ t

(

2B(ξ) + A(ξ)

m
+ ξ B(ξ)t

m
+ C(ξ)‖∇2U‖L∞ t2

)
∥
∥∇pg(t)

∥
∥
L2(μ)

∥
∥∇q g(t)

∥
∥
L2(μ)

− ξ t

β

(

A(ξ)

∥
∥
∥∇2

pg(t)
∥
∥
∥
2

L2(μ)
− 2B(ξ)t‖∇2

pg(t)‖L2(μ)
‖∇2

qpg(t)‖L2(μ)
+ C(ξ)t2

∥
∥
∥∇2

qpg(t)
∥
∥
∥
2

L2(μ)

)

+ τ Ñg(t),

with

Ñg(t) =
〈
g(t),L∗

pertg(t)
〉

L2(μ)
+ A(ξ)t

〈
∇pg(t),∇pL∗

pertg(t)
〉

L2(μ)

+ C(ξ)t3
〈
∇qg(t),∇qL∗

pertg(t)
〉

L2(μ)

+ B(ξ)t2
(〈

∇qg(t),∇pL∗
pertg(t)

〉

L2(μ)
+
〈
∇qL∗

pertg(t),∇pg(t)
〉

L2(μ)

)

.

Note that, using [∂pi ,L∗
pert] = βFi/m,

∣
∣Ñg(t)

∣
∣ � ‖∇pg(t)‖L2(μ)‖g(t)‖L2(μ)

+ A(ξ)t‖∇pg(t)‖L2(μ)

(
β

m
‖g(t)‖L2(μ) + ‖∇2

pg(t)‖L2(μ)

)

+ C(ξ)t3‖∇q g(t)‖L2(μ)‖∇2
qpg(t)‖L2(μ)

+ B(ξ)t2
(

‖∇pg(t)‖L2(μ)‖∇2
qpg(t)‖L2(μ) + ‖∇q g(t)‖L2(μ)

[
β

m
‖g(t)‖L2(μ) + ‖∇2

pg(t)‖L2(μ)

])

.
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We next recall that ‖g(t)‖2
L2(μ)

� 2Ng(t) and use Cauchy–Schwarz inequalities1 such as

t2‖∇pg(t)‖L2(μ)‖∇2
qpg(t)‖L2(μ) � t

2

(
‖∇pg(t)‖2L2(μ)

+ t2‖∇2
qpg(t)‖L2(μ)

)
.

This allows to bound Ñg(t) as follows:

∣
∣Ñg(t)

∣
∣ �

(

1 + βt (A(ξ) + B(ξ))

m

)

Ng(t)

+ 1

2

(

1 + A(ξ)t

[

1 + β

m

]

+ B(ξ)t

)

‖∇pg(t)‖2L2(μ)

+ 1

2

(

C(ξ) + B(ξ)

[

1 + β

m

])

t3‖∇qg(t)‖2L2(μ)

+ 1

2
(A(ξ) + B(ξ)) t‖∇2

pg(t)‖2L2(μ)
+ 1

2
(B(ξ) + C(ξ)) t3‖∇2

qpg(t)‖2L2(μ)
.

By combining the latter inequality and the above bound on dNg/dt , it follows that, for
any t ∈ [0, 1],
dNg(t)

dt
�
(

1 + β(A(ξ) + B(ξ))

m

)

|τ |Ng(t)

−
(

ξ

β
− A(ξ)

2
− ‖∇2U‖L∞ B(ξ) − |τ |

2

[

1 + A(ξ)

(

1 + β

m

)

+ B(ξ)

])
∥
∥∇pg(t)

∥
∥2
L2(μ)

− t2
(
B(ξ)

m
− 3C(ξ)

2
− |τ |

2

[

C(ξ) + B(ξ)

(

1 + β

m

)])
∥
∥∇q g(t)

∥
∥2
L2(μ)

+ t

(

2B(ξ) + A(ξ)

m
+ ξ B(ξ)

m
+ C(ξ)‖∇2U‖L∞

)
∥
∥∇pg(t)

∥
∥
L2(μ)

∥
∥∇q g(t)

∥
∥
L2(μ)

− ξ t

β

(

A(ξ)

∥
∥
∥∇2

pg(t)
∥
∥
∥
2

L2(μ)
− 2B(ξ)t‖∇2

pg(t)‖L2(μ)‖∇2
qpg(t)‖L2(μ) + C(ξ)t2

∥
∥
∥∇2

qpg(t)
∥
∥
∥
2

L2(μ)

)

+ |τ | (A(ξ) + B(ξ)) t

2
‖∇2

pg(t)‖2L2(μ)
+ |τ | (B(ξ) + C(ξ)) t3

2
‖∇2

qpg(t)‖2L2(μ)
.

The discussion at this stage follows the same strategy as the end of Sect. 5.1, by rewriting
the sum of the second to the fourth lines in matrix form as

−XT S(ξ, τ )X, X =
(∥
∥∇pg(t)

∥
∥
L2(μ)

∥
∥∇qg(t)

∥
∥
L2(μ)

)

,

and the sum of the last two lines in matrix form as

−Y T T (ξ, τ )Y, Y =
⎛

⎜
⎝

∥
∥
∥∇2

pg(t)
∥
∥
∥
L2(μ)∥

∥
∥∇2

qpg(t)
∥
∥
∥
L2(μ)

⎞

⎟
⎠ .

We then distinguish the cases ξ → 0 and ξ → +∞, and look for conditions ensuring
that the matrices S(ξ, τ ), T (ξ, τ ) are nonnegative. It is easily seen that the requirements
translate into A(ξ) = Amin(ξ, ξ−1), B(ξ) = Bmin(ξ, ξ−1), C(ξ) = C min(ξ, ξ−1) for

positive parameters A, B,C sufficiently small and such that AC − B
2

> 0; as well as
τ ∈ [−δ∗ min(ξ, 1), δ∗ min(ξ, 1)] for δ∗ > 0 sufficiently small; and the further conditions
thatC and δ∗ are sufficiently small compared to B. There exists therefore R > 0 (independent
of τ and ξ ) such that

1 Although sharper results may be obtained with Young inequalities, the final scaling of admissible values of
τ in terms of ξ is unaffected.
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dNg(t)

dt
� R|τ |Ng(t),

from which we deduce that Ng(1) � eR|τ |Ng(0) = 2eR|τ |‖g‖2
L2(μ)

. The latter inequality
allows to conclude. ��
5.3 Proof of Theorem 3

We closely follow the proof of [8,9], however specializing the operators under consideration
to the case of Langevin dynamics, and considering all operators on L2(μ). This allows to
simplify several arguments in the proof.

Introduce the projection � : L2(μ) → L2(ν) defined as

(�g)(q) = 〈g(q, ·), 1〉L2(κ) =
∫

Rd
g(q, p) κ(dp).

A simple computation shows that�Lham� = 0 since (Lham�g)(q, p) = pT∇q(�g)(q)/m
and �p = 0. Consider also the following functional

E (g) = 1

2
‖g‖2L2(μ)

+ a(ξ) 〈Ag, g〉L2(μ) ,

for some parameter a(ξ) ∈ (0, 1) to be determined later on in terms of ξ , and with

A = − (1 − �L2
ham�

)−1
�Lham.

The latter operator can in fact be made somewhat more explicit, by computing the action of
L2
ham�:

L2
ham�ϕ = 1

m2 p
T (∇2

q�ϕ)p − 1

m
∇U · ∇q�ϕ. (29)

A simple computation then shows that �L2
ham� is, up to a multiplicative factor 1/m, the

generator of the overdamped Langevin process (2):

�L2
ham�ϕ = 1

m
Lovd�ϕ, Lovd = −∇U · ∇q + 1

β
�qϕ.

The following result gathers some properties of the operator A (see [9, Lemma 1]).

Lemma 1 It holds �A = A. Moreover, for any function g ∈ L2(μ),

‖Ag‖L2(μ) � 1

2
‖(1 − �)g‖L2(μ), ‖LhamAg‖L2(μ) � ‖(1 − �)g‖L2(μ).

Proof Consider g ∈ L2(μ) and u = Ag. Then, (1 − �L2
ham�)u = −�Lhamg, so that,

taking the scalar product with respect to u,

‖u‖2L2(μ)
+ ‖Lham�u‖2L2(μ)

= 〈Lham�u, (1 − �)g〉L2(μ)

� ‖Lham�u‖L2(μ)‖(1 − �)g‖L2(μ) � 1

4
‖(1 − �)g‖2L2(μ)

+ ‖Lham�u‖2L2(μ)
,

which gives the claimed result. ��
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Denoting by H (t) = E ( f (t)) with f (t) defined in (24), a simple computation shows
that

H ′(t) = 〈 f (t),Lξ,τ f (t)〉L2(μ) + a(ξ)〈AL∗
ξ,τ f (t), f (t)〉L2(μ)

+ a(ξ)〈Lξ,τ A f (t), f (t)〉L2(μ)

= ξ 〈 f (t),LFD f (t)〉L2(μ) + τ 〈 f (t),Lpert f (t)〉L2(μ)

− a(ξ)〈ALham f (t), f (t)〉L2(μ) + ξa(ξ)〈ALFD f (t), f (t)〉L2(μ)

+ τa(ξ)〈AL∗
pert f (t), f (t)〉L2(μ)

+ a(ξ)〈LhamA f (t), f (t)〉L2(μ),

where we used in the last line that LFDA = LFD�A = 0 and LpertA = Lpert�A = 0.
Therefore,

H ′(t) � ξ 〈 f (t),LFD f (t)〉L2(μ) + τ 〈 f (t),Lpert f (t)〉L2(μ)

− a(ξ)〈ALham f (t), f (t)〉L2(μ) + ξa(ξ)〈ALFD f (t), f (t)〉L2(μ)

+ |τ |a(ξ)‖AL∗
pert‖‖ f (t)‖L2(μ)‖� f (t)‖L2(μ) + a(ξ)‖(1 − �) f (t)‖2L2(μ)

,

(30)

where we used Lemma 1 to write LhamA = Lham�A = (1 − �)LhamA, so that
∣
∣〈LhamAh, h〉L2(μ)

∣
∣ = ∣∣〈LhamAh, (1 − �)h〉L2(μ)

∣
∣ � ‖(1 − �)h‖2L2(μ)

.

Let us now consider successively the various terms in (30):

• The sum first two terms on the right-hand side of (30) can be bounded as

ξ 〈 f (t),LFD f (t)〉L2(μ) + τ 〈 f (t),Lpert f (t)〉L2(μ)

� − ξ

β
‖∇p f (t)‖2L2(μ)

+ |τ |‖ f (t)‖L2(μ)‖∇p f (t)‖L2(μ)

� −
(

ξ

β
− |τ |

2η

)

‖∇p f (t)‖2L2(μ)
+ η|τ |

2
‖ f (t)‖2L2(μ)

,

� −K 2
κ

(
ξ

β
− |τ |

2η

)

‖(1 − �) f (t)‖2L2(μ)
+ η|τ |

2
‖ f (t)‖2L2(μ)

,

where η > β|τ |/(2ξ), and where we used ∇p� = 0 and a Poincaré inequality to obtain
the last inequality (since (1 − �)g(t, q, ·) ∈ L2

0(κ) for almost all q).
• We rewrite the first term of the second line of (30) as

〈ALham f (t), f (t)〉L2(μ) = 〈ALham� f (t), f (t)〉L2(μ)+〈ALham(1−�) f (t), f (t)〉L2(μ).

(31)
We start with the first term on the right-hand side of the above equality. Denoting by
B = Lham�, it holds (Bh)(q, p) = pT∇q(�h)(q)/m. When h ∈ L2

0(μ), and since ν

satisfies the Poincaré inequality (20), it holds

‖Bh‖L2(μ) =
√

d

mβ
‖∇q(�h)‖L2(ν) � Kν

√
d

mβ
‖�h‖L2(ν).

This can be rephrased as

B∗B � dK 2
ν

mβ
�
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in the sense of symmetric operators on L2
0(μ). Since ALham� = (1 + B∗B)−1B∗B =

1 − (1 + B∗B)−1, we can conclude that

−〈ALham� f (t), f (t)〉L2(μ) � − dK 2
ν /(mβ)

1 + dK 2
ν /(mβ)

‖� f (t)‖2L2(μ)
.

For the second term on the right-hand side of (31), we write (using �A = A)

〈ALham(1 − �) f (t), f (t)〉L2(μ) = −〈(1 − �) f (t),LhamA∗� f (t)〉L2(μ).

By Lemma 2 below, the operator LhamA∗ is bounded, so that the absolute value of
the right-hand side of the above equality is bounded by ‖LhamA∗‖‖(1 − �) f (t)‖L2(μ)

‖� f (t)‖L2(μ).
• In order to treat the second term in the second line of (30),we compute the action of ALFD.

Now, ALFD = −(1−�L2
ham�)−1�LhamLFD = −(1−�L2

ham�)−1�[Lham,LFD] since
�LFD = 0. In order to evaluate the commutator, we compute

[Lham,LFD] h = 1

m
∇U · ∇ph + p

m2 · ∇qh − 2

mβ

d∑

i=1

∂2qi pi h.

Upon applying � to the various terms and noting that
∫

Rd
∂2qi pi h dκ = β

m

∫

Rd
pi∂qi h dκ,

it follows that �[Lham,LFD] = −�Lham/m. Therefore, ALFD = −A/m is bounded by
Lemma 1. More precisely,

∣
∣〈ALFD f (t), f (t)〉L2(μ)

∣
∣ � 1

2m
‖(1 − �) f (t)‖L2(μ)‖� f (t)‖L2(μ).

• Finally, AL∗
pert is bounded by Lemma 2 below, with ‖AL∗

pert‖ �
√

β/(4m).

Gathering all estimates, we obtain

H ′(t) � −X (t)T
(
S(ξ) − |τ |T (ξ)

)
X (t),

with

X =
( ‖� f (t)‖L2(μ)

‖(1 − �) f (t)‖L2(μ)

)

, S(ξ) =
(

S−−(ξ) S−+(ξ)/2

S−+(ξ)/2 S++(ξ)

)

,

T (ξ) =
(

T−−(ξ) T−+(ξ)/2

T−+(ξ)/2 T++(ξ)

)

,

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S−−(ξ) = a(ξ)
dK 2

ν /(mβ)

1 + dK 2
ν /(mβ)

,

S−+(ξ) = −a(ξ)

(

‖LhamA∗‖ + ξ

2m

)

,

S++(ξ) = ξK 2
κ

β
− a(ξ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T−−(ξ) = 1

2

(

a(ξ)

√
β

m
+ η

)

,

T−+(ξ) = a(ξ)

2

√
β

m
,

T++(ξ) = 1

2

(

η + K 2
κ

η

)

.

.
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Therefore, since 2H (t) � (1 + a(ξ))‖ f (t)‖2
L2(μ)

by Lemma 1,

H ′(t) � −�−
(
S(ξ) − |τ |T (ξ)

)
‖ f (t)‖2L2(μ)

� −
2�−

(
S(ξ) − |τ |T (ξ)

)

1 + a(ξ)
H (t), (32)

where �− is defined in (25). We next follow a discussion similar to the one performed at
the end of Sect. 5.1. When τ = 0, the requirement that S(ξ) is positive definite shows that
a(ξ) should be chosen of order min(ξ, ξ−1). Next, in order for S(ξ)−|τ |T (ξ) to be positive
definite for τ �= 0, we see that τ should be of order ξ when ξ → 0 (choosing η = βτ/(4ξ)

for instance), but can be taken to be of order 1 as ξ → +∞ by setting η = 1/ξ . Indeed, this
choice leads to

S(ξ) − |τ |T (ξ) �

⎛

⎜
⎜
⎜
⎝

a∞
ξ

dK 2
ν /(mβ)

1 + dK 2
ν /(mβ)

−a∞
4m

−a∞
4m

ξK 2
κ

β

⎞

⎟
⎟
⎟
⎠

− |τ |
2

⎛

⎜
⎜
⎝

1 + a∞
√

β/m

ξ
0

0
ξK 2

κ

2

⎞

⎟
⎟
⎠ ,

where a∞, the limit of ξa(ξ) as ξ → +∞, should be sufficiently small. In conclusion, it is
possible to set τ = δmin(ξ, 1) for |δ| sufficiently small, and, for such a choice, there exists
λδ > 0 for which, for any ξ ∈ (0,+∞),

H ′(t) � −λδ min(ξ, ξ−1)‖ f (t)‖2L2(μ)
.

Moreover, λδ = λ0 + O(δ).
The final result is obtained by noting that, in view of Lemma 1, and considering functions

a with values in a compact subset of (0, 1),

‖ f (t)‖2L2(μ)
� 2

1 − a(ξ)
H (t), H (0) � 1 + a(ξ)

2
‖ f (0)‖2L2(μ)

.

This shows that the constant C in (14) can be chosen as (by restricting a(ξ) to remain lower
than 1/2 for instance)

C = sup
ξ>0

√
1 + a(ξ)

1 − a(ξ)
.

It remains to prove the following technical result.

Lemma 2 The operators LhamA∗ = L2
ham�(1 − �L2

ham�)−1 and LpertA∗ are bounded.
Moreover, ‖LpertA∗‖ �

√
β/(4m).

Proof In view of (29), the action of LhamA∗ = LhamA∗� is

LhamA∗�ϕ(q, p) = 1

m2 p
T (∇2

q�ψ)(q)p − 1

m
∇U (q) · ∇q�ψ(q),

with

ψ =
(

1 − 1

m
Lovd

)−1

�ϕ.

The operator LhamA∗� is then bounded since 1−Lovd/m is a bounded operator from L2(ν)

to H2(ν).
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We next consider LpertA∗ = LpertLham�(1 − Lovd/m)−1 �. Since

LpertLham�h = 1

m
Lpert

(
p · ∇q�h

) = 1

m
F · ∇q�h,

the operator LpertA∗ is also bounded since 1−Lovd/m is a bounded operator from L2(ν) to
H1(ν). Moreover, for ϕ ∈ L2(μ),

‖LpertA
∗ϕ‖2 = 〈ϕ, AL∗

pertLpertA
∗ϕ〉L2(μ)

= 1

m2

〈
ϕ,�(1 − Lovd/m)−1(F · ∇q)

∗F · ∇q(1 − Lovd/m)−1�ϕ
〉

L2(μ)
.

Since 0 � (F · ∇q)
∗F · ∇q � ∇∗

q∇q = −βLovd in the sense of symmetric operators, it
follows that, by spectral calculus,

‖LpertA
∗‖2 � sup

x�0

βx

m2(1 + x/m)2
= β

m
sup
y�0

y

(1 + y)2
= β

4m
,

which gives the claimed bound. ��
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